1
|
Xie H, Dan M, Cen Y, Ning J, Sun C, Zhu G, Feng S, Wang H, Pu J. AR expression-independent XRCC3 mediates DNA damage-induced p53/Bax signaling pathway activation against prostate cancer. J Cancer Res Clin Oncol 2024; 150:463. [PMID: 39414634 PMCID: PMC11485149 DOI: 10.1007/s00432-024-05989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Androgen deprivation therapy (ADT) resistance is closely associated with altered AR status. Aberrant AR expression is critical for the induction of ADT resistance, necessitating the identification of an anti-PCa target independent of AR expression. METHODS Transcriptomic data and clinical information of PRAD were obtained from TCGA database. Genes with PCa-related and AR expression-independent were screened by bioinformatics, and characterized by PPI and GO functional enrichment analyses. Candidate genes were locked by co-expression correlation and disease-free survival (DFS) analyses. A prognostic gene set was established using LASSO Cox regression algorithm. Cox proportional risk regression was performed to identify a key prognostic gene. Expression of the target protein in PCa tissues was verified by The Human Protein Atlas database. In vitro validation of cellular function and molecular mechanism by knockdown and overexpression of the target gene. RESULTS Two AR expression-independent genes (SLC43A1 and XRCC3) were available for the optimal prognostic model. This gene set effectively predicted PRAD patients' DFS at 1-, 3- and 5-year, where XRCC3 and tumor (T) stage were independent risk factors. XRCC3 was higher expressed in PRAD patients with T3-T4 stages and accompanied by poorer DFS. IHC staining also validated its higher expression in high-risk PCa tissues. In vitro experiments demonstrated that silencing XRCC3 significantly inhibited 22Rv1 and DU145 cell proliferation, migration and invasion, while promoted apoptosis. Further, silencing XRCC3 promoted DNA damage-induced p53/Bax signaling pathway activation, which was absent with overexpression. CONCLUSION Silencing XRCC3 exerts anti-PCa effects by promoting DNA damage-induced p53/Bax signaling pathway activation in an AR expression-independent manner.
Collapse
Affiliation(s)
- Hailong Xie
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Benbu, 233080, China
| | - Mingjiang Dan
- Department of Urology, Huiya Hospital of the First Affiliated Hospital of Sun Yat Sen University, Huizhou, 516081, China
| | - Yi Cen
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Jing Ning
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Benbu, 233080, China
| | - Chong Sun
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Benbu, 233080, China
| | - Guangbin Zhu
- Department of Medical Imaging, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Shourui Feng
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Haiyan Wang
- Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518100, China.
| | - Jinxian Pu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
2
|
Zhang N, Shu L, Liu Z, Shi A, Zhao L, Huang S, Sheng G, Yan Z, Song Y, Huang F, Tang Y, Zhang Z. The role of extracellular vesicles in cholangiocarcinoma tumor microenvironment. Front Pharmacol 2024; 14:1336685. [PMID: 38269274 PMCID: PMC10805838 DOI: 10.3389/fphar.2023.1336685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive malignant tumor that originates from the biliary system. With restricted treatment options at hand, the challenging aspect of early CCA diagnosis leads to a bleak prognosis. Besides the intrinsic characteristics of tumor cells, the generation and progression of CCA are profoundly influenced by the tumor microenvironment, which engages in intricate interactions with cholangiocarcinoma cells. Of notable significance is the role of extracellular vesicles as key carriers in enabling communication between cancer cells and the tumor microenvironment. This review aims to provide a comprehensive overview of current research examining the interplay between extracellular vesicles and the tumor microenvironment in the context of CCA. Specifically, we will emphasize the significant contributions of extracellular vesicles in molding the CCA microenvironment and explore their potential applications in the diagnosis, prognosis assessment, and therapeutic strategies for this aggressive malignancy.
Collapse
Affiliation(s)
- Nuoqi Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lizhuang Shu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zengli Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
- Department of General Surgery, Qilu Hospital, Shandong University, Qingdao, Shandong, China
| | - Anda Shi
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Liming Zhao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Shaohui Huang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Guoli Sheng
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhangdi Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yan Song
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Fan Huang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yongchang Tang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Xuan X, Tian C, Zhao M, Sun Y, Huang C. Mesenchymal stem cells in cancer progression and anticancer therapeutic resistance. Cancer Cell Int 2021; 21:595. [PMID: 34736460 PMCID: PMC8570012 DOI: 10.1186/s12935-021-02300-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence indicates that the tumor microenvironment appears to play an increasingly important role in cancer progression and therapeutic resistance. Several types of cells within the tumor stroma had distinct impacts on cancer progression, either promoting or inhibiting cancer cell growth. Mesenchymal stem cells (MSCs) are a distinct type of cells that is linked to tumor development. MSCs are recognized for homing to tumor locations and promoting or inhibiting cancer cell proliferation, angiogenesis and metastasis. Moreover, emerging studies suggests that MSCs are also involved in therapeutic resistance. In this review, we analyzed the existing researches and elaborate on the functions of MSCs in cancer progression and anticancer therapeutic resistance, demonstrating that MSCs may be a viable cancer therapeutic target.
Collapse
Affiliation(s)
- Xiuyun Xuan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Chunxia Tian
- Department of Cardiology, Hubei Provincial Hospital of TCM, Wuhan, 430022, Hubei, China
| | - Mengjie Zhao
- Department of Dermatology, Zhongnan Hospital, Wuhan University, Wuhan, 430022, Hubei, China.
| | - Yanhong Sun
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Changzheng Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
4
|
Karimi-Shahri M, Javid H, Sharbaf Mashhad A, Yazdani S, Hashemy SI. Mesenchymal stem cells in cancer therapy; the art of harnessing a foe to a friend. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1307-1323. [PMID: 35096289 PMCID: PMC8769515 DOI: 10.22038/ijbms.2021.58227.12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/04/2021] [Indexed: 12/09/2022]
Abstract
For a long time, mesenchymal stem cells (MSCs) were discussed only as stem cells which could give rise to different types of cells. However, when it became clear that their presence in the tumor microenvironment (TME) was like a green light for tumorigenesis, they emerged from the ashes. This review was arranged to provide a comprehensive and precise description of MSCs' role in regulating tumorigenesis and to discuss the dark and the bright sides of cancer treatment strategies using MSCs. To gather the details about MSCs, we made an intensive literature review using keywords, including MSCs, tumor microenvironment, tumorigenesis, and targeted therapy. Through transferring cytokines, growth factors, and microRNAs, MSCs maintain the cancer stem cell population, increase angiogenesis, provide a facility for cancer metastasis, and shut down the anti-tumor activity of the immune system. Although MSCs progress tumorigenesis, there is a consensus that these cells could be used as a vehicle to transfer anti-cancer agents into the tumor milieu. This feature opened a new chapter in MSCs biology, this time from the therapeutic perspective. Although the data are not sufficient, the advent of new genetic engineering methods might make it possible to engage these cells as Trojan horses to eliminate the malignant population. So many years of investigation showed that MSCs are an important group of cells, residing in the TME, studying the function of which not only could add a delicate series of information to the process of tumorigenesis but also could revolutionize cancer treatment strategies.
Collapse
Affiliation(s)
- Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Sharbaf Mashhad
- Department of Medical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shaghayegh Yazdani
- Department of Medical Laboratory Sciences, Ilam Institute for Medical Sciences, Ilam, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Eiro N, Fraile M, Fernández-Francos S, Sánchez R, Costa LA, Vizoso FJ. Importance of the origin of mesenchymal (stem) stromal cells in cancer biology: "alliance" or "war" in intercellular signals. Cell Biosci 2021; 11:109. [PMID: 34112253 PMCID: PMC8194017 DOI: 10.1186/s13578-021-00620-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) play a central role in the intercellular signaling within the tumor microenvironment (TME), exchanging signals with cancer cells and tumor stromal cells, such as cancer-associated fibroblasts and inflammatory mononuclear cells. Research attributes both pro-tumor and anti-tumor actions to MSCs; however, evidence indicates that MSCs specific effect on the tumor depends on the source of the MSCs and the type of tumor. There are consistent data proving that MSCs from reproductive tissues, such as the uterus, umbilical cord or placenta, have potent anti-tumor effects and tropism towards tumor tissues. More interestingly, products derived from MSCs, such as secretome or extracellular vesicles, seem to reproduce the effects of their parental cells, showing a potential advantage for clinical treatments by avoiding the drawbacks associated with cell therapy. Given these perspectives, it appears necessary new research to optimize the production, safety and antitumor potency of the products derived from the MSCs suitable for oncological therapies.
Collapse
Affiliation(s)
- Noemi Eiro
- Unit Research, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain.
| | - Maria Fraile
- Unit Research, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain
| | - Silvia Fernández-Francos
- Unit Research, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain
| | - Rosario Sánchez
- Department of Surgery, Fundación Hospital de Jove, 33290, Gijón, Asturias, Spain
| | - Luis A Costa
- Unit Research, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain
| | - Francisco J Vizoso
- Unit Research, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain. .,Department of Surgery, Fundación Hospital de Jove, 33290, Gijón, Asturias, Spain.
| |
Collapse
|
6
|
Liang W, Chen X, Zhang S, Fang J, Chen M, Xu Y, Chen X. Mesenchymal stem cells as a double-edged sword in tumor growth: focusing on MSC-derived cytokines. Cell Mol Biol Lett 2021; 26:3. [PMID: 33472580 PMCID: PMC7818947 DOI: 10.1186/s11658-020-00246-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/27/2020] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) show homing capacity towards tumor sites. Numerous reports indicate that they are involved in multiple tumor-promoting processes through several mechanisms, including immunosuppression; stimulation of angiogenesis; transition to cancer-associated fibroblasts; inhibition of cancer cell apoptosis; induction of epithelial-mesenchymal transition (EMT); and increase metastasis and chemoresistance. However, other studies have shown that MSCs suppress tumor growth by suppressing angiogenesis, incrementing inflammatory infiltration, apoptosis and cell cycle arrest, and inhibiting the AKT and Wnt signaling pathways. In this review, we discuss the supportive and suppressive impacts of MSCs on tumor progression and metastasis. We also discuss MSC-based therapeutic strategies for cancer based on their potential for homing to tumor sites.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000, Zhejiang, People's Republic of China.
| | - Xiaozhen Chen
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Songou Zhang
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Jian Fang
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Meikai Chen
- Department of Orthopaedics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Yifan Xu
- Department of Orthopaedics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Xuerong Chen
- Department of Orthopaedics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| |
Collapse
|
7
|
Zinger A, Brozovich A, Pasto A, Sushnitha M, Martinez JO, Evangelopoulos M, Boada C, Tasciotti E, Taraballi F. Bioinspired Extracellular Vesicles: Lessons Learned From Nature for Biomedicine and Bioengineering. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2172. [PMID: 33143238 PMCID: PMC7693812 DOI: 10.3390/nano10112172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Efficient communication is essential in all layers of the biological chain. Cells exchange information using a variety of signaling moieties, such as small molecules, proteins, and nucleic acids. Cells carefully package these messages into lipid complexes, collectively named extracellular vesicles (EVs). In this work, we discuss the nature of these cell carriers, categorize them by their origin, explore their role in the homeostasis of healthy tissues, and examine how they regulate the pathophysiology of several diseases. This review will also address the limitations of using EVs for clinical applications and discuss novel methods to engineer nanoparticles to mimic the structure, function, and features of EVs. Using lessons learned from nature and understanding how cells use EVs to communicate across distant sites, we can develop a better understanding of how to tailor the fundamental features of drug delivery carriers to encapsulate various cargos and target specific sites for biomedicine and bioengineering.
Collapse
Affiliation(s)
- Assaf Zinger
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.B.); (A.P.); (M.S.); (J.O.M.); (M.E.); (C.B.); (E.T.)
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Ava Brozovich
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.B.); (A.P.); (M.S.); (J.O.M.); (M.E.); (C.B.); (E.T.)
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Texas A&M College of Medicine, Bryan, TX 77807, USA
| | - Anna Pasto
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.B.); (A.P.); (M.S.); (J.O.M.); (M.E.); (C.B.); (E.T.)
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Italy
| | - Manuela Sushnitha
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.B.); (A.P.); (M.S.); (J.O.M.); (M.E.); (C.B.); (E.T.)
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Jonathan O. Martinez
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.B.); (A.P.); (M.S.); (J.O.M.); (M.E.); (C.B.); (E.T.)
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Michael Evangelopoulos
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.B.); (A.P.); (M.S.); (J.O.M.); (M.E.); (C.B.); (E.T.)
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Christian Boada
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.B.); (A.P.); (M.S.); (J.O.M.); (M.E.); (C.B.); (E.T.)
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Ennio Tasciotti
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.B.); (A.P.); (M.S.); (J.O.M.); (M.E.); (C.B.); (E.T.)
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
- Biotechnology Program, San Raffaele University, Via di Val Cannuta, 247, 00166 Roma RM, Italy
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.B.); (A.P.); (M.S.); (J.O.M.); (M.E.); (C.B.); (E.T.)
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
8
|
Kletukhina S, Neustroeva O, James V, Rizvanov A, Gomzikova M. Role of Mesenchymal Stem Cell-Derived Extracellular Vesicles in Epithelial-Mesenchymal Transition. Int J Mol Sci 2019; 20:E4813. [PMID: 31569731 PMCID: PMC6801704 DOI: 10.3390/ijms20194813] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/22/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process that takes place during embryonic development, wound healing, and under some pathological processes, including fibrosis and tumor progression. The molecular changes occurring within epithelial cells during transformation to a mesenchymal phenotype have been well studied. However, to date, the mechanism of EMT induction remains to be fully elucidated. Recent findings in the field of intercellular communication have shed new light on this process and indicate the need for further studies into this important mechanism. New evidence supports the hypothesis that intercellular communication between mesenchymal stroma/stem cells (MSCs) and resident epithelial cells plays an important role in EMT induction. Besides direct interactions between cells, indirect paracrine interactions by soluble factors and extracellular vesicles also occur. Extracellular vesicles (EVs) are important mediators of intercellular communication, through the transfer of biologically active molecules, genetic material (mRNA, microRNA, siRNA, DNA), and EMT inducers to the target cells, which are capable of reprogramming recipient cells. In this review, we discuss the role of intercellular communication by EVs to induce EMT and the acquisition of stemness properties by normal and tumor epithelial cells.
Collapse
Affiliation(s)
- Sevindzh Kletukhina
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia.
| | - Olga Neustroeva
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia.
| | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham LE12 5RD, UK.
| | - Albert Rizvanov
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia.
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham LE12 5RD, UK.
- M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia.
| | - Marina Gomzikova
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia.
- M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia.
| |
Collapse
|
9
|
Timaner M, Tsai KK, Shaked Y. The multifaceted role of mesenchymal stem cells in cancer. Semin Cancer Biol 2019; 60:225-237. [PMID: 31212021 DOI: 10.1016/j.semcancer.2019.06.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells derived from the mesoderm that give rise to several mesenchymal lineages, including osteoblasts, adipocytes, chondrocytes and myocytes. Their potent ability to home to tumors coupled with their differentiation potential and immunosuppressive function positions MSCs as key regulators of tumor fate. Here we review the existing knowledge on the involvement of MSCs in multiple tumor-promoting processes, including angiogenesis, epithelial-mesenchymal transition, metastasis, immunosuppression and therapy resistance. We also discuss the clinical potential of MSC-based therapy for cancer.
Collapse
Affiliation(s)
- Michael Timaner
- Technion-Integerated Cancer Center, Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Kelvin K Tsai
- Laboratory of Advanced Molecular Therapeutics, and Division of Gastroenterology, Wan Fang Hospital, and Graduate Institutes of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei Taiwan; National Institute of Cancer Research, National Health Research Institutes, Taiwan
| | - Yuval Shaked
- Technion-Integerated Cancer Center, Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
10
|
Mesenchymal Stem Cells as Regulators of Carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1144:147-166. [DOI: 10.1007/5584_2018_311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
van der Velden DL, Houthuijzen JM, Roodhart JML, van Werkhoven E, Voest EE. Detection of endogenously circulating mesenchymal stem cells in human cancer patients. Int J Cancer 2018; 143:2516-2524. [PMID: 29992568 DOI: 10.1002/ijc.31727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/05/2018] [Accepted: 05/25/2018] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem cells (MSCs) can play a vital role in tumor progression and anticancer therapy response, as demonstrated by various in vitro and in vivo model systems. Their ability to home to developing tumors and modulate the tumor microenvironment, by suppressing T-cell responses and contributing to the tumor stroma, is suggested to have a significant impact on disease progression, metastasis formation, and therapy response. Most evidence, however, is derived from artificial models using exogenously administered MSCs. The contribution of endogenous MSCs to tumor progression is currently unclear. Furthermore, few studies have been conducted in humans. A prospective biomarker study was therefore undertaken in 40 human cancer patients and 10 healthy controls of similar age, aimed at (i) exploring and quantifying circulating MSC levels in healthy volunteers and patients with advanced malignancies, (ii) determining the variability of MSC levels between healthy volunteers and cancer patients with different histologic tumor types, and (iii) exploring biomarkers associated with MSC levels. Significantly increased levels of circulating MSC-like cells were observed in cancer patients when compared to healthy individuals (1.72 fold difference, 95% CI 1.03-2.81%, p = 0.03). In addition, prior systemic therapy was associated with a significant increase in MSC-like cells (1.73 fold difference, 95% CI 1.02-2.95, p = 0.04). These results indicate that the amount of endogenously circulating MSCs in humans is increased in response to cancer, and that systemic anticancer treatment can influence MSC levels. Further research is needed to determine whether MSCs have a predictive value.
Collapse
Affiliation(s)
- Daphne L van der Velden
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Julia M Houthuijzen
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jeanine M L Roodhart
- Division of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Erik van Werkhoven
- Biometrics Department, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emile E Voest
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Vangapandu HV, Alston B, Morse J, Ayres ML, Wierda WG, Keating MJ, Marszalek JR, Gandhi V. Biological and metabolic effects of IACS-010759, an OxPhos inhibitor, on chronic lymphocytic leukemia cells. Oncotarget 2018; 9:24980-24991. [PMID: 29861847 PMCID: PMC5982765 DOI: 10.18632/oncotarget.25166] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/09/2018] [Indexed: 12/24/2022] Open
Abstract
Blood cells from patients with chronic lymphocytic leukemia (CLL) are replicationally quiescent but transcriptionally, translationally, and metabolically active. Recently, we demonstrated that oxidative phosphorylation (OxPhos) is a predominant pathway in CLL for energy production and is further augmented in the presence of the stromal microenvironment. Importantly, CLL cells from patients with poor prognostic markers showed increased OxPhos. From these data, we theorized that OxPhos can be targeted to treat CLL. IACS-010759, currently in clinical development, is a small-molecule, orally bioavailable OxPhos inhibitor that targets mitochondrial complex I. Treatment of primary CLL cells with IACS-010759 greatly inhibited OxPhos but caused only minor cell death at 24 and 48 h. In the presence of stroma, the drug successfully inhibited OxPhos and diminished intracellular ribonucleotide pools. However, glycolysis and glucose uptake were induced as compensatory mechanisms. To mitigate the upregulated glycolytic flux, we used 2-deoxy-D-glucose in combination with IACS-010759. This combination reduced both OxPhos and glycolysis and induced cell death. Consistent with these data, low-glucose culture conditions sensitized CLL cells to IACS-010759. Collectively, these data suggest that CLL cells adapt to use a different metabolic pathway when OxPhos is inhibited and that targeting both OxPhos and glycolysis pathways is necessary for biological effect.
Collapse
Affiliation(s)
- Hima V. Vangapandu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brandon Alston
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joshua Morse
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mary L. Ayres
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - William G. Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael J. Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joseph R. Marszalek
- Institute of Applied Cancer Science and the Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
13
|
Kornblau SM, Ruvolo PP, Wang RY, Battula VL, Shpall EJ, Ruvolo VR, McQueen T, Qui Y, Zeng Z, Pierce S, Jacamo R, Yoo SY, Le PM, Sun J, Hail N, Konopleva M, Andreeff M. Distinct protein signatures of acute myeloid leukemia bone marrow-derived stromal cells are prognostic for patient survival. Haematologica 2018; 103:810-821. [PMID: 29545342 PMCID: PMC5927978 DOI: 10.3324/haematol.2017.172429] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 02/01/2018] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSC) support acute myeloid leukemia (AML) cell survival in the bone marrow (BM) microenvironment. Protein expression profiles of AML-derived MSC are unknown. Reverse phase protein array analysis was performed to compare expression of 151 proteins from AML-MSC (n=106) with MSC from healthy donors (n=71). Protein expression differed significantly between the two groups with 19 proteins over-expressed in leukemia stromal cells and 9 over-expressed in normal stromal cells. Unbiased hierarchical clustering analysis of the samples using these 28 proteins revealed three protein constellations whose variation in expression defined four MSC protein expression signatures: Class 1, Class 2, Class 3, and Class 4. These cell populations appear to have clinical relevance. Specifically, patients with Class 3 cells have longer survival and remission duration compared to other groups. Comparison of leukemia MSC at first diagnosis with those obtained at salvage (i.e. relapse/refractory) showed differential expression of 9 proteins reflecting a shift toward osteogenic differentiation. Leukemia MSC are more senescent compared to their normal counterparts, possibly due to the overexpressed p53/p21 axis as confirmed by high β-galactosidase staining. In addition, overexpression of BCL-XL in leukemia MSC might give survival advantage under conditions of senescence or stress and overexpressed galectin-3 exerts profound immunosuppression. Together, our findings suggest that the identification of specific populations of MSC in AML patients may be an important determinant of therapeutic response.
Collapse
Affiliation(s)
- Steven M Kornblau
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Peter P Ruvolo
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Rui-Yu Wang
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - V Lokesh Battula
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Vivian R Ruvolo
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Teresa McQueen
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - YiHua Qui
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Zhihong Zeng
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Sherry Pierce
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Rodrigo Jacamo
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Suk-Young Yoo
- Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Phuong M Le
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Jeffrey Sun
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Numsen Hail
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Marina Konopleva
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, TX, USA
| |
Collapse
|
14
|
Alameen AAM, Simioni C, Martelli AM, Zauli G, Ultimo S, McCubrey JA, Gonelli A, Marisi G, Ulivi P, Capitani S, Neri LM. Healthy CD4+ T lymphocytes are not affected by targeted therapies against the PI3K/Akt/mTOR pathway in T-cell acute lymphoblastic leukemia. Oncotarget 2018; 7:55690-55703. [PMID: 27494886 PMCID: PMC5342446 DOI: 10.18632/oncotarget.10984] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022] Open
Abstract
An attractive molecular target for novel anti-cancer therapies is the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway which is commonly deregulated in many types of cancer. Nevertheless, the effects of PI3K/Akt/mTOR inhibitors on T lymphocytes, a key component of immune responses, have been seldom explored. In this study we investigated the effects on human CD4+ T-cells of a panel of PI3K/Akt/mTOR inhibitors: BGT226, Torin-2, MK-2206, and ZSTK474. We also assessed their efficacy against two acute leukemia T cell lines. T lymphocytes were stimulated with phytohemagglutinin. Inhibitor effects on cell cycle and apoptosis were analyzed by flow cytometry, while cytotoxicity was assessed by MTT assays. In addition, the activation status of the pathway as well as induction of autophagy were analyzed by Western blotting. Quiescent healthy T lymphocytes were unaffected by the drugs whereas mitogen-stimulated lymphocytes as well as leukemic cell lines displayed a cell cycle block, caspase-dependent apoptosis, and dephosphorylation of key components of the signaling pathway. Autophagy was also induced in proliferating lymphocytes and in JURKAT and MOLT-4 cell lines. When autophagy was inhibited by 3-methyladenine or Bafilomycin A1, drug cytotoxicity was increased, indicating that autophagy is a protective mechanism. Therefore, our findings suggest that PI3K/Akt/mTOR inhibitors preserve lymphocyte viability. This is a valuable result to be taken into account when selecting drugs for targeted cancer therapy in order to minimize detrimental effects on immune function.
Collapse
Affiliation(s)
- Ayman A M Alameen
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,Department of Chemical Pathology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Simona Ultimo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Arianna Gonelli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgia Marisi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA Center, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
15
|
Balakrishnan K, Fu M, Onida F, Wierda WG, Keating MJ, Gandhi V. Reactivation of Smac-mediated apoptosis in chronic lymphocytic leukemia cells: mechanistic studies of Smac mimetic. Oncotarget 2018; 7:39458-39472. [PMID: 27223062 PMCID: PMC5129945 DOI: 10.18632/oncotarget.8462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/28/2016] [Indexed: 12/29/2022] Open
Abstract
Dysfunctional apoptotic machinery is a hallmark feature of chronic lymphocytic leukemia (CLL). Accordingly, targeting apoptosis regulators has been proven a rational approach for CLL treatment. We show that CLL lymphocytes express high levels of XIAP, cIAP1, and cIAP2 compared to normal lymphocytes. Smac mimetic, Smac066, designed to bind to BIR3-domain of IAPs, induce apoptosis in primary CLL cells (n=71; p<0.0001), irrespective of prognostic markers. Apoptosis was mediated by diminished levels of IAPs (XIAP-p=0.02; cIAP-p<0.0001) and increased activation of caspases-8,-9,-3. The caspase-cleavage was in direct association with the levels of apoptosis (r2=0.8 for caspases-8,-9,-3). Correlative analysis revealed a direct relationship between reduction in IAPs and degree of apoptosis (r2=0.6 (XIAP); 0.5 (cIAP2)). There was a strong association between apoptosis, IAP-degradation, and concurrent caspase-activation. Pan-caspase inhibitor Z-Vad-fmk reversed the degradation of Mcl-1, but not IAPs suggesting that smac066 is selective to IAPs, however, Mcl-1 degradation is through caspase-mediated cleavage. Immunoprecipitation experiments revealed physical interaction between caspase-3 and XIAP that was disrupted by smac066. Importantly, XIAP and cIAP2 were markedly induced in bone-marrow and lymph-node microenvironments, providing a basis for IAP antagonists as anti-tumor agents in CLL. Smac066 synergized with ABT-737, revealing a mechanistic rationale to jointly target BH3 and BIR3 domains.
Collapse
Affiliation(s)
- Kumudha Balakrishnan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Min Fu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Francesco Onida
- Department of Hematology Unit, Fondazione IRCCS Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
16
|
Liu FT, Jia L, Wang P, Wang H, Farren TW, Agrawal SG. STAT3 and NF-κB cooperatively control in vitro spontaneous apoptosis and poor chemo-responsiveness in patients with chronic lymphocytic leukemia. Oncotarget 2017; 7:32031-45. [PMID: 27074565 PMCID: PMC5077994 DOI: 10.18632/oncotarget.8672] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/29/2016] [Indexed: 12/26/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is an adult disease characterized by in vivo accumulation of mature CD5/CD19/CD23 triple positive B cells and is currently incurable. CLL cells undergo spontaneous apoptosis in response to in vitro cell culture condition but the underlying mechanism is unclear. We hypothesize that the sensitivity of CLL cells to spontaneous apoptosis may be associated with the constitutive activities of transcription factors STAT3 and/or NF-κB. We now show that the sensitivity of fresh CLL cells to spontaneous apoptosis is highly variable among different patients during 48 hours’ cell culture and inversely correlated with in vivo constitutively activated STAT3 and NF-κB (p < 0.001). Both activated STAT3 and NF-κB maintain the levels of anti-apoptotic protein Mcl-1/Bcl-xL and autocrine IL-6 production. CLL cells with higher susceptibility to in vitro spontaneous apoptosis show the greatest chemosensitivity (p < 0.001), which is reflected clinically as achieving a complete response (CR) (p < 0.001), longer lymphocyte doubling times (p < 0.01), time to first treatment (p < 0.01), and progression free survival (p < 0.05). Our data suggest that the sensitivity of CLL cells to in vitro spontaneous apoptosis is co-regulated by constitutively activated STAT3 and NF-κB and reflects the in vivo chemo-responsiveness and clinical outcomes.
Collapse
Affiliation(s)
- Feng-Ting Liu
- Department of Radiobiology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Centre for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Li Jia
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ping Wang
- Department of Radiobiology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Centre for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Huaqing Wang
- Department of Medical Oncology, Tianjin Union Medicine Center, Tianjin, China
| | - Timothy W Farren
- Pathology Group, Blizard Institute, Queen Mary University of London, London, UK
| | - Samir G Agrawal
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
17
|
A phase I-II trial of fludarabine, bendamustine and rituximab (FBR) in previously treated patients with CLL. Oncotarget 2017; 8:22104-22112. [PMID: 27655665 PMCID: PMC5400650 DOI: 10.18632/oncotarget.12054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 08/13/2016] [Indexed: 11/29/2022] Open
Abstract
Chemoimmunotherapy regimens have been the standard first-line therapy for patients with chronic lymphocytic leukemia (CLL). For young, fit patients the standard of care is combination of fludarabine, cyclophosphamide, and rituximab (FCR). Based on the preclinical work demonstrating that bendamustine combined with fludarabine resulted in increased DNA damage, we designed a phase I-II clinical trial with fludarabine, bendamustine, and rituximab (FBR) for patients with relapsed/refractory CLL. Treatment consisted of fludarabine 20 mg/m2 daily x 3 days and rituximab 375-500 mg/m2 x 1 day. Phase I included bendamustine at increasing doses of 20, 30, 40, or 50 mg/m2 daily x 3 days; phase II was with FR, and B at the selected dose. DNA damage response (H2AX phosphorylation) was evaluated in a subset of patients. Fifty-one patients were enrolled. The median age was 62 years; median number of prior therapies was 2; 40% had del(11q); and 41 patients had received prior FCR-based therapies. Hematologic toxicity was more common in =40 mg/m2 dose cohorts. Maximum tolerated dose (MTD) was not identified. Bendamustine-elicited H2AX phosphorylation was not dose-dependent, but markedly increased after fludarabine. We identified bendamustine 30 mg/m2 as the safe dose for phase II. The overall response rate (ORR) was 67% with 36% complete response (CR) / CR with incomplete count recovery (CRi). Younger patients (<65 years) had significantly higher ORR (81% vs. 50%; p=0.038). The median progression-free survival was 19 months, and the median overall survival was 52.5 months. FBR is an effective and tolerable CIT regimen for patients with relapsed CLL.
Collapse
|
18
|
Lindoso RS, Collino F, Vieyra A. Extracellular vesicles as regulators of tumor fate: crosstalk among cancer stem cells, tumor cells and mesenchymal stem cells. Stem Cell Investig 2017; 4:75. [PMID: 29057247 DOI: 10.21037/sci.2017.08.08] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/27/2017] [Indexed: 12/16/2022]
Abstract
The tumor microenvironment comprises a heterogeneous population of tumorigenic and non-tumorigenic cells. Cancer stem cells (CSCs) and mesenchymal stem cells (MSCs) are components of this microenvironment and have been described as key regulators of different aspects of tumor physiology. They act differently on the tumor: CSCs are described as tumor initiators and are associated with tumor growth, drug resistance and metastasis; MSCs can integrate the tumor microenvironment after recruitment and interact with cancer cells to promote tumor modifications. Extracellular vesicles (EVs) have emerged as an important mechanism of cell communication under the physiological and pathological conditions. In cancer, secretion of EVs seems to be one of the main mechanisms by which stem cells interact with other tumor and non-tumor cells. The transfer of bioactive molecules (lipids, proteins and RNAs) compartmentalized into EVs triggers different responses in the target cells, regulating several processes in the tumor as angiogenesis, tumor invasiveness and immune escape. This review focuses on the role of CSCs and MSCs in modulating the tumor microenvironment through secretion of EVs, addressing different aspects of the multidirectional interactions among stem cells, tumor and tumor-associated cells.
Collapse
Affiliation(s)
- Rafael Soares Lindoso
- Carlos Chagas Institute of Biophysics, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.,National Center for Structural Biology and Bioimaging-CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Federica Collino
- Carlos Chagas Institute of Biophysics, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.,National Center for Structural Biology and Bioimaging-CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Institute of Biophysics, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.,National Center for Structural Biology and Bioimaging-CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.,Graduate Program of Translational Biomedicine, Grande Rio University, 25071-202 Duque de Caxias, Brazil
| |
Collapse
|
19
|
van Attekum MHA, Terpstra S, Slinger E, von Lindern M, Moerland PD, Jongejan A, Kater AP, Eldering E. Macrophages confer survival signals via CCR1-dependent translational MCL-1 induction in chronic lymphocytic leukemia. Oncogene 2017; 36:3651-3660. [PMID: 28192408 PMCID: PMC5584520 DOI: 10.1038/onc.2016.515] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022]
Abstract
Protective interactions with bystander cells in micro-environmental niches, such as lymph nodes (LNs), contribute to survival and therapy resistance of chronic lymphocytic leukemia (CLL) cells. This is caused by a shift in expression of B-cell lymphoma 2 (BCL-2) family members. Pro-survival proteins B-cell lymphoma-extra large (BCL-XL), BCL-2-related protein A1 (BFL-1) and myeloid leukemia cell differentiation protein 1 (MCL-1) are upregulated by LN-residing T cells through CD40L interaction, presumably via nuclear factor (NF)-κB signaling. Macrophages (Mφs) also reside in the LN, and are assumed to provide important supportive functions for CLL cells. However, if and how Mφs are able to induce survival is incompletely known. We first established that Mφs induced survival because of an exclusive upregulation of MCL-1. Next, we investigated the mechanism underlying MCL-1 induction by Mφs in comparison with CD40L. Genome-wide expression profiling of in vitro Mφ- and CD40L-stimulated CLL cells indicated activation of the phosphoinositide 3-kinase (PI3K)-V-Akt murine thymoma viral oncogene homolog (AKT)-mammalian target of rapamycin (mTOR) pathway, which was confirmed in ex vivo CLL LN material. Inhibition of PI3K-AKT-mTOR signaling abrogated MCL-1 upregulation and survival by Mφs, as well as CD40 stimulation. MCL-1 can be regulated at multiple levels, and we established that AKT leads to increased MCL-1 translation, but does not affect MCL-1 transcription or protein stabilization. Furthermore, among Mφ-secreted factors that could activate AKT, we found that induction of MCL-1 and survival critically depended on C-C motif chemokine receptor-1 (CCR1). In conclusion, this study indicates that two distinct micro-environmental factors, CD40L and Mφs, signal via CCR1 to induce AKT activation resulting in translational stabilization of MCL-1, and hence can contribute to CLL cell survival.
Collapse
Affiliation(s)
- M H A van Attekum
- Department of Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - S Terpstra
- Department of Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - E Slinger
- Department of Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - M von Lindern
- Department of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
| | - P D Moerland
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - A Jongejan
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - A P Kater
- Department of Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - E Eldering
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| |
Collapse
|
20
|
Valizadeh A, Ahmadzadeh A, Saki G, Khodadadi A, Teimoori A. Role of Tumor Necrosis Factor-Producing Mesenchymal Stem Cells on Apoptosis of Chronic B-lymphocytic Tumor Cells Resistant to Fludarabine-based Chemotherapy. Asian Pac J Cancer Prev 2016; 16:8533-9. [PMID: 26745113 DOI: 10.7314/apjcp.2015.16.18.8533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND B-cell chronic lymphocytic leukemia B (B-CLL), the most common type of leukemia, may be caused by apoptosis deficiency in the body. Adipose tissue-derived mesenchymal stem cells (AD-MSCs) as providers of pro-apoptotic molecules such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), can be considered as an effective anti-cancer therapy candidate. Therefore, in this study we assessed the role of tumor necrosis factor-producing mesenchymal stem cells oin apoptosis of B-CLL cells resistant to fludarabine- based chemotherapy. MATERIALS AND METHODS In this study, after isolation and culture of AD-MSCs, a lentiviral LeGO-iG2-TRAIL-GFP vector containing a gene producing the ligand pro-apoptotic with plasmid PsPAX2 and PMDG2 virus were transfected into cell-lines to generate T293HEK. Then, T293HEK cell supernatant containing the virus produced after 48 and 72 hours was collected, and these viruses were transduced to reprogram AD-MSCs. Apoptosis rates were separately studied in four groups: group 1, AD-MSCs-TRAIL; group 2, AD-MSCs-GFP; group 3, AD-MSCs; and group 4, CLL. RESULTS Observed apoptosis rates were: group 1, 42 ± 1.04%; group 2, 21 ± 0.57%; group 3, 19± 2.6%; and group 4, % 0.01 ± 0.01. The highest rate of apoptosis thus occurred ingroup 1 (transduced TRAIL encoding vector). In this group, the average medium-soluble TRAIL was 72.7pg/m and flow cytometry analysis showed a pro-apoptosis rate of 63 ± 1.6%, which was again higher than in other groups. CONCLUSIONS In this study we have shown that tumor necrosis factor (TNF) secreted by AD-MSCs may play an effective role in inducing B-CLL cell apoptosis.
Collapse
Affiliation(s)
- Armita Valizadeh
- Physiology Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran E-mail :
| | | | | | | | | |
Collapse
|
21
|
Alsagaby SA, Brennan P, Pepper C. Key Molecular Drivers of Chronic Lymphocytic Leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2016; 16:593-606. [PMID: 27601002 DOI: 10.1016/j.clml.2016.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/29/2016] [Accepted: 08/02/2016] [Indexed: 01/01/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is an adult neoplastic disease of B cells characterized by variable clinical outcomes. Although some patients have an aggressive form of the disease and often encounter treatment failure and short survival, others have more stable disease with long-term survival and little or no need for theraphy. In the past decade, significant advances have been made in our understanding of the molecular drivers that affect the natural pathology of CLL. The present review describes what is known about these key molecules in the context of their role in tumor pathogenicity, prognosis, and therapy.
Collapse
Affiliation(s)
- Suliman A Alsagaby
- Department of Medical Laboratory, College of Science, Majmaah University, Al-Zuli, Kingdom of Saudi Arabia; Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | - Paul Brennan
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Chris Pepper
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
22
|
Norozi F, Ahmadzadeh A, Shahrabi S, Vosoughi T, Saki N. Mesenchymal stem cells as a double-edged sword in suppression or progression of solid tumor cells. Tumour Biol 2016; 37:11679-11689. [PMID: 27440203 DOI: 10.1007/s13277-016-5187-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/13/2016] [Indexed: 02/07/2023] Open
Abstract
Tumor cells are able to attract mesenchymal stem cells (MSCs) to primary tumor site. On the other hand, MSCs secrete various factors to attract tumor cells towards BM. In this review, in addition to assessment of MSCs function at tumor sites and their impact on growth and metastasis of tumor cells, the importance of MSC in attraction of malignant cells to BM and their involvement in drug resistance of tumor cells have also been studied. Relevant literature was identified by a PubMed search (2000-2015) of English-language literature using the terms mesenchymal stem cells, cancer cell, metastasis, and tumor microenvironment. MSCs migrate towards tumor microenvironment and are involved in both pro-tumorigenic and antitumorigenic functions. The dual function of MSCs at tumor sites is dependent upon a variety of factors, including the type and origin of MSCs, the cancer cell line under study, in vivo or in vitro conditions, the factors secreted by MSCs and interactions between MSCs, host immune cells and cancer cells. Therefore, MSCs can be regarded both as friends and enemies of cancer cells. Although the role of a number of pathways, including IL-6/STAT3 pathway, has been indicated in controlling the interaction between MSCs and tumor cells, other mechanisms by which MSCs can control the tumor cells are not clear yet. A better understanding of these mechanisms through further studies can determine the exact role of MSCs in cancer progression and identify them as important therapeutic agents or targets.
Collapse
Affiliation(s)
- Fatemeh Norozi
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Ahmadzadeh
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of biochemistry and hematology, Faculty of Medicine, Semnan University of medical sciences, Semnan, Iran
| | - Tina Vosoughi
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
23
|
Raffaghello L, Vacca A, Pistoia V, Ribatti D. Cancer associated fibroblasts in hematological malignancies. Oncotarget 2015; 6:2589-603. [PMID: 25474039 PMCID: PMC4413603 DOI: 10.18632/oncotarget.2661] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/27/2014] [Indexed: 12/21/2022] Open
Abstract
Tumor microenvironment plays an important role in cancer initiation and progression. In hematological malignancies, the bone marrow represents the paradigmatic anatomical site in which tumor microenvironment expresses its morphofunctional features. Among the cells participating in the composition of this microenvironment, cancer associated fibrobasts (CAFs) have received less attention in hematopoietic tumors compared to solid cancers. In this review article, we discuss the involvement of CAFs in progression of hematological malignancies and the potential targeting of CAFs in a therapeutic perspective.
Collapse
Affiliation(s)
| | - Angelo Vacca
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | - Vito Pistoia
- Laboratorio di Oncologia, Istituto G. Gaslini, Genova, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy, National Cancer Institute "Giovanni Paolo II", Bari, Italy
| |
Collapse
|
24
|
Sugrue T, Lowndes NF, Ceredig R. Hypoxia enhances the radioresistance of mouse mesenchymal stromal cells. Stem Cells 2015; 32:2188-200. [PMID: 24578291 DOI: 10.1002/stem.1683] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/30/2014] [Indexed: 01/01/2023]
Abstract
Mesenchymal stromal cells (MSCs) are radioresistant bone marrow progenitors that support hematopoiesis and its reconstitution following total body irradiation. MSCs reside in hypoxic niches within the bone marrow and tumor microenvironments. The DNA damage response (DDR) represents a network of signaling pathways that enable cells to activate biological responses to DNA damaging agents. Hypoxia-mediated alterations in the DDR contribute to the increased radioresistance of hypoxic cancer cells, limiting therapeutic efficacy. The DDR is important in mediating mouse MSC radioresistance. However, the effects of hypoxia on MSC radioresistance are currently unknown. In this report, hypoxia was found to (a) increase MSC proliferation rate and colony size; (b) increase long-term survival post-irradiation (IR), and (c) improve MSC recovery from IR-induced cell cycle arrest. DNA double-strand break (DSB) repair in MSCs was upregulated in hypoxia, accelerating the resolution of highly genotoxic IR-induced DNA DSBs. In addition, HIF-1α was found to contribute to this enhanced DSB repair by regulating (a) the expression of DNA ligase IV and DNA-PKcs and (b) Rad51 foci formation in response to DNA DSBs in hypoxic MSCs. We have demonstrated, for the first time, that hypoxia enhances mouse MSC radioresistance in vitro. These findings have important implications for our understanding of MSC functions in supporting allogeneic bone marrow transplantation and in tumorigenesis.
Collapse
Affiliation(s)
- Tara Sugrue
- Regenerative Medicine Institute, Department of Physiology, School of Medicine, Nursing and Health Sciences, , National University of Ireland Galway, Ireland; Genome Stability Laboratory, Centre for Chromosome Biology, Department of Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | | | | |
Collapse
|
25
|
Balakrishnan K, Burger JA, Fu M, Doifode T, Wierda WG, Gandhi V. Regulation of Mcl-1 expression in context to bone marrow stromal microenvironment in chronic lymphocytic leukemia. Neoplasia 2015; 16:1036-46. [PMID: 25499217 PMCID: PMC4309260 DOI: 10.1016/j.neo.2014.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/01/2014] [Accepted: 10/06/2014] [Indexed: 12/19/2022] Open
Abstract
A growing body of evidence suggests that the resistance of CLL cells to apoptosis is partly mediated through the interactions between leukemia cells and adjacent stromal cells residing in the lymphatic tissue or bone marrow microenvironment. Mcl-1, an anti-apoptotic protein that is associated with failure to treatment is up-regulated in CLL lymphocytes after interaction with microenvironment. However, the regulation of its expression in context to microenvironment is unclear. We evaluated and compared changes in Mcl-1 in CLL B-cells in suspension culture and when co-cultured on stromal cells. The blockade of apoptosis in co-cultured CLL cells is associated with diminution in caspase-3 and PARP cleavage and is not dependent on cytogenetic profile or prognostic factors of the disease. Stroma-derived resistance to apoptosis is associated with a cascade of transcriptional events such as increase in levels of total RNA Pol II and its phosphorylation at Ser2 and Ser5, increase in the rate of global RNA synthesis, and amplification of Mcl-1 transcript levels. The latter is associated with increase in Mcl-1 protein level without an impact on the levels of Bcl-2 and Bcl-xL. Post-translational modifications of protein kinases show increased phosphorylation of Akt at Ser473, Erk at Thr202/Tyr204 and Gsk-3β at Ser9 and augmentation of total Mcl-1 accumulation along with phosphorylation at Ser159/Thr163 sites. Collectively, stroma-induced apoptosis resistance is mediated through signaling proteins that regulate transcriptional and translational expression and post-translational modification of Mcl-1 in CLL cells in context to bone marrow stromal microenvironment.
Collapse
Affiliation(s)
- Kumudha Balakrishnan
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX; Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Jan A Burger
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Min Fu
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Tejaswini Doifode
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - William G Wierda
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX; Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX.
| |
Collapse
|
26
|
Giri S, Pathak R, Martin MG, Bhatt VR. Survival of de novo and secondary acute promyelocytic leukemia: a propensity-matched analysis of the SEER database. Leuk Lymphoma 2015; 57:385-391. [PMID: 26084205 DOI: 10.3109/10428194.2015.1063142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Prior studies demonstrated that secondary acute promyelocytic leukemia (sAPL) and de novo APL may but not consistently have similar overall survival (OS). We used the Surveillance, Epidemiology, and End Results (SEER) 13 database to compare their OS. Patients with sAPL (n = 90), compared to de novo APL (n = 1600), were more likely to be older, White and diagnosed after year 2005. Mortality rate at 1 month (28.9% vs. 23.0%, p = 0.20) and 5-year OS (42% vs. 50%, p = 0.24) was similar between sAPL and de novo APL. In a multivariate analysis, sAPL was associated with similar OS as de novo APL (hazard ratio, HR 1.11; 95% confidence interval, CI 0.78-1.58; p = 0.546). This population-based study demonstrated no difference in OS or early mortality rate between sAPL and de novo APL. sAPL can be managed very similarly to de novo APL and does not need to be excluded from clinical trials of APL.
Collapse
Affiliation(s)
- Smith Giri
- a Department of Medicine , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Ranjan Pathak
- b Department of Medicine , Reading Health System , Reading , PA , USA
| | - Mike G Martin
- a Department of Medicine , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Vijaya Raj Bhatt
- c University of Nebraska Medical Center , Department of Internal Medicine, Division of Hematology-Oncology , Omaha, Nebraska , USA
| |
Collapse
|
27
|
Balakrishnan K, Peluso M, Fu M, Rosin NY, Burger JA, Wierda WG, Keating MJ, Faia K, O'Brien S, Kutok JL, Gandhi V. The phosphoinositide-3-kinase (PI3K)-delta and gamma inhibitor, IPI-145 (Duvelisib), overcomes signals from the PI3K/AKT/S6 pathway and promotes apoptosis in CLL. Leukemia 2015; 29:1811-22. [PMID: 25917267 DOI: 10.1038/leu.2015.105] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/26/2015] [Accepted: 04/07/2015] [Indexed: 11/10/2022]
Abstract
The functional relevance of the B-cell receptor (BCR) and the evolution of protein kinases as therapeutic targets have recently shifted the paradigm for treatment of B-cell malignancies. Inhibition of p110δ with idelalisib has shown clinical activity in chronic lymphocytic leukemia (CLL). The dynamic interplay of isoforms p110δ and p110γ in leukocytes support the hypothesis that dual blockade may provide a therapeutic benefit. IPI-145, an oral inhibitor of p110δ and p110γ isoforms, sensitizes BCR-stimulated and/or stromal co-cultured primary CLL cells to apoptosis (median 20%, n=57; P<0.0001) including samples with poor prognostic markers, unmutated IgVH (n=28) and prior treatment (n=15; P<0.0001). IPI-145 potently inhibits the CD40L/IL-2/IL-10 induced proliferation of CLL cells with an IC50 in sub-nanomolar range. A corresponding dose-responsive inhibition of pAKT(Ser473) is observed with an IC50 of 0.36 nM. IPI-145 diminishes the BCR-induced chemokines CCL3 and CCL4 secretion to 17% and 37%, respectively. Pre-treatment with 1 μM IPI-145 inhibits the chemotaxis toward CXCL12; reduces pseudoemperipolesis to median 50%, inferring its ability to interfere with homing capabilities of CLL cells. BCR-activated signaling proteins AKT(Ser473), BAD(Ser112), ERK(Thr202/Tyr204) and S6(Ser235/236) are mitigated by IPI-145. Importantly, for clinical development in hematological malignancies, IPI-145 is selective to CLL B cells, sparing normal B- and T-lymphocytes.
Collapse
Affiliation(s)
- K Balakrishnan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Peluso
- Infinity Pharmaceuticals Inc., Cambridge, MA, USA
| | - M Fu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - N Y Rosin
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - K Faia
- Infinity Pharmaceuticals Inc., Cambridge, MA, USA
| | - S O'Brien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J L Kutok
- Infinity Pharmaceuticals Inc., Cambridge, MA, USA
| | - V Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
28
|
Zhang B, Luo Q, Chen Z, Sun J, Xu B, Ju Y, Song G. Cyclic mechanical stretching promotes migration but inhibits invasion of rat bone marrow stromal cells. Stem Cell Res 2015; 14:155-64. [PMID: 25633387 DOI: 10.1016/j.scr.2015.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 01/09/2015] [Accepted: 01/11/2015] [Indexed: 12/13/2022] Open
Abstract
Bone marrow stromal cells (BMSCs, also broadly known as bone marrow-derived mesenchymal stem cells) are multipotent stem cells that have a self-renewal capacity and multilineage differentiation potential. Mechanical stretching plays a vital role in regulating the proliferation and differentiation of BMSCs. However, little is known about the effects of cyclic stretching on BMSC migration and invasion. In this study, using a custom-made cell-stretching device, we studied the effects of cyclic mechanical stretching on rat BMSC migration and invasion using a Transwell Boyden Chamber. The protein secretion of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) was detected by gelatin zymography, and the activation of focal adhesion kinase (FAK) and extracellular signal regulated kinase1/2 (ERK1/2) was measured by western blot. We found that cyclic mechanical stretching with 10% amplitude at 1Hz frequency for 8h promotes BMSC migration, but reduces BMSC invasion. FAK and ERK1/2 signals were activated in BMSCs after exposure to cyclic stretching. In the presence of the FAK phosphorylation blocker PF573228 or the ERK1/2 phosphorylation blocker PD98059, the cyclic-stretch-promoted migration of BMSCs was completely suppressed. On the other hand, cyclic mechanical stretching reduced the secretion of MMP-2 and MMP-9 in BMSCs, and PF573228 suppressed the cyclic-stretch-reduced secretion of MMP-2 and MMP-9. The decrease of BMSC invasion induced by mechanical stretching is partially restored by PF573228 but remained unaffected by PD98059. Taken together, these data show that cyclic mechanical stretching promotes BMSC migration via the FAK-ERK1/2 signalling pathway, but reduces BMSC invasion by decreasing secretion of MMP-2 and MMP-9 via FAK, independent of the ERK1/2 signal.
Collapse
Affiliation(s)
- Bingyu Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Zhe Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Jinghui Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Baiyao Xu
- Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Yang Ju
- Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China.
| |
Collapse
|
29
|
Ran Q, Hao P, Xiao Y, Xiang L, Ye X, Deng X, Zhao J, Li Z. CRIF1 interacting with CDK2 regulates bone marrow microenvironment-induced G0/G1 arrest of leukemia cells. PLoS One 2014; 9:e85328. [PMID: 24520316 PMCID: PMC3919709 DOI: 10.1371/journal.pone.0085328] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/26/2013] [Indexed: 01/10/2023] Open
Abstract
Background To assess the level of CR6-interacting factor 1 (CRIF1), a cell cycle negative regulator, in patients with leukemia and investigate the role of CRIF1 in regulating leukemia cell cycle. Methods We compared the CRIF1 level in bone marrow (BM) samples from healthy and acute myeloid leukemia (AML), iron deficiency anemia (IDA) and AML-complete remission (AML-CR) subjects. We also manipulated CRIF1 level in the Jurkat cells using lentivirus-mediated overexpression or siRNA-mediated depletion. Co-culture with the BM stromal cells (BMSCs) was used to induce leukemia cell cycle arrest and mimic the BM microenvironment. Results We found significant decreases of CRIF1 mRNA and protein in the AML group. CRIF1 overexpression increased the proportion of Jurkat cells arrested in G0/G1, while depletion of endogenous CRIF1 decreased cell cycle arrest. Depletion of CRIF1 reversed BMSCs induced cell cycle arrest in leukemia cells. Co-immunoprecipitation showed a specific binding of CDK2 to CRIF1 in Jurkat cells during cell cycle arrest. Co-localization of two proteins in both nucleus and cytoplasm was also observed with immunofluorescent staining. Conclusion CRIF1 may play a regulatory role in the BM microenvironment-induced leukemia cell cycle arrest possibly through interacting with CDK2 and acting as a cyclin-dependent kinase inhibitor.
Collapse
Affiliation(s)
- Qian Ran
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Ping Hao
- Oncologic Center, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Yanni Xiao
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Lixing Xiang
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Xingde Ye
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Xiaojun Deng
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Jiang Zhao
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Zhongjun Li
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
30
|
Sun Z, Wang S, Zhao RC. The roles of mesenchymal stem cells in tumor inflammatory microenvironment. J Hematol Oncol 2014; 7:14. [PMID: 24502410 PMCID: PMC3943443 DOI: 10.1186/1756-8722-7-14] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/31/2013] [Indexed: 12/16/2022] Open
Abstract
Tumor behavior is not entirely determined by tumor cells. Studies have demonstrated that a variety of non-tumor cells in the tumor microenvironment affect tumor behavior; thus, a new focus of cancer research has been the development of novel cancer treatment ideas and therapeutic targets based on the effects of these cells. Mesenchymal stem cells (MSCs) are an important component of the tumor microenvironment; however, previous studies have produced controversial results regarding whether MSCs promote or inhibit tumor growth and progression. In particular, Naïve MSCs and tumor-derived MSCs (T-MSCs) have different functions. Naïve MSCs could exert bidirectional effects on tumors because these cells can both promote and inhibit tumor progression while T-MSCs promote tumor progression due to influences from the tumor itself and from the inflammatory tumor microenvironment. As an unhealed wound, tumor produces a continuous source of inflammatory mediators and causes aggregation of numerous inflammatory cells, which constitute an inflammatory microenvironment. Inflammatory factors can induce homing of circulating MSCs and MSCs in adjacent tissues into tumors, which are then being “educated” by the tumor microenvironment to support tumor growth. T-MSCs could recruit more immune cells into the tumor microenvironment, increase the proportion of cancer stem cells and promote tumor angiogenesis, further supporting tumor progression. However, as plasticity is a fundamental feature of MSCs, MSCs can also inhibit tumors by activating various MSC-based signaling pathways. Studies of the mechanisms by which interactions among tumors, MSCs, and the inflammatory microenvironment occur and methods to disrupt these interactions will likely reveal new targets for cancer therapy.
Collapse
Affiliation(s)
| | | | - Robert Chunhua Zhao
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
31
|
Synergistic apoptotic response between valproic acid and fludarabine in chronic lymphocytic leukaemia (CLL) cells involves the lysosomal protease cathepsin B. Blood Cancer J 2013; 3:e153. [PMID: 24141622 PMCID: PMC3816211 DOI: 10.1038/bcj.2013.50] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/01/2013] [Accepted: 08/19/2013] [Indexed: 01/13/2023] Open
Abstract
Fludarabine, a nucleoside analogue, is commonly used in combination with other agents for the treatment of chronic lymphocytic leukaemia (CLL). In previous studies, valproic acid (VPA), an inhibitor of histone deacetylases, combined with fludarabine to synergistically increase apoptotic cell death in CLL cells. In the present study, we found that the combination of fludarabine and VPA decreases the level of the anti-apoptotic proteins Mcl-1 and XIAP in primary CLL cells. Treatment with fludarabine alone, or in combination with VPA, led to the loss of lysosome integrity, and chemical inhibition of the lysosomal protease cathepsin B, using CA074-Me, was sufficient to reduce apoptosis. VPA treatment increased cathepsin B levels and activities in primary CLL cells, thereby priming CLL cells for lysosome-mediated cell death. Six previously treated patients with relapsed CLL were treated with VPA, followed by VPA/fludarabine combination. The combined therapy resulted in reduced lymphocyte count in five out of six and reduced lymph node sizes in four out of six patients. In vivo VPA treatment increased histone-3 acetylation and cathepsin B expression levels. Thus, the synergistic apoptotic response with VPA and fludarabine in CLL is mediated by cathepsin B activation leading to a decrease in the anti-apoptotic proteins.
Collapse
|
32
|
Patel V, Chen LS, Wierda WG, Balakrishnan K, Gandhi V. Impact of bone marrow stromal cells on Bcl-2 family members in chronic lymphocytic leukemia. Leuk Lymphoma 2013; 55:899-910. [PMID: 23837491 DOI: 10.3109/10428194.2013.819573] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common form of adult leukemia in the Western world. High levels of Bcl-2 family anti-apoptotic proteins are responsible for apoptosis resistance. Besides anti-apoptotic proteins, the microenvironment provides substantial survival signals to CLL leukemic cells. However, in-depth knowledge on the role of individual Bcl-2 family members in the context of the microenvironment is still limited. We performed a comprehensive analysis of transcripts and proteins of 18 Bcl-2 family members using an "apoptosis array microfluidic card" in primary cells before and after stromal co-cultures. Our data showed that five of six anti-apoptotic members (excluding Bcl-b), two of three pro-apoptotic members (excluding Bok) and six of nine BH3-only members were present at detectable mRNA levels in CLL cells. Importantly, stromal-mediated extended survival of CLL cells was strongly associated with elevated global transcription. Upon co-culturing with stromal cells, there was an early response of an increase in anti- (2/5) and pro-apoptotic protein (3/8) transcripts on day 1, while an increase in anti-apoptotic proteins was observed on day 3, with no significant change in pro-apoptotic proteins. Our study revealed a differential pattern of expression of both transcripts and proteins following stromal co-cultures, proposing a significance of Bcl-2 family members in the stromal microenvironment.
Collapse
|
33
|
Schmidt A, Scherer M, Thiermann H, Steinritz D. Mesenchymal stem cells are highly resistant to sulfur mustard. Chem Biol Interact 2013; 206:505-11. [PMID: 23933411 DOI: 10.1016/j.cbi.2013.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 12/15/2022]
Abstract
The effect of sulfur mustard (SM) to the direct injured tissues of the skin, eyes and airways is well investigated. Little is known about the effect of SM to mesenchymal stem cells (MSC). However, this is an interesting aspect. Comparing the clinical picture of SM it is known today that MSC play an important role e.g. in chronic impaired wound healing. Therefore we wanted to get an understanding about how SM affects MSC and if these findings might become useful to get a better understanding of the effect of sulfur mustard gas with respect to skin wounds. We used mesenchymal stem cells, isolated from femoral heads from healthy donors and treated them with a wide range of SM to ascertain the dose-response-curve. With the determined inhibitory concentrations IC1 (1μM), IC5 (10μM), IC10 (20μM) and IC25 (40μM) we did further investigations. We analyzed the migratory ability and the differentiation capacity under influence of SM. Already very low concentrations of SM demonstrated a strong effect to the migratory activity whereas the differentiation capacity seemed not to be affected. Putting these findings together it seems to be likely that a link between MSC and the impaired wound healing after SM exposure might exist. Same as in patients with chronic impaired wound healing MSC had shown a reduced migratory activity. The fact that MSC are able to tolerate very high concentrations of SM and still do not lose their differentiation capacity may reveal new ways of treating wounds caused by sulfur mustard.
Collapse
Affiliation(s)
- Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany; Department for Molecular and Cellular Sport Medicine, German Sport University Cologne, Am Sportplatz Müngersdorf, 50933 Cologne, Germany.
| | | | | | | |
Collapse
|
34
|
Balakrishnan K, Ravandi F, Bantia S, Franklin A, Gandhi V. Preclinical and clinical evaluation of forodesine in pediatric and adult B-cell acute lymphoblastic leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2013; 13:458-66. [PMID: 23773454 DOI: 10.1016/j.clml.2013.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 01/17/2023]
Abstract
BACKGROUND The discovery that purine nucleoside phosphorylase (PNP) deficiency leads to T-cell lymphopenia was the basis for introducing PNP inhibitors for T-cell leukemias. Forodesine is an orally bioavailable PNP inhibitor with picomolar potency. Because T lymphoblasts and indolent chronic lymphocytic leukemia (CLL) B cells inherently elicit favorable pharmacokinetics to accumulate deoxyguanosine triphosphate (dGTP), forodesine demonstrated promising activity in preclinical and clinical settings for patients with T-cell acute lymphoblastic leukemia (T-ALL) and B-cell CLL (B-CLL). However, the use of forodesine in B-cell ALL (B-ALL) is unknown. PATIENTS AND METHODS Leukemic blasts obtained from pediatric patients with de novo B-ALL (n = 10) were incubated with forodesine and deoxyguanosine (dGuo), and the biological end points of apoptosis, intracellular dGTP accumulation, and inhibition of RNA and DNA synthesis were measured. Additionally, adult patients with B-ALL (n = 2) were intravenously infused with 80 mg/m(2)/d daily for 5 days. After therapy, clinical response, toxicity, laboratory biomarkers including PNP enzyme inhibition, and plasma forodesine, dGuo, and intracellular dGTP levels were analyzed. RESULTS Our in vitro investigations demonstrated that forodesine treatment inhibited proliferation and induced modest apoptosis in de novo B-ALL lymphoblasts. There was time-dependent accumulation of dGTP and inhibition of RNA and DNA synthesis. During therapy, neither patient achieved a complete response (CR), but there was disease stabilization for several weeks in both patients. There was significant maintained inhibition of PNP enzyme in red blood cells, accumulation of forodesine and dGuo in plasma, and intracellular dGTP accumulation in both patients. CONCLUSION Our preclinical and clinical investigations suggest that forodesine has activity in B-ALL. However, it needs to be either infused with dGuo or combined with established chemotherapeutic agents based on mechanistic rationale.
Collapse
Affiliation(s)
- Kumudha Balakrishnan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | |
Collapse
|
35
|
Pontikoglou C, Kastrinaki MC, Klaus M, Kalpadakis C, Katonis P, Alpantaki K, Pangalis GA, Papadaki HA. Study of the quantitative, functional, cytogenetic, and immunoregulatory properties of bone marrow mesenchymal stem cells in patients with B-cell chronic lymphocytic leukemia. Stem Cells Dev 2013; 22:1329-41. [PMID: 23249221 DOI: 10.1089/scd.2012.0255] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The bone marrow (BM) microenvironment has clearly been implicated in the pathogenesis of B-cell chronic lymphocytic leukemia (B-CLL). However, the potential involvement of BM stromal progenitors, the mesenchymal stem cells (MSCs), in the pathophysiology of the disease has not been extensively investigated. We expanded in vitro BM-MSCs from B-CLL patients (n=11) and healthy individuals (n=16) and comparatively assessed their reserves, proliferative potential, differentiation capacity, and immunoregulatory effects on T- and B-cells. We also evaluated the anti-apoptotic effect of patient-derived MSCs on leukemic cells and studied their cytogenetic characteristics in comparison to BM hematopoietic cells. B-CLL-derived BM MSCs exhibit a similar phenotype, differentiation potential, and ability to suppress T-cell proliferative responses as compared with MSCs from normal controls. Furthermore, they do not carry the cytogenetic abnormalities of the leukemic clone, and they exert a similar anti-apoptotic effect on leukemic cells and healthy donor-derived B-cells, as their normal counterparts. On the other hand, MSCs from B-CLL patients significantly promote normal B-cell proliferation and IgG production, in contrast to healthy-donor-derived MSCs. Furthermore, they have impaired reserves, defective cellular growth due to increased apoptotic cell death and exhibit aberrant production of stromal cell-derived factor 1, B-cell activating factor, a proliferation inducing ligand, and transforming growth factor β1, cytokines that are crucial for the survival/nourishing of the leukemic cells. We conclude that ex vivo expanded B-CLL-derived MSCs harbor intrinsic qualitative and quantitative abnormalities that may be implicated in disease development and/or progression.
Collapse
|
36
|
Campioni D, Bardi MA, Cavazzini F, Tammiso E, Pezzolo E, Pregnolato E, Volta E, Cuneo A, Lanza F. Cytogenetic and molecular cytogenetic profile of bone marrow-derived mesenchymal stromal cells in chronic and acute lymphoproliferative disorders. Ann Hematol 2012; 91:1563-77. [DOI: 10.1007/s00277-012-1500-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/22/2012] [Indexed: 12/31/2022]
|
37
|
The role of mesenchymal stem cells in anti-cancer drug resistance and tumour progression. Br J Cancer 2012; 106:1901-6. [PMID: 22596239 PMCID: PMC3388567 DOI: 10.1038/bjc.2012.201] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It is becoming increasingly clear that the tumour microenvironment has a very important role in tumour progression and drug resistance. Many different cell types within the tumour stroma have an effect on tumour progression either in a positive or in a negative way. Mesenchymal stem cells (MSCs) are a distinct population of cells that have been linked with tumour growth. Mesenchymal stem cells can home to tumours where they modulate the immune system and facilitate tumour growth, angiogenesis and metastasis. Recent studies have shown that MSCs also have an important role in the resistance to various anti-cancer drugs. This mini-review provides an overview of the functional properties of MSCs in tumour progression and drug resistance.
Collapse
|
38
|
Abarrategi A, Marińas-Pardo L, Mirones I, Rincón E, García-Castro J. Mesenchymal niches of bone marrow in cancer. Clin Transl Oncol 2012; 13:611-6. [PMID: 21865132 DOI: 10.1007/s12094-011-0706-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the last decade, genetic and cell biology studies have indicated that tumour growth is not only determined by malignant cancer cells themselves, but also by the tumour microenvironment. Cells present in the tumour microenvironment include fibroblasts, vascular, smooth muscle, adipocytes, immune cells and mesenchymal stem cells (MSC). The nature of the relationship between MSC and tumour cells appears dual and whether MSC are pro- or anti-tumorigenic is a subject of controversial reports. This review is focused on the role of MSC and bone marrow (BM) niches in cancer.
Collapse
Affiliation(s)
- Ander Abarrategi
- Unidad de Biotecnología Celular, Área Biología Celular y del Desarrollo, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | | | | | | |
Collapse
|
39
|
Hayden RE, Pratt G, Roberts C, Drayson MT, Bunce CM. Treatment of chronic lymphocytic leukemia requires targeting of the protective lymph node environment with novel therapeutic approaches. Leuk Lymphoma 2011; 53:537-49. [PMID: 21812539 DOI: 10.3109/10428194.2011.610014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chronic lymphocytic leukemia (CLL) remains associated with low complete response rates and high relapse rates. This is in part due to poor understanding of CLL biology and thus inadequate targeting of therapy. For years CLL has been proposed as bi-compartmental: the quiescent tumor in the periphery and the proliferating cells within specific microenvironments. Historically the bone marrow was considered the major tissue of the CLL microenvironment. However, many recent innovative studies have categorically shown that peripheral CLL cells are derived from the lymph nodes (LN). Proliferation here is largely driven by helper T cells via CD40-CD40L engagement. Critically, in vitro studies have shown that such engagement additionally protects LN CLLs from apoptosis. Agents inducing apoptosis in non-CD40 engaged CLL cells are frequently ineffective against those continually engaged with CD40L. This emphasizes that, in order to improve responses and prevent relapse, novel therapies must be assessed against CD40L engaged CLL cells to show effective targeting against the LN. This review discusses the evidence supporting the superior involvement of the LN in CLL, how CD40L engaged CLL studies should be conducted, and the novel therapies studied in vitro and in vivo that have been proposed to be effective in this setting.
Collapse
Affiliation(s)
- Rachel E Hayden
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | | | | | | |
Collapse
|
40
|
Hu Y, Gale M, Shields J, Garron C, Swistak M, Nguyen TH, Jacques G, Fogle R, Siders W, Kaplan J. Enhancement of the anti-tumor activity of therapeutic monoclonal antibodies by CXCR4 antagonists. Leuk Lymphoma 2011; 53:130-8. [PMID: 21740294 DOI: 10.3109/10428194.2011.601698] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The interaction between CXCR4 on the surface of tumor cells and CXCL12 in the stroma is believed to contribute to tumor cell survival and protection against drug treatment. Inhibition of stromal survival signals by CXCR4 antagonists has been reported to render tumor cells more sensitive to chemotherapy, but little is known about potential synergy with monoclonal antibodies. In this study, administration of the small molecule CXCR4 antagonists plerixafor and GENZ-644494 was found to enhance the anti-tumor activity of the monoclonal antibodies alemtuzumab and rituximab in disseminated lymphoma models. The observed enhancement in therapeutic efficacy by CXCR4 antagonists appeared to involve several factors, including interference with the tumor-promoting signals delivered by CXCL12, disruption of the tumor/stroma interaction and mobilization of effector neutrophils capable of mediating antibody-dependent cell-mediated cytotoxicity. The involvement of neutrophils was further supported by the observed reversal in therapeutic benefit upon neutrophil depletion.
Collapse
Affiliation(s)
- Yanping Hu
- Genzyme Corporation, Framingham, MA 01701, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Forodesine and nelarabine (the pro-drug of ara-G) are 2 nucleoside analogues with promising anti-leukemic activity. To better understand which pediatric patients might benefit from forodesine or nelarabine (ara-G) therapy, we investigated the in vitro sensitivity to these drugs in 96 diagnostic pediatric leukemia patient samples and the mRNA expression levels of different enzymes involved in nucleoside metabolism. Forodesine and ara-G cytotoxicities were higher in T-cell acute lymphoblastic leukemia (T-ALL) samples than in B-cell precursor (BCP)-ALL and acute myeloid leukemia (AML) samples. Resistance to forodesine did not preclude ara-G sensitivity and vice versa, indicating that both drugs rely on different resistance mechanisms. Differences in sensitivity could be partly explained by significantly higher accumulation of intracellular dGTP in forodesine-sensitive samples compared with resistant samples, and higher mRNA levels of dGK but not dCK. The mRNA levels of the transporters ENT1 and ENT2 were higher in ara-G-sensitive than -resistant samples. We conclude that especially T-ALL, but also BCP-ALL, pediatric patients may benefit from forodesine or nelarabine (ara-G) treatment.
Collapse
|
42
|
Abstract
INTRODUCTION In the last few years, several new purine and pyrimidine nucleoside analogs have been synthesized and made available for both preclinical studies and clinical trials. AREAS COVERED This article summarizes recent achievements in the mechanism of action, pharmacological properties and clinical activity and toxicity as well as the emerging role of newer purine and pyrimidine nucleoside analogs potentially active in lymphoid and myeloid malignancies. A literature review was conducted from the MEDLINE database PubMed for articles in English. Publications from 2000 to October 2010 were scrutinized. The search terms used were clofarabine, nelarabine, forodesine, 8-chloroadenosine, LMP-420, azacitidine, decitabine, sapacitabine, troxacitabine, thiarabine and zebularine in conjunction with hematologic malignancies, leukemia and lymphoma. Conference proceedings from the previous 5 years of the American Society of Hematology, European Hematology Association, and American Society of Clinical Oncology were searched manually. Additional relevant publications were obtained by reviewing the references from the chosen articles. EXPERT OPINION Several new nucleoside analogs are currently under investigation in preclinical and clinical studies concerning hematological malignancies. Clofarabine, nelarabine, azacitidine and decitabine have been recently approved for the treatment of leukemias and/or myelodysplastic syndromes. Other agents including forodesine, 8-chloroadenosine, LMP-420, sapacitabine, troxacitabine, thiarabine and zebularine seem to be promising for the treatment of lymphoid and myeloid malignancies. However, definitive data from ongoing and future clinical trials will aid in better defining their status in the treatment of hematological disorders.
Collapse
Affiliation(s)
- Tadeusz Robak
- Medical University of Lodz, Department of Hematology, Lodz, Poland.
| |
Collapse
|
43
|
Phase 2 and pharmacodynamic study of oral forodesine in patients with advanced, fludarabine-treated chronic lymphocytic leukemia. Blood 2010; 116:886-92. [PMID: 20427701 PMCID: PMC2924226 DOI: 10.1182/blood-2010-02-272039] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Forodesine is a new and potent purine nucleoside phosphorylase (PNP) inhibitor. Patients with chronic lymphocytic leukemia (CLL) with primary resistance to fludarabine-based therapy or with progressive disease were eligible for oral forodesine (200 mg/d) for up to 24 weeks. Eight patients with median lymphocyte count of 35.9 x 10(9)/L and median serum beta2 microglobulin level of 6.45 mg/L were treated. Six had Rai stage III to IV and were previously heavily treated (median prior therapy = 5). Two had transient decrease in lymphocyte count to normal, whereas in 5, disease progressed. Adverse events were mild. Steady-state level of forodesine ranged from 200 to 1300 nM and did not reach desired 2 microM level. PNP inhibition ranged from 57% to 89% and steady-state 2'-deoxyguanosine (dGuo) concentration median was 1.8 microM. Intracellular deoxyguanosine triphosphate (dGTP) increase was very modest, from median of 6 microM to 10 microM. Compared with in vivo, in vitro incubations of CLL lymphocytes with 10 or 20 microM dGuo and forodesine (2 microM) resulted in accumulation of higher levels of dGTP (40-250 microM) which resulted in increase in apoptosis. Forodesine has biologic activity in CLL; pharmacodynamic parameters suggest that an alternate dosing schedule and/or higher doses to achieve greater intracellular dGTP may be beneficial in this patient population.
Collapse
|
44
|
Chen LS, Balakrishnan K, Gandhi V. Inflammation and survival pathways: chronic lymphocytic leukemia as a model system. Biochem Pharmacol 2010; 80:1936-45. [PMID: 20696142 DOI: 10.1016/j.bcp.2010.07.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/22/2010] [Accepted: 07/27/2010] [Indexed: 10/19/2022]
Abstract
A primary response to inflammation is an increased survival of the target cell. Several pathways have been identified that promote maintenance of the cell. The principal mechanism for the extended survival is through induction of anti-apoptotic Bcl-2 family proteins. Bcl-2 was the founding member of this family with five additional members, Bcl-X(L), Bcl-W, Bcl-B, Bfl-1, and Mcl-1, discovered mostly in hematological malignancies. Another mechanism that could add to cell survival is the Pim kinase pathway. This family of enzymes is associated with Myc-driven transcription, cell cycle regulation, degradation of pro-apoptotic proteins, and protein translation. Chronic lymphocytic leukemia serves as an optimal model to understand the mechanism by which these two protein families provide survival advantage to cells. In addition, since this malignancy is known to be maintained by microenvironment milieu, this further adds advantage to investigate mechanisms by which these pro-survival proteins are induced in the presence of stromal support. Multiple mechanisms exists that result in increase in transcript and protein level of anti-apoptotic Bcl-2 family members. Following these inductions, post-translational modifications occur resulting in increased stability of pro-survival proteins, while Pim-mediated phosphorylation inhibits pro-apoptotic protein activity. Furthermore, there is a cross-talk between these two (Bcl-2 family proteins and Pim family proteins) pathways that co-operate with each other for CLL cell survival and maintenance. Vigorous efforts are being made to create small molecules that affect these proteins directly or indirectly. Several of these pharmacological inhibitors are in early clinical trials for patients with hematological malignancies.
Collapse
Affiliation(s)
- Lisa S Chen
- Department of Experimental Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030-4095, USA
| | | | | |
Collapse
|