1
|
Bernardo VS, Torres FF, Zucão ACA, Chaves NA, Santana ILR, da Silva DGH. Disrupted homeostasis in sickle cells: Expanding the comprehension of metabolism adaptation and related therapeutic strategies. Tissue Cell 2025; 93:102717. [PMID: 39805212 DOI: 10.1016/j.tice.2024.102717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/02/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025]
Abstract
Sickle cell disease (SCD) is a hereditary hemolytic anemia associated with the alteration of the membrane composition of the sickle erythrocytes, the loss of glycolysis, dysregulation of the pyruvate phosphatase pathway, and changes in nucleotide metabolism of the sickle red blood cell (RBC). This review provides a comprehensive overview of the impact of the presence of Hb S, which leads to the disruption of the normal RBC metabolism. The intricate interplay between the redox and energetic balance in erythrocytic cells, where the glycolysis, pentose phosphate pathway, and methemoglobin reductase pathways are all altered in sickle RBC, is a key focus. Moreover, this review summarizes the current knowledge about the disease-modifying agents and their action mechanisms based on the sickle RBC alterations previously mentioned (i.e., their association with beneficial effects on the sickle cells' membrane, to their RBCs' energy metabolism, and to their oxidative status). Therefore, providing a comprehensive understanding of how sickle cells cope with the disruption of metabolic homeostasis and the most promising therapeutic agents able to ameliorate the various consequences of abnormal sickle RBC alterations.
Collapse
Affiliation(s)
| | | | | | - Nayara Alves Chaves
- Department of Biology, Universidade Estadual Paulista (UNESP), São Paulo, Brazil
| | | | - Danilo Grünig Humberto da Silva
- Department of Biology, Universidade Estadual Paulista (UNESP), São Paulo, Brazil; Campus de Três Lagoas, Universidade Federal de Mato Grosso do Sul (CPTL/UFMS), Mato Grosso do Sul, Brazil.
| |
Collapse
|
2
|
Bolívar S, Sanz E, Ovelleiro D, Zochodne DW, Udina E. Neuron-specific RNA-sequencing reveals different responses in peripheral neurons after nerve injury. eLife 2024; 12:RP91316. [PMID: 38742628 PMCID: PMC11093584 DOI: 10.7554/elife.91316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Peripheral neurons are heterogeneous and functionally diverse, but all share the capability to switch to a pro-regenerative state after nerve injury. Despite the assumption that the injury response is similar among neuronal subtypes, functional recovery may differ. Understanding the distinct intrinsic regenerative properties between neurons may help to improve the quality of regeneration, prioritizing the growth of axon subpopulations to their targets. Here, we present a comparative analysis of regeneration across four key peripheral neuron populations: motoneurons, proprioceptors, cutaneous mechanoreceptors, and nociceptors. Using Cre/Ai9 mice that allow fluorescent labeling of neuronal subtypes, we found that nociceptors showed the greater regeneration after a sciatic crush, followed by motoneurons, mechanoreceptors, and, finally, proprioceptors. By breeding these Cre mice with Ribotag mice, we isolated specific translatomes and defined the regenerative response of these neuronal subtypes after axotomy. Only 20% of the regulated genes were common, revealing a diverse response to injury among neurons, which was also supported by the differential influence of neurotrophins among neuron subtypes. Among differentially regulated genes, we proposed MED12 as a specific regulator of the regeneration of proprioceptors. Altogether, we demonstrate that the intrinsic regenerative capacity differs between peripheral neuron subtypes, opening the door to selectively modulate these responses.
Collapse
Affiliation(s)
- Sara Bolívar
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de BarcelonaBellaterraSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadridSpain
| | - Elisenda Sanz
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de BarcelonaBellaterraSpain
| | - David Ovelleiro
- Peripheral Nervous System, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital CampusBarcelonaSpain
| | - Douglas W Zochodne
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
| | - Esther Udina
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de BarcelonaBellaterraSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
3
|
Connes P, Nader E. Le globule rouge drépanocytaire : données fonctionnelles. Rev Med Interne 2023; 44:4S18-4S23. [PMID: 38049242 DOI: 10.1016/s0248-8663(23)01305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Sickle cell anemia is a genetic disorder that affects hemoglobin leading to the production of an abnormal hemoglobin, called HbS. HbS has the property to polymerize under deoxygenated conditions, causing a mechanical distortion of red blood cells; a phenomenon called sickling. These sickle red blood cells are more fragile and rigid, leading to chronic hemolytic anemia and painful vaso-occlusive crises, as well as chronic vascular complications that can affect many organs. The abnormal functional properties of these sickle red blood cells are responsible for a wide range of clinical expression of the disease. HbS polymerization can be influenced by many factors, such as the hydration state of the red blood cells or the affinity of hemoglobin for oxygen. Moreover, the rheological characteristics of red blood cells, including their deformability and aggregation properties, are associated with specific clinical phenotypes. The pro-inflammatory and pro-oxidant state, as well as the repeated polymerization of HbS, accelerate the senescence of sickle red blood cells, promoting the release of microparticles and contributing to vascular dysfunction. Patients' red blood cells also have molecular characteristics that promote their adhesion to the endothelium and other circulating cells, contributing to the onset of vascular complications. Massive intravascular hemolysis, due to increased erythrocyte fragility, is also responsible for chronic vascular complications. These different alterations are privileged therapeutic targets, leading to the emergence of new specific treatments. © 2023 Société nationale française de médecine interne (SNFMI). Published by Elsevier Masson SAS. All rights reserved.
Collapse
Affiliation(s)
- P Connes
- Laboratoire LIBM EA7424, équipe « biologie vasculaire et du globule rouge », faculté de médecine Laennec, université Lyon 1, France; Laboratoire d'excellence sur le globule rouge (GR-Ex), Paris, France.
| | - E Nader
- Laboratoire LIBM EA7424, équipe « biologie vasculaire et du globule rouge », faculté de médecine Laennec, université Lyon 1, France; Laboratoire d'excellence sur le globule rouge (GR-Ex), Paris, France
| |
Collapse
|
4
|
Goksel E, Ugurel E, Nader E, Boisson C, Muniansi I, Joly P, Renoux C, Gauthier A, Connes P, Yalcin O. A preliminary study of phosphodiesterases and adenylyl cyclase signaling pathway on red blood cell deformability of sickle cell patients. Front Physiol 2023; 14:1215835. [PMID: 37781231 PMCID: PMC10540448 DOI: 10.3389/fphys.2023.1215835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Sickle cell disease (SCD) is an inherited hemoglobinopathy characterized by chronic anemia, intravascular hemolysis, and the occurrence of vaso-occlusive crises due to the mechanical obstruction of the microcirculation by poorly deformable red blood cells (RBCs). RBC deformability is a key factor in the pathogenesis of SCD, and is affected by various factors. In this study, we investigated the effects of adenylyl cyclase (AC) signaling pathway modulation and different phosphodiesterase (PDE) modulatory molecules on the deformability and mechanical stress responses of RBC from SCD patients (HbSS genotype) by applying 5 Pa shear stress with an ektacytometer (LORRCA). We evaluated RBC deformability before and after the application of shear stress. AC stimulation with Forskolin had distinct effects on RBC deformability depending on the application of 5 Pa shear stress. RBC deformability was increased by Forskolin before shear stress application but decreased after 5 Pa shear stress. AC inhibition with SQ22536 and protein kinase A (PKA) inhibition with H89 increased RBC deformability before and after the shear stress application. Non-selective PDE inhibition with Pentoxifylline increased RBC deformability. However, modulation of the different PDE types had distinct effects on RBC deformability, with PDE1 inhibition by Vinpocetine increasing deformability while PDE4 inhibition by Rolipram decreased RBC deformability after the shear stress application. The effects of the drugs varied greatly between patients suggesting some could benefit from one drug while others not. Developing drugs targeting the AC signaling pathway could have clinical applications for SCD, but more researches with larger patient cohorts are needed to identify the differences in the responses of sickle RBCs.
Collapse
Affiliation(s)
- Evrim Goksel
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Türkiye
- Department of Physiology, School of Medicine, Koc University, Istanbul, Türkiye
- Graduate School of Health Sciences, Koc University, Istanbul, Türkiye
| | - Elif Ugurel
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Türkiye
- Department of Physiology, School of Medicine, Koc University, Istanbul, Türkiye
| | - Elie Nader
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Camille Boisson
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Ingrid Muniansi
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Philippe Joly
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Celine Renoux
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | | | - Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Ozlem Yalcin
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Türkiye
- Department of Physiology, School of Medicine, Koc University, Istanbul, Türkiye
| |
Collapse
|
5
|
Lizarralde-Iragorri MA, Lefevre SD, Cochet S, El Hoss S, Brousse V, Filipe A, Dussiot M, Azouzi S, Le Van Kim C, Rodrigues-Lima F, Français O, Le Pioufle B, Klei T, van Bruggen R, El Nemer W. Oxidative stress activates red cell adhesion to laminin in sickle cell disease. Haematologica 2021; 106:2478-2488. [PMID: 32855277 PMCID: PMC8409043 DOI: 10.3324/haematol.2020.261586] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
Vaso-occlusive crises are the hallmark of sickle cell disease (SCD). They are believed to occur in two steps, starting with adhesion of deformable low-dense red blood cells (RBCs), or other blood cells such as neutrophils, to the wall of post-capillary venules, followed by trapping of the denser RBCs or leukocytes in the areas of adhesion because of reduced effective lumen-diameter. In SCD, RBCs are heterogeneous in terms of density, shape, deformability and surface proteins, which accounts for the differences observed in their adhesion and resistance to shear stress. Sickle RBCs exhibit abnormal adhesion to laminin mediated by Lu/BCAM protein at their surface. This adhesion is triggered by Lu/BCAM phosphorylation in reticulocytes but such phosphorylation does not occur in mature dense RBCs despite firm adhesion to laminin. In this study, we investigated the adhesive properties of sickle RBC subpopulations and addressed the molecular mechanism responsible for the increased adhesion of dense RBCs to laminin in the absence of Lu/BCAM phosphorylation. We provide evidence for the implication of oxidative stress in post-translational modifications of Lu/BCAM that impact its distribution and cis-interaction with glycophorin C at the cell surface activating its adhesive function in sickle dense RBCs.
Collapse
Affiliation(s)
- Maria Alejandra Lizarralde-Iragorri
- Université de Paris, UMR S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | - Sophie D. Lefevre
- Université de Paris, UMR S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | - Sylvie Cochet
- Université de Paris, UMR S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | - Sara El Hoss
- Université de Paris, UMR S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | - Valentine Brousse
- Université de Paris, UMR S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
- Service de Pédiatrie Générale et Maladies Infectieuses, Hôpital Universitaire Necker Enfants Malades, Paris, France
| | - Anne Filipe
- Université de Paris, UMR S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | - Michael Dussiot
- Institut Imagine, INSERM U1163, CNRS UMR8254, Université Paris Descartes, Hôpital Necker Enfants Malades, Paris, France
| | - Slim Azouzi
- Université de Paris, UMR S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | - Caroline Le Van Kim
- Université de Paris, UMR S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | | | - Olivier Français
- ESYCOM, Université Gustave Eiffel, CNRS UMR 9007, ESIEE Paris, Marne-la-Vallee, France
| | - Bruno Le Pioufle
- Université Paris-Saclay, ENS Paris-Saclay, CNRS Institut d'Alembert, LUMIN, Gif sur Yvette, France
| | - Thomas Klei
- Department of Blood Cell Research, Sanquin Research and Lab Services and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research and Lab Services and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Wassim El Nemer
- Université de Paris, UMR S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| |
Collapse
|
6
|
Ex Vivo Activation of Red Blood Cell Senescence by Plasma from Sickle-Cell Disease Patients: Correlation between Markers and Adhesion Consequences during Acute Disease Events. Biomolecules 2021; 11:biom11070963. [PMID: 34208829 PMCID: PMC8301992 DOI: 10.3390/biom11070963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND: Blood transfusion remains a key treatment for managing occlusive episodes and painful crises in sickle-cell disease (SCD). In that clinical context, red blood cells (RBCs) from donors and transfused to patients, may be affected by plasma components in the recipients’ blood. Senescence lesion markers appear on the red cells after transfusion, shortening the RBC lifespan in circulation. In the specific context of SCD, senescence signals can also trigger the occlusive painful events, typical of the disease. This work follows through our previous data that described a RBC senescence process, rapidly detected after challenge with SCD pathological plasmas. In this clinical context, we wanted here to further explore the characteristics and physiologic consequences of AA RBC lesions associated with senescence, as lesions caused by RBCs after transfusion may have adverse consequences for SCD patients. METHODS: Plasma samples from SCD patients, with acute symptoms (n = 20) or steady-state disease (n = 34) were co-incubated with donor AA RBCs from blood units for 24 to 48 h. Specific markers signing RBC senescence were quantified after the incubation with SCD plasma samples. The physiologic in-flow adhesion was investigated on senescent RBCs, an in vitro technic into biochips that mimic adherence of RBCs during the occlusive events of SCD. RESULTS: Senescence markers on AA RBCs, together with their in-flow adhesion to the plasma-bridging protein thrombospondin, were associated with the clinical status of the SCD patients from whom plasma was obtained. In these experiments, the highest values were obtained for SCD acute plasma samples. Adhesion of senescent RBCs into biochips, which is not reversed by a pre-treatment with recombinant Annexin V, can be reproduced with the use of chemical agents acting on RBC membrane channels that regulate either Ca2+ entry or modulating RBC hydration. CONCLUSION: We found that markers on red cells are correlated, and that the senescence induced by SCD plasma provokes the adhesion of RBCs to the vessel wall protein thrombospondin. In-flow adhesion of senescent red cells after plasma co-incubations can be reproduced with the use of modulators of RBC membrane channels; activating the Piezo1 Ca2+ mechanosensitive channel provokes RBC adhesion of normal (non-senescent) RBCs, while blocking the Ca2+-dependent K+ Gardos channel, can reverse it. Clinically modulating the RBC adhesion to vascular wall proteins might be a promising avenue for the treatment of painful occlusive events in SCD.
Collapse
|
7
|
The Gardos effect drives erythrocyte senescence and leads to Lu/BCAM and CD44 adhesion molecule activation. Blood Adv 2021; 4:6218-6229. [PMID: 33351118 DOI: 10.1182/bloodadvances.2020003077] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
Senescence of erythrocytes is characterized by a series of changes that precede their removal from the circulation, including loss of red cell hydration, membrane shedding, loss of deformability, phosphatidyl serine exposure, reduced membrane sialic acid content, and adhesion molecule activation. Little is known about the mechanisms that initiate these changes nor is it known whether they are interrelated. In this study, we show that Ca2+-dependent K+ efflux (the Gardos effect) drives erythrocyte senescence. We found that increased intracellular Ca2+ activates the Gardos channel, leading to shedding of glycophorin-C (GPC)-containing vesicles. This results in a loss of erythrocyte deformability but also in a marked loss of membrane sialic acid content. We found that GPC-derived sialic acid residues suppress activity of both Lutheran/basal cell adhesion molecule (Lu/BCAM) and CD44 by the formation of a complex on the erythrocyte membrane, and Gardos channel-mediated shedding of GPC results in Lu/BCAM and CD44 activation. This phenomenon was observed as erythrocytes aged and on erythrocytes that were otherwise prone to clearance from the circulation, such as sickle erythrocytes, erythrocytes stored for transfusion, or artificially dehydrated erythrocytes. These novel findings provide a unifying concept on erythrocyte senescence in health and disease through initiation of the Gardos effect.
Collapse
|
8
|
Red blood cell adhesion to ICAM-1 is mediated by fibrinogen and is associated with right-to-left shunts in sickle cell disease. Blood Adv 2021; 4:3688-3698. [PMID: 32777069 PMCID: PMC7422136 DOI: 10.1182/bloodadvances.2020001656] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Sickle cell disease (SCD), which afflicts 100 000 Americans, as well as millions worldwide, is associated with anemia, lifelong morbidity, and early mortality. Abnormal adhesion of sickle red blood cells (RBCs) to activated vascular endothelium may contribute acutely to the initiation of painful vaso-occlusive crises and chronically to endothelial damage in SCD. Sickle RBCs adhere to activated endothelium through several adhesion mechanisms. In this study, using whole blood from 17 people with heterozygous SCD (HbS variant) and 55 people with homozygous SCD (HbSS) analyzed in an in vitro microfluidic assay, we present evidence for the adhesion of sickle RBCs to immobilized recombinant intercellular adhesion molecule 1 (ICAM-1). We show that sickle RBC adhesion to ICAM-1 in vitro is associated with evidence of hemolysis in vivo, marked by elevated lactate dehydrogenase levels, reticulocytosis, and lower fetal hemoglobin levels. Further, RBC adhesion to ICAM-1 correlates with a history of intracardiac or intrapulmonary right-to-left shunts. Studies of potential ICAM-1 ligands on RBC membranes revealed that RBC-ICAM-1 interactions were mediated by fibrinogen bound to the RBC membrane. We describe, for the first time, RBC rolling behavior on ICAM-1 under high shear rates. Our results suggest that firm adhesion of sickle RBCs to ICAM-1 most likely occurs in postcapillary venules at low physiological shear rates, which is facilitated by initial rolling in high shear regions (eg, capillaries). Inhibition of RBC and ICAM-1 interactions may constitute a novel therapeutic target in SCD.
Collapse
|
9
|
Lu M, Kanne CK, Reddington RC, Lezzar DL, Sheehan VA, Shevkoplyas SS. Concurrent Assessment of Deformability and Adhesiveness of Sickle Red Blood Cells by Measuring Perfusion of an Adhesive Artificial Microvascular Network. Front Physiol 2021; 12:633080. [PMID: 33995119 PMCID: PMC8113687 DOI: 10.3389/fphys.2021.633080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Biomarker development is a key clinical research need in sickle cell disease (SCD). Hemorheological parameters are excellent candidates as abnormal red blood cell (RBC) rheology plays a critical role in SCD pathophysiology. Here we describe a microfluidic device capable of evaluating RBC deformability and adhesiveness concurrently, by measuring their effect on perfusion of an artificial microvascular network (AMVN) that combines microchannels small enough to require RBC deformation, and laminin (LN) coating on channel walls to model intravascular adhesion. Each AMVN device consists of three identical capillary networks, which can be coated with LN (adhesive) or left uncoated (non-adhesive) independently. The perfusion rate for sickle RBCs in the LN-coated networks (0.18 ± 0.02 nL/s) was significantly slower than in non-adhesive networks (0.20 ± 0.02 nL/s), and both were significantly slower than the perfusion rate for normal RBCs in the LN-coated networks (0.22 ± 0.01 nL/s). Importantly, there was no overlap between the ranges of perfusion rates obtained for sickle and normal RBC samples in the LN-coated networks. Interestingly, treatment with poloxamer 188 decreased the perfusion rate for sickle RBCs in LN-coated networks in a dose-dependent manner, contrary to previous studies with conventional assays, but in agreement with the latest clinical trial which showed no clinical benefit. Overall, these findings suggest the potential utility of the adhesive AMVN device for evaluating the effect of novel curative and palliative therapies on the hemorheological status of SCD patients during clinical trials and in post-market clinical practice.
Collapse
Affiliation(s)
- Madeleine Lu
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Celeste K Kanne
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Riley C Reddington
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Dalia L Lezzar
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Vivien A Sheehan
- Division of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Sergey S Shevkoplyas
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
10
|
Conran N, Embury SH. Sickle cell vaso-occlusion: The dialectic between red cells and white cells. Exp Biol Med (Maywood) 2021; 246:1458-1472. [PMID: 33794696 DOI: 10.1177/15353702211005392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The pathophysiology of sickle cell anemia, a hereditary hemoglobinopathy, has fascinated clinicians and scientists alike since its description over 100 years ago. A single gene mutation in the HBB gene results in the production of abnormal hemoglobin (Hb) S, whose polymerization when deoxygenated alters the physiochemical properties of red blood cells, in turn triggering pan-cellular activation and pathological mechanisms that include hemolysis, vaso-occlusion, and ischemia-reperfusion to result in the varied and severe complications of the disease. Now widely regarded as an inflammatory disease, in recent years attention has included the role of leukocytes in vaso-occlusive processes in view of the part that these cells play in innate immune processes, their inherent ability to adhere to the endothelium when activated, and their sheer physical and potentially obstructive size. Here, we consider the role of sickle red blood cell populations in elucidating the importance of adhesion vis-a-vis polymerization in vaso-occlusion, review the direct adhesion of sickle red cells to the endothelium in vaso-occlusive processes, and discuss how red cell- and leukocyte-centered mechanisms are not mutually exclusive. Given the initial clinical success of crizanlizumab, a specific anti-P selectin therapy, we suggest that it is appropriate to take a holistic approach to understanding and exploring the complexity of vaso-occlusive mechanisms and the adhesive roles of the varied cell types, including endothelial cells, platelets, leukocytes, and red blood cells.
Collapse
Affiliation(s)
- Nicola Conran
- Hematology Center, University of Campinas-UNICAMP, Barão Geraldo 13083-8, Campinas, SP, Brazil
| | | |
Collapse
|
11
|
ABCG2 Is Overexpressed on Red Blood Cells in Ph-Negative Myeloproliferative Neoplasms and Potentiates Ruxolitinib-Induced Apoptosis. Int J Mol Sci 2021; 22:ijms22073530. [PMID: 33805426 PMCID: PMC8036917 DOI: 10.3390/ijms22073530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are a group of disorders characterized by clonal expansion of abnormal hematopoietic stem cells leading to hyperproliferation of one or more myeloid lineages. The main complications in MPNs are high risk of thrombosis and progression to myelofibrosis and leukemia. MPN patients with high risk scores are treated by hydroxyurea (HU), interferon-α, or ruxolitinib, a tyrosine kinase inhibitor. Polycythemia vera (PV) is an MPN characterized by overproduction of red blood cells (RBCs). ABCG2 is a member of the ATP-binding cassette superfamily transporters known to play a crucial role in multidrug resistance development. Proteome analysis showed higher ABCG2 levels in PV RBCs compared to RBCs from healthy controls and an additional increase of these levels in PV patients treated with HU, suggesting that ABCG2 might play a role in multidrug resistance in MPNs. In this work, we explored the role of ABCG2 in the transport of ruxolitinib and HU using human cell lines, RBCs, and in vitro differentiated erythroid progenitors. Using stopped-flow analysis, we showed that HU is not a substrate for ABCG2. Using transfected K562 cells expressing three different levels of recombinant ABCG2, MPN RBCs, and cultured erythroblasts, we showed that ABCG2 potentiates ruxolitinib-induced cytotoxicity that was blocked by the ABCG2-specific inhibitor KO143 suggesting ruxolitinib intracellular import by ABCG2. In silico modeling analysis identified possible ruxolitinib-binding site locations within the cavities of ABCG2. Our study opens new perspectives in ruxolitinib efficacy research targeting cell types depending on ABCG2 expression and polymorphisms among patients.
Collapse
|
12
|
Pressiat C, Rakotoson MG, Habibi A, Barau C, Arrouasse R, Galactéros F, Stehlé T, Audard V, Hulin A, Bartolucci P. Impact of renal function on hydroxyurea exposure in sickle-cell disease patients. Br J Clin Pharmacol 2020; 87:2274-2285. [PMID: 33217005 DOI: 10.1111/bcp.14653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/24/2020] [Accepted: 10/13/2020] [Indexed: 12/17/2022] Open
Abstract
AIMS This prospective study aimed to develop a population pharmacokinetics (PK) model of hydroxyurea (HU) in patients with sickle cell disease. This model can be used to determine the impact of glomerular filtration rate (GFR) on HU kinetics. METHODS We included 30 patients. They underwent HU pharmacokinetics analyses of plasma and urine. Six underwent PK analyses in 2 periods with and without angiotensin-converting enzyme inhibitor. HU was assayed with a validated high-performance liquid chromatography-UV method. Noncompartmental PK analysis was conducted and a population PK model built with Monolix. This model was validated externally on another 56 patients. HU PK was simulated as a function of GFR. RESULTS The HU PK model was constructed as a 2-compartment model with first-order absorption and elimination. The quality criteria were good, including for external validation. We found that estimated GFR (eGFR) and body weight affected HU PK, with lower eGFR or body weight associated with a higher HU area under the curve. We recommend the monitoring of HU through eGFR and body weight, which together account for 47% of its variability. Urinary HU fractions and renal clearance were higher in the glomerular hyperfiltration group and lower in the moderate chronic kidney disease group, respectively. No differences in nonrenal HU clearance were observed. CONCLUSION Estimated GFR has an impact on the kinetics of hydroxyurea, and HU dose should be adapted accordingly. Angiotensin-converting enzyme inhibitor seems to have minor effect on HU PK in adults with sickle cell disease.
Collapse
Affiliation(s)
- Claire Pressiat
- Laboratoire de Pharmacologie, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Henri Mondor, Université Paris Est-Créteil, Créteil, France
| | - Marie-Georgine Rakotoson
- Centre de référence pour les syndromes drépanocytaires majeurs, AP-HP, Hôpitaux Universitaires Henri Mondor, Université Paris Est-Créteil, Créteil, France.,Filière MCGRE. DHU A TVB. Institut Mondor de Recherche Biomédicale (IMRB) équipe 2. Laboratoire d'excellence GRex, Université Paris Est-Créteil, Créteil, France
| | - Anoosha Habibi
- Centre de référence pour les syndromes drépanocytaires majeurs, AP-HP, Hôpitaux Universitaires Henri Mondor, Université Paris Est-Créteil, Créteil, France
| | - Caroline Barau
- Plate-forme de Ressources Biologiques, AP-HP, Hôpitaux Universitaires Henri Mondor, Université Paris Est-Créteil, Créteil, France
| | - Raphaele Arrouasse
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Investigations Cliniques 1430, AP-HP, Hôpitaux Universitaires Henri Mondor, Université Paris Est-Créteil, Créteil, France
| | - Frédéric Galactéros
- Centre de référence pour les syndromes drépanocytaires majeurs, AP-HP, Hôpitaux Universitaires Henri Mondor, Université Paris Est-Créteil, Créteil, France
| | - Thomas Stehlé
- Service de Néphrologie et Transplantation, AP-HP, Hôpitaux Universitaires Henri Mondor, Créteil, France.,Inserm U955, équipe 21, IMRB, Université Paris Est-Créteil, Créteil, France
| | - Vincent Audard
- Service de Néphrologie et Transplantation, AP-HP, Hôpitaux Universitaires Henri Mondor, Créteil, France.,Inserm U955, équipe 21, IMRB, Université Paris Est-Créteil, Créteil, France
| | - Anne Hulin
- Laboratoire de Pharmacologie, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Henri Mondor, Université Paris Est-Créteil, Créteil, France
| | - Pablo Bartolucci
- Centre de référence pour les syndromes drépanocytaires majeurs, AP-HP, Hôpitaux Universitaires Henri Mondor, Université Paris Est-Créteil, Créteil, France.,Filière MCGRE. DHU A TVB. Institut Mondor de Recherche Biomédicale (IMRB) équipe 2. Laboratoire d'excellence GRex, Université Paris Est-Créteil, Créteil, France
| |
Collapse
|
13
|
Domingues‐Hamdi E, Vasseur C, Pakdaman S, Moutereau S, Habibi A, Bartolucci P, Galactéros F, Baudin‐Creuza V. Hydroxycarbamide decreases the free alpha-hemoglobin pool in red blood cells of adult patients with sickle cell anemia. Am J Hematol 2020; 95:E302-E305. [PMID: 32720721 DOI: 10.1002/ajh.25947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Elisa Domingues‐Hamdi
- Inserm U955‐ IMRB, Team « Transfusion et Maladies du Globule Rouge » Université Paris Est Créteil Créteil France
- Laboratory of Excellence GR‐Ex Paris France
| | - Corinne Vasseur
- Inserm U955‐ IMRB, Team « Transfusion et Maladies du Globule Rouge » Université Paris Est Créteil Créteil France
- Laboratory of Excellence GR‐Ex Paris France
| | - Sadaf Pakdaman
- Inserm U955‐ IMRB, Team « Transfusion et Maladies du Globule Rouge » Université Paris Est Créteil Créteil France
- Laboratory of Excellence GR‐Ex Paris France
- Etablissement Français du Sang (EFS) Créteil France
| | - Stéphane Moutereau
- Inserm U955‐ IMRB, Team « Transfusion et Maladies du Globule Rouge » Université Paris Est Créteil Créteil France
- Laboratory of Excellence GR‐Ex Paris France
- Département de Biochimie‐Biologie Moléculaire, Pharmacologie, Génétique Médicale AP‐HP, Hôpitaux Universitaires Henri Mondor Créteil France
| | - Anoosha Habibi
- Inserm U955‐ IMRB, Team « Transfusion et Maladies du Globule Rouge » Université Paris Est Créteil Créteil France
- Laboratory of Excellence GR‐Ex Paris France
- Unité des Maladies Génétiques du Globule Rouge Hôpital Universitaire Henri Mondor (AP‐HP) Créteil France
| | - Pablo Bartolucci
- Inserm U955‐ IMRB, Team « Transfusion et Maladies du Globule Rouge » Université Paris Est Créteil Créteil France
- Laboratory of Excellence GR‐Ex Paris France
- Unité des Maladies Génétiques du Globule Rouge Hôpital Universitaire Henri Mondor (AP‐HP) Créteil France
| | - Frédéric Galactéros
- Inserm U955‐ IMRB, Team « Transfusion et Maladies du Globule Rouge » Université Paris Est Créteil Créteil France
- Laboratory of Excellence GR‐Ex Paris France
- Unité des Maladies Génétiques du Globule Rouge Hôpital Universitaire Henri Mondor (AP‐HP) Créteil France
| | - Véronique Baudin‐Creuza
- Inserm U955‐ IMRB, Team « Transfusion et Maladies du Globule Rouge » Université Paris Est Créteil Créteil France
- Laboratory of Excellence GR‐Ex Paris France
| |
Collapse
|
14
|
Kucukal E, Man Y, Hill A, Liu S, Bode A, An R, Kadambi J, Little JA, Gurkan UA. Whole blood viscosity and red blood cell adhesion: Potential biomarkers for targeted and curative therapies in sickle cell disease. Am J Hematol 2020; 95:1246-1256. [PMID: 32656816 PMCID: PMC7689825 DOI: 10.1002/ajh.25933] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
Sickle cell disease (SCD) is a recessive genetic blood disorder exhibiting abnormal blood rheology. Polymerization of sickle hemoglobin, due to a point mutation in the β‐globin gene of hemoglobin, results in aberrantly adhesive and stiff red blood cells (RBCs). Hemolysis, abnormal RBC adhesion, and abnormal blood rheology together impair endothelial health in people with SCD, which leads to cumulative systemic complications. Here, we describe a microfluidic assay combined with a micro particle image velocimetry technique for the integrated in vitro assessment of whole blood viscosity (WBV) and RBC adhesion. We examined WBV and RBC adhesion to laminin (LN) in microscale flow in whole blood samples from 53 individuals with no hemoglobinopathies (HbAA, N = 10), hemoglobin SC disease (HbSC, N = 14), or homozygous SCD (HbSS, N = 29) with mean WBV of 4.50 cP, 4.08 cP, and 3.73 cP, respectively. We found that WBV correlated with RBC count and hematocrit in subjects with HbSC or HbSS. There was a significant inverse association between WBV and RBC adhesion under both normoxic and physiologically hypoxic (SpO2 of 83%) tests, in which lower WBV associated with higher RBC adhesion to LN in subjects with HbSS. Low WBV has been found by others to associate with endothelial activation. Altered WBV and abnormal RBC adhesion may synergistically contribute to the endothelial damage and cumulative pathophysiology of SCD. These findings suggest that WBV and RBC adhesion may serve as clinically relevant biomarkers and endpoints in assessing emerging targeted and curative therapies in SCD.
Collapse
Affiliation(s)
- Erdem Kucukal
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland Ohio
| | - Yuncheng Man
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland Ohio
| | - Ailis Hill
- Division of Hematology and Oncology, School of Medicine Case Western Reserve University Cleveland Ohio
| | - Shichen Liu
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland Ohio
| | - Allison Bode
- Division of Hematology and Oncology, School of Medicine Case Western Reserve University Cleveland Ohio
| | - Ran An
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland Ohio
| | - Jaikrishnan Kadambi
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland Ohio
| | - Jane A. Little
- Division of Hematology and Blood Research Center, Department of Medicine University of North Carolina Chapel Hill North Carolina
| | - Umut A. Gurkan
- Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland Ohio
- Department of Biomedical Engineering Case Western Reserve University Cleveland Ohio
| |
Collapse
|
15
|
Insights into determinants of spleen injury in sickle cell anemia. Blood Adv 2020; 3:2328-2336. [PMID: 31391165 DOI: 10.1182/bloodadvances.2019000106] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/23/2019] [Indexed: 11/20/2022] Open
Abstract
Spleen dysfunction is central to morbidity and mortality in children with sickle cell anemia (SCA). The initiation and determinants of spleen injury, including acute splenic sequestration (ASS) have not been established. We investigated splenic function longitudinally in a cohort of 57 infants with SCA enrolled at 3 to 6 months of age and followed up to 24 months of age and explored the respective contribution of decreased red blood cell (RBC) deformability and increased RBC adhesion on splenic injury, including ASS. Spleen function was evaluated by sequential 99mTc heated RBC spleen scintigraphy and high-throughput quantification of RBCs with Howell-Jolly bodies (HJBs). At 6 and 18 months of age, spleen filtration function was decreased in 32% and 50% of infants, respectively, whereas the median %HJB-RBCs rose significantly (from 0.3% to 0.74%). An excellent correlation was established between %HJB-RBCs and spleen scintigraphy results. RBC adhesion to laminin and endothelial cells increased with time. Adhesion to endothelial cells negatively correlated with splenic function. Irreversibly sickled cells (ISCs), used as a surrogate marker of impaired deformability, were detected at enrollment and increased significantly at 18 months. %ISCs correlated positively with %HJB-RBCs and negatively with splenic uptake, indicating a relationship between their presence in the circulation and spleen dysfunction. In the subgroup of 8 infants who subsequently experienced ASS, %ISCs at enrollment were significantly higher compared with the asymptomatic group, suggesting a major role of impaired deformability in ASS. Higher levels of %HJB-RBCs were observed after the occurrence of ASS, demonstrating its negative impact on splenic function.
Collapse
|
16
|
Owusu M, Bannauer P, Ferreira da Silva J, Mourikis TP, Jones A, Májek P, Caldera M, Wiedner M, Lardeau CH, Mueller AC, Menche J, Kubicek S, Ciccarelli FD, Loizou JI. Mapping the Human Kinome in Response to DNA Damage. Cell Rep 2020; 26:555-563.e6. [PMID: 30650350 DOI: 10.1016/j.celrep.2018.12.087] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/31/2018] [Accepted: 12/18/2018] [Indexed: 01/02/2023] Open
Abstract
We provide a catalog for the effects of the human kinome on cell survival in response to DNA-damaging agents, covering all major DNA repair pathways. By treating 313 kinase-deficient cell lines with ten diverse DNA-damaging agents, including seven commonly used chemotherapeutics, we identified examples of vulnerability and resistance that are kinase specific. To investigate synthetic lethal interactions, we tested the response to carmustine for 25 cell lines by establishing a phenotypic fluorescence-activated cell sorting (FACS) assay designed to validate gene-drug interactions. We show apoptosis, cell cycle changes, and DNA damage and proliferation after alkylation- or crosslink-induced damage. In addition, we reconstitute the cellular sensitivity of DYRK4, EPHB6, MARK3, and PNCK as a proof of principle for our study. Furthermore, using global phosphoproteomics on cells lacking MARK3, we provide evidence for its role in the DNA damage response. Our data suggest that cancers with inactivating mutations in kinases, including MARK3, are particularly vulnerable to alkylating chemotherapeutic agents.
Collapse
Affiliation(s)
- Michel Owusu
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Peter Bannauer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Joana Ferreira da Silva
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Thanos P Mourikis
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| | - Alistair Jones
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| | - Peter Májek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Michael Caldera
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Marc Wiedner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Charles-Hugues Lardeau
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria; School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| | - André C Mueller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria; Christian Doppler Laboratory for Chemical Epigenetics and Antiinfectives, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Francesca D Ciccarelli
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| | - Joanna I Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria.
| |
Collapse
|
17
|
Lu M, Rab MA, Shevkoplyas SS, Sheehan VA. Blood rheology biomarkers in sickle cell disease. Exp Biol Med (Maywood) 2020; 245:155-165. [PMID: 31948290 DOI: 10.1177/1535370219900494] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sickle cell disease (SCD) is the most common inherited blood disorder, affecting approximately 100,000 patients in the U.S. and millions more worldwide. Patients with SCD experience a wide range of clinical complications, including frequent pain crises, stroke, and early mortality, all originating from a single-point mutation in the β-globin subunit. The RBC changes resulting from the sickle mutation lead to a host of rheological abnormalities that diminish microvascular blood flow, and produce severe anemia due to RBC hemolysis, and ischemia from vaso-occlusion initiated by sticky, rigid sickle RBCs. While the pathophysiology and mechanisms of SCD have been investigated for many years, therapies to treat the disease are limited. In addition to RBC transfusion, there are only two US Food and Drug Administration (FDA)-approved drugs to ameliorate SCD complications: hydroxyurea (HU) and L-glutamine (Endari™). The only curative therapy currently available is allogeneic hematopoietic stem cell transplantation (HSCT), which is generally reserved for individuals with a matched related donor, comprising only 10–15% of the total SCD population. Potentially curative advanced gene therapy approaches for SCD are under investigation in ongoing clinical trials. The ultimate goal of any curative treatment should be to repair the hemorheological abnormalities caused by SCD, and thus normalize blood flow and prevent clinical complications. Our mini-review highlights a set of key hemorheological biomarkers (and the current and emerging technologies used to measure them) that may be used to guide the development of novel curative and palliative therapies for SCD, and functionally assess outcomes. Impact statement Severe impairment of blood rheology is the hallmark of SCD pathophysiology, and one of the key factors predisposing SCD patients to pain crises, organ damage, and early mortality. As novel therapies emerge to treat or cure SCD, it is crucial that these treatments are functionally evaluated for their effect on blood rheology. This review describes a comprehensive panel of rheological biomarkers, their clinical uses, and the technologies used to obtain them. The described technologies can produce highly sensitive measurements of the ability of current treatments to improve blood rheology of SCD patients. The goal of curative therapies should be to achieve blood rheology biomarkers measurements in the range of sickle cell trait individuals (HbAS). The use of the panel of rheological biomarkers proposed in this review could significantly accelerate the development, optimization, and clinical translation of novel therapies for SCD.
Collapse
Affiliation(s)
- Madeleine Lu
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Minke Ae Rab
- Laboratory of Clinical Chemistry & Hematology, University Medical Center Utrecht, Utrecht University, Utrecht 3584, The Netherlands
| | - Sergey S Shevkoplyas
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Vivien A Sheehan
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
18
|
White J, Lancelot M, Gao X, McGraw BJ, Tabb C, Hines P. Cross-sectional analysis of adhesion in individuals with sickle cell disease using a standardized whole blood adhesion bioassay to VCAM-1. Blood Cells Mol Dis 2019; 81:102397. [PMID: 31864103 DOI: 10.1016/j.bcmd.2019.102397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 11/28/2022]
Abstract
Sickle cell disease (SCD) is characterized by frequent and unpredictable vaso-occlusive episodes (VOEs) that lead to severe pain, organ damage, and early death. Lack of reliable biomarkers that objectively define VOEs remains a critical barrier to improving the care for SCD patients. VOEs result from a complex interplay of cell-cell interactions that promote micro-vascular occlusion. Earlier studies demonstrated that sickle erythrocytes are more adherent than non-sickle erythrocytes and established a direct link between adhesion and frequency of VOEs. We developed a standardized, flow-based adhesion bioassay to assess the adhesive properties of SCD blood samples. The current study provides a cross-sectional analysis of steady state adhesion in SCD patients presenting at monthly out-patient hematology visits. Steady state adhesion varied from patient-to-patient. Adhesion positively correlated with reticulocyte percent and WBC count although there was no significant relationship between adhesion and platelets or hemoglobin in this study. Additionally, steady state adhesion indices were significantly lower in SCD subjects receiving hydroxyurea therapy when compared to the untreated group. The well-plate based microfluidic flow adhesion bioassay described in this report may provide a platform to identify SCD subjects with severe disease phenotypes, predict impending VOEs, and monitor response to current and developing therapies.
Collapse
Affiliation(s)
- Jennell White
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America; Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, United States of America
| | | | - Xiufeng Gao
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Bettina Joi McGraw
- Children's National Health System, Washington, DC, United States of America
| | - Carl Tabb
- Children's Hospital of Michigan, Detroit, MI, United States of America
| | - Patrick Hines
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, United States of America; Division of Critical Care Medicine, Detroit, MI, United States of America; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States of America.
| |
Collapse
|
19
|
Nader E, Skinner S, Romana M, Fort R, Lemonne N, Guillot N, Gauthier A, Antoine-Jonville S, Renoux C, Hardy-Dessources MD, Stauffer E, Joly P, Bertrand Y, Connes P. Blood Rheology: Key Parameters, Impact on Blood Flow, Role in Sickle Cell Disease and Effects of Exercise. Front Physiol 2019; 10:1329. [PMID: 31749708 PMCID: PMC6842957 DOI: 10.3389/fphys.2019.01329] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 10/04/2019] [Indexed: 01/07/2023] Open
Abstract
Blood viscosity is an important determinant of local flow characteristics, which exhibits shear thinning behavior: it decreases exponentially with increasing shear rates. Both hematocrit and plasma viscosity influence blood viscosity. The shear thinning property of blood is mainly attributed to red blood cell (RBC) rheological properties. RBC aggregation occurs at low shear rates, and increases blood viscosity and depends on both cellular (RBC aggregability) and plasma factors. Blood flow in the microcirculation is highly dependent on the ability of RBC to deform, but RBC deformability also affects blood flow in the macrocirculation since a loss of deformability causes a rise in blood viscosity. Indeed, any changes in one or several of these parameters may affect blood viscosity differently. Poiseuille's Law predicts that any increase in blood viscosity should cause a rise in vascular resistance. However, blood viscosity, through its effects on wall shear stress, is a key modulator of nitric oxide (NO) production by the endothelial NO-synthase. Indeed, any increase in blood viscosity should promote vasodilation. This is the case in healthy individuals when vascular function is intact and able to adapt to blood rheological strains. However, in sickle cell disease (SCD) vascular function is impaired. In this context, any increase in blood viscosity can promote vaso-occlusive like events. We previously showed that sickle cell patients with high blood viscosity usually have more frequent vaso-occlusive crises than those with low blood viscosity. However, while the deformability of RBC decreases during acute vaso-occlusive events in SCD, patients with the highest RBC deformability at steady-state have a higher risk of developing frequent painful vaso-occlusive crises. This paradox seems to be due to the fact that in SCD RBC with the highest deformability are also the most adherent, which would trigger vaso-occlusion. While acute, intense exercise may increase blood viscosity in healthy individuals, recent works conducted in sickle cell patients have shown that light cycling exercise did not cause dramatic changes in blood rheology. Moreover, regular physical exercise has been shown to decrease blood viscosity in sickle cell mice, which could be beneficial for adequate blood flow and tissue perfusion.
Collapse
Affiliation(s)
- Elie Nader
- Laboratory LIBM EA7424, Team "Vascular Biology and Red Blood Cell", University of Lyon 1, Lyon, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Sarah Skinner
- Laboratory LIBM EA7424, Team "Vascular Biology and Red Blood Cell", University of Lyon 1, Lyon, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Marc Romana
- Laboratory of Excellence GR-Ex, Paris, France.,Biologie Intégrée du Globule Rouge, Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Biologie Intégrée du Globule Rouge, The Université des Antilles, UMR_S1134, BIGR, F- 97157, Pointe-a-Pitre, France
| | - Romain Fort
- Laboratory LIBM EA7424, Team "Vascular Biology and Red Blood Cell", University of Lyon 1, Lyon, France.,Laboratory of Excellence GR-Ex, Paris, France.,Département de Médecine, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Nathalie Lemonne
- Unité Transversale de la Drépanocytose, Hôpital de Pointe-a-Pitre, Hôpital Ricou, Pointe-a-Pitre, France
| | - Nicolas Guillot
- Laboratoire Carmen INSERM 1060, INSA Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, France
| | - Alexandra Gauthier
- Laboratory LIBM EA7424, Team "Vascular Biology and Red Blood Cell", University of Lyon 1, Lyon, France.,Laboratory of Excellence GR-Ex, Paris, France.,d'Hématologie et d'Oncologie Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | | | - Céline Renoux
- Laboratory LIBM EA7424, Team "Vascular Biology and Red Blood Cell", University of Lyon 1, Lyon, France.,Laboratory of Excellence GR-Ex, Paris, France.,Laboratoire de Biochimie et de Biologie Moleìculaire, UF de Biochimie des Pathologies Eìrythrocytaires, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Marie-Dominique Hardy-Dessources
- Laboratory of Excellence GR-Ex, Paris, France.,Biologie Intégrée du Globule Rouge, Université de Paris, UMR_S1134, BIGR, INSERM, F-75015, Paris, France.,Biologie Intégrée du Globule Rouge, The Université des Antilles, UMR_S1134, BIGR, F- 97157, Pointe-a-Pitre, France
| | - Emeric Stauffer
- Laboratory LIBM EA7424, Team "Vascular Biology and Red Blood Cell", University of Lyon 1, Lyon, France.,Laboratory of Excellence GR-Ex, Paris, France.,Centre de Médecine du Sommeil et des Maladies Respiratoires, Hospices Civils de Lyon, Hôpital de la Croix Rousse, Lyon, France
| | - Philippe Joly
- Laboratory LIBM EA7424, Team "Vascular Biology and Red Blood Cell", University of Lyon 1, Lyon, France.,Laboratory of Excellence GR-Ex, Paris, France.,Laboratoire de Biochimie et de Biologie Moleìculaire, UF de Biochimie des Pathologies Eìrythrocytaires, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Yves Bertrand
- d'Hématologie et d'Oncologie Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - Philippe Connes
- Laboratory LIBM EA7424, Team "Vascular Biology and Red Blood Cell", University of Lyon 1, Lyon, France.,Laboratory of Excellence GR-Ex, Paris, France
| |
Collapse
|
20
|
Guadall A, Cochet S, Renaud O, Colin Y, Le Van Kim C, de Brevern AG, El Nemer W. Dimerization and phosphorylation of Lutheran/basal cell adhesion molecule are critical for its function in cell migration on laminin. J Biol Chem 2019; 294:14911-14921. [PMID: 31413112 DOI: 10.1074/jbc.ra119.007521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Tumor cell migration depends on the interactions of adhesion proteins with the extracellular matrix. Lutheran/basal cell adhesion molecule (Lu/BCAM) promotes tumor cell migration by binding to laminin α5 chain, a subunit of laminins 511 and 521. Lu/BCAM is a type I transmembrane protein with a cytoplasmic domain of 59 (Lu) or 19 (Lu(v13)) amino acids. Here, using an array of techniques, including site-directed mutagenesis, immunoblotting, FRET, and proximity-ligation assays, we show that both Lu and Lu(v13) form homodimers at the cell surface of epithelial cancer cells. We mapped two small-XXX-small motifs in the transmembrane domain as potential sites for monomers docking and identified three cysteines in the cytoplasmic domain as being critical for covalently stabilizing dimers. We further found that Lu dimerization and phosphorylation of its cytoplasmic domain were concomitantly needed to promote cell migration. We conclude that Lu is the critical isoform supporting tumor cell migration on laminin 521 and that the Lu:Lu(v13) ratio at the cell surface may control the balance between cellular firm adhesion and migration.
Collapse
Affiliation(s)
- Anna Guadall
- Université de Paris, UMR_S1134, BIGR, Inserm, F-75015 Paris, France.,Institut National de la Transfusion Sanguine, F-75015 Paris, France.,Laboratoire d'Excellence GR-Ex, 75015 Paris, France
| | - Sylvie Cochet
- Université de Paris, UMR_S1134, BIGR, Inserm, F-75015 Paris, France.,Institut National de la Transfusion Sanguine, F-75015 Paris, France.,Laboratoire d'Excellence GR-Ex, 75015 Paris, France
| | - Olivier Renaud
- Institut Curie, Paris Sciences et Lettres Research University, 75005 Paris, France.,U934, Institut National de la Santé et de la Recherche Médicale, 75005 Paris, France.,UMR3215, Centre National de la Recherche Scientifique, 75005 Paris, France.,Cell and Tissue Imaging Facility (PICT-IBiSA), Institut Curie, 75005 Paris, France
| | - Yves Colin
- Université de Paris, UMR_S1134, BIGR, Inserm, F-75015 Paris, France.,Institut National de la Transfusion Sanguine, F-75015 Paris, France.,Laboratoire d'Excellence GR-Ex, 75015 Paris, France
| | - Caroline Le Van Kim
- Université de Paris, UMR_S1134, BIGR, Inserm, F-75015 Paris, France.,Institut National de la Transfusion Sanguine, F-75015 Paris, France.,Laboratoire d'Excellence GR-Ex, 75015 Paris, France
| | - Alexandre G de Brevern
- Université de Paris, UMR_S1134, BIGR, Inserm, F-75015 Paris, France.,Institut National de la Transfusion Sanguine, F-75015 Paris, France.,Laboratoire d'Excellence GR-Ex, 75015 Paris, France
| | - Wassim El Nemer
- Université de Paris, UMR_S1134, BIGR, Inserm, F-75015 Paris, France .,Institut National de la Transfusion Sanguine, F-75015 Paris, France.,Laboratoire d'Excellence GR-Ex, 75015 Paris, France
| |
Collapse
|
21
|
Pretini V, Koenen MH, Kaestner L, Fens MHAM, Schiffelers RM, Bartels M, Van Wijk R. Red Blood Cells: Chasing Interactions. Front Physiol 2019; 10:945. [PMID: 31417415 PMCID: PMC6684843 DOI: 10.3389/fphys.2019.00945] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Human red blood cells (RBC) are highly differentiated cells that have lost all organelles and most intracellular machineries during their maturation process. RBC are fundamental for the nearly all basic physiologic dynamics and they are key cells in the body's respiratory system by being responsible for the oxygen transport to all cells and tissues, and delivery of carbon dioxide to the lungs. With their flexible structure RBC are capable to deform in order to travel through all blood vessels including very small capillaries. Throughout their in average 120 days lifespan, human RBC travel in the bloodstream and come in contact with a broad range of different cell types. In fact, RBC are able to interact and communicate with endothelial cells (ECs), platelets, macrophages, and bacteria. Additionally, they are involved in the maintenance of thrombosis and hemostasis and play an important role in the immune response against pathogens. To clarify the mechanisms of interaction of RBC and these other cells both in health and disease as well as to highlight the role of important key players, we focused our interest on RBC membrane components such as ion channels, proteins, and phospholipids.
Collapse
Affiliation(s)
- Virginia Pretini
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Mischa H. Koenen
- Department of Laboratory of Translational Immunology and Department of Pediatric Immunology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Marcel H. A. M. Fens
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Raymond M. Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marije Bartels
- Paediatric Haematology Department, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Richard Van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
22
|
Jit BP, Mohanty PK, Pradhan A, Purohit P, Das K, Patel S, Meher S, Sinha S, Mohanty JR, Behera RK, Das P. Erythrocyte cAMP in Determining Frequency of Acute Pain Episodes in Sickle Cell Disease Patients from Odisha State, India. Hemoglobin 2019; 43:88-94. [PMID: 31290363 DOI: 10.1080/03630269.2019.1623248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Vaso-occlusive crisis (VOC) occurs more frequently during stress in sickle cell disease patients. Epinephrine released during stress increases adhesion of sickled red blood cells (RBCs) to endothelium and to leukocytes, a process mediated through erythrocyte cyclic adenosine monophosphate (cAMP). Increased adhesion of sickled RBCs retards blood flow through the capillaries and promotes vaso-occlusion. Therefore, we examined the association of RBC-cAMP levels with frequency of acute pain episodes in sickle cell disease subjects. Using a case control study design, we measured RBC-cAMP levels, fetal hemoglobin (Hb F), α-thalassemia (α-thal) and other hematological parameters at baseline (sham treated) and after stimulation with epinephrine. The cases consisted of sickle cell disease subjects with three or more acute pain episodes in the last 12 months, and those without a single acute pain episode in the last 12 months were considered as controls. Significantly higher cAMP values were found in cases than the controls, in both sham treated (p < 0.001) and epinephrine treated RBCs (p < 0.001) by Wilcoxon Rank Sum test. However, significant association of cAMP values was observed both on univariate [odds ratio (OR): 4.8, 95% confidence interval (95% CI): 1.51-15.19, p < 0.008) and multivariate logistic regression analyses only in epinephrine treated (OR: 5.07, 95% CI: 1.53-16.82, p < 0.008) but not in sham-treated RBCs. In the covariates, Hb F consistently showed protective effects in univariate as well as in multivariate analyses. Frequent acute pain episodes are associated with higher cAMP levels than those with less frequent pain episodes, only after stimulation with epinephrine but not with baseline level.
Collapse
Affiliation(s)
- Bimal P Jit
- a School of Life Sciences , AIPH University , Bhubaneswar , Odisha State , India.,b Sickle Cell Clinic and Molecular Biology Laboratory , Veer Surendra Sai Institute of Medical Sciences and Research , Burla, Sambalpur , Odisha State , India.,c School of Life Sciences , Sambalpur University , Jyoti Vihar, Burla , Sambalpur , Odisha State , India
| | - Pradeep K Mohanty
- b Sickle Cell Clinic and Molecular Biology Laboratory , Veer Surendra Sai Institute of Medical Sciences and Research , Burla, Sambalpur , Odisha State , India.,d Department of Medicine , Veer Surendra Sai Institute of Medical Sciences and Research , Burla, Sambalpur , Odisha State , India
| | - Avinash Pradhan
- e Central Institute of Freshwater Aquaculture , Bhubaneswar , Odisha State , India
| | - Prasanta Purohit
- b Sickle Cell Clinic and Molecular Biology Laboratory , Veer Surendra Sai Institute of Medical Sciences and Research , Burla, Sambalpur , Odisha State , India.,f Multidisciplinary Research Unit , Maharaja Krishna Chandra Gajapati Medical College , Berhampur , Odisha State , India
| | - Kishalaya Das
- b Sickle Cell Clinic and Molecular Biology Laboratory , Veer Surendra Sai Institute of Medical Sciences and Research , Burla, Sambalpur , Odisha State , India
| | - Siris Patel
- b Sickle Cell Clinic and Molecular Biology Laboratory , Veer Surendra Sai Institute of Medical Sciences and Research , Burla, Sambalpur , Odisha State , India
| | - Satyabrata Meher
- b Sickle Cell Clinic and Molecular Biology Laboratory , Veer Surendra Sai Institute of Medical Sciences and Research , Burla, Sambalpur , Odisha State , India
| | - Shalini Sinha
- a School of Life Sciences , AIPH University , Bhubaneswar , Odisha State , India
| | - Jyoti R Mohanty
- a School of Life Sciences , AIPH University , Bhubaneswar , Odisha State , India
| | - Rajendra Kumar Behera
- c School of Life Sciences , Sambalpur University , Jyoti Vihar, Burla , Sambalpur , Odisha State , India
| | - Padmalaya Das
- a School of Life Sciences , AIPH University , Bhubaneswar , Odisha State , India
| |
Collapse
|
23
|
Zhang J, Jones SM, Lykotrafitis G, Andemariam B. Valsartan impedes epinephrine-induced ICAM-4 activation on normal, sickle cell trait and sickle cell disease red blood cells. PLoS One 2019; 14:e0216467. [PMID: 31083675 PMCID: PMC6513067 DOI: 10.1371/journal.pone.0216467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/23/2019] [Indexed: 11/18/2022] Open
Abstract
Abnormal red blood cell (RBC) adhesion to endothelial αvβ3 plays a crucial role in triggering vaso-occlusive episodes in sickle cell disease (SCD). It is known that epinephrine, a β-adrenergic receptor (β-AR) stimulator, increases the RBC surface density of active intercellular adhesion molecule-4 (ICAM-4) which binds to the endothelial αvβ3. It has also been demonstrated that in human embryonic kidney 293 cells, mouse cardiomyocytes, and COS-7 cell lines, the β-adrenergic and renin-angiotensin systems are interrelated and that there is a direct interaction and cross-regulation between β-AR and angiotensin II type 1 receptor (AT1R). Selective blockade of AT1R reciprocally inhibits the downstream signaling of β-ARs, similar to the inhibition observed in the presence of a β-AR-blocker. However, it is not known if this mechanism is active in human RBCs. Here, we studied the effect of valsartan, an AT1R blocker, on the surface density of active ICAM-4 receptors in normal, sickle cell trait, and homozygous sickle RBCs. We applied single molecule force spectroscopy to detect active ICAM-4 receptors on the RBC plasma membrane with and without the presence of valsartan and epinephrine. We found that epinephrine significantly increased whereas valsartan decreased their surface density. Importantly, we found that pretreatment of RBCs with valsartan significantly impeded the activation of ICAM-4 receptors induced by epinephrine. The observed reduced expression of active ICAM-4 receptors on the RBC plasma membrane leads us to conjecture that valsartan may be used as a supporting remedy for the prevention and treatment of vaso-occlusive crisis in SCD.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Sasia-Marie Jones
- New England Sickle Cell Institute, Division of Hematology-Oncology, Neag Comprehensive Cancer Center, UCONN Health, University of Connecticut, Farmington, Connecticut, United States of America
| | - George Lykotrafitis
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail: (GL); (BA)
| | - Biree Andemariam
- New England Sickle Cell Institute, Division of Hematology-Oncology, Neag Comprehensive Cancer Center, UCONN Health, University of Connecticut, Farmington, Connecticut, United States of America
- * E-mail: (GL); (BA)
| |
Collapse
|
24
|
Lizarralde Iragorri MA, El Hoss S, Brousse V, Lefevre SD, Dussiot M, Xu T, Ferreira AR, Lamarre Y, Silva Pinto AC, Kashima S, Lapouméroulie C, Covas DT, Le Van Kim C, Colin Y, Elion J, Français O, Le Pioufle B, El Nemer W. A microfluidic approach to study the effect of mechanical stress on erythrocytes in sickle cell disease. LAB ON A CHIP 2018; 18:2975-2984. [PMID: 30168832 DOI: 10.1039/c8lc00637g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The human red blood cell is a biconcave disc of 6-8 × 2 μm that is highly elastic. This capacity to deform enables it to stretch while circulating through narrow capillaries to ensure its main function of gas exchange. Red cell shape and deformability are altered in membrane disorders because of defects in skeletal or membrane proteins affecting protein-protein interactions. Red cell properties are also altered in other pathologies such as sickle cell disease. Sickle cell disease is a genetic hereditary disorder caused by a single point mutation in the β-globin gene generating sickle haemoglobin (HbS). Hypoxia drives HbS polymerisation that is responsible for red cell sickling and reduced deformability. The main clinical features of sickle cell disease are vaso-occlusive crises and haemolytic anaemia. Foetal haemoglobin (HbF) inhibits HbS polymerisation and positively impacts red cell survival in the circulation but the mechanism through which it exerts this action is not fully characterized. In this study, we designed a microfluidic biochip mimicking the dimensions of human capillaries to measure the impact of repeated mechanical stress on the survival of red cells at the single cell scale under controlled pressure. We show that mechanical stress is a critical parameter underlying intravascular haemolysis in sickle cell disease and that high intracellular levels of HbF protect against lysis. The biochip is a promising tool to address red cell deformability in pathological situations and to screen for molecules positively impacting this parameter in order to improve red cell survival in the circulation.
Collapse
Affiliation(s)
- Maria Alejandra Lizarralde Iragorri
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris Diderot, Sorbonne Paris Cité, Univ. de la Réunion, Univ. des Antilles, INTS, 6 rue Alexandre Cabanel, 75015 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang X, Shi Y, Song L, Shen C, Cai Q, Zhang Z, Wu J, Fu G, Shen W. Identification of mutations in patients with acquired pure red cell aplasia. Acta Biochim Biophys Sin (Shanghai) 2018; 50:685-692. [PMID: 29767669 DOI: 10.1093/abbs/gmy052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 11/14/2022] Open
Abstract
Idiopathic acquired pure red cell aplasia (PRCA) is a rare, autoimmune-related disease. This study aimed to describe the previously unidentified DNA alterations associated with PRCA. Here, next generation sequencing using a panel containing 295 critical genes was applied to detect potentially pathogenic mutations in four patients with PRCA. A total of 529 mutations were identified and further classified into three categories, namely, uncertain (n = 25), likely benign (n = 20) and benign (n = 484) mutations, based on the American College of Medical Genetics and Genomics (ACMG) 2015 guidelines and ClinVar database. The spatial proximity between two loci of the uncertain or benign mutations was evaluated using Hi-C datasets of KBM7 and K562 cell lines, respectively. Significant spatial proximity was observed in uncertain mutation pairs compared with benign mutation pairs. In addition, 17 variants were eventually identified after excluding those with mutant frequencies >0.001, including 7 newly identified variants. FANCF and LRP1B mutations existed twice in patients. FANCF and LRP1B mutations were likely to affect protein stability based on prediction analysis. Taken together, our data may provide valuable information about PRCA. FANCF and LRP1B mutations may be associated with acquired PRCA.
Collapse
Affiliation(s)
- Xinchao Zhang
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lingjun Song
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang Shen
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Cai
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Jun Wu
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guohui Fu
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Shen
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Abstract
The primary β-globin gene mutation that causes sickle cell disease (SCD) has significant pathophysiological consequences that result in hemolytic events and the induction of the inflammatory processes that ultimately lead to vaso-occlusion. In addition to their role in the initiation of the acute painful vaso-occlusive episodes that are characteristic of SCD, inflammatory processes are also key components of many of the complications of the disease including autosplenectomy, acute chest syndrome, pulmonary hypertension, leg ulcers, nephropathy and stroke. We, herein, discuss the events that trigger inflammation in the disease, as well as the mechanisms, inflammatory molecules and cells that propagate these inflammatory processes. Given the central role that inflammation plays in SCD pathophysiology, many of the therapeutic approaches currently under pre-clinical and clinical development for the treatment of SCD endeavor to counter aspects or specific molecules of these inflammatory processes and it is possible that, in the future, we will see anti-inflammatory drugs being used either together with, or in place of, hydroxyurea in those SCD patients for whom hematopoietic stem cell transplants and evolving gene therapies are not a viable option.
Collapse
Affiliation(s)
- Nicola Conran
- Hematology Center, University of Campinas - UNICAMP, Cidade Universitária, Campinas-SP, Brazil
| | - John D Belcher
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Vascular Biology Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
27
|
Brusson M, De Grandis M, Cochet S, Bigot S, Marin M, Leduc M, Guillonneau F, Mayeux P, Peyrard T, Chomienne C, Le Van Kim C, Cassinat B, Kiladjian JJ, El Nemer W. Impact of hydroxycarbamide and interferon-α on red cell adhesion and membrane protein expression in polycythemia vera. Haematologica 2018; 103:972-981. [PMID: 29599206 PMCID: PMC6058771 DOI: 10.3324/haematol.2017.182303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/21/2018] [Indexed: 01/13/2023] Open
Abstract
Polycythemia vera is a chronic myeloproliferative neoplasm characterized by the JAK2V617F mutation, elevated blood cell counts and a high risk of thrombosis. Although the red cell lineage is primarily affected by JAK2V617F, the impact of mutated JAK2 on circulating red blood cells is poorly documented. Recently, we showed that in polycythemia vera, erythrocytes had abnormal expression of several proteins including Lu/BCAM adhesion molecule and proteins from the endoplasmic reticulum, mainly calreticulin and calnexin. Here we investigated the effects of hydroxycarbamide and interferon-α treatments on the expression of erythroid membrane proteins in a cohort of 53 patients. Surprisingly, while both drugs tended to normalize calreticulin expression, proteomics analysis showed that hydroxycarbamide deregulated the expression of 53 proteins in red cell ghosts, with overexpression and downregulation of 37 and 16 proteins, respectively. Within over-expressed proteins, hydroxycarbamide was found to enhance the expression of adhesion molecules such as Lu/BCAM and CD147, while interferon-α did not. In addition, we found that hydroxycarbamide increased Lu/BCAM phosphorylation and exacerbated red cell adhesion to its ligand laminin. Our study reveals unexpected adverse effects of hydroxycarbamide on red cell physiology in polycythemia vera and provides new insights into the effects of this molecule on gene regulation and protein recycling or maturation during erythroid differentiation. Furthermore, our study shows deregulation of Lu/BCAM and CD147 that are two ubiquitously expressed proteins linked to progression of solid tumors, paving the way for future studies to address the role of hydroxycarbamide in tissues other than blood cells in myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Mégane Brusson
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles.,Institut National de la Transfusion Sanguine, F-75015 Paris.,Laboratoire d'Excellence GR-Ex, Paris
| | - Maria De Grandis
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles.,Institut National de la Transfusion Sanguine, F-75015 Paris.,Laboratoire d'Excellence GR-Ex, Paris
| | - Sylvie Cochet
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles.,Institut National de la Transfusion Sanguine, F-75015 Paris.,Laboratoire d'Excellence GR-Ex, Paris
| | - Sylvain Bigot
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles.,Institut National de la Transfusion Sanguine, F-75015 Paris.,Laboratoire d'Excellence GR-Ex, Paris
| | - Mickaël Marin
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles.,Institut National de la Transfusion Sanguine, F-75015 Paris.,Laboratoire d'Excellence GR-Ex, Paris
| | - Marjorie Leduc
- Plateforme de Protéomique de l'Université Paris Descartes (3P5), Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Sorbonne Paris Cité, Laboratoire d'Excellence GR-Ex, Paris
| | - François Guillonneau
- Plateforme de Protéomique de l'Université Paris Descartes (3P5), Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Sorbonne Paris Cité, Laboratoire d'Excellence GR-Ex, Paris
| | - Patrick Mayeux
- Plateforme de Protéomique de l'Université Paris Descartes (3P5), Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Sorbonne Paris Cité, Laboratoire d'Excellence GR-Ex, Paris
| | - Thierry Peyrard
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles.,Institut National de la Transfusion Sanguine, F-75015 Paris.,Laboratoire d'Excellence GR-Ex, Paris
| | - Christine Chomienne
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm UMR-S1131, Hôpital Saint Louis, Institut Universitaire d'Hématologie, Laboratoire de Biologie Cellulaire, Paris.,AP-HP, Hôpital Saint-Louis, Laboratoire de Biologie Cellulaire, Paris
| | - Caroline Le Van Kim
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles.,Institut National de la Transfusion Sanguine, F-75015 Paris.,Laboratoire d'Excellence GR-Ex, Paris
| | - Bruno Cassinat
- AP-HP, Hôpital Saint-Louis, Laboratoire de Biologie Cellulaire, Paris
| | - Jean-Jacques Kiladjian
- Centre d'Investigations Cliniques, Hôpital Saint-Louis, Université Paris Diderot, Paris, France
| | - Wassim El Nemer
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles .,Institut National de la Transfusion Sanguine, F-75015 Paris.,Laboratoire d'Excellence GR-Ex, Paris
| |
Collapse
|
28
|
Lemonne N, Möckesch B, Charlot K, Garnier Y, Waltz X, Lamarre Y, Antoine-Jonville S, Etienne-Julan M, Hardy-Dessources MD, Romana M, Connes P. Effects of hydroxyurea on blood rheology in sickle cell anemia: A two-years follow-up study. Clin Hemorheol Microcirc 2018; 67:141-148. [PMID: 28759962 DOI: 10.3233/ch-170280] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The aim of the present study was to test the effects of hydroxyurea (HU) therapy on clinical, hematological and hemorheological parameters in adult patients with sickle cell anemia (SCA). Hematological and hemorheological parameters were measured in 28 SCA patients before HU therapy (i.e., baseline) and at 6, 12 and 24 months of treatment. RBC deformability was determined by ektacytometry at 30 Pa. RBC aggregation properties were investigated by light-backscatter method. Blood viscosity was measured at 225 s-1 by a cone-plate viscometer. The rates of vaso-occlusive crises and acute chest syndrome were lower at 1 and 2 years of HU therapy compared to baseline. The proportion of patients with leg ulcers tended to decrease after 2 years of treatment. Hemoglobin oxygen saturation improved with HU therapy. HU therapy induced a decrease of platelet and white blood cell counts and a rise in fetal hemoglobin level and mean cell volume. While hemoglobin concentrations increased under HU, blood viscosity remained unchanged all along the study. RBC deformability increased over baseline values at 6 months of HU therapy and continued to rise until the end of the follow-up period. In conclusion, the improvement in RBC deformability probably compensates the increase of hemoglobin on blood viscosity and participates to the improvement of the clinical status of patients.
Collapse
Affiliation(s)
- Nathalie Lemonne
- Unité Transversale de la Drépanocytose, Hôpital Ricou, CHU de Pointe-á-Pitre, Guadeloupe, France
| | - Berenike Möckesch
- Laboratoire ACTES, EA3596, Université des Antilles, Pointe-á-Pitre, Guadeloupe, France
| | - Keyne Charlot
- Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-á-Pitre, Guadeloupe, France.,Laboratoire d'Excellence GR-Ex « The red cell: from genesis to death », PRES Sorbonne Paris Cité, Paris, France.,Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Yohann Garnier
- Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-á-Pitre, Guadeloupe, France.,Laboratoire d'Excellence GR-Ex « The red cell: from genesis to death », PRES Sorbonne Paris Cité, Paris, France
| | - Xavier Waltz
- Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-á-Pitre, Guadeloupe, France.,Laboratoire d'Excellence GR-Ex « The red cell: from genesis to death », PRES Sorbonne Paris Cité, Paris, France
| | - Yann Lamarre
- Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-á-Pitre, Guadeloupe, France.,Laboratoire d'Excellence GR-Ex « The red cell: from genesis to death », PRES Sorbonne Paris Cité, Paris, France
| | | | - Maryse Etienne-Julan
- Unité Transversale de la Drépanocytose, Hôpital Ricou, CHU de Pointe-á-Pitre, Guadeloupe, France
| | - Marie-Dominique Hardy-Dessources
- Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-á-Pitre, Guadeloupe, France.,Laboratoire d'Excellence GR-Ex « The red cell: from genesis to death », PRES Sorbonne Paris Cité, Paris, France
| | - Marc Romana
- Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-á-Pitre, Guadeloupe, France.,Laboratoire d'Excellence GR-Ex « The red cell: from genesis to death », PRES Sorbonne Paris Cité, Paris, France
| | - Philippe Connes
- Inserm UMR 1134, Hôpital Ricou, CHU de Pointe-á-Pitre, Guadeloupe, France.,Laboratoire d'Excellence GR-Ex « The red cell: from genesis to death », PRES Sorbonne Paris Cité, Paris, France.,Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), EA7424, Equipe Biologie Vasculaire et du Globule Rouge, Université Claude Bernard Lyon 1, COMUE Lyon, Villeurbanne, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
29
|
Reppin F, Cochet S, El Nemer W, Fritz G, Schmidt G. High Affinity Binding of Escherichia coli Cytotoxic Necrotizing Factor 1 (CNF1) to Lu/BCAM Adhesion Glycoprotein. Toxins (Basel) 2017; 10:toxins10010003. [PMID: 29267242 PMCID: PMC5793090 DOI: 10.3390/toxins10010003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 01/07/2023] Open
Abstract
The protein toxin Cytotoxic Necrotizing Factor 1 (CNF1) is a major virulence factor of pathogenic Escherichia coli strains. It belongs to a family of single chain AB-toxins, which enter mammalian cells by receptor-mediated endocytosis. Recently, we identified the Lutheran (Lu) adhesion glycoprotein/basal cell adhesion molecule (BCAM) as a cellular receptor for CNF1. Here, we identified the Ig-like domain 2 of Lu/BCAM as main interaction site of the toxin by direct protein-protein interaction and competition studies. Using surface plasmon resonance, we showed a high affinity CNF-Lu/BCAM interaction with a KD of 2.8 nM. Furthermore, we performed small-angle X-ray scattering to define the molecular envelope of the Lu/BCAM-CNF1 complex, suggesting a 6:1 ratio of Lu/BCAM to CNF1 in the receptor-toxin complex. This study leads to a deeper understanding of the interaction between CNF1 and Lu/BCAM, and presents novel opportunities for the development of future anti-toxin strategies.
Collapse
Affiliation(s)
- Franziska Reppin
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Albert-Street 25, 79104 Freiburg, Germany.
- Biological Faculty, Albert-Ludwigs-University of Freiburg, Albert-Street 25, 79104 Freiburg, Germany.
| | - Sylvie Cochet
- Universite Sorbonne Paris Cite, Universite Paris Diderot, Inserm, INTS, Unite Biologie Integree du Globule Rouge, Laboratoire d'Excellence GR-Ex, 75013 Paris, France.
| | - Wassim El Nemer
- Universite Sorbonne Paris Cite, Universite Paris Diderot, Inserm, INTS, Unite Biologie Integree du Globule Rouge, Laboratoire d'Excellence GR-Ex, 75013 Paris, France.
| | - Günter Fritz
- Department of Neuropathology, Albert-Ludwigs-University of Freiburg, Breisacher Strasse 64, 79106 Freiburg, Germany.
| | - Gudula Schmidt
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Albert-Street 25, 79104 Freiburg, Germany.
| |
Collapse
|
30
|
Zhang J, Abiraman K, Jones SM, Lykotrafitis G, Andemariam B. Regulation of Active ICAM-4 on Normal and Sickle Cell Disease RBCs via AKAPs Is Revealed by AFM. Biophys J 2017; 112:143-152. [PMID: 28076805 DOI: 10.1016/j.bpj.2016.11.3204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/10/2016] [Accepted: 11/28/2016] [Indexed: 11/15/2022] Open
Abstract
Human healthy (wild-type (WT)) and homozygous sickle (SS) red blood cells (RBCs) express a large number of surface receptors that mediate cell adhesion between RBCs, and between RBCs and white blood cells, platelets, and the endothelium. In sickle cell disease (SCD), abnormal adhesion of RBCs to endothelial cells is mediated by the intercellular adhesion molecule-4 (ICAM-4), which appears on the RBC membrane and binds to the endothelial αvβ3 integrin. This is a key factor in the initiation of vaso-occlusive episodes, the hallmark of SCD. A better understanding of the mechanisms that control RBC adhesion to endothelium may lead to novel approaches to both prevention and treatment of vaso-occlusive episodes in SCD. One important mechanism of ICAM-4 activation occurs via the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA)-dependent signaling pathway. Here, we employed an in vitro technique called single-molecule force spectroscopy to study the effect of modulation of the cAMP-PKA-dependent pathway on ICAM-4 receptor activation. We quantified the frequency of active ICAM-4 receptors on WT-RBC and SS-RBC membranes, as well as the median unbinding force between ICAM-4 and αvβ3. We showed that the collective frequency of unbinding events in WT-RBCs is not significantly different from that of SS-RBCs. This result was confirmed by confocal microscopy experiments. In addition, we showed that incubation of normal RBCs and SS-RBCs with epinephrine, a catecholamine that binds to the β-adrenergic receptor and activates the cAMP-PKA-dependent pathway, caused a significant increase in the frequency of active ICAM-4 receptors in both normal RBCs and SS-RBCs. However, the unbinding force between ICAM-4 and the corresponding ligand αvβ3 remained the same. Furthermore, we demonstrated that forskolin, an adenylyl cyclase activator, significantly increased the frequency of ICAM-4 receptors in WT-RBCs and SS-RBCs, confirming that the activation of ICAM-4 is regulated by the cAMP-PKA pathway. Finally, we showed that A-kinase anchoring proteins play an essential role in ICAM-4 activation.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut
| | - Krithika Abiraman
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - Sasia-Marie Jones
- New England Sickle Cell Institute, Division of Hematology-Oncology, Neag Comprehensive Cancer Center, UCONN Health, University of Connecticut, Farmington, Connecticut
| | - George Lykotrafitis
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut; Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut.
| | - Biree Andemariam
- New England Sickle Cell Institute, Division of Hematology-Oncology, Neag Comprehensive Cancer Center, UCONN Health, University of Connecticut, Farmington, Connecticut.
| |
Collapse
|
31
|
Telen MJ, Batchvarova M, Shan S, Bovee-Geurts PH, Zennadi R, Leitgeb A, Brock R, Lindgren M. Sevuparin binds to multiple adhesive ligands and reduces sickle red blood cell-induced vaso-occlusion. Br J Haematol 2016; 175:935-948. [PMID: 27549988 DOI: 10.1111/bjh.14303] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/27/2016] [Indexed: 12/19/2022]
Abstract
Sevuparin is a novel drug candidate in phase II development as a treatment for vaso-occlusive crises (VOC) in patients with sickle cell disease (SCD). As a heparin-derived polysaccharide, sevuparin has been designed to retain anti-adhesive properties, while the antithrombin-binding domains have been eliminated, substantially diminishing its anticoagulant activity. Here, we demonstrate that sevuparin inhibits the adhesion of human sickle red blood cells (SS-RBCs) to stimulated cultured endothelial cells in vitro. Importantly, sevuparin prevents vaso-occlusion and normalizes blood flow in an in vivo mouse model of SCD vaso-occlusion. Analyses by surface plasmon resonance (SPR) and fluorescence correlation spectroscopy (FCS) demonstrate that sevuparin binds to P- and L-selectins, thrombospondin, fibronectin and von Willebrand factor, all of which are thought to contribute to vaso-occlusion in SCD. Despite low anticoagulation activity, sevuparin has anti-adhesive efficacy similar to the low molecular weight heparin tinzaparin both in vitro and in vivo. These results suggest that the anti-adhesive properties rather than the anticoagulant effects of heparinoids are critical for the treatment of vaso-occlusion in SCD. Therefore, sevuparin is now being evaluated in SCD patients hospitalized for treatment of VOC.
Collapse
Affiliation(s)
- Marilyn J Telen
- Division of Hematology, Department of Medicine, Duke Comprehensive Sickle Cell Center, Duke University School of Medicine, Durham, NC, USA
| | - Milena Batchvarova
- Division of Hematology, Department of Medicine, Duke Comprehensive Sickle Cell Center, Duke University School of Medicine, Durham, NC, USA
| | - Siqing Shan
- Division of Hematology, Department of Medicine, Duke Comprehensive Sickle Cell Center, Duke University School of Medicine, Durham, NC, USA
| | - Petra H Bovee-Geurts
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rahima Zennadi
- Division of Hematology, Department of Medicine, Duke Comprehensive Sickle Cell Center, Duke University School of Medicine, Durham, NC, USA
| | | | - Roland Brock
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
32
|
Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease. Proc Natl Acad Sci U S A 2016; 113:9527-32. [PMID: 27512047 DOI: 10.1073/pnas.1610435113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Hydroxyurea (HU) has been used clinically to reduce the frequency of painful crisis and the need for blood transfusion in sickle cell disease (SCD) patients. However, the mechanisms underlying such beneficial effects of HU treatment are still not fully understood. Studies have indicated a weak correlation between clinical outcome and molecular markers, and the scientific quest to develop companion biophysical markers have mostly targeted studies of blood properties under hypoxia. Using a common-path interferometric technique, we measure biomechanical and morphological properties of individual red blood cells in SCD patients as a function of cell density, and investigate the correlation of these biophysical properties with drug intake as well as other clinically measured parameters. Our results show that patient-specific HU effects on the cellular biophysical properties are detectable at normoxia, and that these properties are strongly correlated with the clinically measured mean cellular volume rather than fetal hemoglobin level.
Collapse
|
33
|
Sickle cell disease biochip: a functional red blood cell adhesion assay for monitoring sickle cell disease. Transl Res 2016; 173:74-91.e8. [PMID: 27063958 PMCID: PMC4959913 DOI: 10.1016/j.trsl.2016.03.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 03/08/2016] [Accepted: 03/12/2016] [Indexed: 01/10/2023]
Abstract
Sickle cell disease (SCD) afflicts millions of people worldwide and is associated with considerable morbidity and mortality. Chronic and acute vaso-occlusion are the clinical hallmarks of SCD and can result in pain crisis, widespread organ damage, and early movtality. Even though the molecular underpinnings of SCD were identified more than 60 years ago, there are no molecular or biophysical markers of disease severity that are feasibly measured in the clinic. Abnormal cellular adhesion to vascular endothelium is at the root of vaso-occlusion. However, cellular adhesion is not currently evaluated clinically. Here, we present a clinically applicable microfluidic device (SCD biochip) that allows serial quantitative evaluation of red blood cell (RBC) adhesion to endothelium-associated protein-immobilized microchannels, in a closed and preprocessing-free system. With the SCD biochip, we have analyzed blood samples from more than 100 subjects and have shown associations between the measured RBC adhesion to endothelium-associated proteins (fibronectin and laminin) and individual RBC characteristics, including hemoglobin content, fetal hemoglobin concentration, plasma lactate dehydrogenase level, and reticulocyte count. The SCD biochip is a functional adhesion assay, reflecting quantitative evaluation of RBC adhesion, which could be used at baseline, during crises, relative to various long-term complications, and before and after therapeutic interventions.
Collapse
|
34
|
Bartolucci P, Habibi A, Khellaf M, Roudot-Thoraval F, Melica G, Lascaux AS, Moutereau S, Loric S, Wagner-Ballon O, Berkenou J, Santin A, Michel M, Renaud B, Lévy Y, Galactéros F, Godeau B. Score Predicting Acute Chest Syndrome During Vaso-occlusive Crises in Adult Sickle-cell Disease Patients. EBioMedicine 2016; 10:305-11. [PMID: 27412264 PMCID: PMC5006640 DOI: 10.1016/j.ebiom.2016.06.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/14/2016] [Accepted: 06/27/2016] [Indexed: 02/02/2023] Open
Abstract
Background Vaso-occlusive crisis (VOC), hallmark of sickle-cell disease (SCD), is the first cause of patients' Emergency-Room admissions and hospitalizations. Acute chest syndrome (ACS), a life-threatening complication, can occur during VOC, be fatal and prolong hospitalization. No predictive factor identifies VOC patients who will develop secondary ACS. Methods This prospective, monocenter, observational study on SS/S-β0thalassemia SCD adults aimed to identify parameters predicting ACS at Emergency-Department arrival. The primary endpoint was ACS onset within 15 days of admission. Secondary endpoints were hospitalization duration, morphine consumption, pain evaluation, blood transfusion(s) (BT(s)), requiring intensive care and mortality. Findings Among 250 VOCs included, 247 were analyzed. Forty-four (17.8%) ACSs occurred within 15 (median [IQR] 3 [2, 3]) days post-admission based on auscultation abnormalities; missing chest radiographs excluded three patients. Comparing ACS to VOC, respectively, median hospital stay was longer 9 [7–11] vs 4 [3–7] days (p < 0.0001), 7/41 (17%) vs 1/203 (0.5%) required intensive care (p < 0.0001), and 20/41 (48.7%) vs 6/203 (3%) required BTs (p < 0.0001). No patient died. The multivariate model retained reticulocyte and leukocyte counts, and spine and/or pelvis pain as being independently associated with ACS; the resulting ACS-predictive score's area under the ROC was 0.840 [95% CI 0.780–0.900], 98.8% negative-predictive value and 39.5% positive-predictive value for the real ACS incidence. Interpretation The ACS-predictive score is simple, easily applied and could change VOC management and therapeutic perspectives. Assessed ACS risk could lead to earlier discharges or close monitoring and rapid medical intensification to prevent ACS. Acute chest syndrome is a threatening complication. Acute chest syndrome often occurs during a vaso occlusive crisis. Our study provides a predictive score of acute chest syndrome.
Collapse
Affiliation(s)
- Pablo Bartolucci
- IMRB, Henri-Mondor Hospital-UPEC, Créteil, France; Department of Internal Medicine, Henri-Mondor Hospital-UPEC, Créteil, France.
| | - Anoosha Habibi
- IMRB, Henri-Mondor Hospital-UPEC, Créteil, France; Department of Internal Medicine, Henri-Mondor Hospital-UPEC, Créteil, France
| | - Mehdi Khellaf
- Department of Internal Medicine, Henri-Mondor Hospital-UPEC, Créteil, France
| | | | - Giovanna Melica
- Department of Immunology, Henri-Mondor Hospital-UPEC, Créteil, France
| | | | | | - Sylvain Loric
- Department of Biochemistry, Henri-Mondor Hospital-UPEC, Créteil, France
| | - Orianne Wagner-Ballon
- Department of Hematology and Immunology, Henri-Mondor Hospital-UPEC, Créteil, France
| | - Jugurtha Berkenou
- Sickle Cell Referral Center, Henri-Mondor Hospital-UPEC, Créteil, France
| | - Aline Santin
- Emergency Department, Henri-Mondor Hospital-UPEC, Créteil, France
| | - Marc Michel
- Department of Internal Medicine, Henri-Mondor Hospital-UPEC, Créteil, France
| | - Bertrand Renaud
- Emergency Department, Henri-Mondor Hospital-UPEC, Créteil, France
| | - Yves Lévy
- IMRB, Henri-Mondor Hospital-UPEC, Créteil, France
| | - Frédéric Galactéros
- IMRB, Henri-Mondor Hospital-UPEC, Créteil, France; Department of Internal Medicine, Henri-Mondor Hospital-UPEC, Créteil, France
| | - Bertrand Godeau
- Department of Internal Medicine, Henri-Mondor Hospital-UPEC, Créteil, France
| |
Collapse
|
35
|
White J, Krishnamoorthy S, Gupta D, Lancelot M, Moore N, Sarnaik S, Hobbs WE, Light DR, Hines P. VLA-4 blockade by natalizumab inhibits sickle reticulocyte and leucocyte adhesion during simulated blood flow. Br J Haematol 2016; 174:970-82. [PMID: 27291690 DOI: 10.1111/bjh.14158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/14/2016] [Indexed: 11/29/2022]
Abstract
Very Late Antigen-4 (VLA-4, α4β1-integrin, ITGA4) orchestrates cell-cell and cell-endothelium adhesion. Given the proposed role of VLA-4 in sickle cell disease (SCD) pathophysiology, we evaluated the ability of the VLA-4 blocking antibody natalizumab to inhibit SCD blood cell adhesion. Natalizumab recognized surface VLA-4 on leucocytes and reticulocytes in whole blood from SCD subjects. SCD reticulocytes were positive for VLA-4, while VLA-4 staining of non-SCD reticulocytes was undetectable. Titrations with natalizumab revealed the presence of saturable levels of VLA-4 on both SCD reticulocytes and leucocytes similar to healthy subject leucocytes. Under physiological flow conditions, the adhesion of SCD whole blood cells and isolated SCD leucocytes to immobilized vascular cell adhesion molecule 1 (VCAM-1) was blocked by natalizumab in a dose-dependent manner, which correlated with cell surface receptor binding. Natalizumab also inhibited >50% of whole blood cell binding to TNF-α activated human umbilical vein endothelial cell monolayers under physiological flow at clinically relevant concentrations (10 to 100 μg/ml). This indicates that VLA-4 is the dominant receptor that drives SCD reticulocyte and mononuclear cell adhesion to VCAM-1 and that the VLA-4 adhesion to VCAM-1 is a significant contributor to SCD blood cell adhesion to endothelium. Thus, VLA-4 blockade may be beneficial in sickle cell disease.
Collapse
Affiliation(s)
- Jennell White
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | - Moira Lancelot
- Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | | | - Sharada Sarnaik
- Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | | | | | - Patrick Hines
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,Division of Critical Care Medicine, Children's Hospital of Michigan, Detroit, MI, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
36
|
Archer N, Galacteros F, Brugnara C. 2015 Clinical trials update in sickle cell anemia. Am J Hematol 2015; 90:934-50. [PMID: 26178236 PMCID: PMC5752136 DOI: 10.1002/ajh.24116] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 07/08/2015] [Indexed: 02/02/2023]
Abstract
Polymerization of HbS and cell sickling are the prime pathophysiological events in sickle cell disease (SCD). Over the last 30 years, a substantial understanding at the molecular level has been acquired on how a single amino acid change in the structure of the beta chain of hemoglobin leads to the explosive growth of the HbS polymer and the associated changes in red cell morphology. O2 tension and intracellular HbS concentration are the primary molecular drivers of this process, and are obvious targets for developing new therapies. However, polymerization and sickling are driving a complex network of associated cellular changes inside and outside of the erythrocyte, which become essential components of the inflammatory vasculopathy and result in a large range of potential acute and chronic organ damages. In these areas, a multitude of new targets for therapeutic developments have emerged, with several ongoing or planned new therapeutic interventions. This review outlines the key points of SCD pathophysiology as they relate to the development of new therapies, both at the pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Natasha Archer
- Pediatric Hematology/Oncology Dana-Farber/Children’s Hospital Blood Disorders and Cancer Center, Boston, Massachusetts
| | - Frédéric Galacteros
- Centre De Référence Des Syndromes Drépanocytaires Majeurs, Hôpital Henri-Mondor, APHP, UPEC, Creteil, France
| | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children’s Hospital, Harvard Medical School Boston, Massachusetts
| |
Collapse
|
37
|
Fourgeaud C, El Nemer W, Michon Pasturel U, Bonhomme S, Brignier A, Lazareth I, Priollet P. [Vascular myeloproliferative neoplasm with normal cell blood count: Exploration and medical management]. ACTA ACUST UNITED AC 2015; 40:350-8. [PMID: 26362408 DOI: 10.1016/j.jmv.2015.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/12/2015] [Indexed: 02/06/2023]
Abstract
UNLABELLED Negative BCR ABL myeloproliferative neoplasm (MPN) such as polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (MFP) are clonal hematological malignancies and may lead to a high risk of venous, arterial or microcirculatory thrombosis. Atypical sites of thrombosis can sometimes reveal the neoplasm disorder. Their diagnoses are a major issue because of the propensity to develop acute myeloid leukemia and/or myelofibrosis. The acquired JAK2V617F variant (Janus kinase 2; 9p24) is a prevalent MPN and also a sensitive marker for PV diagnosis (95% positive mutation), but not specific since found in approximately 50% of patients with ET and MFP. PATIENT AND METHODS We present a diagnostic and a therapeutic approach based on one patient with microcirculatory ischemic manifestations in the toes, and who had strictly normal cell blood counts and was positive for JAK2V617F mutation: thrombotic risk factor evaluation; bone marrow biopsy; red cell adhesion assays. These experimental assays are promising for the development of new therapeutics in MPN; they assess red cell adherence to the vascular endothelium after the phosphorylation of Lu/BCAM subsequent to a positive JAK2V617F mutation. RESULTS Compared with controls, our patient exhibited increased Lu/BCAM receptor phosphorylation and red blood cell adhesion. CONCLUSION This development may lead to improved care for patients with thrombotic manifestations, normal blood cell counts, and a positive JAK2V617F mutation: multidisciplinary management, including regular hematological monitoring, could lead to the introduction of a cytoreductive treatment.
Collapse
Affiliation(s)
- C Fourgeaud
- Service de médecine vasculaire, groupe hospitalier Paris-Saint-Joseph, 185, rue Raymond-Losserand, 75674 Paris cedex 14, France.
| | - W El Nemer
- Institut national de la transfusion sanguine, Inserm U1134, 6, rue Alexandre-Cabanel, 75739 Paris cedex 15, France
| | - U Michon Pasturel
- Service de médecine vasculaire, groupe hospitalier Paris-Saint-Joseph, 185, rue Raymond-Losserand, 75674 Paris cedex 14, France
| | - S Bonhomme
- Service de médecine vasculaire, groupe hospitalier Paris-Saint-Joseph, 185, rue Raymond-Losserand, 75674 Paris cedex 14, France
| | - A Brignier
- Service d'hématologie A, hôpital Necker, 149, rue de Sèvres, 75015 Paris, France
| | - I Lazareth
- Service de médecine vasculaire, groupe hospitalier Paris-Saint-Joseph, 185, rue Raymond-Losserand, 75674 Paris cedex 14, France
| | - P Priollet
- Service de médecine vasculaire, groupe hospitalier Paris-Saint-Joseph, 185, rue Raymond-Losserand, 75674 Paris cedex 14, France
| |
Collapse
|
38
|
Rakotoson MG, Di Liberto G, Audureau E, Habibi A, Fauroux C, Khorgami S, Hulin A, Loric S, Noizat-Pirenne F, Galacteros F, Bartolucci P. Biological parameters predictive of percent dense red blood cell decrease under hydroxyurea. Orphanet J Rare Dis 2015; 10:57. [PMID: 25956133 PMCID: PMC4430928 DOI: 10.1186/s13023-015-0272-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 04/20/2015] [Indexed: 02/02/2023] Open
Abstract
Background Dense red blood cells (DRBCs) are associated with chronic clinical manifestations of sickle-cell–disease (SCD). Hydroxyurea (HU) decreases the percent (%) DRBCs, thereby improving its therapeutic benefits, especially the prevention of SCD clinical complications, but parameters influencing %DRBCs remain unknown. The purpose of this study was to determine predictive biological parameters of %DRBC decline under HU. Methods Factors affecting the %DRBC decrease in SCD patients HU-treated for ≥6 months were analyzed. Biological parameters and the %DRBCs were determined before starting HU and after ≥6 months of HU intake. Bivariate analyses evaluated the impact of each biological parameter variation on %DRBC changes under treatment. Multivariate analyses assessed the correlations between the decreased %DRBCs and biological parameters. Results The %DRBCs declined by 40.95% after ≥6 months on HU. That decrease was associated with less hemolysis, however in several analyses on this group of patients we did not find a statistically significant correlation between decrease in %DRBCs and increase in HbF. Initial %DRBC values were the most relevant parameter to predict %DRBC decline. Conclusion Our results strengthen the known HU efficacy in SCD management statistically independently of the classical HbF biological response. Decreasing %DRBCs is essential to limiting chronic SCD symptoms related to DRBCs and predictive factors might help prevent those manifestations. The results of this study provide new perspectives on indication for HU use, i.e., to prevent SCD-induced organ damage.
Collapse
Affiliation(s)
- Marie Georgine Rakotoson
- Institut Mondor de Recherche Biomédicale, Unité 955, Equipe 2: Transfusion et Maladies du Globule Rouge, Université Paris-Est Créteil, Créteil, France.
| | - Gaetana Di Liberto
- Institut Mondor de Recherche Biomédicale, Unité 955, Equipe 2: Transfusion et Maladies du Globule Rouge, Université Paris-Est Créteil, Créteil, France. .,Etablissement Français du Sang, Île-de-France Mondor, Créteil, France.
| | - Etienne Audureau
- Service de Santé Publique, Hôpital Henri-Mondor, APHP, LIC EA4393, Université Paris-Est Créteil, Créteil, France.
| | - Anoosha Habibi
- Centre de Référence des Syndromes Drépanocytaires Majeurs, Hôpital Henri-Mondor, APHP, Université Paris-Est Créteil, 51, avenue du Mal-de-Lattre-de-Tassigny, 94010, Créteil Cedex, France.
| | - Christine Fauroux
- Centre de Référence des Syndromes Drépanocytaires Majeurs, Hôpital Henri-Mondor, APHP, Université Paris-Est Créteil, 51, avenue du Mal-de-Lattre-de-Tassigny, 94010, Créteil Cedex, France.
| | - Sanam Khorgami
- Institut Mondor de Recherche Biomédicale, Unité 955, Equipe 2: Transfusion et Maladies du Globule Rouge, Université Paris-Est Créteil, Créteil, France. .,Etablissement Français du Sang, Île-de-France Mondor, Créteil, France.
| | - Anne Hulin
- Laboratoire de Pharmacologie, APHP, Hôpital Henri-Mondor, Université Paris Est-Créteil, Créteil, France.
| | - Sylvain Loric
- Laboratoire de Biochimie et Génétique, Hôpital Henri-Mondor, Créteil, France.
| | - France Noizat-Pirenne
- Institut Mondor de Recherche Biomédicale, Unité 955, Equipe 2: Transfusion et Maladies du Globule Rouge, Université Paris-Est Créteil, Créteil, France. .,Etablissement Français du Sang, Île-de-France Mondor, Créteil, France.
| | - Frédéric Galacteros
- Institut Mondor de Recherche Biomédicale, Unité 955, Equipe 2: Transfusion et Maladies du Globule Rouge, Université Paris-Est Créteil, Créteil, France. .,Centre de Référence des Syndromes Drépanocytaires Majeurs, Hôpital Henri-Mondor, APHP, Université Paris-Est Créteil, 51, avenue du Mal-de-Lattre-de-Tassigny, 94010, Créteil Cedex, France.
| | - Pablo Bartolucci
- Institut Mondor de Recherche Biomédicale, Unité 955, Equipe 2: Transfusion et Maladies du Globule Rouge, Université Paris-Est Créteil, Créteil, France. .,Centre de Référence des Syndromes Drépanocytaires Majeurs, Hôpital Henri-Mondor, APHP, Université Paris-Est Créteil, 51, avenue du Mal-de-Lattre-de-Tassigny, 94010, Créteil Cedex, France.
| |
Collapse
|
39
|
El Nemer W, De Grandis M, Brusson M. Abnormal adhesion of red blood cells in polycythemia vera: a prothrombotic effect? Thromb Res 2015; 133 Suppl 2:S107-11. [PMID: 24862129 DOI: 10.1016/s0049-3848(14)50018-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Polycythemia vera (PV) is a myeloproliferative neoplasm (MPN) characterised by the V617F activating mutation in the tyrosine kinase JAK2. PV patients exhibit increased haemoglobin levels and red cell mass because of uncontrolled proliferation of the erythroid lineage. Thrombosis and transformation to acute leukaemia are the major causes of morbidity and mortality in this disease. Increased thrombotic risk in PV patients is multifactorial and complex; it is associated with high levels of haemoglobin, impaired rheology and increased viscosity resulting from erythrocytosis. An additional parameter that might contribute to this risk was recently brought to light by work from our group showing abnormal activation of adhesion proteins in PV RBCs. In this review we provide an overview of these recent findings and discuss how the pro-adhesive features of JAK2V617F-positive red blood cells might initiate and contribute to the circulatory complications described in PV.
Collapse
Affiliation(s)
- Wassim El Nemer
- INSERM U1134, F-75739 Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739 Paris, France; Institut National de la Transfusion Sanguine F-75739 Paris, France Laboratoire d'Excellence GR-Ex France.
| | - Maria De Grandis
- INSERM U1134, F-75739 Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739 Paris, France; Institut National de la Transfusion Sanguine F-75739 Paris, France Laboratoire d'Excellence GR-Ex France
| | - Mégane Brusson
- INSERM U1134, F-75739 Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739 Paris, France; Institut National de la Transfusion Sanguine F-75739 Paris, France Laboratoire d'Excellence GR-Ex France
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW This review discusses the unexpected role of red blood cell (RBC) adhesiveness in the pathophysiology of two red cell diseases, hereditary spherocytosis and polycythemia vera, and two 'nonerythroid' disorders, central retinal vein occlusion and Gaucher disease. These pathologies share common clinical manifestations, that is vaso-occlusion and/or thrombotic events. RECENT FINDINGS Recently, the direct involvement of RBC adhesion to the vascular endothelium has been demonstrated in the occurrence of vaso-occlusive events, in particular in sickle cell disease (SCD). Several erythroid adhesion molecules and their ligands have been identified that belong to different molecular classes (integrins, Ig-like molecules, lipids...) and are activated by a variety of signaling pathways. Among these, the laminin receptor, Lutheran/basal cell adhesion molecule, which is activated by phosphorylation, appears to play a central role in several pathologies. SUMMARY RBC adhesiveness might be involved in complications such as the vaso-occlusive crisis in SCD, thrombosis in polycythemia vera, splenic sequestration in hereditary spherocytosis, occlusions in central retinal vein occlusion and bone infarcts in Gaucher disease. Characterization of this pathological process at the cellular and molecular levels should prove useful to develop new therapeutic approaches based on the blockade of RBC abnormal interactions with vascular endothelium and/or circulating blood cells.
Collapse
|
41
|
Brousse V, Colin Y, Pereira C, Arnaud C, Odièvre MH, Boutemy A, Guitton C, de Montalembert M, Lapouméroulie C, Picot J, Le Van Kim C, El Nemer W. Erythroid Adhesion Molecules in Sickle Cell Anaemia Infants: Insights Into Early Pathophysiology. EBioMedicine 2014; 2:154-7. [PMID: 26137540 PMCID: PMC4485482 DOI: 10.1016/j.ebiom.2014.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 01/25/2023] Open
Abstract
Sickle cell anaemia (SCA) results from a single mutation in the β globin gene. It is seldom symptomatic in the first semester of life. We analysed the expression pattern of 9 adhesion molecules on red blood cells, in a cohort of 54 SCA and 17 non-SCA very young infants of comparable age (median 144 days, 81-196). Haemoglobin F (HbF) level was unsurprisingly elevated in SCA infants (41.2% ± 11.2) and 2-4 fold higher than in non-SCA infants, yet SCA infants presented significantly decreased Hb level and increased reticulocytosis. Cytometry analysis evidenced a specific expression profile on reticulocytes of SCA infants, with notably an increased expression of the adhesion molecules Lu/BCAM, ICAM-4 and LFA-3, both in percentage of positive cells and in surface density. No significant difference was found on mature red cells. Our findings demonstrate the very early onset of reticulocyte membrane modifications in SCA asymptomatic infants and allow an insight into the first pathological changes with the release of stress reticulocytes expressing a distinctive profile of adhesion molecules.
Collapse
Affiliation(s)
- Valentine Brousse
- Reference Centre for Sickle Cell Disease, Pediatric Department, Hôpital Universitaire Necker Enfants Malades, APHP, Paris, France ; Université Paris Descartes, Paris, France ; INSERM, U1134, F-75739 Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739 Paris, France ; Institut National de la Transfusion Sanguine, F-75739 Paris, France ; Laboratoire d'Excellence GR-Ex, France
| | - Yves Colin
- INSERM, U1134, F-75739 Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739 Paris, France ; Institut National de la Transfusion Sanguine, F-75739 Paris, France ; Laboratoire d'Excellence GR-Ex, France
| | - Catia Pereira
- INSERM, U1134, F-75739 Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739 Paris, France ; Institut National de la Transfusion Sanguine, F-75739 Paris, France ; Laboratoire d'Excellence GR-Ex, France
| | - Cecile Arnaud
- Reference Centre for Sickle Cell Disease, Pediatric Department, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Marie Helene Odièvre
- INSERM, U1134, F-75739 Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739 Paris, France ; Institut National de la Transfusion Sanguine, F-75739 Paris, France ; Laboratoire d'Excellence GR-Ex, France ; Reference Centre for Sickle Cell Disease, Pediatric Department, Hôpital Louis Mourier, APHP, Colombes, France
| | - Anne Boutemy
- Pediatric Department, Centre Hospitalier Intercommunal Poissy-Saint-Germain-en-Laye, France
| | - Corinne Guitton
- Reference Centre for Sickle Cell Disease, Pediatric Department, Centre Hospitalier Universitaire du Kremlin Bicêtre, APHP, Le Kremlin Bicêtre, France
| | - Mariane de Montalembert
- Reference Centre for Sickle Cell Disease, Pediatric Department, Hôpital Universitaire Necker Enfants Malades, APHP, Paris, France ; Université Paris Descartes, Paris, France
| | - Claudine Lapouméroulie
- INSERM, U1134, F-75739 Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739 Paris, France ; Institut National de la Transfusion Sanguine, F-75739 Paris, France ; Laboratoire d'Excellence GR-Ex, France
| | - Julien Picot
- INSERM, U1134, F-75739 Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739 Paris, France ; Institut National de la Transfusion Sanguine, F-75739 Paris, France ; Laboratoire d'Excellence GR-Ex, France
| | - Caroline Le Van Kim
- INSERM, U1134, F-75739 Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739 Paris, France ; Institut National de la Transfusion Sanguine, F-75739 Paris, France ; Laboratoire d'Excellence GR-Ex, France
| | - Wassim El Nemer
- INSERM, U1134, F-75739 Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739 Paris, France ; Institut National de la Transfusion Sanguine, F-75739 Paris, France ; Laboratoire d'Excellence GR-Ex, France
| |
Collapse
|
42
|
AKAP-dependent modulation of BCAM/Lu adhesion on normal and sickle cell disease RBCs revealed by force nanoscopy. Biophys J 2014; 106:1258-67. [PMID: 24655501 DOI: 10.1016/j.bpj.2014.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/30/2014] [Accepted: 02/03/2014] [Indexed: 02/02/2023] Open
Abstract
Human normal and sickle red blood cells (RBCs) adhere with high affinity to the alpha5 chain of laminin (LAMA5) via the basal cell adhesion molecule/Lutheran (BCAM/Lu) receptor, which is implicated in vasoocclusive episodes in sickle cell disease and activated through the cyclic adenosine monophosphate (cAMP) signaling pathway. However, the effect of the cAMP pathway on the expression of active BCAM/Lu receptors at the single-molecule level is unknown. We established an in vitro technique, based on atomic force microscopy, which enables detection of single BCAM/Lu proteins on the RBC surface and measures the unbinding force between BCAM/Lu and LAMA5. We showed that the expression of active BCAM/Lu receptors is higher in homozygous sickle RBCs (SS-RBCs) than normal RBCs and that it is critically dependent on the cAMP signaling pathway on both normal and SS-RBCs. Of importance, we illustrated that A-kinase anchoring proteins are crucial for BCAM/Lu receptor activation. Furthermore, we found that SS-RBCs from hydroxyurea-treated patients show a lower expression of active BCAM/Lu receptors, a lower unbinding force to LAMA5, and insignificant stimulation by epinephrine as compared to SS-RBCs from untreated patients. To our knowledge, these findings may lead to novel antiadhesive targets for vasoocclusive episodes in sickle cell disease.
Collapse
|
43
|
Dominical VM, Vital DM, O'Dowd F, Saad STO, Costa FF, Conran N. In vitro microfluidic model for the study of vaso-occlusive processes. Exp Hematol 2014; 43:223-8. [PMID: 25461252 DOI: 10.1016/j.exphem.2014.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 10/17/2014] [Accepted: 10/30/2014] [Indexed: 12/25/2022]
Abstract
Vaso-occlusion, responsible for much of the morbidity of sickle-cell disease, is a complex multicellular process, apparently triggered by leukocyte adhesion to the vessel wall. The microcirculation represents a major site of leukocyte-endothelial interactions and vaso-occlusive processes. We have developed a biochip with subdividing interconnecting microchannels that decrease in size (40 μm to 10 μm in width), for use in conjunction with a precise microfluidic device, to mimic cell flow and adhesion through channels of sizes that approach those of the microcirculation. The biochips were utilized to observe the dynamics of the passage of neutrophils and red blood cells, isolated from healthy and sickle-cell anemia (SCA) individuals, through laminin or endothelial adhesion molecule-coated microchannels at physiologically relevant rates of flow and shear stress. Obstruction of E-selectin/intercellular adhesion molecule 1-coated biochip microchannels by SCA neutrophils was significantly greater than that observed for healthy neutrophils, particularly in the microchannels of 40-15 μm in width. Whereas SCA red blood cells alone did not significantly adhere to, or obstruct, microchannels, mixed suspensions of SCA neutrophils and red blood cells significantly adhered to and obstructed laminin-coated channels. Results from this in vitro microfluidic model support a primary role for leukocytes in the initiation of SCA occlusive processes in the microcirculation. This assay represents an easy-to-use and reproducible in vitro technique for understanding molecular mechanisms and cellular interactions occurring in subdividing microchannels of widths approaching those observed in the microvasculature. The assay could hold potential for testing drugs developed to inhibit occlusive mechanisms such as those observed in SCA and thrombotic diseases.
Collapse
Affiliation(s)
- Venina M Dominical
- INCT de Sangue, Hematology and Hemotherapy Center, School of Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | - Daiana M Vital
- INCT de Sangue, Hematology and Hemotherapy Center, School of Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Sara T O Saad
- INCT de Sangue, Hematology and Hemotherapy Center, School of Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | - Fernando F Costa
- INCT de Sangue, Hematology and Hemotherapy Center, School of Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | - Nicola Conran
- INCT de Sangue, Hematology and Hemotherapy Center, School of Medicine, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
44
|
Chaar V, Laurance S, Lapoumeroulie C, Cochet S, De Grandis M, Colin Y, Elion J, Le Van Kim C, El Nemer W. Hydroxycarbamide decreases sickle reticulocyte adhesion to resting endothelium by inhibiting endothelial lutheran/basal cell adhesion molecule (Lu/BCAM) through phosphodiesterase 4A activation. J Biol Chem 2014; 289:11512-11521. [PMID: 24616094 DOI: 10.1074/jbc.m113.506121] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vaso-occlusive crises are the main acute complication in sickle cell disease. They are initiated by abnormal adhesion of circulating blood cells to vascular endothelium of the microcirculation. Several interactions involving an intricate network of adhesion molecules have been described between sickle red blood cells and the endothelial vascular wall. We have shown previously that young sickle reticulocytes adhere to resting endothelial cells through the interaction of α4β1 integrin with endothelial Lutheran/basal cell adhesion molecule (Lu/BCAM). In the present work, we investigated the functional impact of endothelial exposure to hydroxycarbamide (HC) on this interaction using transformed human bone marrow endothelial cells and primary human pulmonary microvascular endothelial cells. Adhesion of sickle reticulocytes to HC-treated endothelial cells was decreased despite the HC-derived increase of Lu/BCAM expression. This was associated with decreased phosphorylation of Lu/BCAM and up-regulation of the cAMP-specific phosphodiesterase 4A expression. Our study reveals a novel mechanism for HC in endothelial cells where it could modulate the function of membrane proteins through the regulation of phosphodiesterase expression and cAMP-dependent signaling pathways.
Collapse
Affiliation(s)
- Vicky Chaar
- INSERM, U1134, F-75739 Paris, France,; Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739 Paris, France,; Institut National de la Transfusion Sanguine, F-75739 Paris, France,; Laboratoire d'Excellence GR-Ex, F-75238 Paris, France, and
| | - Sandrine Laurance
- INSERM, U1134, F-75739 Paris, France,; Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739 Paris, France
| | - Claudine Lapoumeroulie
- INSERM, U1134, F-75739 Paris, France,; Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739 Paris, France,; Laboratoire d'Excellence GR-Ex, F-75238 Paris, France, and
| | - Sylvie Cochet
- INSERM, U1134, F-75739 Paris, France,; Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739 Paris, France,; Institut National de la Transfusion Sanguine, F-75739 Paris, France,; Laboratoire d'Excellence GR-Ex, F-75238 Paris, France, and
| | - Maria De Grandis
- INSERM, U1134, F-75739 Paris, France,; Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739 Paris, France,; Institut National de la Transfusion Sanguine, F-75739 Paris, France,; Laboratoire d'Excellence GR-Ex, F-75238 Paris, France, and
| | - Yves Colin
- INSERM, U1134, F-75739 Paris, France,; Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739 Paris, France,; Institut National de la Transfusion Sanguine, F-75739 Paris, France,; Laboratoire d'Excellence GR-Ex, F-75238 Paris, France, and
| | - Jacques Elion
- INSERM, U1134, F-75739 Paris, France,; Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739 Paris, France,; Laboratoire d'Excellence GR-Ex, F-75238 Paris, France, and; Assistance Publique-Hôpitaux de Paris, Département de Génétique, Hôpital Robert Debré, Paris F-75019, France
| | - Caroline Le Van Kim
- INSERM, U1134, F-75739 Paris, France,; Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739 Paris, France,; Institut National de la Transfusion Sanguine, F-75739 Paris, France,; Laboratoire d'Excellence GR-Ex, F-75238 Paris, France, and
| | - Wassim El Nemer
- INSERM, U1134, F-75739 Paris, France,; Université Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739 Paris, France,; Institut National de la Transfusion Sanguine, F-75739 Paris, France,; Laboratoire d'Excellence GR-Ex, F-75238 Paris, France, and.
| |
Collapse
|
45
|
Piteau M, Papatheodorou P, Schwan C, Schlosser A, Aktories K, Schmidt G. Lu/BCAM adhesion glycoprotein is a receptor for Escherichia coli Cytotoxic Necrotizing Factor 1 (CNF1). PLoS Pathog 2014; 10:e1003884. [PMID: 24453976 PMCID: PMC3894216 DOI: 10.1371/journal.ppat.1003884] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/27/2013] [Indexed: 01/05/2023] Open
Abstract
The Cytotoxic Necrotizing Factor 1 (CNF1) is a protein toxin which is a major virulence factor of pathogenic Escherichia coli strains. Here, we identified the Lutheran (Lu) adhesion glycoprotein/basal cell adhesion molecule (BCAM) as cellular receptor for CNF1 by co-precipitation of cell surface molecules with tagged toxin. The CNF1-Lu/BCAM interaction was verified by direct protein-protein interaction analysis and competition studies. These studies revealed amino acids 720 to 1014 of CNF1 as the binding site for Lu/BCAM. We suggest two cell interaction sites in CNF1: first the N-terminus, which binds to p37LRP as postulated before. Binding of CNF1 to p37LRP seems to be crucial for the toxin's action. However, it is not sufficient for the binding of CNF1 to the cell surface. A region directly adjacent to the catalytic domain is a high affinity interaction site for Lu/BCAM. We found Lu/BCAM to be essential for the binding of CNF1 to cells. Cells deficient in Lu/BCAM but expressing p37LRP could not bind labeled CNF1. Therefore, we conclude that LRP and Lu/BCAM are both required for toxin action but with different functions.
Collapse
Affiliation(s)
- Marianne Piteau
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Biological Faculty, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Panagiotis Papatheodorou
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Carsten Schwan
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Andreas Schlosser
- Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, Würzburg, Germany
| | - Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- BIOSS (Centre for Biological Signalling Studies), Freiburg, Germany
| | - Gudula Schmidt
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| |
Collapse
|
46
|
Franco M, Le Van Kim C. [Red blood cell, a new player in the pathophysiology of Gaucher disease]. Med Sci (Paris) 2013; 29:1086-8. [PMID: 24356135 DOI: 10.1051/medsci/20132912008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mélanie Franco
- Physiologie du globule rouge normal et pathologique, Laboratoire d'excellence GR-Ex, Inserm U665, Université Paris-Diderot,Institut national de transfusion sanguine, 6, rue Alexandre Cabanel, 75739 Paris cedex 15, France
| | - Caroline Le Van Kim
- Physiologie du globule rouge normal et pathologique, Laboratoire d'excellence GR-Ex, Inserm U665, Université Paris-Diderot,Institut national de transfusion sanguine, 6, rue Alexandre Cabanel, 75739 Paris cedex 15, France
| |
Collapse
|
47
|
Alvarez O, Yovetich NA, Scott JP, Owen W, Miller ST, Schultz W, Lockhart A, Aygun B, Flanagan J, Bonner M, Mueller BU, Ware RE. Pain and other non-neurological adverse events in children with sickle cell anemia and previous stroke who received hydroxyurea and phlebotomy or chronic transfusions and chelation: results from the SWiTCH clinical trial. Am J Hematol 2013; 88:932-8. [PMID: 23861242 DOI: 10.1002/ajh.23547] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 06/28/2013] [Accepted: 07/09/2013] [Indexed: 12/18/2022]
Abstract
To compare the non-neurological events in children with sickle cell anemia (SCA) and previous stroke enrolled in SWiTCH. The NHLBI-sponsored Phase III multicenter randomized clinical trial stroke with transfusions changing to hydroxyurea (SWiTCH) (ClinicalTrials.gov NCT00122980) compared continuation of chronic blood transfusion/iron chelation to switching to hydroxyurea/phlebotomy for secondary stroke prevention and management of iron overload. All randomized children were included in the analysis (intention to treat). The Fisher's Exact test was used to compare the frequency of subjects who experienced at least one SCA-related adverse event (AE) or serious adverse event (SAE) in each arm and to compare event rates. One hundred and thirty three subjects, mean age 13 ± 3.9 years (range 5.2-19.0 years) and mean time of 7 years on chronic transfusion at study entry, were randomized and treated. Numbers of subjects experiencing non-neurological AEs were similar in the two treatment arms, including SCA-related events, SCA pain events, and low rates of acute chest syndrome and infection. However, fewer children continuing transfusion/chelation experienced SAEs (P = 0.012), SCA-related SAEs (P = 0.003), and SCA pain SAEs (P = 0.016) as compared to children on the hydroxyurea/phlebotomy arm. The timing of phlebotomy did not influence SAEs. Older age at baseline predicted having at least 1 SCA pain event. Patients with recurrent neurological events during SWiTCH were not more likely to experience pain. In children with SCA and prior stroke, monthly transfusions and daily iron chelation provided superior protection against acute vaso-occlusive pain SAEs when compared to hydroxyurea and monthly phlebotomy.
Collapse
Affiliation(s)
- Ofelia Alvarez
- Department of Pediatrics; Division of Pediatric Hematology; University of Miami; Miami Florida
| | | | - J. Paul Scott
- Division of Pediatric Hematology; Medical College of Wisconsin; Milwaukee Wisconsin
| | - William Owen
- Division of Pediatric Hematology/Oncology; Children's Cancer and Blood Disorders Center/Children's Hospital of King's Daughters; Norfolk Virginia
| | - Scott T. Miller
- Division of Pediatric Hematology/Oncology; SUNY-Downstate/Kings County Hospital Center; Brooklyn New York
| | - William Schultz
- Division of Pediatric Hematology; Cincinnati Children's Hospital; Cincinnati Ohio
| | | | - Banu Aygun
- Department of Pediatrics; Division of Pediatric Hematology/Oncology and Stem Cell Transplantation; Cohen Children's Medical Center of New York; New Hyde Park New York
| | | | - Melanie Bonner
- Department of Pediatrics; Duke University Medical Center; Durham North Carolina
| | | | - Russell E. Ware
- Division of Pediatric Hematology; Cincinnati Children's Hospital; Cincinnati Ohio
| | | |
Collapse
|
48
|
Sharef SW, Al-Hajri M, Beshlawi I, Al-Shahrabally A, Elshinawy M, Zachariah M, Mevada ST, Bashir W, Rawas A, Taqi A, Al-Lamki Z, Wali Y. Optimizing Hydroxyurea use in children with sickle cell disease: low dose regimen is effective. Eur J Haematol 2013; 90:519-24. [PMID: 23489171 DOI: 10.1111/ejh.12103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Hydroxyurea (HU) is the standard treatment for severely affected children with sickle cell disease (SCD). Starting dose is 15-20 mg/kg/day that can be escalated up to 35 mg/kg/day. Ethnic neutropenia is common in this area of the world that requires judicious usage of myelosuppressive drugs. Aim was to assess the efficacy of a lower initial dose of HU and cautious dose escalation regimen in patients with SCD. METHODS We assessed 161 patients with SCD on HU, at Sultan Qaboos University Hospital (SQUH), Muscat, Oman, retrospectively from 1998 to 2008 and prospectively from 2009 to 2011. Starting dose of HU was 10-12 mg/kg/day, adjusted based on response or side effects. Patients were divided into two groups according to the dose of HU (10-15.9 mg/kg/day and 16-26 mg/kg/day). RESULTS Nineteen patients were excluded for various reasons. Forty-four children were in the low-dose group and 98 were in the high-dose group. There was significant reduction in the annual number of admissions due to vaso-occlusive crisis in both groups (P < 0.001). However, the difference between the two groups was statistically insignificant (P > 0.05). In addition, there was an observed clinical improvement regarding the acute chest syndrome (ACS). Both groups had comparable significant improvements in their laboratory markers [e.g., hemoglobin (Hb), Mean Corpuscular Volume (MCV), and absolute neutrophil count (ANC)]. All 142 patients tolerated the treatment well. Reversible toxicities occurred in both low- and high-dose groups. CONCLUSION In SCD patients, low-dose regimen of HU is a feasible option that ensured safety and yet did not affect efficacy.
Collapse
|
49
|
JAK2V617F activates Lu/BCAM-mediated red cell adhesion in polycythemia vera through an EpoR-independent Rap1/Akt pathway. Blood 2013; 121:658-65. [DOI: 10.1182/blood-2012-07-440487] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Polycythemia vera (PV) is characterized by an increased RBC mass, spontaneous erythroid colony formation, and the JAK2V617F mutation. PV is associated with a high risk of mesenteric and cerebral thrombosis. PV RBC adhesion to endothelial laminin is increased and mediated by phosphorylated erythroid Lu/BCAM. In the present work, we investigated the mechanism responsible for Lu/BCAM phosphorylation in the presence of JAK2V617F using HEL and BaF3 cell lines as well as RBCs from patients with PV. High levels of Rap1-GTP were found in HEL and BaF3 cells expressing JAK2V617F compared with BaF3 cells with wild-type JAK2. This finding was associated with increased Akt activity, Lu/BCAM phosphorylation, and cell adhesion to laminin that were inhibited by the dominant-negative Rap1S17N or by the specific Rap1 inhibitor GGTI-298. Surprisingly, knocking-down EpoR in HEL cells did not alter Akt activity or cell adhesion to laminin. Our findings reveal a novel EpoR-independent Rap1/Akt signaling pathway that is activated by JAK2V617F in circulating PV RBCs and responsible for Lu/BCAM activation. This new characteristic of JAK2V617F could play a critical role in initiating abnormal interactions among circulating and endothelial cells in patients with PV.
Collapse
|
50
|
Abstract
In this issue of Blood, Almeida et al report immediate benefits of hydroxyurea (HU) acute administration in diminishing vaso-occlusive processes in sickle cell disease (SCD) mice.(1)
Collapse
|