1
|
Ji P, Zhang Z, Mingyao E, Liu Q, Qi H, Hou T, Zhao D, Li X. Ginsenosides ameliorates high altitude-induced hypoxia injury in lung and kidney tissues by regulating PHD2/HIF-1α/EPO signaling pathway. Front Pharmacol 2024; 15:1396231. [PMID: 39101138 PMCID: PMC11295002 DOI: 10.3389/fphar.2024.1396231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
Background: The primary constituent of ginseng, known as ginsenosides (GS), has been scientifically demonstrated to possess anti-fatigue, anti-hypoxia, anti-inflammatory, and antioxidant properties. However, the effect and mechanisms of GS on tissue injury induced by high-altitude hypoxia still remain unclear. Aim of the study: This study aims to investigate the protective effect of GS on a high-altitude hypoxia model and explore its mechanism. Materials and methods: Sprague-Dawley rats were placed in a high-altitude simulation chamber for 48 h (equivalent to an altitude of 6,000 m) to establish a high-altitude hypoxia model. We assessed the anti-hypoxic efficacy of GS through blood gas analysis, complete blood count, and hemorheology analysis. We used H&E and hypoxia probe assays to evaluate the protective effect of GS on organ ischemia-induced injury. Further, we used ELISA and qPCR analysis to detect the levels of inflammatory factors and oxidative stress markers. Immunohistochemistry and immunofluorescence staining were performed to determinate protein expression of hypoxia inducible factor 1-alpha (HIF-1α), erythropoietin (EPO), and prolyl hydroxylase 2 (PHD2). Results: In the survival experiment of anoxic mice, 100 mg/kg of GS had the best anti-anoxic effect. GS slowed down the weight loss rate of rats in hypoxic environment. In the fluorescence detection of hypoxia, GS reduced the fluorescence signal value of lung and kidney tissue and alleviated the hypoxia state of tissue. Meanwhile GS improved blood biochemical and hematological parameters. We also observed that GS treatment significantly decreased oxidative stress damage in lung and kidney tissues. Further, the levels of inflammatory factors, IL-1β, IL-6, and TNF-α were reduced by GS. Finally, GS regulated the PHD2/HIF-1α/EPO signaling pathway to improve blood viscosity and tissue hyperemia damage. Conclusion: GS could alleviate high-altitude induced lung and kidney damage by reducing the level of inflammation and oxidative stress, improving blood circulation through the PHD2/HIF-1α/EPO pathway.
Collapse
Affiliation(s)
- Peng Ji
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Northeast Asia Research Institute of Traditional Chinese Medicine, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - E. Mingyao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Northeast Asia Research Institute of Traditional Chinese Medicine, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Qing Liu
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Northeast Asia Research Institute of Traditional Chinese Medicine, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hongyu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Northeast Asia Research Institute of Traditional Chinese Medicine, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Tong Hou
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Northeast Asia Research Institute of Traditional Chinese Medicine, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Northeast Asia Research Institute of Traditional Chinese Medicine, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Northeast Asia Research Institute of Traditional Chinese Medicine, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
2
|
Rodrigues AF, Bader M. The contribution of the AT1 receptor to erythropoiesis. Biochem Pharmacol 2023; 217:115805. [PMID: 37714274 DOI: 10.1016/j.bcp.2023.115805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The renin-angiotensin system (RAS) comprises a broad set of functional peptides and receptors that play a role in cardiovascular homeostasis and contribute to cardiovascular pathologies. Angiotensin II (Ang II) is the most potent peptide hormone produced by the RAS due to its high abundance and its strong and pleiotropic impact on the cardiovascular system. Formation of Ang II takes place in the bloodstream and additionally in tissues in the so-called local RAS. Of the two Ang II receptors (AT1 and AT2) that Ang II binds to, AT1 is the most expressed throughout the mammalian body. AT1 expression is not restricted to cells of the cardiovascular system but in fact AT1 protein is found in nearly all organs, hence, Ang II takes part in several modulatory physiological processes one of which is erythropoiesis. In this review, we present multiple evidence supporting that Ang II modulates physiological and pathological erythropoiesis processes trough the AT1 receptor. Cumulative evidence indicates that Ang II by three distinct mechanisms influences erythropoiesis: 1) stimulation of renal erythropoietin synthesis; 2) direct action on bone marrow precursor cells; and 3) modulation of sympathetic nerve activity to the bone marrow. The text highlights clinical and preclinical evidence focusing on mechanistic studies using rodent models.
Collapse
Affiliation(s)
- André F Rodrigues
- Max Delbrück Center (MDC), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany.
| | - Michael Bader
- Max Delbrück Center (MDC), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany; Charité Universitätsmedizin Berlin, Berlin, Germany; Institute for Biology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
3
|
Chen T, Huang J, Dong H, Xu L, Chen C, Tang Y, Huang W. Efficacy and safety of roxadustat for the treatment of anemia in non-dialysis chronic kidney disease patients: A systematic review and meta-analysis of randomized double-blind controlled clinical trials. Front Nutr 2022; 9:1029432. [PMID: 36466382 PMCID: PMC9710737 DOI: 10.3389/fnut.2022.1029432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/14/2022] [Indexed: 02/02/2024] Open
Abstract
OBJECTIVE To evaluate the efficacy and safety of roxadustat in the treatment of anemia in non-dialysis-dependent chronic kidney disease (NDD-CKD) patients. MATERIALS AND METHODS For this systematic review and meta-analysis, we searched for randomized controlled trials (RCTs) of anemia in NDD-CKD patients to assess the efficacy and safety of roxadustat. The primary efficacy endpoint was the proportion of patients who achieved a hemoglobin (Hb) response. Secondary efficacy endpoints were hepcidin, serum iron, serum ferritin (SF), total iron-binding capacity (TIBC), transferrin saturation (TAST), and low-density lipoprotein (LDL). In addition, adverse events (AEs) were compared. Meta-analyses were performed using Revman 5.4 software. The quality of the evidence was assessed using the Cochrane risk of bias tool. This study was conducted under a pre-established protocol registered with PROSPERO (registration number: CRD42021252331). RESULTS Seven studies enrolled 4,764 patients, of whom 2,730 received roxadustat and 2,034 received placebo. The results of this meta-analysis showed that roxadustat increased Hb levels [weighted mean difference (WMD) = 1.43, 95% CI: 1.17 to 1.68, P < 0.001, I 2 = 95%], and Hb response [relative ratio (RR) = 8.12, 95% CI: 5.80 to 11.37, P < 0.001, I 2 = 61%]. In addition, roxadustat significantly increased transferrin TAST. During the treatment period in patients with anemia, the AEs of roxadustat compared with placebo was not statistically significant. CONCLUSION Roxadustat can improve anemia in NDD-CKD patients by increasing Hb levels and regulating iron metabolism, but does not increase the incidence of AEs. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk/prospero/], identifier [CRD42021252331].
Collapse
Affiliation(s)
- Ting Chen
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Department of Nephrology, Gansu Provincial Hospital, Lanzhou, China
| | - Junyue Huang
- Department of Nephrology, Gansu Provincial Hospital, Lanzhou, China
| | - Hui Dong
- Department of Nephrology, Gansu Provincial Hospital, Lanzhou, China
| | - Lili Xu
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Department of Nephrology, Gansu Provincial Hospital, Lanzhou, China
| | - Caihe Chen
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Department of Nephrology, Gansu Provincial Hospital, Lanzhou, China
| | - Yu Tang
- Clinical Lab, Gansu Provincial Hospital, Lanzhou, China
| | - Wenhui Huang
- Department of Nephrology, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
4
|
Abstract
In liver research, immortalized cell lines have assumed an important role in studying general physiological and pathological processes. However, misidentification and cross-contamination of cell lines is a widespread problem in biomedical sciences resulting in irreproducible results and false conclusions. Although the huge impact of working with wrong cell lines on life science research and publication has been well recognized, there are only limited efforts and strategies to prevent cell misidentification. This commentary provides a catalogue of the most important cell lines used in hepatology research, examples of misidentified cell lines, and short guidelines to be considered when working with continuous lines.
Collapse
|
5
|
Nikinmaa M. Environmental regulation of the function of circulating erythrocytes via changes in age distribution in teleost fish: Possible mechanisms and significance. Mar Genomics 2020; 49:100717. [DOI: 10.1016/j.margen.2019.100717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/19/2019] [Accepted: 09/17/2019] [Indexed: 11/15/2022]
|
6
|
Fecková B, Kimáková P, Ilkovičová L, Szentpéteriová E, Macejová M, Košuth J, Zulli A, Debeljak N, Hudler P, Jašek K, Kašubová I, Kubatka P, Solár P. Methylation of the first exon in the erythropoietin receptor gene does not correlate with its mRNA and protein level in cancer cells. BMC Genet 2019; 20:1. [PMID: 30606107 PMCID: PMC6318971 DOI: 10.1186/s12863-018-0706-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/13/2018] [Indexed: 01/13/2023] Open
Abstract
Background Erythropoietin receptor (EPOR) is a functional membrane-bound cytokine receptor. Erythropoietin (EPO) represents an important hematopoietic factor for production, maturation and differentiation of erythroid progenitors. In non-hematopoietic tissue, EPO/EPOR signalization could also play cytoprotective and anti-apoptotic role. Several studies identified pro-stimulating EPO/EPOR effects in tumor cells; however, numerous studies opposed this fact due to the usage of unspecific EPOR antibodies and thus potential absence or very low levels of EPOR in tumor cells. It seems that this problem is more complex and therefore we have decided to focus on EPOR expression at several levels such as the role of methylation in the regulation of EPOR expression, identification of possible EPOR transcripts and the presence of EPOR protein in selected tumor cells. Methods Methylation status was analysed by bisulfite conversion reaction, PCR and sequencing. The expression of EPOR was monitored by quantitative RT-PCR and western blot analysis. Results In this study we investigated the methylation status of exon 1 of EPOR gene in selected human cancer cell lines. Our results indicated that CpGs methylation in exon 1 do not play a significant role in the regulation of EPOR transcription. However, methylation status of EPOR exon 1 was cell type dependent. We also observed the existence of two EPOR splice variants in human ovarian adenocarcinoma cell line - A2780 and confirmed the expression of EPOR protein in these cells using specific A82 anti-EPOR antibody. Conclusion We outlined the methylation status of all selected cancer cell lines in exon 1 of EPOR gene and these results could benefit future investigations. Moreover, A82 antibody confirmed our previous results demonstrating the presence of functional EPOR in human ovarian adenocarcinoma A2780 cells.
Collapse
Affiliation(s)
- Barbora Fecková
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154, Košice, Slovak Republic
| | - Patrícia Kimáková
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154, Košice, Slovak Republic
| | - Lenka Ilkovičová
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154, Košice, Slovak Republic
| | - Erika Szentpéteriová
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154, Košice, Slovak Republic
| | - Mária Macejová
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154, Košice, Slovak Republic
| | - Ján Košuth
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154, Košice, Slovak Republic
| | - Anthony Zulli
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Nataša Debeljak
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, SI1000, Ljubljana, Slovenia
| | - Petra Hudler
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, SI1000, Ljubljana, Slovenia
| | - Karin Jašek
- Biomedical Centre Martin, Division of Oncology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK03601, Martin, Slovak Republic
| | - Ivana Kašubová
- Biomedical Centre Martin, Division of Oncology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK03601, Martin, Slovak Republic
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK03601, Martin, Slovak Republic.,Department of Experimental Carcinogenesis, Biomedical Centre Martin, Division of Oncology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK03601, Martin, Slovak Republic
| | - Peter Solár
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154, Košice, Slovak Republic. .,Institute of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, SK04011, Košice, Slovak Republic.
| |
Collapse
|
7
|
Reduced calcium influx in the hypoxia-tolerant Spalax: The role of the erythropoietin receptor. Cell Calcium 2018; 74:123-130. [DOI: 10.1016/j.ceca.2018.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/15/2018] [Accepted: 07/15/2018] [Indexed: 12/13/2022]
|
8
|
Agoro R, Montagna A, Goetz R, Aligbe O, Singh G, Coe LM, Mohammadi M, Rivella S, Sitara D. Inhibition of fibroblast growth factor 23 (FGF23) signaling rescues renal anemia. FASEB J 2018; 32:3752-3764. [PMID: 29481308 PMCID: PMC5998980 DOI: 10.1096/fj.201700667r] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/05/2018] [Indexed: 12/21/2022]
Abstract
Severe anemia and iron deficiency are common complications in chronic kidney disease. The cause of renal anemia is multifactorial and includes decreased erythropoietin (Epo) production, iron deficiency, and inflammation, and it is currently treated with injections of synthetic Epo. However, the use of recombinant Epo has several adverse effects. We previously reported that high fibroblast growth factor 23 (FGF23) levels in mice are associated with decreased red blood cell production, whereas genetic inactivation of Fgf23 results in expansion of the erythroid lineage. The present study is the first to show that high FGF23 levels in a mouse model of renal failure contribute to renal anemia, and inhibiting FGF23 signaling stimulates erythropoiesis and abolishes anemia and iron deficiency. Moreover, we show that inhibition of FGF23 signaling significantly decreases erythroid cell apoptosis and influences the commitment of hematopoietic stem cells toward the erythroid linage. Furthermore, we show that blocking FGF23 signaling attenuates inflammation, resulting in increased serum iron and ferritin levels. Our data clearly demonstrate that elevated FGF23 is a causative factor in the development of renal anemia and iron deficiency, and importantly, blocking FGF23 signaling represents a novel approach to stimulate erythropoiesis and possibly improve survival for millions of chronic kidney disease patients worldwide.-Agoro, R., Montagna, A., Goetz, R., Aligbe, O., Singh, G., Coe, L. M., Mohammadi, M., Rivella, S., Sitara, D. Inhibition of fibroblast growth factor 23 (FGF23) signaling rescues renal anemia.
Collapse
Affiliation(s)
- Rafiou Agoro
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| | - Anna Montagna
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| | - Regina Goetz
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| | - Onyedikachi Aligbe
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| | - Gurinder Singh
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| | - Lindsay M. Coe
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
| | - Moosa Mohammadi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| | - Stefano Rivella
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; and
| | - Despina Sitara
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, USA
- Department of Medicine, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
9
|
Hitomi H, Kasahara T, Katagiri N, Hoshina A, Mae SI, Kotaka M, Toyohara T, Rahman A, Nakano D, Niwa A, Saito MK, Nakahata T, Nishiyama A, Osafune K. Human pluripotent stem cell–derived erythropoietin-producing cells ameliorate renal anemia in mice. Sci Transl Med 2017; 9:9/409/eaaj2300. [DOI: 10.1126/scitranslmed.aaj2300] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 04/27/2017] [Indexed: 11/02/2022]
|
10
|
Bamgbola OF. Spectrum of anemia after kidney transplantation: pathophysiology and therapeutic implications. Clin Transplant 2016; 30:1185-1194. [DOI: 10.1111/ctr.12813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Oluwatoyin F. Bamgbola
- Division of Pediatric Nephrology; Downstate Medical Center; State University of New York; Brooklyn NY USA
| |
Collapse
|
11
|
Fecková B, Kimáková P, Ilkovičová L, Szentpéteriová E, Debeljak N, Solárová Z, Sačková V, Šemeláková M, Bhide M, Solár P. Far-western blotting as a solution to the non-specificity of the anti-erythropoietin receptor antibody. Oncol Lett 2016; 12:1575-1580. [PMID: 27446474 DOI: 10.3892/ol.2016.4782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/24/2016] [Indexed: 12/13/2022] Open
Abstract
The erythropoietin receptor (EpoR) is a member of the cytokine receptor family. The interaction between erythropoietin (Epo) and EpoR is important for the production and maturation of erythroid cells, resulting in the stimulation of hematopoiesis. The fact that EpoR was also detected in neoplastic cells has opened the question about the relevance of anemia treatment with recombinant Epo in cancer patients. Numerous studies have reported pro-stimulating and anti-apoptotic effects of Epo in cancer cells, thus demonstrating EpoR functionality in these cells. By contrast, a previous study claims the absence of EpoR in tumor cells. This apparent discrepancy is based, according to certain authors, on the use of non-specific anti-EpoR antibodies. With the aim of bypassing the direct detection of EpoR with an anti-EpoR antibody, the present authors propose a far-western blot methodology, which in addition, confirms the interaction of Epo with EpoR. Applying this technique, the presence of EpoR and its interaction with Epo in human ovarian adenocarcinoma A2780 and normal human umbilical vein endothelial cells was confirmed. Furthermore, modified immunoprecipitation of EpoR followed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry analysis confirmed a 57 kDa protein as a human Epo-interacting protein in both cell lines.
Collapse
Affiliation(s)
- Barbora Fecková
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154 Košice, Slovak Republic
| | - Patrícia Kimáková
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154 Košice, Slovak Republic
| | - Lenka Ilkovičová
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154 Košice, Slovak Republic
| | - Erika Szentpéteriová
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154 Košice, Slovak Republic
| | - Nataša Debeljak
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Zuzana Solárová
- Institute of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, SK-04001 Košice, Slovak Republic
| | - Veronika Sačková
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154 Košice, Slovak Republic
| | - Martina Šemeláková
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154 Košice, Slovak Republic
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine, SK-04181 Košice, Slovak Republic
| | - Peter Solár
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154 Košice, Slovak Republic
| |
Collapse
|
12
|
Eleftheriadis T, Pissas G, Antoniadi G, Liakopoulos V, Stefanidis I. Kynurenine, by activating aryl hydrocarbon receptor, decreases erythropoietin and increases hepcidin production in HepG2 cells: A new mechanism for anemia of inflammation. Exp Hematol 2016; 44:60-7.e1. [PMID: 26325330 DOI: 10.1016/j.exphem.2015.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/15/2015] [Accepted: 08/23/2015] [Indexed: 11/17/2022]
Abstract
It is known that inadequate erythropoietin (EPO) production contributes to the pathogenesis of anemia of inflammation, although the exact molecular mechanism is unknown. Aryl hydrocarbon receptor (AhR) may compete with hypoxia-inducible factor 2α (HIF-2α), the master regulator of EPO production, for binding with HIF-1β. The effect of kynurenine, an endogenous AhR activator that increases in inflammation, on EPO and hepcidin production was evaluated. HepG2 cells were treated with the hypoxia mimetic CoCl2, kynurenine, the AhR inhibitor CH223191, and combinations of these. EPO and hepcidin production was measured with enzyme-linked immunosorbent assay. HIF-2α and CYP1A1 levels, a transcriptional target of AhR, were assessed by Western blotting. CoCl2 increased EPO production and decreased hepcidin and CYP1A1. Kynurenine exerted the opposite effects. Wherever CH223191 was added, the inhibitor overcorrected kynurenine-induced alterations in both the presence and the absence of CoCl2. Also, treatment with CH223191 alone increased EPO and decreased hepcidin, indicating that there is a degree of constitutive AhR activation, possibly by other endogenous AhR activators. In conclusion, kynurenine, by competing with HIF-2α, may contribute to anemia of inflammation by decreasing EPO and increasing hepcidin production. The fact that inactivation of AhR alone induces EPO makes this transcription factor a potential therapeutic target in situations that require increased EPO.
Collapse
Affiliation(s)
| | - Georgios Pissas
- Department of Nephrology, Medical School, University of Thessaly, Larissa, Greece
| | - Georgia Antoniadi
- Department of Nephrology, Medical School, University of Thessaly, Larissa, Greece
| | | | - Ioannis Stefanidis
- Department of Nephrology, Medical School, University of Thessaly, Larissa, Greece
| |
Collapse
|
13
|
Diverse of Erythropoiesis Responding to Hypoxia and Low Environmental Temperature in Vertebrates. BIOMED RESEARCH INTERNATIONAL 2015; 2015:747052. [PMID: 26557695 PMCID: PMC4628722 DOI: 10.1155/2015/747052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/04/2015] [Indexed: 11/17/2022]
Abstract
Erythrocytes are responsible for transporting oxygen to tissue and are essential for the survival of almost all vertebrate animals. Circulating erythrocyte counts are tightly regulated and respond to erythrocyte mass and oxygen tension. Since the discovery of erythropoietin, the erythropoietic responses to environment and tissue oxygen tension have been investigated in mice and human. Moreover, it has recently become increasingly clear that various environmental stresses could induce the erythropoiesis via various modulating systems, while all vertebrates live in various environments and habitually adapt to environmental stress. Therefore, it is considered that investigations of erythropoiesis in vertebrates provide a lead to the various erythropoietic responses to environmental stress. This paper comparatively introduces the present understanding of erythropoiesis in vertebrates. Indeed, there is a wide range of variations in vertebrates' erythropoiesis. This paper also focused on erythropoietic responses to environmental stress, hypoxia, and lowered temperature in vertebrates.
Collapse
|
14
|
Abstract
The kidneys are important endocrine organs. They secrete humoral factors, such as calcitriol, erythropoietin, klotho, and renin into the circulation, and therefore, they are essentially involved in the regulation of a variety of processes ranging from bone formation to erythropoiesis. The endocrine functions are established by cells, such as proximal or distal tubular cells, renocortical interstitial cells, or mural cells of afferent arterioles. These endocrine cells are either fixed in number, such as tubular cells, which individually and gradually upregulate or downregulate hormone production, or they belong to a pool of cells, which display a recruitment behavior, such as erythropoietin- and renin-producing cells. In the latter case, regulation of humoral function occurs via (de)recruitment of active endocrine cells. As a consequence renin- and erythropoietin-producing cells in the kidney show a high degree of plasticity by reversibly switching between distinct cell states. In this review, we will focus on the characteristics of renin- and of erythropoietin-producing cells, especially on their origin and localization, their reversible transformations, and the mediators, which are responsible for transformation. Finally, we will discuss a possible interconversion of renin and erythropoietin expression.
Collapse
Affiliation(s)
- Birgül Kurt
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
15
|
Orlov YP, Lukach VN, Govorova NV, Baytugaeva GA. [Fear of anemia or why don't we afraid of blood transfusion?]. Khirurgiia (Mosk) 2015:88-94. [PMID: 27010036 DOI: 10.17116/hirurgia20151188-94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Yu P Orlov
- Chair of Anesthesiology and Intensive Care of Omsk State Medical Academy, Russian Ministry of Health, Omsk, Russia
| | - V N Lukach
- Chair of Anesthesiology and Intensive Care of Omsk State Medical Academy, Russian Ministry of Health, Omsk, Russia
| | - N V Govorova
- Chair of Anesthesiology and Intensive Care of Omsk State Medical Academy, Russian Ministry of Health, Omsk, Russia
| | - G A Baytugaeva
- Chair of Anesthesiology and Intensive Care of Omsk State Medical Academy, Russian Ministry of Health, Omsk, Russia
| |
Collapse
|
16
|
Kurt B, Gerl K, Karger C, Schwarzensteiner I, Kurtz A. Chronic hypoxia-inducible transcription factor-2 activation stably transforms juxtaglomerular renin cells into fibroblast-like cells in vivo. J Am Soc Nephrol 2014; 26:587-96. [PMID: 25071089 DOI: 10.1681/asn.2013111152] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
On the basis of previous observations that deletion of the von Hippel-Lindau protein (pVHL) in juxtaglomerular (JG) cells of the kidney suppresses renin and induces erythropoietin expression, this study aimed to characterize the events underlying this striking change of hormone expression. We found that renin cell-specific deletion of pVHL in mice leads to a phenotype switch in JG cells, from a cuboid and multiple vesicle-containing form into a flat and elongated form without vesicles. This shift of cell phenotype was accompanied by the disappearance of marker proteins for renin cells (e.g., aldo-keto reductase family 1, member 7 and connexin 40) and by the appearance of markers of fibroblast-like cells (e.g., collagen I, ecto-5'-nucleotidase, and PDGF receptor-β). Furthermore, hypoxia-inducible transcription factor-2α (HIF-2α) protein constitutively accumulated in these transformed cells. Codeletion of pVHL and HIF-2α in JG cells completely prevented the phenotypic changes. Similar to renin expression in normal JG cells, angiotensin II negatively regulated erythropoietin expression in the transformed cells. In summary, chronic activation of HIF-2 in renal JG cells leads to a reprogramming of the cells into fibroblast-like cells resembling native erythropoietin-producing cells located in the tubulointerstitium.
Collapse
Affiliation(s)
- Birguel Kurt
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Katharina Gerl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Christian Karger
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | | | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
17
|
Barbosa C, Romão L. Translation of the human erythropoietin transcript is regulated by an upstream open reading frame in response to hypoxia. RNA (NEW YORK, N.Y.) 2014; 20:594-608. [PMID: 24647661 PMCID: PMC3988562 DOI: 10.1261/rna.040915.113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 01/10/2014] [Indexed: 05/22/2023]
Abstract
Erythropoietin (EPO) is a key mediator hormone for hypoxic induction of erythropoiesis that also plays important nonhematopoietic functions. It has been shown that EPO gene expression regulation occurs at different levels, including transcription and mRNA stabilization. In this report, we show that expression of EPO is also regulated at the translational level by an upstream open reading frame (uORF) of 14 codons. As judged by comparisons of protein and mRNA levels, the uORF acts as a cis-acting element that represses translation of the main EPO ORF in unstressed HEK293, HepG2, and HeLa cells. However, in response to hypoxia, this repression is significantly released, specifically in HeLa cells, through a mechanism that involves processive scanning of ribosomes from the 5' end of the EPO transcript and enhanced ribosome bypass of the uORF. In addition, we demonstrate that in HeLa cells, hypoxia induces the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) concomitantly with a significant increase of EPO protein synthesis. These findings provide a framework for understanding that production of high levels of EPO induced by hypoxia also involves regulation at the translational level.
Collapse
|
18
|
Yang Z, Wang H, Jiang Y, Hartnett ME. VEGFA activates erythropoietin receptor and enhances VEGFR2-mediated pathological angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1230-1239. [PMID: 24630601 DOI: 10.1016/j.ajpath.2013.12.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/27/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
Abstract
Clinical and animal studies implicate erythropoietin (EPO) and EPO receptor (EPOR) signaling in angiogenesis. In the eye, EPO is involved in both physiological and pathological angiogenesis in the retina. We hypothesized that EPOR signaling is important in pathological angiogenesis and tested this hypothesis using a rat model of oxygen-induced retinopathy that is representative of human retinopathy of prematurity. We first determined that EPOR expression and activation were increased and that activated EPOR was localized to retinal vascular endothelial cells (ECs) in retinas at postnatal day 18 (p18), when pathological angiogenesis in the form of intravitreal neovascularization occurred. In human retinal microvascular ECs, EPOR was up-regulated and activated by VEGF. Lentiviral-delivered shRNAs that knocked down Müller cell-expressed VEGF in the retinopathy of prematurity model also reduced phosphorylated EPOR (p-EPOR) and VEGFR2 (p-VEGFR2) in retinal ECs. In human retinal microvascular ECs, VEGFR2-activated EPOR caused an interaction between p-EPOR and p-VEGFR2; knockdown of EPOR by siRNA transfection reduced VEGF-induced EC proliferation in association with reduced p-VEGFR2 and p-STAT3; however, inhibition of VEGFR2 activation by siRNA transfection or semaxanib (SU5416) abolished VEGFA-induced proliferation of ECs and phosphorylation of VEGFR2, EPOR, and STAT3. Our results show that VEGFA-induced p-VEGFR2 activates EPOR and causes an interaction between p-EPOR and p-VEGFR2 to enhance VEGFA-induced EC proliferation by exacerbating STAT3 activation, leading to pathological angiogenesis.
Collapse
Affiliation(s)
- Zhihong Yang
- The John Moran Eye Center, The University of Utah, Salt Lake City, Utah
| | - Haibo Wang
- The John Moran Eye Center, The University of Utah, Salt Lake City, Utah
| | - Yanchao Jiang
- The John Moran Eye Center, The University of Utah, Salt Lake City, Utah
| | | |
Collapse
|
19
|
Zadrazil J, Horak P. Pathophysiology of anemia in chronic kidney diseases: A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2014; 159:197-202. [PMID: 24401900 DOI: 10.5507/bp.2013.093] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/11/2013] [Indexed: 11/23/2022] Open
Abstract
UNLABELLED Backgroud. Anemia is one of the laboratory and clinical findings of chronic kidney diseases (CKD). The presence of anemia in patients with CKD has a wide range of clinically important consequences. Some of the symptoms that were previously attributed to reduced renal function are, in fact, a consequence of anemia. Anemia contributes to increased cardiac output, the development of left ventricular hypertrophy, angina, and congestive heart failure. According to current knowledge, anemia also contributes to the progression of CKD and is one of the factors that contribute to the high morbidity and mortality in patients with chronic renal failure and their reduced survival. METHODS MEDLINE search was performed to collect both original and review articles addressing anemia in CKD, pathophysiology of renal anemia, erythropoiesis, erythropoietin, iron metabolism, inflammation, malnutrition, drugs, renal replacement therapy and anemia management CONCLUSION The present review summarized current knowledge in the field of the pathophysiology of renel anemia. Understanding the pathophysiology of anemia in CKD is crucial for the optimal treatment of anemia according to recent clinical practice guidelines and recommendation, and correct recognition of causes of resistence to treatment of erythropoietin stimulating agents (ESA).
Collapse
Affiliation(s)
- Josef Zadrazil
- Department of Internal Medicine III - Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Pavel Horak
- Department of Internal Medicine III - Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| |
Collapse
|
20
|
A mouse model of adult-onset anaemia due to erythropoietin deficiency. Nat Commun 2013; 4:1950. [PMID: 23727690 DOI: 10.1038/ncomms2950] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 04/30/2013] [Indexed: 12/14/2022] Open
Abstract
Erythropoietin regulates erythropoiesis in a hypoxia-inducible manner. Here we generate inherited super-anaemic mice (ISAM) as a mouse model of adult-onset anaemia caused by erythropoietin deficiency. ISAM express erythropoietin in the liver but lack erythropoietin production in the kidney. Around weaning age, when the major erythropoietin-producing organ switches from the liver to the kidney, ISAM develop anaemia due to erythropoietin deficiency, which is curable by administration of recombinant erythropoietin. In ISAM severe chronic anaemia enhances transgenic green fluorescent protein and Cre expression driven by the complete erythropoietin-gene regulatory regions, which facilitates efficient labelling of renal erythropoietin-producing cells. We show that the majority of cortical and outer medullary fibroblasts have the innate potential to produce erythropoietin, and also reveal a new set of erythropoietin target genes. ISAM are a useful tool for the evaluation of erythropoiesis-stimulating agents and to trace the dynamics of erythropoietin-producing cells.
Collapse
|
21
|
Abstract
Renal anemia has been recognized as a characteristic complication of chronic kidney disease. Although many factors are involved in renal anemia, the predominant cause of renal anemia is a relative deficiency in erythropoietin (EPO) production. To date, exogenous recombinant human (rh)EPO has been widely used as a powerful drug for the treatment of patients with renal anemia. Despite its clinical effectiveness, a potential risk for increased mortality has been suggested in patients who receive rhEPO, in addition to the economic burden of rhEPO administration. The induction of endogenous EPO is another therapeutic approach that might have advantages over rhEPO administration. However, the physiological and pathophysiological regulation of EPO are not fully understood, and this lack of understanding has hindered the development of an endogenous EPO inducer. In this review, we will discuss the current treatment for renal anemia and its drawbacks, provide an overview of EPO regulation in healthy and diseased conditions, and propose future directions for therapeutic trials that more directly target the underlying pathophysiology of renal anemia.
Collapse
Affiliation(s)
- Yuki Sato
- 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | | |
Collapse
|
22
|
Chronic hypoxia leads to a glycolytic phenotype and suppressed HIF-2 signaling in PC12 cells. Biochim Biophys Acta Gen Subj 2013; 1830:3553-69. [DOI: 10.1016/j.bbagen.2013.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 01/22/2013] [Accepted: 02/15/2013] [Indexed: 12/12/2022]
|
23
|
Bussolati B, Lauritano C, Moggio A, Collino F, Mazzone M, Camussi G. Renal CD133(+)/CD73(+) progenitors produce erythropoietin under hypoxia and prolyl hydroxylase inhibition. J Am Soc Nephrol 2013; 24:1234-41. [PMID: 23661806 DOI: 10.1681/asn.2012080772] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The identity of the peritubular population of cells with mesenchymal phenotype thought responsible for producing erythropoietin in humans remains unclear. Here, renal CD133(+)/CD73(+) progenitor cells, isolated from the human renal inner medulla and described as a population of mesenchymal progenitors, released erythropoietin under hypoxic conditions. CD133(-) cells did not synthesize erythropoietin, and CD133(+) progenitor cells stopped producing erythropoietin when they differentiated and acquired an epithelial phenotype. Inhibition of prolyl hydroxylases, using either dimethyloxalylglycine or a small hairpin RNA against prolyl hydroxylase-2, increased both hypoxia-inducible factor-2α (HIF-2α) expression and erythropoietin transcription. Moreover, under hypoxic conditions, inhibition of prolyl hydroxylase significantly increased erythropoietin release by CD133(+) progenitors. Finally, blockade of HIF-2α impaired erythropoietin synthesis by CD133(+) progenitors. Taken together, these results suggest that it is the renal CD133(+) progenitor cells that synthesize and release erythropoietin under hypoxia, via the prolyl hydroxylase-HIF-2α axis, in the human kidney. In addition, this study provides rationale for the therapeutic use of prolyl hydroxylase inhibitors in the setting of acute or chronic renal injury.
Collapse
Affiliation(s)
- Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
During the past century, few proteins have matched erythropoietin (Epo) in capturing the imagination of physiologists, molecular biologists, and, more recently, physicians and patients. Its appeal rests on its commanding role as the premier erythroid cytokine, the elegant mechanism underlying the regulation of its gene, and its remarkable impact as a therapeutic agent, arguably the most successful drug spawned by the revolution in recombinant DNA technology. This concise review will begin with a synopsis of the colorful history of this protein, culminating in its purification and molecular cloning. It then covers in more detail the contemporary understanding of Epo's physiology as well as its structure and interaction with its receptor. A major part of this article focuses on the regulation of the Epo gene and the discovery of HIF, a transcription factor that plays a cardinal role in molecular adaptation to hypoxia. In the concluding section, a synopsis of Epo's role in disorders of red blood cell production will be followed by an assessment of the remarkable impact of Epo therapy in the treatment of anemias, as well as concerns that provide a strong impetus for the development of even safer and more effective treatment.
Collapse
Affiliation(s)
- H Franklin Bunn
- Hematology Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Sekiya S, Sachiko S, Shimizu T, Yamato M, Okano T. Hormone supplying renal cell sheet in vivo produced by tissue engineering technology. Biores Open Access 2013; 2:12-9. [PMID: 23514782 PMCID: PMC3569960 DOI: 10.1089/biores.2012.0296] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Regenerative medicine is a new medical field and is expected to have a profoundly positive effect in curing difficult-to-treat diseases. Cell sheet fabrication is an important tissue engineering technology used in regenerative medicine. This study investigated the creation of a hormone-releasing tissue using cell sheet technology, which could be utilized in future therapy for chronic renal disease. Renal cell sheets were fabricated on a temperature-responsive cell culture surface with primary renal cells from adult porcine kidney. These sheets contained various kinds of renal cells that showed cyst-like formation. An important renal function is the synthesis of 1,25-dihydroxyvitamin D3, and this was confirmed in the cell sheets in vitro. Erythropoietin (EPO) production is another important renal function. This ability was also observed in the renal cell sheets in vitro, and then again after transplantation in a nude rat. In particular, the relative expression of EPO mRNA increased more under cell sheet culture conditions compared with exponential cell growth conditions. Histological analysis of the implanted renal cell sheets showed them to be Dolichos biflorus agglutinin-positive and to have regenerated renal tubular-like morphology. These results indicated that both functional and morphological regenerative renal tissues were fabricated by cell sheet technology. This study introduces a hormone-supplying treatment for renal dysfunctional diseases using engineered renal tissues. Moreover, since our renal cell sheets developed renal tubular-like structures in vivo, it holds promise for fabricating artificially engineered true renal tissue in the future.
Collapse
Affiliation(s)
- Sachiko Sekiya
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , Tokyo, Japan
| | | | | | | | | |
Collapse
|
26
|
Abstract
A classic physiologic response to systemic hypoxia is the increase in red blood cell production. Hypoxia-inducible factors (HIFs) orchestrate this response by inducing cell-type specific gene expression changes that result in increased erythropoietin (EPO) production in kidney and liver, in enhanced iron uptake and utilization and in adjustments of the bone marrow microenvironment that facilitate erythroid progenitor maturation and proliferation. In particular HIF-2 has emerged as the transcription factor that regulates EPO synthesis in the kidney and liver and plays a critical role in the regulation of intestinal iron uptake. Its key function in the hypoxic regulation of erythropoiesis is underscored by genetic studies in human populations that live at high-altitude and by mutational analysis of patients with familial erythrocytosis. This review provides a perspective on recent insights into HIF-controlled erythropoiesis and iron metabolism, and examines cell types that have EPO-producing capability. Furthermore, the review summarizes clinical syndromes associated with mutations in the O(2)-sensing pathway and the genetic changes that occur in high altitude natives. The therapeutic potential of pharmacologic HIF activation for the treatment of anemia is discussed.
Collapse
Affiliation(s)
- Volker H Haase
- Department of Medicine, Vanderbilt School of Medicine, Nashville, TN, USA.
| |
Collapse
|
27
|
HIF-1α is a protective factor in conditional PHD2-deficient mice suffering from severe HIF-2α-induced excessive erythropoiesis. Blood 2012; 121:1436-45. [PMID: 23264599 DOI: 10.1182/blood-2012-08-449181] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erythropoiesis must be tightly balanced to guarantee adequate oxygen delivery to all tissues in the body. This process relies predominantly on the hormone erythropoietin (EPO) and its transcription factor hypoxia inducible factor (HIF). Accumulating evidence suggests that oxygen-sensitive prolyl hydroxylases (PHDs) are important regulators of this entire system. Here, we describe a novel mouse line with conditional PHD2 inactivation (cKO P2) in renal EPO producing cells, neurons, and astrocytes that displayed excessive erythrocytosis because of severe overproduction of EPO, exclusively driven by HIF-2α. In contrast, HIF-1α served as a protective factor, ensuring survival of cKO P2 mice with HCT values up to 86%. Using different genetic approaches, we show that simultaneous inactivation of PHD2 and HIF-1α resulted in a drastic PHD3 reduction with consequent overexpression of HIF-2α-related genes, neurodegeneration, and lethality. Taken together, our results demonstrate for the first time that conditional loss of PHD2 in mice leads to HIF-2α-dependent erythrocytosis, whereas HIF-1α protects these mice, providing a platform for developing new treatments of EPO-related disorders, such as anemia.
Collapse
|
28
|
Sun J, Wang Y, Yang J, Du D, Li Z, Wei J, Yang A. Long-term and stable correction of uremic anemia by intramuscular injection of plasmids containing hypoxia-regulated system of erythropoietin expression. Exp Mol Med 2012; 44:674-83. [PMID: 22990115 PMCID: PMC3509184 DOI: 10.3858/emm.2012.44.11.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Relative deficiency in production of glycoprotein hormone erythropoietin (Epo) is a major cause of renal anemia. This study planned to investigate whether the hypoxia-regulated system of Epo expression, constructed by fusing Epo gene to the chimeric phosphoglycerate kinase (PGK) hypoxia response elements (HRE) in combination with cytomegalovirus immediate-early (CMV IE) basal gene promoter and delivered by plasmid intramuscular injection, might provide a long-term physiologically regulated Epo secretion expression to correct the anemia in adenine-induced uremic rats. Plasmid vectors (pHRE-Epo) were synthesized by fusing human Epo cDNA to the HRE/CMV promoter. Hypoxia-inducible activity of this promoter was evaluated first in vitro and then in vivo in healthy and uremic rats (n = 30 per group). The vectors (pCMV-Epo) in which Epo expression was directed by a constitutive CMV gene promoter served as control. ANOVA and Student's t-test were used to analyze between-group differences. A high-level expression of Epo was induced by hypoxia in vitro and in vivo. Though both pHRE-Epo and pCMV-Epo corrected anemia, the hematocrit of the pCMV-Epo-treated rats exceeded the normal (P < 0.05), but that of the pHRE-Epo-treated rats didn't. Hypoxia-regulated system of Epo gene expression constructed by fusing Epo to the HRE/CMV promoter and delivered by plasmid intramuscular injection may provide a long-term and stable Epo expression and secretion in vivo to correct the anemia in adenine-induced uremic rats.
Collapse
Affiliation(s)
- Jifeng Sun
- Department of Nephrology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Erythropoietin (Epo) is an essential hormone that binds and activates the Epo receptor (EpoR) resident on the surface of erythroid progenitor cells, thereby promoting erythropoiesis. Recombinant human erythropoietin has been used successfully for over 20 years to treat anemia in millions of patients. In addition to erythropoiesis, Epo has also been reported to have other effects, such as tissue protection and promotion of tumor cell growth or survival. This became of significant concern in 2003, when some clinical trials in cancer patients reported increased tumor progression and worse survival outcomes in patients treated with erythropoiesis-stimulating agents (ESAs). One of the potential mechanisms proffered to explain the observed safety issues was that functional EpoR was expressed in tumors and/or endothelial cells, and that ESAs directly stimulated tumor growth and/or antagonized tumor ablative therapies. Since then, numerous groups have performed further research evaluating this potential mechanism with conflicting data and conclusions. Here, we review the biology of endogenous Epo and EpoR expression and function in erythropoiesis, and evaluate the evidence pertaining to the expression of EpoR on normal nonhematopoietic and tumor cells.
Collapse
|
30
|
Recent advances and clinical application of erythropoietin and erythropoiesis-stimulating agents. Exp Cell Res 2012; 318:1068-73. [DOI: 10.1016/j.yexcr.2012.02.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 02/24/2012] [Indexed: 11/18/2022]
|
31
|
Steele M, Narendran A. Mechanisms of defective erythropoiesis and anemia in pediatric acute lymphoblastic leukemia (ALL). Ann Hematol 2012; 91:1513-8. [PMID: 22543829 DOI: 10.1007/s00277-012-1475-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 04/11/2012] [Indexed: 11/30/2022]
Abstract
Anemia frequently accompanies the diagnosis of acute lymphoblastic leukemia (ALL) in children and is considered to be one of the most common clinical complications of the disease. In addition, a low hemoglobin (Hb) level is often responsible for fatigue and other associated symptoms that cause a decline in the quality of life of these children. Traditionally, a number of contributing factors such as overcrowding of the marrow, coexisting infections, and nutritional deficits have been used to explain this phenomenon. However, recent advances in in vivo modeling and real-time ultrastructural analytical techniques have enabled researchers to examine leukemic bone marrow (BM) microenvironment more closely and helped to build mechanistic models of this process. Importantly, data from these studies show that in the majority of cases, the required stem cell populations and the erythropoietic growth mechanisms remain intact in leukemia. In this report, we aim to review the current state of knowledge regarding the cellular and molecular mechanisms implicated in the altered erythropoiesis at the time of diagnosis of leukemia. We propose that further understanding of the mechanisms of anemia in leukemia may help to manage some of its clinical consequences more effectively as well as to yield key insight into the process of leukemogenesis itself.
Collapse
Affiliation(s)
- MacGregor Steele
- Division of Pediatric Hematology, Alberta Children's Hospital, Calgary, Alberta, Canada
| | | |
Collapse
|
32
|
Debeljak N, Sytkowski AJ. Erythropoietin and erythropoiesis stimulating agents. Drug Test Anal 2012; 4:805-12. [PMID: 22508651 DOI: 10.1002/dta.1341] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 01/15/2012] [Accepted: 02/19/2012] [Indexed: 11/08/2022]
Abstract
Erythropoietin (EPO) is the main hormonal regulator of red blood cell production. Recombinant EPO has become the leading drug for treatment of anaemia from a variety of causes; however, it is sometimes misused in sport with the aim of improving performance and endurance. This paper presents an introductory overview of EPO, its receptor, and a variety of recombinant human EPOs/erythropoiesis stimulating agents (ESAs) available on the market (e.g. epoetins and their long acting analogs--darbepoetin alfa and continuous erythropoiesis receptor activator). Recent efforts to improve on EPO's pharmaceutical properties and to develop novel replacement products are also presented. In most cases, these efforts have emphasized a reduction in frequency of injections or complete elimination of intravenous or subcutaneous injections of the hormone (biosimilars, EPO mimetic peptides, fusion proteins, endogenous EPO gene activators and gene doping). Isoelectric focusing (IEF) combined with double immunoblotting can detect the subtle differences in glycosylation/sialylation, enabling differentiation among endogenous and recombinant EPO analogues. This method, using the highly sensitive anti-EPO monoclonal antibody AE7A5, has been accepted internationally as one of the methods for detecting misuse of ESAs in sport.
Collapse
Affiliation(s)
- Nataša Debeljak
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Slovenia
| | | |
Collapse
|
33
|
Shander A, Javidroozi M, Ozawa S, Hare G. What is really dangerous: anaemia or transfusion? Br J Anaesth 2011; 107 Suppl 1:i41-59. [DOI: 10.1093/bja/aer350] [Citation(s) in RCA: 350] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
34
|
Chateauvieux S, Grigorakaki C, Morceau F, Dicato M, Diederich M. Erythropoietin, erythropoiesis and beyond. Biochem Pharmacol 2011; 82:1291-303. [DOI: 10.1016/j.bcp.2011.06.045] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 12/21/2022]
|
35
|
Isolation and characterization of renal erythropoietin-producing cells from genetically produced anemia mice. PLoS One 2011; 6:e25839. [PMID: 22022454 PMCID: PMC3191152 DOI: 10.1371/journal.pone.0025839] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 09/12/2011] [Indexed: 12/19/2022] Open
Abstract
Understanding the nature of renal erythropoietin-producing cells (REPs) remains a central challenge for elucidating the mechanisms involved in hypoxia and/or anemia-induced erythropoietin (Epo) production in adult mammals. Previous studies have shown that REPs are renal peritubular cells, but further details are lacking. Here, we describe an approach to isolate and characterize REPs. We bred mice bearing an Epo gene allele to which green fluorescent protein (GFP) reporter cDNA was knocked-in (EpoGFP) with mice bearing an Epo gene allele lacking the 3′ enhancer (EpoΔ3′E). Mice harboring the mutant EpoGFP/Δ3′E gene exhibited anemia (average Hematocrit 18% at 4 to 6 days after birth), and this perinatal anemia enabled us to identify and purify REPs based on GFP expression from the kidney. Light and confocal microscopy revealed that GFP immunostaining was confined to fibroblastic cells that reside in the peritubular interstitial space, confirming our previous observation in Epo-GFP transgenic reporter assays. Flow cytometry analyses revealed that the GFP fraction constitutes approximately 0.2% of the whole kidney cells and 63% of GFP-positive cells co-express CD73 (a marker for cortical fibroblasts and Epo-expressing cells in the kidney). Quantitative RT-PCR analyses confirmed that Epo expression was increased by approximately 100-fold in the purified population of REPs compared with that of the unsorted cells or CD73-positive fraction. Gene expression analyses showed enrichment of Hif2α and Hif3α mRNA in the purified population of REPs. The genetic approach described here provides a means to isolate a pure population of REPs, allowing the analysis of gene expression of a defined population of cells essential for Epo production in the kidney. This has provided evidence that positive regulation by HIF2α and negative regulation by HIF3α might be necessary for correct renal Epo induction. (282 words)
Collapse
|
36
|
Ladroue C, Hoogewijs D, Gad S, Carcenac R, Storti F, Barrois M, Gimenez-Roqueplo AP, Leporrier M, Casadevall N, Hermine O, Kiladjian JJ, Baruchel A, Fakhoury F, Bressac-de Paillerets B, Feunteun J, Mazure N, Pouysségur J, Wenger RH, Richard S, Gardie B. Distinct deregulation of the hypoxia inducible factor by PHD2 mutants identified in germline DNA of patients with polycythemia. Haematologica 2011; 97:9-14. [PMID: 21933857 DOI: 10.3324/haematol.2011.044644] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Congenital secondary erythrocytoses are due to deregulation of hypoxia inducible factor resulting in overproduction of erythropoietin. The most common germline mutation identified in the hypoxia signaling pathway is the Arginine 200-Tryptophan mutant of the von Hippel-Lindau tumor suppressor gene, resulting in Chuvash polycythemia. This mutant displays a weak deficiency in hypoxia inducible factor α regulation and does not promote tumorigenesis. Other von Hippel-Lindau mutants with more deleterious effects are responsible for von Hippel-Lindau disease, which is characterized by the development of multiple tumors. Recently, a few mutations in gene for the prolyl hydroxylase domain 2 protein (PHD2) have been reported in cases of congenital erythrocytosis not associated with tumor formation with the exception of one patient with a recurrent extra-adrenal paraganglioma. DESIGN AND METHODS Five PHD2 variants, four of which were novel, were identified in patients with erythrocytosis. These PHD2 variants were functionally analyzed and compared with the PHD2 mutant previously identified in a patient with polycythemia and paraganglioma. The capacity of PHD2 to regulate the activity, stability and hydroxylation of hypoxia inducible factor α was assessed using hypoxia-inducible reporter gene, one-hybrid and in vitro hydroxylation assays, respectively. RESULTS This functional comparative study showed that two categories of PHD2 mutants could be distinguished: one category with a weak deficiency in hypoxia inducible factor α regulation and a second one with a deleterious effect; the mutant implicated in tumor occurrence belongs to the second category. CONCLUSIONS As observed with germline von Hippel-Lindau mutations, there are functional differences between the PHD2 mutants with regards to hypoxia inducible factor regulation. PHD2 mutation carriers do, therefore, need careful medical follow-up, since some mutations must be considered as potential candidates for tumor predisposition.
Collapse
Affiliation(s)
- Charline Ladroue
- Villejuif et Faculté de Médecine Paris-Sud, Génétique Oncologique EPHE, INSERM U753, Institut de Cancérologie Gustave Roussy, Le Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|