1
|
Lauzon-Young C, Silva A, Sadikovic B. Epigenomic insights and computational advances in hematologic malignancies. Mol Cytogenet 2025; 18:9. [PMID: 40221777 PMCID: PMC11993968 DOI: 10.1186/s13039-025-00712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
Hematologic malignancies (HMs) encompass a diverse spectrum of cancers originating from the blood, bone marrow, and lymphatic systems, with myeloid malignancies representing a significant and complex subset. This review provides a focused analysis of their classification, prevalence, and incidence, highlighting the persistent challenges posed by their intricate genetic and epigenetic landscapes in clinical diagnostics and therapeutics. The genetic basis of myeloid malignancies, including chromosomal translocations, somatic mutations, and copy number variations, is examined in detail, alongside epigenetic modifications with a specific emphasis on DNA methylation. We explore the dynamic interplay between genetic and epigenetic factors, demonstrating how these mechanisms collectively shape disease progression, therapeutic resistance, and clinical outcomes. Advances in diagnostic modalities, particularly those integrating epigenomic insights, are revolutionizing the precision diagnosis of HMs. Key approaches such as nano-based contrast agents, optical imaging, flow cytometry, circulating tumor DNA analysis, and somatic mutation testing are discussed, with particular attention to the transformative role of machine learning in epigenetic data analysis. DNA methylation episignatures have emerged as a pivotal tool, enabling the development of highly sensitive and specific diagnostic and prognostic assays that are now being adopted in clinical practice. We also review the impact of computational advancements and data integration in refining diagnostic and therapeutic strategies. By combining genomic and epigenomic profiling techniques, these innovations are accelerating biomarker discovery and clinical translation, with applications in precision oncology becoming increasingly evident. Comprehensive genomic datasets, coupled with artificial intelligence, are driving actionable insights into the biology of myeloid malignancies and facilitating the optimization of patient management strategies. Finally, this review emphasizes the translational potential of these advancements, focusing on their tangible benefits for patient care and outcomes. By synthesizing current knowledge and recent innovations, we underscore the critical role of precision medicine and epigenomic research in transforming the diagnosis and treatment of myeloid malignancies, setting the stage for ongoing advancements and broader clinical implementation.
Collapse
Affiliation(s)
- Carolyn Lauzon-Young
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Ananilia Silva
- Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada.
- Pathology and Laboratory Medicine, Western University, London, ON, Canada.
| |
Collapse
|
2
|
Apalowo OE, Komakech JJ, Boateng ID, Nwanna EE. Prioritization of prognostic biomarkers regulated by calorie restriction in colon cancer through integrated biosignature analysis. Clin Exp Med 2025; 25:89. [PMID: 40111533 PMCID: PMC11926006 DOI: 10.1007/s10238-025-01630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Colorectal cancer (CRC) remains a critical global health challenge, ranking second in cancer-related mortality and third in cancer incidence as of 2018, with risk increasing with age. Addressing its rising burden requires early diagnosis, prognostic biomarkers, and effective therapeutic strategies. Emerging evidence suggests that calorie restriction may mitigate aging-related functional decline and influence CRC progression, yet the molecular markers and mechanisms remain poorly understood. In this study, we analyzed the GSE24432 dataset, using multiple computational databases to screen differentially expressed genes (DEGs) associated with calorie restriction in CRC. Functional annotations, including Gene Ontology (GO), KEGG pathway analysis, and gene set enrichment analysis (GSEA), were undertaken to explore potential underlying mechanisms and pathways in CRC pathogenesis. Kaplan Meier and Cox proportional hazards regression analyses were conducted to establish the diagnostic and prognostic significance of the hub genes. The validation test was conducted via multiple databases. Our investigation identified 50 DEGs, using the cutoff criteria, p. adj < 0.05, |log2FC|> 0.3. GO and functional analysis results revealed extensive crosstalk of cellular and molecular components and pathways associated with mRNA and ribosome biogenesis, AMPK signaling, and p53 signaling pathway following calorie restriction. To understand how these DEGs drive biological reactions, we sorted the genes according to gene score > 3 and GO term > 3 and obtained 14 DEGs most relevant to the GO terms. Further analysis with GO CHORD showed that most genes are enriched in ribosome biogenesis and protein synthesis. Gene set enrichment analysis (GSEA) revealed the involvement of the hub genes in several hallmarks, such as tissue invasion and metastasis (p < 0.001), tumor-promoting inflammation (p < 0.001), resisting cell death (p < 0.01), and replicative immortality (p < 0.05). Survival analysis showed that higher expression of 7 hub genes, CDKN2A (p < 0.05), RPL9 (p < 0.02), TUBB6 (p < 0.01), and RPS15A (p < 0.01), and lower expression of CDKN1B (p < 0.01), NPM1 (p < 0.01), and RALA (p < 0.01), correlated to shorter survival of colon cancer. However, cross-reference of these genes revealed that calorie restriction decreased the expressions of CDKN2A and TUBB6 while CDKN1B and NPM1 were increased (p < 0.05). Several validation tests from multiple databases showed that high CDKN2A is associated with shorter overall survival rates, indicating CDKN2A is a therapeutic target and could serve as a more reliable biomarker for CRC prognosis. These findings could potentially facilitate the development of precision-based energy restriction interventions for CRC management, offering promising prospects for targeted therapeutic strategies for CRC patients.
Collapse
Affiliation(s)
- Oladayo E Apalowo
- Department of Biochemistry, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Joel J Komakech
- Department of Biochemistry, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Isaac D Boateng
- Certified Group, 199 W Rhapsody Dr, San Antonio, TX, 78216, USA
| | - Esther E Nwanna
- School of Veterinary Medicine Teaching and Research Center, University of California Davis, Tulare, CA, 93274, USA
| |
Collapse
|
3
|
Christopher MR, Nawas MT, Reagan JL. Molecular measurable residual disease monitoring and transplant indications in NPM1 mutated acute myeloid leukemia. Bone Marrow Transplant 2025; 60:135-143. [PMID: 39537780 DOI: 10.1038/s41409-024-02465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
NPM1 mutated acute myeloid leukemia (AML) comprises roughly 30% of all AML cases and is mainly classified as favorable or intermediate-risk according to the European Leukemia Net stratification. Some patients, however, either have a poor response to initial intensive chemotherapy or ultimately relapse. NPM1 mutations are common, generally stable at early relapse and AML specific, features which make them ideal targets for measurable residual disease (MRD) monitoring. MRD monitoring via molecular analysis during the course of treatment can inform the role of allogeneic stem cell transplantation (HCT) in first remission in patients with NPM1 mutated AML with high-risk co-occurring mutations, particularly FLT3-ITD, and in favorable risk patients who do not achieve defined molecular milestones. In this review, we evaluate the prognostic role of MRD monitoring in NPM1 mutated AML and its use as a predictive biomarker to refine risk stratification and inform decision making regarding treatment. We explore the impact of pre-HCT MRD positivity on post-HCT outcomes in this AML subset, and how HCT-related factors such as conditioning intensity may influence this risk.
Collapse
Affiliation(s)
| | - Mariam T Nawas
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA.
| | - John L Reagan
- Division of Hematology and Oncology, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
4
|
Smith E, Atenafu EG, Bankar A, Chan S, Davidson M, Gupta V, Minden MD, Richard-Carpentier G, Schimmer A, Schuh AC, Sibai H, Yee K, Maze D. Evolution from an antecedent chronic myeloid malignancy does not impact survival outcomes in NPM1-mutated AML. Eur J Haematol 2024; 113:716-726. [PMID: 39113600 DOI: 10.1111/ejh.14283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 10/03/2024]
Abstract
Nucleophosmin-1 (NPM1)-mutated AML is a molecularly defined subtype typically associated with favorable treatment response and prognosis; however, its prognostic significance in AML evolving from an antecedent chronic myeloid malignancy is unknown. This study's primary objective was to determine the impact of mutated NPM1 on the prognosis of AML evolving from an antecedent chronic myeloid malignancy. We conducted a retrospective chart review including patients with NPM1-mutated de novo and sAML. sAML was defined as those with a preceding chronic-phase myeloid malignancy before diagnosis of AML. Of 575 NPM1-mutated patients eligible for inclusion in our study, 51 (8.9%) patients were considered to have sAML. The median time from diagnosis of NPM1-mutated chronic myeloid malignancy to sAML evolution was 3.6 months (0.5-79.3 months). No significant differences in leukemia-free (2-year LKFS 52.0% vs. 51.2%, p = .9922) or overall survival (2-year OS 56.3% vs. 49.4%, p = .4246) were observed between patients with NPM1-mutated de novo versus sAML. Our study suggests that evolution from a preceding myeloid malignancy is not a significant predictor of poor prognosis in the setting of an NPM1 mutation. Our study demonstrated a short time to progression to sAML in most patients, which further supports the consideration of NPM1 as an AML-defining mutation.
Collapse
MESH Headings
- Humans
- Nucleophosmin
- Mutation
- Nuclear Proteins/genetics
- Male
- Female
- Middle Aged
- Aged
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/diagnosis
- Prognosis
- Retrospective Studies
- Adult
- Aged, 80 and over
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Clonal Evolution/genetics
Collapse
Affiliation(s)
- Elliot Smith
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Eshetu G Atenafu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Aniket Bankar
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Steven Chan
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Marta Davidson
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Vikas Gupta
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Mark D Minden
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Guillaume Richard-Carpentier
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Aaron Schimmer
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Andre C Schuh
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Hassan Sibai
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Karen Yee
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Dawn Maze
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Greiner J, Mohamed E, Fletcher DM, Schuler PJ, Schrezenmeier H, Götz M, Guinn BA. Immunotherapeutic Potential of Mutated NPM1 for the Treatment of Acute Myeloid Leukemia. Cancers (Basel) 2024; 16:3443. [PMID: 39456538 PMCID: PMC11505958 DOI: 10.3390/cancers16203443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/15/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is a malignant disease of the blood and bone marrow that is characterized by uncontrolled clonal proliferation of abnormal myeloid progenitor cells. Nucleophosmin 1 (NPM1) gene mutations are the most common genetic abnormality in AML, detectable in blast cells from about one-third of adults with AML. AML NPM1mut is recognized as a separate entity in the World Health Organization classification of AML. Clinical and survival data suggest that patients with this form of AML often have a more favorable prognosis, which may be due to the immunogenicity created by the mutations in the NPM1 protein. Consequently, AML with NPM1mut can be considered an immunogenic subtype of AML. However, the underlying mechanisms of this immunogenicity and associated favorable survival outcomes need to be further investigated. Immune checkpoint molecules, such as the programmed cell death-1 (PD-1) protein and its ligand, PD-L1, play important roles in leukemogenesis through their maintenance of an immunosuppressive tumor microenvironment. Preclinical trials have shown that the use of PD-1/PD-L1 checkpoint inhibitors in solid tumors and lymphoma work best in novel therapy combinations. Patients with AML NPM1mut may be better suited to immunogenic strategies that are based on the inhibition of the PD-1 immune checkpoint pathway than patients without this mutation, suggesting the genetic landscape of patients may also inform best practice for the use of PD-1 inhibitors.
Collapse
Affiliation(s)
- Jochen Greiner
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany;
- Department of Internal Medicine, Diakonie Hospital Stuttgart, 70176 Stuttgart, Germany
| | - Eithar Mohamed
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; (E.M.); (D.M.F.)
| | - Daniel M. Fletcher
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; (E.M.); (D.M.F.)
| | - Patrick J. Schuler
- Department of Otorhinolaryngology, University Hospital Ulm, 89075 Ulm, Germany;
- Department of Oto-Rhino-Laryngology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm, 89073 Ulm, Germany;
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, 89081 Ulm, Germany
| | - Marlies Götz
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany;
- Department of Internal Medicine, Diakonie Hospital Stuttgart, 70176 Stuttgart, Germany
| | - Barbara-ann Guinn
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; (E.M.); (D.M.F.)
| |
Collapse
|
6
|
Wu Q, Zhang Y, Yuan B, Huang Y, Jiang L, Liu F, Yan P, Cheng J, Long Z, Jiang X. Influence of genetic co-mutation on chemotherapeutic outcome in NPM1-mutated and FLT3-ITD wild-type AML patients. Cancer Med 2024; 13:e70102. [PMID: 39126219 PMCID: PMC11316012 DOI: 10.1002/cam4.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Nucleophosmin 1 (NPM1) gene-mutated acute myeloid leukemia (NPM1mut AML) is classified as a subtype with a favorable prognosis. However, some patients fail to achieve a complete remission or relapse after intensified chemotherapy. Genetic abnormalities in concomitant mutations contribute to heterogeneous prognosis of NPM1mut AML patients. METHODS In this study, 91 NPM1-mutated and FLT3-ITD wild-type (NPM1mut/FLT3-ITDwt) AML patients with intermediate-risk karyotype were enrolled to analyze the impact of common genetic co-mutations on chemotherapeutic outcome. RESULTS Our data revealed that TET1/2 (52/91, 57.1%) was the most prevalent co-mutation in NPM1mut AML patients, followed by IDH1/2 (36/91, 39.6%), DNMT3A (35/91, 38.5%), myelodysplastic syndrome related genes (MDS-related genes) (ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1 and ZRSR2 genes) (35/91, 38.5%), FLT3-TKD (27/91, 29.7%) and GATA2 (13/91, 14.3%) mutations. Patients with TET1/2mut exhibited significantly worse relapse-free survival (RFS) (median, 28.7 vs. not reached (NR) months; p = 0.0382) compared to patients with TET1/2wt, while no significant difference was observed in overall survival (OS) (median, NR vs. NR; p = 0.3035). GATA2mut subtype was associated with inferior OS (median, 28 vs. NR months; p < 0.0010) and RFS (median, 24 vs. NR months; p = 0.0224) compared to GATA2wt. By multivariate analysis, GATA2mut and MDS-related genesmut were independently associated with worse survival. CONCLUSION Mutations in TET1/2, GATA2 and MDS-related genes were found to significantly influence the chemotherapeutic outcome of patients with NPM1mut AML. The findings of our study have significant clinical implications for identifying patients who have an adverse response to frontline chemotherapy and provide a novel reference for further prognostic stratification of NPM1mut/FLT3-ITDwt AML patients.
Collapse
Affiliation(s)
- Quan Wu
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yujiao Zhang
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Baoyi Yuan
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yun Huang
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Ling Jiang
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Fang Liu
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Ping Yan
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Jiaying Cheng
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhiquan Long
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xuejie Jiang
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
7
|
Park HS. What is new in acute myeloid leukemia classification? Blood Res 2024; 59:15. [PMID: 38616211 PMCID: PMC11016528 DOI: 10.1007/s44313-024-00016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/05/2024] [Indexed: 04/16/2024] Open
Abstract
Recently, the International Consensus Classification (ICC) and the 5th edition of the World Health Organization classification (WHO2022) introduced diagnostically similar yet distinct approaches, which has resulted in practical confusion. This review compares these classification systems for acute myeloid leukemia (AML), building up on the revised 4th edition of WHO (WHO2016). Both classifications retain recurrent genetic abnormalities as a primary consideration. However, they differ in terms of blast threshold. The ICC mandates a minimum of 10% blasts in the bone marrow or peripheral blood, whereas the WHO2022 does not specify a blast cut-off. AML with BCR::ABL1 requires > 20% blast count in both classifications. In WHO2022, AML with CEBPA mutation requires > 20% blasts. TP53 mutation, a new entity is exclusive to ICC, diagnosed with > 20% blasts and variant allele frequency > 10%. AML with myelodysplasia-related changes is defined by cytogenetic or gene mutation-based criteria, not morphological dysplasia. Eight genes were common to both groups: ASXL1, BCOR, EZH2, SF3B1, SRSF2, STAG2, U2AF1, and ZRSR2. An additional gene, RUNX1, was included in the ICC classification. AML cases defined by differentiation (WHO2022) and AML not otherwise specified (ICC) are categorized as lacking specific defining genetic abnormalities, WHO2022 labels this as a myeloid neoplasm post cytotoxic therapy (MN-pCT), described as an appendix after specific diagnosis. Similarly, in ICC, it can be described as "therapy-related", without a separate AML category.
Collapse
Affiliation(s)
- Hee Sue Park
- Department of Laboratory Medicine, Chungbuk National University Hospital, 776, 1 Sunhwan-ro, Seowon-gu, Cheongju, Chungcheongbuk-do, 28644, Republic of Korea.
- Department of Laboratory Medicine, Chungbuk National University College of Medicine, 776, 1 Sunhwan-ro, Seowon-gu, Cheongju, Chungcheongbuk-do, 28644, Republic of Korea.
| |
Collapse
|
8
|
Gao Y, Vakoc CR. Therapeutic index of targeting select chromatin complexes in human cancer patients. Curr Opin Genet Dev 2024; 85:102162. [PMID: 38401489 PMCID: PMC11072572 DOI: 10.1016/j.gde.2024.102162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 02/26/2024]
Abstract
Aberrant chromatin regulation can promote the initiation and progression of human cancer. An improved understanding of such mechanisms has resulted in the identification of cancers with an enhanced dependency on specific chromatin regulatory proteins relative to nonmalignant cell types. Hence, targeting of such complexes with small molecules has significant therapeutic potential in oncology. In recent years, several drugs have been developed and evaluated in human cancer patients, which can influence tumor biology by reprogramming of chromatin structure. In this review, we summarize several of the known mechanisms that endow cancer cells with a powerful dependency on chromatin regulation that exceeds the requirements for normal tissue homeostasis. We also summarize the remarkable small-molecule inhibitors that exploit chromatin regulator dependencies with a clear therapeutic benefit in human cancer patients.
Collapse
Affiliation(s)
- Yuan Gao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. https://twitter.com/@yuangao_yg
| | | |
Collapse
|
9
|
Sendker S, Awada A, Domagalla S, Sendker M, Orhan E, Hoffmeister LM, Antoniou E, Niktoreh N, Reinhardt D, von Neuhoff N, Schneider M. RUNX1 mutation has no prognostic significance in paediatric AML: a retrospective study of the AML-BFM study group. Leukemia 2023; 37:1435-1443. [PMID: 37188777 PMCID: PMC10317839 DOI: 10.1038/s41375-023-01919-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
In acute myeloid leukaemia (AML) RUNX1 mutation is characterised by certain clinicopathological features with poor prognosis and adverse risk by the European LeukemiaNet recommendation. Though initially considered as provisional category, the recent World Health Organisation (WHO) classification of 2022 removed RUNX1-mutated AML from the unique entity. However, the significance of RUNX1 mutation in paediatric AML remains unclear. We retrospectively analysed a German cohort of 488 paediatric patients with de novo AML, enroled in the AMLR12 or AMLR17 registry of the AML-BFM Study Group (Essen, Germany). A total of 23 paediatric AML patients (4.7%) harboured RUNX1 mutations, 18 of which (78%) had RUNX1 mutation at initial diagnosis. RUNX1 mutations were associated with older age, male gender, number of coexisting alterations and presence of FLT3-ITD but mutually exclusive of KRAS, KIT and NPM1 mutation. RUNX1 mutations did not prognostically impact overall or event-free survival. Response rates did not differ between patients with and without RUNX1 mutations. This comprehensive study, comprising the largest analysis of RUNX1 mutation in a paediatric cohort to date, reveals distinct but not unique clinicopathologic features, with no prognostic significance of RUNX1-mutated paediatric AML. These results broaden the perspective on the relevance of RUNX1 alterations in leukaemogenesis in AML.
Collapse
Affiliation(s)
- Stephanie Sendker
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Amani Awada
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Sophia Domagalla
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Michael Sendker
- University of Applied Sciences for Economics and Management (FOM), 20357, Hamburg, Germany
| | - Eser Orhan
- Centre for Research Acceleration in Paediatrics GmbH, 30175, Hannover, Germany
| | - Lina Marie Hoffmeister
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Evangelia Antoniou
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Naghmeh Niktoreh
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Dirk Reinhardt
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Nils von Neuhoff
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Markus Schneider
- Department of Paediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany.
| |
Collapse
|
10
|
De Cicco M, Lagreca I, Basso S, Barozzi P, Muscianisi S, Bianco A, Riva G, Di Vincenzo S, Pulvirenti C, Sapuppo D, Siciliano M, Rosti V, Candoni A, Zecca M, Forghieri F, Luppi M, Comoli P. Preclinical Validation of an Advanced Therapy Medicinal Product Based on Cytotoxic T Lymphocytes Specific for Mutated Nucleophosmin (NPM1 mut) for the Treatment of NPM1 mut-Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:2731. [PMID: 37345068 DOI: 10.3390/cancers15102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Acute myeloid leukemia (AML) with nucleophosmin (NPM1) genetic mutations is the most common subtype in adult patients. Refractory or relapsed disease in unfit patients or after allogeneic hematopoietic stem cell transplantation (allo-HSCT) has a poor prognosis. NPM1-mutated protein, stably expressed on tumor cells but not on normal tissues, may serve as an ideal target for NPM1-mutated AML immunotherapy. The study aim was to investigate the feasibility of producing mutated-NPM1-specific cytotoxic T cells (CTLs) suitable for somatic cell therapy to prevent or treat hematologic relapse in patients with NPM1-mutated AML. T cells were expanded or primed from patient or donor peripheral blood mononuclear cells by NPM1-mutated protein-derived peptides, and tested for leukemia antigen-targeted cytotoxic activity, cytokine production and hematopoietic precursor inhibitory effect. We found that mutated-NPM1-specific CTLs, displaying specific cytokine production and high-level cytotoxicity against patients' leukemia blasts, and limited inhibitory activity in clonogenic assays, could be obtained from both patients and donors. The polyfunctional mutated-NPM1-specific CTLs included both CD8+ and CD4+ T cells endowed with strong lytic capacity. Our results suggest that mutated-NPM1-targeted CTLs may be a useful therapeutic option to control low-tumor burden relapse following conventional chemotherapy in older NPM1-mutated AML patients or eradicate persistent MRD after HSCT.
Collapse
Affiliation(s)
- Marica De Cicco
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Ivana Lagreca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Sabrina Basso
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Patrizia Barozzi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Stella Muscianisi
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- SC Pediatric Hematology/Oncology, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Alba Bianco
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- SC Pediatric Hematology/Oncology, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giovanni Riva
- Department of Laboratory Medicine and Pathology, Unità Sanitaria Locale, 41126 Modena, Italy
| | - Sara Di Vincenzo
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Chiara Pulvirenti
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- SC Pediatric Hematology/Oncology, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Davide Sapuppo
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- SC Pediatric Hematology/Oncology, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Mariangela Siciliano
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, General Medicine 2, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Anna Candoni
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Marco Zecca
- SC Pediatric Hematology/Oncology, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fabio Forghieri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| | - Patrizia Comoli
- SSD Cell Factory e Center for Advanced Therapies, Department of Woman and Child Health, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, 41124 Modena, Italy
| |
Collapse
|
11
|
Patel SS. NPM1-Mutated Acute Myeloid Leukemia: Recent Developments and Open Questions. Pathobiology 2023; 91:18-29. [PMID: 36944324 PMCID: PMC10857804 DOI: 10.1159/000530253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Somatic mutations in the nucleophosmin (NPM1) gene occur in approximately 30% of de novo acute myeloid leukemias (AMLs) and are relatively enriched in normal karyotype AMLs. Earlier World Health Organization (WHO) classification schema recognized NPM1-mutated AMLs as a unique subtype of AML, while the latest WHO and International Consensus Classification (ICC) now consider NPM1 mutations as AML-defining, albeit at different blast count thresholds. NPM1 mutational load correlates closely with disease status, particularly in the post-therapy setting, and therefore high sensitivity-based methods for detection of the mutant allele have proven useful for minimal/measurable residual disease (MRD) monitoring. MRD status has been conventionally measured by either multiparameter flow cytometry (MFC) and/or molecular diagnostic techniques, although recent data suggest that MFC data may be potentially more challenging to interpret in this AML subtype. Of note, MRD status does not predict patient outcome in all cases, and therefore a deeper understanding of the biological significance of MRD may be required. Recent studies have confirmed that NPM1-mutated cells rely on overexpression of HOX/MEIS1, which is dependent on the presence of the aberrant cytoplasmic localization of mutant NPM1 protein (NPM1c); this biology may explain the promising response to novel agents, including menin inhibitors and second-generation XPO1 inhibitors. In this review, these and other recent developments around NPM1-mutated AML, in addition to open questions warranting further investigation, will be discussed.
Collapse
Affiliation(s)
- Sanjay S Patel
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine/NewYork-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
12
|
Eckardt JN, Röllig C, Metzeler K, Kramer M, Stasik S, Georgi JA, Heisig P, Spiekermann K, Krug U, Braess J, Görlich D, Sauerland CM, Woermann B, Herold T, Berdel WE, Hiddemann W, Kroschinsky F, Schetelig J, Platzbecker U, Müller-Tidow C, Sauer T, Serve H, Baldus C, Schäfer-Eckart K, Kaufmann M, Krause S, Hänel M, Schliemann C, Hanoun M, Thiede C, Bornhäuser M, Wendt K, Middeke JM. Prediction of complete remission and survival in acute myeloid leukemia using supervised machine learning. Haematologica 2023; 108:690-704. [PMID: 35708137 PMCID: PMC9973482 DOI: 10.3324/haematol.2021.280027] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 11/09/2022] Open
Abstract
Achievement of complete remission signifies a crucial milestone in the therapy of acute myeloid leukemia (AML) while refractory disease is associated with dismal outcomes. Hence, accurately identifying patients at risk is essential to tailor treatment concepts individually to disease biology. We used nine machine learning (ML) models to predict complete remission and 2-year overall survival in a large multicenter cohort of 1,383 AML patients who received intensive induction therapy. Clinical, laboratory, cytogenetic and molecular genetic data were incorporated and our results were validated on an external multicenter cohort. Our ML models autonomously selected predictive features including established markers of favorable or adverse risk as well as identifying markers of so-far controversial relevance. De novo AML, extramedullary AML, double-mutated CEBPA, mutations of CEBPA-bZIP, NPM1, FLT3-ITD, ASXL1, RUNX1, SF3B1, IKZF1, TP53, and U2AF1, t(8;21), inv(16)/t(16;16), del(5)/del(5q), del(17)/del(17p), normal or complex karyotypes, age and hemoglobin concentration at initial diagnosis were statistically significant markers predictive of complete remission, while t(8;21), del(5)/del(5q), inv(16)/t(16;16), del(17)/del(17p), double-mutated CEBPA, CEBPA-bZIP, NPM1, FLT3-ITD, DNMT3A, SF3B1, U2AF1, and TP53 mutations, age, white blood cell count, peripheral blast count, serum lactate dehydrogenase level and hemoglobin concentration at initial diagnosis as well as extramedullary manifestations were predictive for 2-year overall survival. For prediction of complete remission and 2-year overall survival areas under the receiver operating characteristic curves ranged between 0.77-0.86 and between 0.63-0.74, respectively in our test set, and between 0.71-0.80 and 0.65-0.75 in the external validation cohort. We demonstrated the feasibility of ML for risk stratification in AML as a model disease for hematologic neoplasms, using a scalable and reusable ML framework. Our study illustrates the clinical applicability of ML as a decision support system in hematology.
Collapse
Affiliation(s)
- Jan-Niklas Eckardt
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden.
| | - Christoph Röllig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden
| | - Klaus Metzeler
- Medical Clinic and Policlinic I Hematology and Cell Therapy. University Hospital, Leipzig
| | - Michael Kramer
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden
| | - Sebastian Stasik
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden
| | | | - Peter Heisig
- Institute of Software and Multimedia Technology, Technical University Dresden, Dresden
| | - Karsten Spiekermann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich
| | - Utz Krug
- Medical Clinic III, Hospital Leverkusen, Leverkusen
| | - Jan Braess
- Hospital Barmherzige Brueder Regensburg, Regensburg
| | - Dennis Görlich
- Institute for Biometrics and Clinical Research, University Muenster, Muenster
| | | | - Bernhard Woermann
- Department of Hematology, Oncology and Tumor Immunology, Charité, Berlin
| | - Tobias Herold
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich
| | - Wolfgang E Berdel
- Department of Internal Medicine A, University Hospital Muenster, Muenster
| | - Wolfgang Hiddemann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich
| | - Frank Kroschinsky
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden
| | - Johannes Schetelig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden
| | - Uwe Platzbecker
- Medical Clinic and Policlinic I Hematology and Cell Therapy. University Hospital, Leipzig
| | - Carsten Müller-Tidow
- Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany; German Consortium for Translational Cancer Research DKFZ, Heidelberg
| | - Tim Sauer
- Department of Medicine V, University Hospital Heidelberg, Heidelberg
| | - Hubert Serve
- Department of Medicine 2, Hematology and Oncology, Goethe University Frankfurt, Frankfurt
| | - Claudia Baldus
- Department of Hematology and Oncology, University Hospital Schleswig Holstein, Kiel
| | - Kerstin Schäfer-Eckart
- Department of Internal Medicine 5, Paracelsus Medical Private University Nuremberg, Nuremberg
| | - Martin Kaufmann
- Department of Hematology, Oncology and Palliative Care, Robert-Bosch Hospital, Stuttgart
| | - Stefan Krause
- Department of Internal Medicine 5, University Hospital Erlangen, Erlangen
| | - Mathias Hänel
- Department of Internal Medicine 3, Klinikum Chemnitz GmbH, Chemnitz, Germany; Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen
| | | | - Maher Hanoun
- Department of Internal Medicine 3, Klinikum Chemnitz GmbH, Chemnitz, Germany; Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen
| | - Christian Thiede
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany; German Consortium for Translational Cancer Research DKFZ, Heidelberg
| | - Martin Bornhäuser
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany; German Consortium for Translational Cancer Research DKFZ, Heidelberg, Germany; National Center for Tumor Diseases (NCT), Dresden
| | - Karsten Wendt
- Medical Clinic and Policlinic I Hematology and Cell Therapy. University Hospital, Leipzig
| | - Jan Moritz Middeke
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden
| |
Collapse
|
13
|
Zhang YW, Su L, Tan YH, Lin H, Liu XL, Liu QJ, Sun JN, Zhang M, Du YZ, Song F, Han W, Gao SJ. Measurable residual disease detected by flow cytometry independently predicts prognoses of NPM1-mutated acute myeloid leukemia. Ann Hematol 2023; 102:337-347. [PMID: 36378304 DOI: 10.1007/s00277-022-05033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Acute myeloid leukemia (AML) with NPM1 mutation is a distinct genetic entity with favorable outcomes. Nevertheless, emerging evidence suggests that NPM1-mutated AML is still a highly heterogeneous disorder. In this study, 266 patients with AML with NPM1 mutations were retrospectively analyzed to evaluate the associations between variant allele frequency (VAF) of NPM1 mutations, co-mutated genes, measurable residual disease (MRD), and patient outcomes. Multiparameter flow cytometry (MFC) and real-time quantitative polymerase chain reaction (RT-PCR) were used for monitoring MRD. Ultimately, 106 patients were included in the long-term follow-up period. Patients with high NPM1 VAF (≥ 42.43%) had poorer 2-year relapse-free survival (RFS) (55.7% vs. 70.2%, P = 0.017) and overall survival (OS) (63.7% vs. 82.0%, P = 0.027) than those with low VAF. DNMT3A mutations negatively influenced the outcomes of patients with NPM1 mutations. Patients with high DNMT3A VAF or NPM1/DNMT3A/FLT3-ITD triple mutations had shorter RFS and significantly lower OS than that in controls. After two cycles of chemotherapy, patients with positive MFC MRD results had lower RFS (MRD+ vs. MRD-:44.9% vs. 67.6%, P = 0.007) and OS (61.5% vs. 76.6%, P = 0.011) than those without positive MFC MRD results. In multivariate analysis, high NPM1 VAF (hazard ratio [HR] = 2.045; P = 0.034) and positive MRD after two cycles of chemotherapy (HR = 3.289; P = 0.003) were independent risk factors for RFS; MRD positivity after two cycles of chemotherapy (HR = 3.293; P = 0.008) independently predicted the OS of the patients. These results indicate that VAF of both NPM1 gene itself or certain co-occurring gene pre-treatment and MRD post-treatment are potential markers for restratifying the prognoses of patients AML having NPM1 mutations.
Collapse
Affiliation(s)
- Yun-Wei Zhang
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Long Su
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Ye-Hui Tan
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Hai Lin
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Xiao-Liang Liu
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Qiu-Ju Liu
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Jing-Nan Sun
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Ming Zhang
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Ya-Zhe Du
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Fei Song
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Wei Han
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Su-Jun Gao
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
14
|
Wu HL, Yang ZR, Su YD, Ma R, Du XM, Gao Y, Li Y. Loss of NPM2 expression is a potential immunohistochemical marker for malignant peritoneal mesothelioma: a single-center study of 92 cases. World J Surg Oncol 2022; 20:350. [PMID: 36280841 PMCID: PMC9590226 DOI: 10.1186/s12957-022-02811-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background Malignant peritoneal mesothelioma (MPM) is a rare malignant tumor with a high mortality rate and extremely poor prognosis. In-depth pathological analysis is essential to assess tumor biological behaviors and explore potential therapeutic targets of MPM. Nucleoplasmin 2 (NPM2) is a molecular chaperone that binds histones and may play a key role in the development and progression of tumors. This study aimed to analyze the correlation between the expression level of NPM2 and the main clinicopathological characteristics and prognosis of MPM. Methods Ninety-two postoperative specimens from MPM patients following cytoreductive surgery were collected. Postoperative specimens were stained with immunohistochemistry. The expression level of NPM2 was quantitatively analyzed by QuPath-0.3.2 software. Univariate and multivariate analyses were conducted to investigate the correlation between NPM2 expression and other conventional clinicopathological characteristics. Results Among the 92 MPM patients, there were 47 males (48.9%) and 45 females (51.1%), with a median age of 56 (range: 24–73). There were 70 (76.0%) cases with loss of NPM2 protein expression, 11 (12.0%) cases with low expression, and 11 (12.0%) cases with high expression. Univariate analysis showed that NPM2 protein expression level (negative vs. low expression vs. high expression) was negatively correlated with the following three clinicopathological factors: completeness of cytoreduction (CC) score, vascular tumor emboli, and serious adverse events (SAEs) (all P < 0.05). Multivariate analysis showed that NPM2 protein expression level (negative vs. low expression vs. high expression) was independently negatively correlated with the following two clinicopathological factors: CC score [odds ratio (OR) = 0.317, 95% CI: 0.317–0.959, P = 0.042] and vascular tumor emboli (OR = 0.092, 95% CI = 0.011–0.770, P = 0.028). Survival analysis showed that loss of NPM2 protein expression (negative vs. positive) was associated with poor prognosis of MPM. Conclusions Loss of NPM2 expression is a potential immunohistochemical marker for MPM.
Collapse
Affiliation(s)
- He-liang Wu
- grid.414367.3Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Peking University Ninth School of Clinical Medicine, Beijing, 100038 China
| | - Zhi-ran Yang
- grid.414367.3Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Yan-dong Su
- grid.414367.3Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Ru Ma
- grid.414367.3Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Xue-mei Du
- grid.414367.3Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Ying Gao
- grid.414367.3Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Yan Li
- grid.414367.3Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Peking University Ninth School of Clinical Medicine, Beijing, 100038 China ,grid.414367.3Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| |
Collapse
|
15
|
Florio D, Roviello V, La Manna S, Napolitano F, Maria Malfitano A, Marasco D. Small molecules enhancers of amyloid aggregation of C-terminal domain of Nucleophosmin 1 in acute myeloid leukemia. Bioorg Chem 2022; 127:106001. [DOI: 10.1016/j.bioorg.2022.106001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
|
16
|
Wang R, Xu P, Chang LL, Zhang SZ, Zhu HH. Targeted therapy in NPM1-mutated AML: Knowns and unknowns. Front Oncol 2022; 12:972606. [PMID: 36237321 PMCID: PMC9552319 DOI: 10.3389/fonc.2022.972606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by malignant proliferation of myeloid hematopoietic stem/progenitor cells. NPM1 represents the most frequently mutated gene in AML and approximately 30% of AML cases carry NPM1 mutations. Mutated NPM1 result in the cytoplasmic localization of NPM1 (NPM1c). NPM1c interacts with other proteins to block myeloid differentiation, promote cell proliferation and impair DNA damage repair. NPM1 is a good prognostic marker, but some patients ultimately relapse or fail to respond to therapy. It is urgent for us to find optimal therapies for NPM1-mutated AML. Efficacy of multiple drugs is under investigation in NPM1-mutated AML, and several clinical trials have been registered. In this review, we summarize the present knowledge of therapy and focus on the possible therapeutic interventions for NPM1-mutated AML.
Collapse
Affiliation(s)
- Rong Wang
- Department of Hematology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Pan Xu
- Department of Physiology, Medical College of China Three Gorges University, Yichang, China
| | - Lin-Lin Chang
- Department of Physiology, Medical College of China Three Gorges University, Yichang, China
| | - Shi-Zhong Zhang
- Department of Physiology, Medical College of China Three Gorges University, Yichang, China
- *Correspondence: Hong-Hu Zhu, ; Shi-Zhong Zhang,
| | - Hong-Hu Zhu
- Department of Hematology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
- Department of Physiology, Medical College of China Three Gorges University, Yichang, China
- Zhejiang University Cancer Center, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hong-Hu Zhu, ; Shi-Zhong Zhang,
| |
Collapse
|
17
|
Yurttaş NÖ, Eşkazan AE. Clinical Application of Biomarkers for Hematologic Malignancies. Biomark Med 2022. [DOI: 10.2174/9789815040463122010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Over the last decade, significant advancements have been made in the
molecular mechanisms, diagnostic methods, prognostication, and treatment options in
hematologic malignancies. As the treatment landscape continues to expand,
personalized treatment is much more important.
With the development of new technologies, more sensitive evaluation of residual
disease using flow cytometry and next generation sequencing is possible nowadays.
Although some conventional biomarkers preserve their significance, novel potential
biomarkers accurately detect the mutational landscape of different cancers, and also,
serve as prognostic and predictive biomarkers, which can be used in evaluating therapy
responses and relapses. It is likely that we will be able to offer a more targeted and
risk-adapted therapeutic approach to patients with hematologic malignancies guided by
these potential biomarkers. This chapter summarizes the biomarkers used (or proposed
to be used) in the diagnosis and/or monitoring of hematologic neoplasms.;
Collapse
Affiliation(s)
- Nurgül Özgür Yurttaş
- Division of Hematology, Department of Internal Medicine, Cerrahpasa Faculty of Medicine,
Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ahmet Emre Eşkazan
- Division of Hematology, Department of Internal Medicine, Cerrahpasa Faculty of Medicine,
Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
18
|
Böldicke T. Therapeutic Potential of Intrabodies for Cancer Immunotherapy: Current Status and Future Directions. Antibodies (Basel) 2022; 11:antib11030049. [PMID: 35892709 PMCID: PMC9326752 DOI: 10.3390/antib11030049] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
Tumor cells are characterized by overexpressed tumor-associated antigens or mutated neoantigens, which are expressed on the cell surface or intracellularly. One strategy of cancer immunotherapy is to target cell-surface-expressed tumor-associated antigens (TAAs) with therapeutic antibodies. For targeting TAAs or neoantigens, adoptive T-cell therapies with activated autologous T cells from cancer patients transduced with novel recombinant TCRs or chimeric antigen receptors have been successfully applied. Many TAAs and most neoantigens are expressed in the cytoplasm or nucleus of tumor cells. As alternative to adoptive T-cell therapy, the mRNA of intracellular tumor antigens can be depleted by RNAi, the corresponding genes or proteins deleted by CRISPR-Cas or inactivated by kinase inhibitors or by intrabodies, respectively. Intrabodies are suitable to knockdown TAAs and neoantigens without off-target effects. RNA sequencing and proteome analysis of single tumor cells combined with computational methods is bringing forward the identification of new neoantigens for the selection of anti-cancer intrabodies, which can be easily performed using phage display antibody repertoires. For specifically delivering intrabodies into tumor cells, the usage of new capsid-modified adeno-associated viruses and lipid nanoparticles coupled with specific ligands to cell surface receptors can be used and might bring cancer intrabodies into the clinic.
Collapse
Affiliation(s)
- Thomas Böldicke
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
19
|
La Manna S, Florio D, Di Natale C, Lagreca E, Sibillano T, Giannini C, Marasco D. Type C mutation of nucleophosmin 1 acute myeloid leukemia: Consequences of intrinsic disorder. Biochim Biophys Acta Gen Subj 2022; 1866:130173. [PMID: 35597503 DOI: 10.1016/j.bbagen.2022.130173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/09/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Nucleophosmin 1 (NPM1) protein is a multifunctional nucleolar chaperone and its gene is the most frequently mutated in Acute Myeloid Leukemia (AML). AML mutations cause the unfolding of the C-terminal domain (CTD) and the protein delocalizing in the cytosol (NPM1c+). Marked aggregation endowed with an amyloid character was assessed as consequences of mutations. SCOPE Herein we analyzed the effects of type C mutation on two protein regions: i) a N-terminal extended version of the CTD, named Cterm_mutC and ii) a shorter polypeptide including the sequences of the second and third helices of the CTD, named H2_mutC. MAJOR CONCLUSIONS Both demonstrated able to self-assembly with different kinetics and conformational intermediates and to provide fibers presenting large flexible regions. GENERAL SIGNIFICANCE The present study adds a new piece of knowledge to the effects of AML-mutations on structural biology of Nucleophosmin 1, that could be exploited in therapeutic interventions targeting selectively NPMc+.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Concetta Di Natale
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Italy; Istituto Italiano di Tecnologia, University of Naples "Federico II", Largo Barsanti e Matteucci 53, Naples 80125, Italy
| | - Elena Lagreca
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Italy; Istituto Italiano di Tecnologia, University of Naples "Federico II", Largo Barsanti e Matteucci 53, Naples 80125, Italy
| | - Teresa Sibillano
- Institute of Crystallography (IC), National Research Council, 70125 Bari, Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), National Research Council, 70125 Bari, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
20
|
Maurya N, Mohanty P, Dhangar S, Panchal P, Jijina F, Mathan SLP, Shanmukhaiah C, Madkaikar M, Vundinti BR. Comprehensive analysis of genetic factors predicting overall survival in Myelodysplastic syndromes. Sci Rep 2022; 12:5925. [PMID: 35396491 PMCID: PMC8993876 DOI: 10.1038/s41598-022-09864-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/29/2022] [Indexed: 12/19/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a group of clonal hematological disease with high risk of progression to AML. Accurate risk stratification is of importance for the proper management of MDS. Genetic lesions (Cytogenetic and Molecular mutations) are known to help in prognosticating the MDS patients. We have studied 152 MDS patients using cytogenetics and next generation sequencing (NGS). These patients were evaluated and as per cytogenetic prognostic group, majority (92.1%) of the patients classified as good (81.6%) and intermediate (10.5%) group. The NGS identified 38 different gene mutations in our cohort. Among 111 MDS patients with mutations, the most frequent mutated genes were SF3B1 (25.2%), SRSF2 (19%) U2AF1 (14.4%) ASXL1 (9.9%) RUNX1 (9.9%) TET2 (9%), TP53 (9%), ATM (6.3%), NRAS (5.4%) and JAK2/3 (5.4%). The survival analysis revealed that the mutations in TP53, JAK2/3, KRAS, NRAS and ASXL1 were significantly (P < 0.05) associated with poor survival of the patients. The univariate cox and multivariate cox analysis of our study suggested that the age, marrow morphology, cytogenetic and gene mutations with IPSS-R should be considered for prognosticating the MDS patients. We have proposed M-IPSS-R which changed the risk stratification i.e. 66.3% patients had decreased risk whereas 33.75% showed increased risk compared to IPSS-R. The survival analysis also showed that the M-IPSS-R were more significant in separating the patients as per their risk than the IPSS-R alone. The change in risk stratification could help in proper strategy for the treatment planning.
Collapse
Affiliation(s)
- Nehakumari Maurya
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India
| | - Purvi Mohanty
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India
| | - Somprakash Dhangar
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India
| | - Purvi Panchal
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India
| | - Farah Jijina
- Department of Clinical Hematology, King Edward Memorial Hospital, Mumbai, Maharashtra, India
| | - S Leo Prince Mathan
- Department of Clinical Hematology, King Edward Memorial Hospital, Mumbai, Maharashtra, India
| | | | - Manisha Madkaikar
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India
| | - Babu Rao Vundinti
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India.
| |
Collapse
|
21
|
EAPB0503, an Imidazoquinoxaline Derivative Modulates SENP3/ARF Mediated SUMOylation, and Induces NPM1c Degradation in NPM1 Mutant AML. Int J Mol Sci 2022; 23:ijms23073421. [PMID: 35408798 PMCID: PMC8998649 DOI: 10.3390/ijms23073421] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022] Open
Abstract
Nucleophosmin-1 (NPM1) is a pleiotropic protein involved in numerous cellular processes. NPM1 shuttles between the nucleus and the cytoplasm, but exhibits a predominant nucleolar localization, where its fate and functions are exquisitely controlled by dynamic post-translational modifications (PTM). Sentrin/SUMO Specific Peptidase 3 (SENP3) and ARF are two nucleolar proteins involved in NPM1 PTMs. SENP3 antagonizes ARF-mediated NPM1 SUMOylation, to promote ribosomal biogenesis. In Acute Myeloid Leukemia (AML), NPM1 is frequently mutated, and exhibits an aberrant cytoplasmic localization (NPM1c). NPM1c mutations define a separate AML entity with good prognosis in some AML patients, rendering NPM1c as a potential therapeutic target. SENP3-mediated NPM1 de-SUMOylation induces resistance to therapy in NPM1c AML. Here, we demonstrate that the imidazoquinoxaline EAPB0503 prolongs the survival and results in selective reduction in the leukemia burden of NPM1c AML xenograft mice. Indeed, EAPB0503 selectively downregulates HDM2 expression and activates the p53 pathway in NPM1c expressing cells, resulting in apoptosis. Importantly, we unraveled that NPM1c expressing cells exhibit low basal levels of SUMOylation paralleled with high SENP3 and low ARF basal levels. EAPB0503 reverted these molecular players by inducing NPM1c SUMOylation and ubiquitylation, leading to its proteasomal degradation. EAPB0503-induced NPM1c SUMOylation is concurrent with SENP3 downregulation and ARF upregulation in NPM1c expressing cells. Collectively, these results provide a strong rationale for testing therapies modulating NPM1c post-translational modifications in the management of NPM1c AML.
Collapse
|
22
|
Xiao Q, Lei L, Ren J, Peng M, Jing Y, Jiang X, Huang J, Tao Y, Lin C, Yang J, Sun M, Tang L, Wei X, Yang Z, Zhang L. Mutant NPM1-Regulated FTO-Mediated m 6A Demethylation Promotes Leukemic Cell Survival via PDGFRB/ERK Signaling Axis. Front Oncol 2022; 12:817584. [PMID: 35211409 PMCID: PMC8862181 DOI: 10.3389/fonc.2022.817584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) with nucleophosmin 1 (NPM1) mutations exhibits distinct biological and clinical features, accounting for approximately one-third of AML. Recently, the N6-methyladenosine (m6A) RNA modification has emerged as a new epigenetic modification to contribute to tumorigenesis and development. However, there is limited knowledge on the role of m6A modifications in NPM1-mutated AML. In this study, the decreased m6A level was first detected and high expression of fat mass and obesity-associated protein (FTO) was responsible for the m6A suppression in NPM1-mutated AML. FTO upregulation was partially induced by NPM1 mutation type A (NPM1-mA) through impeding the proteasome pathway. Importantly, FTO promoted leukemic cell survival by facilitating cell cycle and inhibiting cell apoptosis. Mechanistic investigations demonstrated that FTO depended on its m6A RNA demethylase activity to activate PDGFRB/ERK signaling axis. Our findings indicate that FTO-mediated m6A demethylation plays an oncogenic role in NPM1-mutated AML and provide a new layer of epigenetic insight for future treatments of this distinctly leukemic entity.
Collapse
Affiliation(s)
- Qiaoling Xiao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Li Lei
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jun Ren
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Meixi Peng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yipei Jing
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xueke Jiang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Junpeng Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yonghong Tao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Can Lin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jing Yang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Minghui Sun
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Lisha Tang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xingyu Wei
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Zailin Yang
- Hematology Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Ling Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Al Hamed R, Labopin M, Daguindau E, Niittyvuopio R, Huynh A, Socié G, Srour M, Henri Bourhis J, Kröger N, Tholouli E, Choi G, Poiré X, Martin H, Rubio MT, Jindra P, Blaise D, Beelen D, Labussière-Wallet H, Nagler A, Bazarbachi A, Mohty M. Measurable residual disease, FLT3-ITD mutation, and disease status have independent prognostic influence on outcome of allogeneic stem cell transplantation in NPM1-mutated acute myeloid leukemia. Cancer Med 2022; 11:1068-1080. [PMID: 35048553 PMCID: PMC8855908 DOI: 10.1002/cam4.4218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/24/2021] [Accepted: 08/02/2021] [Indexed: 11/12/2022] Open
Abstract
Nucleophosmin‐1 (NPM1) mutations in acute myeloid leukemia (AML) confer a survival advantage in the absence of FLT3‐internal tandem duplication (FLT3‐ITD). Here, we investigated the main predictors of outcome after allogeneic hematopoietic stem cell transplantation (allo‐HCT). We identified 1572 adult (age ≥ 18 year) patients with NPM1‐mutated AML in first complete remission (CR1:78%) or second complete remission (CR2:22%) who were transplanted from matched sibling donors (30.8%) or unrelated donors (57.4%) between 2007 and 2019 at EBMT participating centers. Median follow‐up for survivors was 23.7 months. FLT3‐ITD was present in 69.3% of patients and 39.2% had detectable minimal/measurable residual disease (MRD) at transplant. In multivariate analysis, relapse incidence (RI) and leukemia‐free survival (LFS) were negatively affected by concomitant FLT3‐ITD mutation (HR 1.66 p = 0.0001, and HR 1.53, p < 0.0001, respectively), MRD positivity at transplant (HR 2.18, p < 10−5 and HR 1.71, p < 10−5, respectively), and transplant in CR2 (HR 1.36, p = 0.026, and HR 1.26, p = 0.033, respectively), but positively affected by Karnofsky score ≥90 (HR 0.74, p = 0.012, and HR 0.7, p = 0.0002, respectively). Overall survival (OS) was also negatively influenced by concomitant FLT3‐ITD (HR 1.6, p = 0.0001), MRD positivity at transplant (HR 1.61, p < 10−5), and older age (HR 1.22 per 10 years, p < 0.0001), but positively affected by matched sibling donor (unrelated donor: HR 1.35, p = 0.012; haploidentical donor: HR 1.45, p = 0.037) and Karnofsky score ≥90 (HR 0.73, p = 0.004). These results highlight the independent and significant role of FLT3‐ITD, MRD status, and disease status on posttransplant outcomes in patients with NPM1‐mutated AML allowing physicians to identify patients at risk of relapse who may benefit from posttransplant prophylactic interventions.
Collapse
Affiliation(s)
- Rama Al Hamed
- Department of Internal Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, New York, USA
| | - Myriam Labopin
- Department of Hematology, EBMT Paris Office, CEREST-TC, Saint Antoine Hospital, Paris, France
| | | | - Riitta Niittyvuopio
- HUCH Comprehensive Cancer Center, Stem Cell Transplantation Unit, Helsinki, Finland
| | - Anne Huynh
- CHU - Institut Universitaire du Cancer Toulouse, Oncopole, Toulouse, France
| | - Gerard Socié
- Department of Hematology - BMT, Hôpital St. Louis, Paris, France
| | - Micha Srour
- CHU de Lille, Université de Lille, Lille, France
| | - Jean Henri Bourhis
- Department of Hematology, Gustave Roussy Cancer Campus, BMT Service, Villejuif, France
| | - Nicolaus Kröger
- University Hospital Eppendorf, Bone Marrow Transplantation Centre, Hamburg, Germany
| | - Eleni Tholouli
- Clinica Haematology Department, Manchester Royal Infirmary, Manchester, UK
| | - Goda Choi
- Department of Hematology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Xavier Poiré
- Department of Haematology, Cliniques Universitaires St. Luc, Brussels, Belgium
| | - Hans Martin
- Goethe-Universitaet, Medizinische Klinik II, Hämatologie, Medizinische Onkologie, Frankfurt, Germany
| | | | - Pavel Jindra
- Department of Hematology/Oncology, Charles University Hospital, Pilsen, Czech Republic
| | - Didier Blaise
- Programme de Transplantation & Therapie Cellulaire, Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Dietrich Beelen
- Department of Bone Marrow Transplantation, University Hospital, Essen, Germany
| | | | - Arnon Nagler
- Hematology Division, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Ali Bazarbachi
- Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Mohamad Mohty
- Department of Hematology, EBMT Paris Office, CEREST-TC, Saint Antoine Hospital, Paris, France
| |
Collapse
|
24
|
The Role of Nucleophosmin 1 ( NPM1) Mutation in the Diagnosis and Management of Myeloid Neoplasms. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010109. [PMID: 35054502 PMCID: PMC8780493 DOI: 10.3390/life12010109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022]
Abstract
Nucleophosmin (NPM1) is a multifunctional protein with both proliferative and growth-suppressive roles in the cell. In humans, NPM1 is involved in tumorigenesis via chromosomal translocations, deletions, or mutation. Acute myeloid leukemia (AML) with mutated NPM1, a distinct diagnostic entity by the current WHO Classification of myeloid neoplasm, represents the most common diagnostic subtype in AML and is associated with a favorable prognosis. The persistence of NPM1 mutation in AML at relapse makes this mutation an ideal target for minimal measurable disease (MRD) detection. The clinical implication of this is far-reaching because NPM1-mutated AML is currently classified as being of standard risk, with the best treatment strategy (transplantation versus chemotherapy) yet undefined. Myeloid neoplasms with NPM1 mutations and <20% blasts are characterized by an aggressive clinical course and a rapid progression to AML. The pathological classification of these cases remains controversial. Future studies will determine whether NPM1 gene mutation may be sufficient for diagnosing NPM1-mutated AML independent of the blast count. This review aims to summarize the role of NPM1 in normal cells and in human cancer and discusses its current role in clinical management of AML and related myeloid neoplasms.
Collapse
|
25
|
Mishra S, Liu J, Chai L, Tenen DG. Diverse functions of long noncoding RNAs in acute myeloid leukemia: emerging roles in pathophysiology, prognosis, and treatment resistance. Curr Opin Hematol 2022; 29:34-43. [PMID: 34854833 PMCID: PMC8647777 DOI: 10.1097/moh.0000000000000692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW Advancements in the next-generation sequencing technologies have identified rare transcripts of long noncoding RNAs (lncRNAs) in the genome of cancers, including in acute myeloid leukemia (AML). The purpose of this review is to highlight the contribution of lncRNAs in AML pathogenesis, prognosis, and chemoresistance. RECENT FINDINGS Several studies have recently reported that deregulated lncRNAs are novel key players in the development of AML and are associated with AML pathophysiology and may serve as prognostic indicators. A few aberrantly expressed lncRNAs that correlated with the recurrent genetic mutations in AML such as NPM1 and RUNX1 have recently been characterized. Moreover, a few lncRNAs in MLL-rearranged leukemia have been described. Additionally, the involvement of lncRNAs in AML chemoresistance has been postulated. SUMMARY Investigating the functional roles of the noncoding regions including lncRNAs, may provide novel insights into the pathophysiology, refine the prognostic schema, and provide novel therapeutic treatment strategies in AML.
Collapse
Affiliation(s)
- Srishti Mishra
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Jun Liu
- Department of Pathology, Brigham & Women's Hospital
| | - Li Chai
- Department of Pathology, Brigham & Women's Hospital
| | - Daniel G Tenen
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Deep learning detects acute myeloid leukemia and predicts NPM1 mutation status from bone marrow smears. Leukemia 2021; 36:111-118. [PMID: 34497326 PMCID: PMC8727290 DOI: 10.1038/s41375-021-01408-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/12/2021] [Accepted: 08/27/2021] [Indexed: 12/02/2022]
Abstract
The evaluation of bone marrow morphology by experienced hematopathologists is essential in the diagnosis of acute myeloid leukemia (AML); however, it suffers from a lack of standardization and inter-observer variability. Deep learning (DL) can process medical image data and provides data-driven class predictions. Here, we apply a multi-step DL approach to automatically segment cells from bone marrow images, distinguish between AML samples and healthy controls with an area under the receiver operating characteristic (AUROC) of 0.9699, and predict the mutation status of Nucleophosmin 1 (NPM1)—one of the most common mutations in AML—with an AUROC of 0.92 using only image data from bone marrow smears. Utilizing occlusion sensitivity maps, we observed so far unreported morphologic cell features such as a pattern of condensed chromatin and perinuclear lightening zones in myeloblasts of NPM1-mutated AML and prominent nucleoli in wild-type NPM1 AML enabling the DL model to provide accurate class predictions.
Collapse
|
27
|
Mostafa Hassan N, El-Sayed N, Aboul-Enein K, Nabeeh Al-Fadally L, Nabil R. The Prevalence and Prognostic Impacts of Nucleophosmin Mutations in Adult Patients with De Novo Acute Myeloid Leukemia. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
BACKGROUND: Acute myeloid leukemia (AML) is known as cancer of the blood and bone marrow (BM) and is regarded as the commonest acute leukemia in adult patients.
AIM: In this study, the aim to investigate the nucleophosmin mutations and their prognostic impacts in patients that were recently diagnosed with AML.
METHODS: We have included patients who were newly diagnosed with AML and presented to the medical oncology clinics, National Cancer Institute, Cairo University, during the period from August 2016 to December 2018. To assess the laboratory and hematological outcomes of our patients, total RNA was extracted from BM and converted to cDNA then the expression of nucleophosmin 1 (NPM1) type A mutation was done by real-time quantitative polymerase chain reaction (PCR). Comparative analysis was also conducted to study outcomes between the gene mutation groups.
RESULTS: We have included 89 AML patients in our study with a median age of 43 years (18–77). NPM1 gene mutation was detected in 37.1% of our patients by conventional PCR technique and agarose gel electrophoresis, of which 18% were NPM1 type A mutation. No significant differences were noticed between our patients based on their NPM1 gene mutation status (wild and mutant) in terms of sex, hepatomegaly, splenomegaly, and complete remission (CR). Lymphadenopathy was the only significant factor (p = 0.023). Surprisingly we found 9/33 patients had NPM1 mutation with recurrent cytogenetic abnormality. We found no statistical significance between mutation A and mutation non-A groups in any of the studied outcomes as sex, clinical and laboratory data, and CR.
CONCLUSION: NPM1 gene mutation A was relatively low among our population but did not significantly affect the outcomes.
Collapse
|
28
|
Neoantigen-Specific T-Cell Immune Responses: The Paradigm of NPM1-Mutated Acute Myeloid Leukemia. Int J Mol Sci 2021; 22:ijms22179159. [PMID: 34502069 PMCID: PMC8431540 DOI: 10.3390/ijms22179159] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
The C-terminal aminoacidic sequence from NPM1-mutated protein, absent in normal human tissues, may serve as a leukemia-specific antigen and can be considered an ideal target for NPM1-mutated acute myeloid leukemia (AML) immunotherapy. Different in silico instruments and in vitro/ex vivo immunological platforms have identified the most immunogenic epitopes from NPM1-mutated protein. Spontaneous development of endogenous NPM1-mutated-specific cytotoxic T cells has been observed in patients, potentially contributing to remission maintenance and prolonged survival. Genetically engineered T cells, namely CAR-T or TCR-transduced T cells, directed against NPM1-mutated peptides bound to HLA could prospectively represent a promising therapeutic approach. Although either adoptive or vaccine-based immunotherapies are unlikely to be highly effective in patients with full-blown leukemia, these strategies, potentially in combination with immune-checkpoint inhibitors, could be promising in maintaining remission or preemptively eradicating persistent measurable residual disease, mainly in patients ineligible for allogeneic hematopoietic stem cell transplant (HSCT). Alternatively, neoantigen-specific donor lymphocyte infusion derived from healthy donors and targeting NPM1-mutated protein to selectively elicit graft-versus-leukemia effect may represent an attractive option in subjects experiencing post-HSCT relapse. Future studies are warranted to further investigate dynamics of NPM1-mutated-specific immunity and explore whether novel individualized immunotherapies may have potential clinical utility in NPM1-mutated AML patients.
Collapse
|
29
|
Lang YD, Jou YS. PSPC1 is a new contextual determinant of aberrant subcellular translocation of oncogenes in tumor progression. J Biomed Sci 2021; 28:57. [PMID: 34340703 PMCID: PMC8327449 DOI: 10.1186/s12929-021-00753-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/24/2021] [Indexed: 12/30/2022] Open
Abstract
Dysregulation of nucleocytoplasmic shuttling is commonly observed in cancers and emerging as a cancer hallmark for the development of anticancer therapeutic strategies. Despite its severe adverse effects, selinexor, a selective first-in-class inhibitor of the common nuclear export receptor XPO1, was developed to target nucleocytoplasmic protein shuttling and received accelerated FDA approval in 2019 in combination with dexamethasone as a fifth-line therapeutic option for adults with relapsed refractory multiple myeloma (RRMM). To explore innovative targets in nucleocytoplasmic shuttling, we propose that the aberrant contextual determinants of nucleocytoplasmic shuttling, such as PSPC1 (Paraspeckle component 1), TGIF1 (TGF-β Induced Factor Homeobox 1), NPM1 (Nucleophosmin), Mortalin and EBP50, that modulate shuttling (or cargo) proteins with opposite tumorigenic functions in different subcellular locations could be theranostic targets for developing anticancer strategies. For instance, PSPC1 was recently shown to be the contextual determinant of the TGF-β prometastatic switch and PTK6/β-catenin reciprocal oncogenic nucleocytoplasmic shuttling during hepatocellular carcinoma (HCC) progression. The innovative nucleocytoplasmic shuttling inhibitor PSPC1 C-terminal 131 polypeptide (PSPC1-CT131), which was developed to target both the shuttling determinant PSPC1 and the shuttling protein PTK6, maintained their tumor-suppressive characteristics and exhibited synergistic effects on tumor suppression in HCC cells and mouse models. In summary, targeting the contextual determinants of nucleocytoplasmic shuttling with cargo proteins having opposite tumorigenic functions in different subcellular locations could be an innovative strategy for developing new therapeutic biomarkers and agents to improve cancer therapy.
Collapse
Affiliation(s)
- Yaw-Dong Lang
- Institute of Biomedical Sciences, Academia Sinica, 11529, Taipei, Taiwan
| | - Yuh-Shan Jou
- Institute of Biomedical Sciences, Academia Sinica, 11529, Taipei, Taiwan.
| |
Collapse
|
30
|
NPM1-mutated acute myeloid leukemia: from bench to bedside. Blood 2021; 136:1707-1721. [PMID: 32609823 DOI: 10.1182/blood.2019004226] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
The nucleophosmin (NPM1) gene encodes for a multifunctional protein with prominent nucleolar localization that shuttles between nucleus and cytoplasm. NPM1 mutations represent the most common genetic lesion in adult acute myeloid leukemia (AML; about one third of cases), and they act deterministically to cause the aberrant cytoplasmic delocalization of NPM1 mutants. Because of its unique features, NPM1-mutated AML is recognized as a distinct entity in the 2017 World Health Organization (WHO) classification of hematopoietic neoplasms. Here, we focus on recently identified functions of wild-type NPM1 in the nucleolus and address new biological and clinical issues related to NPM1-mutated AML. The relevance of the cooperation between NPM1 and other mutations in driving AML with different outcomes is presented. We also discuss the importance of eradicating NPM1-mutated clones to achieve AML cure and the impact of preleukemic clonal hematopoiesis persistence in predisposing to second AML. The contribution of HOX genes' expression to the development of NPM1-mutated AML is also highlighted. Clinically, yet unsolved diagnostic issues in the 2017 WHO classification of myeloid neoplasms and the importance of NPM1 mutations in defining the framework of European LeukemiaNet genetic-based risk stratification are discussed. Finally, we address the value and limits of NPM1-based measurable residual disease assessment for treatment guidance and present the results of promising preclinical studies with XPO1 and menin-MLL inhibitors.
Collapse
|
31
|
Pettersson L, Johansson Alm S, Almstedt A, Chen Y, Orrsjö G, Shah-Barkhordar G, Zhou L, Kotarsky H, Vidovic K, Asp J, Lazarevic V, Saal LH, Fogelstrand L, Ehinger M. Comparison of RNA- and DNA-based methods for measurable residual disease analysis in NPM1-mutated acute myeloid leukemia. Int J Lab Hematol 2021; 43:664-674. [PMID: 34053184 DOI: 10.1111/ijlh.13608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Reverse transcriptase quantitative PCR (RT-qPCR) is considered the method of choice for measurable residual disease (MRD) assessment in NPM1-mutated acute myeloid leukemia (AML). MRD can also be determined with DNA-based methods offering certain advantages. We here compared the DNA-based methods quantitative PCR (qPCR), droplet digital PCR (ddPCR), and targeted deep sequencing (deep seq) with RT-qPCR. METHODS Of 110 follow-up samples from 30 patients with NPM1-mutated AML were analyzed by qPCR, ddPCR, deep seq, and RT-qPCR. To select DNA MRD cutoffs for bone marrow, we performed receiver operating characteristic analyses for each DNA method using prognostically relevant RT-qPCR cutoffs. RESULTS The DNA-based methods showed strong intermethod correlation, but were less sensitive than RT-qPCR. A bone marrow cutoff at 0.1% leukemic DNA for qPCR or 0.05% variant allele frequency for ddPCR and deep seq offered optimal sensitivity and specificity with respect to 3 log10 reduction of NPM1 transcripts and/or 2% mutant NPM1/ABL. With these cutoffs, MRD results agreed in 95% (191/201) of the analyses. Although more sensitive, RT-qPCR failed to detect leukemic signals in 10% of samples with detectable leukemic DNA. CONCLUSION DNA-based MRD techniques may complement RT-qPCR for assessment of residual leukemia. DNA-based methods offer high positive and negative predictive values with respect to residual leukemic NPM1 transcripts at levels of importance for response to treatment. However, moving to DNA-based MRD methods will miss a proportion of patients with residual leukemic RNA, but on the other hand some MRD samples with detectable leukemic DNA can be devoid of measurable leukemic RNA.
Collapse
Affiliation(s)
- Louise Pettersson
- Department of Clinical Sciences, Division of Pathology, Lund University, Skane University Hospital, Lund, Sweden.,Department of Pathology, Halland Hospital Halmstad, Region Halland, Halmstad, Sweden
| | - Sofie Johansson Alm
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Alvar Almstedt
- SciLife Clinical Genomics Gothenburg, Gothenburg, Sweden
| | - Yilun Chen
- Department of Clinical Sciences, Division of Oncology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Gustav Orrsjö
- Section for Hematology and Coagulation, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Giti Shah-Barkhordar
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Li Zhou
- Klinisk Patologi, Region Laboratories, Region Skåne, Lund, Sweden
| | - Heike Kotarsky
- Klinisk Patologi, Region Laboratories, Region Skåne, Lund, Sweden
| | - Karina Vidovic
- Department of Clinical Sciences, Division of Pathology, Lund University, Skane University Hospital, Lund, Sweden
| | - Julia Asp
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Vladimir Lazarevic
- Department of Hematology, Oncology and Radiation Physics, Lund University, Skane University Hospital, Lund, Sweden
| | - Lao H Saal
- Department of Clinical Sciences, Division of Oncology, Faculty of Medicine, Lund University, Lund, Sweden.,Lund University Cancer Center, Medicon Village, Lund, Sweden
| | - Linda Fogelstrand
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mats Ehinger
- Department of Clinical Sciences, Division of Pathology, Lund University, Skane University Hospital, Lund, Sweden.,Klinisk Patologi, Region Laboratories, Region Skåne, Lund, Sweden
| |
Collapse
|
32
|
Dillon R, Potter N, Freeman S, Russell N. How we use molecular minimal residual disease (MRD) testing in acute myeloid leukaemia (AML). Br J Haematol 2021; 193:231-244. [PMID: 33058194 DOI: 10.1111/bjh.17185] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years there have been major advances in the use of molecular diagnostic and monitoring techniques for patients with acute myeloid leukaemia (AML). Coupled with the simultaneous explosion of new therapeutic agents, this has sown the seeds for significant improvements to treatment algorithms. Here we show, using a selection of real-life examples, how molecular monitoring can be used to refine clinical decision-making and to personalise treatment in patients with AML with nucleophosmin (NPM1) mutations, core binding factor translocations and other fusion genes. For each case we review the established evidence base and provide practical recommendations where evidence is lacking or conflicting. Finally, we review important technical considerations that clinicians should be aware of in order to safely exploit these technologies as they undergo widespread implementation.
Collapse
Affiliation(s)
- Richard Dillon
- Cancer Genetics Laboratory, Department of Medical and Molecular Genetics, King's College, London, UK
- Department of Haematology, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| | - Nicola Potter
- Cancer Genetics Laboratory, Department of Medical and Molecular Genetics, King's College, London, UK
| | - Sylvie Freeman
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Nigel Russell
- Department of Haematology, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| |
Collapse
|
33
|
Pettersson L, Holmgren B, Juliusson G, Lazarevic VL, Ehinger M. Mutational spectrum of de novo NPM1-mutated acute myeloid leukemia patients older than 75 years. Leuk Lymphoma 2021; 62:1958-1966. [PMID: 33711909 DOI: 10.1080/10428194.2021.1894650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AML with mutated NPM1 occurs in all age groups. Yet, the mutational pattern is not extensively studied in the very old, which may hamper appropriate risk assessment. Herein we examined 22 cases of NPM1-mutated de novo AML in patients older than 75, with a median age of 84. All diagnostic samples were sequenced aiming for coverage of the most relevant AML-associated mutations. For comparison with younger patients, we used already published data on several cohorts. A total of 76 mutations including 50 different variants were identified in 16 recurrently mutated AML genes. Compared with younger patients, a significant enrichment of TET2 and SRSF2 was observed, together with a reduced frequency of DNMT3A mutations. Our results indicate that the mutational pattern may be different in the very old as compared to younger patients with NPM1-mutated AML.HighlightsThe mutational spectrum of NPM1-mutated AML in patients above 75 years displays distinct features.A significant enrichment of TET2 and SRSF2 mutations together with a reduced frequency of DNMT3A mutations was observed in the elderly.NPM1 mutation is a secondary event in the development of AML in the very old.
Collapse
Affiliation(s)
- Louise Pettersson
- Department of Clinical Sciences, Division of Pathology, Lund University, Skane University Hospital, Lund, Sweden.,Department of Pathology, Halland Hospital Halmstad, Region Halland, Halmstad, Sweden
| | - Benjamin Holmgren
- Department of Pathology, Halland Hospital Halmstad, Region Halland, Halmstad, Sweden
| | - Gunnar Juliusson
- Department of Hematology, Oncology and Radiation Physics, Lund University, Skane University Hospital, Lund, Sweden.,Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Vladimir Lj Lazarevic
- Department of Hematology, Oncology and Radiation Physics, Lund University, Skane University Hospital, Lund, Sweden
| | - Mats Ehinger
- Department of Clinical Sciences, Division of Pathology, Lund University, Skane University Hospital, Lund, Sweden
| |
Collapse
|
34
|
Récher C. Clinical Implications of Inflammation in Acute Myeloid Leukemia. Front Oncol 2021; 11:623952. [PMID: 33692956 PMCID: PMC7937902 DOI: 10.3389/fonc.2021.623952] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Recent advances in the description of the tumor microenvironment of acute myeloid leukemia, including the comprehensive analysis of the leukemic stem cell niche and clonal evolution, indicate that inflammation may play a major role in many aspects of acute myeloid leukemia (AML) such as disease progression, chemoresistance, and myelosuppression. Studies on the mechanisms of resistance to chemotherapy or tyrosine kinase inhibitors along with high-throughput drug screening have underpinned the potential role of glucocorticoids in this disease classically described as steroid-resistant in contrast to acute lymphoblastic leukemia. Moreover, some mutated oncogenes such as RUNX1, NPM1, or SRSF2 transcriptionally modulate cell state in a manner that primes leukemic cells for glucocorticoid sensitivity. In clinical practice, inflammatory markers such as serum ferritin or IL-6 have a strong prognostic impact and may directly affect disease progression, whereas interesting preliminary data suggested that dexamethasone may improve the outcome for AML patients with a high white blood cell count, which paves the way to develop prospective clinical trials that evaluate the role of glucocorticoids in AML.
Collapse
Affiliation(s)
- Christian Récher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| |
Collapse
|
35
|
Mer AS, Heath EM, Madani Tonekaboni SA, Dogan-Artun N, Nair SK, Murison A, Garcia-Prat L, Shlush L, Hurren R, Voisin V, Bader GD, Nislow C, Rantalainen M, Lehmann S, Gower M, Guidos CJ, Lupien M, Dick JE, Minden MD, Schimmer AD, Haibe-Kains B. Biological and therapeutic implications of a unique subtype of NPM1 mutated AML. Nat Commun 2021; 12:1054. [PMID: 33594052 PMCID: PMC7886883 DOI: 10.1038/s41467-021-21233-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/15/2021] [Indexed: 01/29/2023] Open
Abstract
In acute myeloid leukemia (AML), molecular heterogeneity across patients constitutes a major challenge for prognosis and therapy. AML with NPM1 mutation is a distinct genetic entity in the revised World Health Organization classification. However, differing patterns of co-mutation and response to therapy within this group necessitate further stratification. Here we report two distinct subtypes within NPM1 mutated AML patients, which we label as primitive and committed based on the respective presence or absence of a stem cell signature. Using gene expression (RNA-seq), epigenomic (ATAC-seq) and immunophenotyping (CyToF) analysis, we associate each subtype with specific molecular characteristics, disease differentiation state and patient survival. Using ex vivo drug sensitivity profiling, we show a differential drug response of the subtypes to specific kinase inhibitors, irrespective of the FLT3-ITD status. Differential drug responses of the primitive and committed subtype are validated in an independent AML cohort. Our results highlight heterogeneity among NPM1 mutated AML patient samples based on stemness and suggest that the addition of kinase inhibitors to the treatment of cases with the primitive signature, lacking FLT3-ITD, could have therapeutic benefit.
Collapse
Affiliation(s)
- Arvind Singh Mer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Karolinska Institute, Stockholm, Sweden
| | - Emily M Heath
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Seyed Ali Madani Tonekaboni
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Nergiz Dogan-Artun
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Laura Garcia-Prat
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Liran Shlush
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Rose Hurren
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Corey Nislow
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | | | | | - Mark Gower
- The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, Canada.
- Ontario Institute for Cancer Research, Toronto, ON, Canada.
- Vector Institute, Toronto, ON, Canada.
| |
Collapse
|
36
|
Wang H, Li XQ, Chu TT, Han SY, Qi JQ, Tang YQ, Qiu HY, Fu CC, Tang XW, Ruan CG, Wu DP, Han Y. Clinical significance of FLT3-ITD/CEBPA mutations and minimal residual disease in cytogenetically normal acute myeloid leukemia after hematopoietic stem cell transplantation. J Cancer Res Clin Oncol 2021; 147:2659-2670. [PMID: 33550446 DOI: 10.1007/s00432-021-03530-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/10/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Genetic changes have prognostic significance in cytogenetically normal acute myeloid leukemia (CN-AML). We set out to evaluate the prognostic of 6 gene mutations in CN-AML. METHODS We performed a mutational analysis and evaluated prognostic findings of six genes (NPM1, CEBPA, DNMT3A, FLT3-ITD, FLT3-TKD, and C-KIT) in 428 CN-AML patients at our center over 10 years. RESULTS A total of 282 patients (65.9%) had at least one gene mutation, and the mutation frequencies were as follows: 29.7% (NPM1), 24.1% (CEBPA), 20.1% (FLT3-ITD), 4.0% (FLT3-TKD), 11.9% (DNMT3A), and 4.7% (C-KIT). Multivariate analysis indicated that FLT3-ITDmut and CEBPAwt were independent risk factors correlated with poor overall survival (OS) and disease-free survival (DFS) of CN-AML. Compared with patients who received chemotherapy as consolidation, hematopoietic stem cell transplantation (HSCT) significantly improved OS of CN-AML patients. For standard/high risk patients, HSCT improved both OS and DFS. Combined analysis showed that patients with CEBPAmut/FLT3-ITDwt had the best prognosis, and patients with CEBPAwt/FLT3-ITDmut had the worst OS, with 3-year OS of only 44%. In 212 patients who received HSCT, FLT3-ITD/CEBPA mutations and minimal residual disease (MRD) were correlated with OS and DFS in univariate analysis. CONCLUSIONS We found that HSCT significantly improves the prognosis of standard/high risk CN-AML patients with superior OS and DFS. Molecular marker analyses, especially combined analysis of the FLT3-ITD and CEBPA status revealed a correlation with the prognosis of CN-AML. For patients who have received HSCT, MRD before transplantation was a strong prognostic marker predicting patient outcome.
Collapse
Affiliation(s)
- Hong Wang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215000, China.,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Xue-Qian Li
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215000, China.,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Suzhou, China
| | - Tian-Tian Chu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215000, China.,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Suzhou, China
| | - Shi-Yu Han
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215000, China.,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Suzhou, China
| | - Jia-Qian Qi
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215000, China.,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Ya-Qiong Tang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215000, China.,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Hui-Ying Qiu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215000, China.,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Cheng-Cheng Fu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215000, China.,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Xiao-Wen Tang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215000, China.,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Chang-Geng Ruan
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215000, China.,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - De-Pei Wu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215000, China. .,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Suzhou, China. .,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China. .,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.
| | - Yue Han
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215000, China. .,Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Suzhou, China. .,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China. .,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.
| |
Collapse
|
37
|
Diagnostic and therapeutic pitfalls in NPM1-mutated AML: notes from the field. Leukemia 2021; 35:3113-3126. [PMID: 33879827 PMCID: PMC8056374 DOI: 10.1038/s41375-021-01222-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/21/2021] [Accepted: 03/09/2021] [Indexed: 02/02/2023]
Abstract
Mutations of Nucleophosmin (NPM1) are the most common genetic abnormalities in adult acute myeloid leukaemia (AML), accounting for about 30% of cases. NPM1-mutated AML has been recognized as distinct entity in the 2017 World Health Organization (WHO) classification of lympho-haematopoietic neoplasms. WHO criteria allow recognition of this leukaemia entity and its distinction from AML with myelodysplasia-related changes, AML with BCR-ABL1 rearrangement and AML with RUNX1 mutations. Nevertheless, controversial issues include the percentage of blasts required for the diagnosis of NPM1-mutated AML and whether cases of NPM1-mutated myelodysplasia and chronic myelomonocytic leukaemia do exist. Evaluation of NPM1 and FLT3 status represents a major pillar of the European LeukemiaNet (ELN) genetic-based risk stratification model. Moreover, NPM1 mutations are particularly suitable for assessing measurable residual disease (MRD) since they are frequent, stable at relapse and do not drive clonal haematopoiesis. Ideally, combining monitoring of MRD with the ELN prognostication model can help to guide therapeutic decisions. Here, we provide examples of instructive cases of NPM1-mutated AML, in order to provide criteria for the appropriate diagnosis and therapy of this frequent leukaemia entity.
Collapse
|
38
|
NPM1-Mutated Myeloid Neoplasms with <20% Blasts: A Really Distinct Clinico-Pathologic Entity? Int J Mol Sci 2020; 21:ijms21238975. [PMID: 33255988 PMCID: PMC7730332 DOI: 10.3390/ijms21238975] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Nucleophosmin (NPM1) gene mutations rarely occur in non-acute myeloid neoplasms (MNs) with <20% blasts. Among nearly 10,000 patients investigated so far, molecular analyses documented NPM1 mutations in around 2% of myelodysplastic syndrome (MDS) cases, mainly belonging to MDS with excess of blasts, and 3% of myelodysplastic/myeloproliferative neoplasm (MDS/MPN) cases, prevalently classified as chronic myelomonocytic leukemia. These uncommon malignancies are associated with an aggressive clinical course, relatively rapid progression to overt acute myeloid leukemia (AML) and poor survival outcomes, raising controversies on their classification as distinct clinico-pathologic entities. Furthermore, fit patients with NPM1-mutated MNs with <20% blasts could benefit most from upfront intensive chemotherapy for AML rather than from moderate intensity MDS-directed therapies, although no firm conclusion can currently be drawn on best therapeutic approaches, due to the limited available data, obtained from small and mainly retrospective series. Caution is also suggested in definitely diagnosing NPM1-mutated MNs with blast count <20%, since NPM1-mutated AML cases frequently present dysplastic features and multilineage bone marrow cells showing abnormal cytoplasmic NPM1 protein delocalization by immunohistochemical staining, therefore belonging to NPM1-mutated clone regardless of blast morphology. Further prospective studies are warranted to definitely assess whether NPM1 mutations may become sufficient to diagnose AML, irrespective of blast percentage.
Collapse
|
39
|
Abstract
Acute myeloid leukemia (AML) is a clinically, morphologically, and genetically heterogeneous disorder. Like many malignancies, the genomic landscape of pediatric AML has been mapped recently through sequencing of large cohorts of patients. Much has been learned about the biology of AML through studies of specific recurrent genetic lesions. Further, genetic lesions have been linked to specific clinical features, response to therapy, and outcome, leading to improvements in risk stratification. Lastly, targeted therapeutic approaches have been developed for the treatment of specific genetic lesions, some of which are already having a positive impact on outcomes. While the advances made based on the discoveries of sequencing studies are significant, much work is left. The biologic, clinical, and prognostic impact of a number of genetic lesions, including several seemingly unique to pediatric patients, remains undefined. While targeted approaches are being explored, for most, the efficacy and tolerability when incorporated into standard therapy is yet to be determined. Furthermore, the challenge of how to study small subpopulations with rare genetic lesions in an already rare disease will have to be considered. In all, while questions and challenges remain, precisely defining the genomic landscape of AML, holds great promise for ultimately leading to improved outcomes for affected patients.
Collapse
Affiliation(s)
- Shannon E Conneely
- Division of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, 1102 Bates Avenue, Feigin Tower, Suite 1025, Houston, TX, 77030, USA
| | - Rachel E Rau
- Division of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, 1102 Bates Avenue, Feigin Tower, Suite 1025, Houston, TX, 77030, USA.
| |
Collapse
|
40
|
Catalano G, Niscola P, Banella C, Diverio D, Trawinska MM, Fratoni S, Iazzoni R, De Fabritiis P, Abruzzese E, Noguera NI. NPM1 Mutated, BCR-ABL1 Positive Myeloid Neoplasms: Review of the Literature. Mediterr J Hematol Infect Dis 2020; 12:e2020083. [PMID: 33194157 PMCID: PMC7643801 DOI: 10.4084/mjhid.2020.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
Breakpoint cluster region - Abelson (BCR-ABL1) chimeric protein and mutated Nucleophosmin (NPM1) are often present in hematological cancers, but they rarely coexist in the same disease. Both anomalies are considered founder mutations that inhibit differentiation and apoptosis, but BCR-ABL1 could act as a secondary mutation conferring a proliferative advantage to a pre-neoplastic clone. The 2016 World Health Organization (WHO) classification lists the provisional acute myeloid leukemia (AML) with BCR-ABL1, which must be diagnosed differentially from the rare blast phase (BP) onset of chronic myeloid leukemia (CML), mainly because of the different therapeutic approach in the use of tyrosine kinase inhibitors (TKI). Here we review the BCR/ABL1 plus NPMc+ published cases since 1975 and describe a case from our institution in order to discuss the clinical and molecular features of this rare combination, and report the latest acquisition about an occurrence that could pertain either to the rare AML BCR-ABL1 positive or the even rarer CML-BP with mutated NPM1 at the onset. Differential diagnosis is based on careful analysis of genotypic and phenotypic features and anamnestic, clinical evolution, and background data. Therapeutic decisions must consider the broader clinical aspects, the comparatively mild effects of TKI therapy versus the great benefit that might bring to most of the patients, as may be incidentally demonstrated by our case history.
Collapse
Affiliation(s)
- Gianfranco Catalano
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
- Neuro Oncohematology Unit, Santa Lucia Foundation, IRCCS. Rome, Italy
- Hematology Unit, Sant’ Eugenio Hospital, Tor Vergata University of Rome, Rome, Italy
| | - Pasquale Niscola
- Hematology Unit, Sant’ Eugenio Hospital, Tor Vergata University of Rome, Rome, Italy
| | - Cristina Banella
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
- Neuro Oncohematology Unit, Santa Lucia Foundation, IRCCS. Rome, Italy
| | - Daniela Diverio
- Hematology, Department of Precision and Translational Medicine, Policlinico Umberto I, “Sapienza” University of Rome, Rome, Italy
| | | | - Stefano Fratoni
- Department of Pathology (UOSD Anatomia Patologica) A.S.L. Roma2, Sant’ Eugenio Hospital, Rome, Italy
| | - Rita Iazzoni
- Department of Clinical Pathology (U.O.C. Laboratorio) A.S.L. Roma2, Sant’ Eugenio Hospital, Rome, Italy
| | - Paolo De Fabritiis
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
- Hematology Unit, Sant’ Eugenio Hospital, Tor Vergata University of Rome, Rome, Italy
| | - Elisabetta Abruzzese
- Hematology Unit, Sant’ Eugenio Hospital, Tor Vergata University of Rome, Rome, Italy
| | - Nelida Ines Noguera
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
- Neuro Oncohematology Unit, Santa Lucia Foundation, IRCCS. Rome, Italy
| |
Collapse
|
41
|
Di Natale C, Florio D, Di Somma S, Di Matteo A, Federici L, Netti PA, Morelli G, Malfitano AM, Marasco D. Proteostasis unbalance of nucleophosmin 1 in Acute Myeloid Leukemia: An aggregomic perspective. Int J Biol Macromol 2020; 164:3501-3507. [PMID: 32890557 DOI: 10.1016/j.ijbiomac.2020.08.248] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 01/22/2023]
Abstract
The role exerted by the nucleus in the regulation of proteostasis in both health and disease is recognized of outmost importance, even though not fully understood. Many recent investigations are focused on its ability to modulate and coordinate protein quality control machineries in mammalian cells. Nucleophosmin 1 (NPM1) is one of the most abundant nucleolar proteins and its gene is mutated in ~30% of Acute Myeloid Leukemia (AML) patients. Mutations are localized in the C-terminal domain of the protein and cause cytoplasmatically delocalized and possibly aggregated forms of NPM1 (NPM1c+). Therapeutic interventions targeted on NPM1c+ are in demand and, to this end, deeper knowledge of NPM1c+ behavior in the blasts' cytosol is required. Here by means of complementary biophysical techniques we compared the conformational and aggregative behavior of the entire C-terminal domains of NPM1wt and type A NPM1c+ (bearing the most common mutation). Overall data show that only Cterm_mutA is able to form amyloid-like assemblies with fibrillar morphology and that the oligomers are toxic in human neuroblastoma SHSY cells. This study adds a novel piece of knowledge to the comprehension of the molecular roles exerted by cytoplasmatic NPM1c+ and suggests the exploitation of the amyloidogenic propensity of NPM1c+ as a new strategy for targeting AML with NPM1 mutations.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, University of Naples "Federico II", 80134, Italy; Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", 80134, Italy
| | - Sarah Di Somma
- Department of Translational Medical Science, University of Naples Federico II, 80131 Napoli, Italy
| | - Adele Di Matteo
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biochemical Sciences "A Rossi Fanelli" - Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Federici
- Center of Advanced Studies and Technology (CAST) and Department of Clinical, Oral and Biotechnological Sciences, University of Chieti "G. d'Annunzio", 66100 Chieti, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy; Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, University of Naples "Federico II", 80134, Italy
| | - Anna Maria Malfitano
- Department of Translational Medical Science, University of Naples Federico II, 80131 Napoli, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80134, Italy.
| |
Collapse
|
42
|
El-Gamal RAER, Hashem AES, Habashy DM, Abou Elwafa MAZ, Boshnak NH. Flow cytometry in detection of Nucleophosmin 1 mutation in acute myeloid leukemia patients: A reproducible tertiary hospital experience. Int J Lab Hematol 2020; 43:68-75. [PMID: 32856429 DOI: 10.1111/ijlh.13317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/18/2020] [Accepted: 07/29/2020] [Indexed: 12/08/2022]
Abstract
INTRODUCTION Nucleophosmin 1 (NPM1) mutation is one of the most frequent gene mutations in adult acute myeloid leukemia (AML), being detected in 35% of all cases and in up to 60% of patients with normal karyotype AML. AML with mutated NPM1 has distinct pathology, immunophenotyping, and confirmed favorable prognostic significance. Hence, AML with mutated NPM1 is a separate entity in the revised 2016 World Health Organization classification. This study aimed to evaluate the use of a reproducible flow cytometry approach in the assay of mutant NPM1 protein in AML patients and to correlate flow cytometric results with the NPM1 gene mutation. METHODS Eighty-nine newly diagnosed AML patients were evaluated for the expression of mutant NPM1 using flow cytometry and for the presence of NPM1 exon 12 mutations using high-resolution melting polymerase chain reaction (HRM PCR). RESULTS The NPM1 mutation was found in 35 (39.3%) patients by HRM PCR. These patients showed a significantly higher level of percentage of positive-stained cells (% positive cells) and normalized median fluorescence intensity (MFI) for mutant NPM1 by flow cytometry than the negative mutation group. CONCLUSION Flow cytometric detection of mutant NPM1 offers a possible tool to indicate NPM1 mutational status.
Collapse
Affiliation(s)
| | - Azza El-Sayed Hashem
- Department of Clinical Pathology, Hematology Unit, Ain Shams University, Cairo, Egypt
| | - Deena Mohamed Habashy
- Department of Clinical Pathology, Hematology Unit, Ain Shams University, Cairo, Egypt
| | | | - Noha Hussein Boshnak
- Department of Clinical Pathology, Hematology Unit, Ain Shams University, Cairo, Egypt
| |
Collapse
|
43
|
Human MYC G-quadruplex: From discovery to a cancer therapeutic target. Biochim Biophys Acta Rev Cancer 2020; 1874:188410. [PMID: 32827579 DOI: 10.1016/j.bbcan.2020.188410] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Overexpression of the MYC oncogene is a molecular hallmark of both cancer initiation and progression. Targeting MYC is a logical and effective cancer therapeutic strategy. A special DNA secondary structure, the G-quadruplex (G4), is formed within the nuclease hypersensitivity element III1 (NHE III1) region, located upstream of the MYC gene's P1 promoter that drives the majority of its transcription. Targeting such G4 structures has been a focus of anticancer therapies in recent decades. Thus, a comprehensive review of the MYC G4 structure and its role as a potential therapeutic target is timely. In this review, we first outline the discovery of the MYC G4 structure and evidence of its formation in vitro and in cells. Then, we describe the functional role of G4 in regulating MYC gene expression. We also summarize three types of MYC G4-interacting proteins that can promote, stabilize and unwind G4 structures. Finally, we discuss G4-binding molecules and the anticancer activities of G4-stabilizing ligands, including small molecular compounds and peptides, and assess their potential as novel anticancer therapeutics.
Collapse
|
44
|
Beziat G, Tavitian S, Bertoli S, Huguet F, Largeaud L, Luquet I, Vergez F, Rieu J, Bories P, Delabesse E, Récher C. Dactinomycin in acute myeloid leukemia with NPM1 mutations. Eur J Haematol 2020; 105:302-307. [DOI: 10.1111/ejh.13438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Guillaume Beziat
- Service d'Hématologie Institut Universitaire du Cancer de Toulouse Oncopole Centre Hospitalier Universitaire de Toulouse Toulouse France
| | - Suzanne Tavitian
- Service d'Hématologie Institut Universitaire du Cancer de Toulouse Oncopole Centre Hospitalier Universitaire de Toulouse Toulouse France
| | - Sarah Bertoli
- Service d'Hématologie Institut Universitaire du Cancer de Toulouse Oncopole Centre Hospitalier Universitaire de Toulouse Toulouse France
- Université Toulouse III Paul Sabatier Toulouse France
| | - Françoise Huguet
- Service d'Hématologie Institut Universitaire du Cancer de Toulouse Oncopole Centre Hospitalier Universitaire de Toulouse Toulouse France
| | - Laetitia Largeaud
- Université Toulouse III Paul Sabatier Toulouse France
- Laboratoire d’Hématologie Institut Universitaire du Cancer de Toulouse Oncopole Centre Hospitalier Universitaire de Toulouse Toulouse France
| | - Isabelle Luquet
- Laboratoire d’Hématologie Institut Universitaire du Cancer de Toulouse Oncopole Centre Hospitalier Universitaire de Toulouse Toulouse France
| | - François Vergez
- Laboratoire d’Hématologie Institut Universitaire du Cancer de Toulouse Oncopole Centre Hospitalier Universitaire de Toulouse Toulouse France
| | - Jean‐Baptiste Rieu
- Laboratoire d’Hématologie Institut Universitaire du Cancer de Toulouse Oncopole Centre Hospitalier Universitaire de Toulouse Toulouse France
| | - Pierre Bories
- Réseau Onco‐Occitanie Institut Universitaire du Cancer de Toulouse‐Oncopole Toulouse France
| | - Eric Delabesse
- Université Toulouse III Paul Sabatier Toulouse France
- Laboratoire d’Hématologie Institut Universitaire du Cancer de Toulouse Oncopole Centre Hospitalier Universitaire de Toulouse Toulouse France
| | - Christian Récher
- Service d'Hématologie Institut Universitaire du Cancer de Toulouse Oncopole Centre Hospitalier Universitaire de Toulouse Toulouse France
- Université Toulouse III Paul Sabatier Toulouse France
| |
Collapse
|
45
|
Abstract
Acute myeloid leukemia (AML) has been shown to undergo multiple acquired mutations in hematopoietic cell lineages over years before becoming clinically apparent. The early stage of AML (before it becomes clinically recognizable) may be characterized by acquisition of some, but not all, leukemia-related somatic mutations in hematopoietic stem cells (HSCs). The physiological roles of these mutations remain puzzling. These HSCs have been termed as preleukemic HSCs. However, those frequent acquired somatic mutations are also found in healthy aging adults, namely, “age-related clonal hematopoiesis.” Multiple studies have demonstrated that the preleukemic HSCs survive through chemotherapy and then contribute to the relapse and the development of de novo AML. Whether preleukemic HSCs should be targeted or whether a preventive therapy should be considered for those individuals remains to be determined. This article aims to shed light on this special subject and to discuss the roles of preleukemic HSCs in leukemogenesis.
Collapse
|
46
|
NPM1 mutations define a specific subgroup of MDS and MDS/MPN patients with favorable outcomes with intensive chemotherapy. Blood Adv 2020; 3:922-933. [PMID: 30902805 DOI: 10.1182/bloodadvances.2018026989] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/09/2019] [Indexed: 11/20/2022] Open
Abstract
Nucleophosmin (NPM1) mutations are common in acute myeloid leukemia and are associated with high remission rates and prolonged survival with intensive chemotherapy. NPM1 mutations are rare in myelodysplastic syndromes (MDS) or myelodysplastic/myeloproliferative neoplasm (MDS/MPN), and the clinical outcomes of these patients, when treated with intensive chemotherapy, are unknown. We retrospectively evaluated the clinicopathologic characteristics and the impact of therapy in 31 patients with MDS or MDS/MPN and NPM1 mutations. Next-generation sequencing was performed at diagnosis in 22 patients. Median age was 62 years (range, 19-86). Twenty-four patients (77%) had normal karyotype, and all had multilineage dysplasia. Most patients could be classified as MDS with excess blasts (19/31, 61%). NPM1 mutations were detected at a median allele frequency of 0.38 (range, 0.09-0.49). Mutation burden did not correlate with bone marrow blast frequency, and its clearance seemed to be associated with decreased morphologic dysplasia. Ten of the 31 patients (32%) received cytotoxic chemotherapy, 20 (65%) hypomethylating agents, and 1 (4%) lenalidomide. Sequential sequencing was available in 16 (52%) patients, and mutation burden correlated with disease status and response to therapy. Patients treated with chemotherapy had higher complete response rates (90% vs 28%, P = .004), longer median progression-free survival (not reached vs 7.5 months, P = .023), and overall survival (not reached vs 16 months, P = .047). Intensive chemotherapy and allogeneic stem cell transplantation (SCT) may be associated with improved clinical outcomes in patients with NPM1-mutated MDS or MDS/MPN who are candidates for this form of therapy.
Collapse
|
47
|
Guolo F, Minetto P, Clavio M, Marcolin R, Miglino M, Passannante M, Caviglia F, Ballerini F, Tedone E, Kunkl A, Mangerini R, Contini P, Colombo N, Cagnetta A, Cea M, Carminati E, Pugliese G, Gobbi M, Lemoli RM. Prognostic relevance of a blastic plasmacytoid dendritic cell neoplasm-like immunophenotype in cytogenetically normal acute myeloid leukemia patients. Leuk Lymphoma 2020; 61:1695-1701. [PMID: 32186422 DOI: 10.1080/10428194.2020.1737685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a poor prognosis myeloid malignancy characterized by an atypical phenotype (CD123+, CD56+, and CD4+). We reported that BPDCN-like phenotype (CD123+ and either CD56+ or CD4+ or both) confers poor prognosis to acute myeloblastic leukemia (AML) patients with mutated NPM1. Here, we evaluated the incidence and the prognostic relevance of BPDCN-like phenotype in cytogenetically normal AML (CN-AML) patients. From 2006 to 2016, 83 young (age <60 yrs), consecutive, CN-AML patients underwent intensive treatment. Fifteen patients (18%) showed a BPDCN-like phenotype with no difference between NPM1-mutated (mut) and NPM1-wt patients. It did not significantly affect survival neither in the whole cohort, nor in NPM1-wt patients. However, as reported, it conferred a dismal prognosis in NPM1-mut AML (p < 0.001), irrespectively of the mutational status for FLT3-ITD. In conclusion we show that BPDCN-like phenotype displays a negative prognostic relevance only in NPM1-mutated AML.
Collapse
Affiliation(s)
- Fabio Guolo
- Department of Oncology and Hematology, Ospedale Policlinico San Martino, Genoa, Italy.,Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genoa, Italy
| | - Paola Minetto
- Department of Oncology and Hematology, Ospedale Policlinico San Martino, Genoa, Italy.,Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genoa, Italy
| | - Marino Clavio
- Department of Oncology and Hematology, Ospedale Policlinico San Martino, Genoa, Italy.,Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genoa, Italy
| | - Riccardo Marcolin
- Department of Oncology and Hematology, Ospedale Policlinico San Martino, Genoa, Italy.,Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genoa, Italy
| | - Maurizio Miglino
- Department of Oncology and Hematology, Ospedale Policlinico San Martino, Genoa, Italy.,Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genoa, Italy
| | - Monica Passannante
- Department of Oncology and Hematology, Ospedale Policlinico San Martino, Genoa, Italy.,Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genoa, Italy
| | - Fabrizio Caviglia
- Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genoa, Italy
| | - Filippo Ballerini
- Department of Oncology and Hematology, Ospedale Policlinico San Martino, Genoa, Italy.,Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genoa, Italy
| | - Elisabetta Tedone
- Department of Oncology and Hematology, Ospedale Policlinico San Martino, Genoa, Italy.,Clinical Flow Cytometry Unit, Department of Pathology, Ospedale Policlinico San Martino, Genoa, Italy
| | - Annalisa Kunkl
- Department of Oncology and Hematology, Ospedale Policlinico San Martino, Genoa, Italy.,Clinical Flow Cytometry Unit, Department of Pathology, Ospedale Policlinico San Martino, Genoa, Italy
| | - Rosa Mangerini
- Department of Oncology and Hematology, Ospedale Policlinico San Martino, Genoa, Italy.,Clinical Flow Cytometry Unit, Department of Pathology, Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Contini
- Clinical Flow Cytometry Unit, Department of Pathology, Ospedale Policlinico San Martino, Genoa, Italy
| | - Nicoletta Colombo
- Department of Oncology and Hematology, Ospedale Policlinico San Martino, Genoa, Italy.,Clinical Flow Cytometry Unit, Department of Pathology, Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonia Cagnetta
- Department of Oncology and Hematology, Ospedale Policlinico San Martino, Genoa, Italy
| | - Michele Cea
- Department of Oncology and Hematology, Ospedale Policlinico San Martino, Genoa, Italy.,Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genoa, Italy
| | - Enrico Carminati
- Department of Oncology and Hematology, Ospedale Policlinico San Martino, Genoa, Italy.,Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genoa, Italy
| | - Girolamo Pugliese
- Department of Oncology and Hematology, Ospedale Policlinico San Martino, Genoa, Italy.,Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genoa, Italy
| | - Marco Gobbi
- Department of Oncology and Hematology, Ospedale Policlinico San Martino, Genoa, Italy.,Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genoa, Italy
| | - Roberto Massimo Lemoli
- Department of Oncology and Hematology, Ospedale Policlinico San Martino, Genoa, Italy.,Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, Genoa, Italy
| |
Collapse
|
48
|
Panuzzo C, Signorino E, Calabrese C, Ali MS, Petiti J, Bracco E, Cilloni D. Landscape of Tumor Suppressor Mutations in Acute Myeloid Leukemia. J Clin Med 2020; 9:jcm9030802. [PMID: 32188030 PMCID: PMC7141302 DOI: 10.3390/jcm9030802] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia is mainly characterized by a complex and dynamic genomic instability. Next-generation sequencing has significantly improved the ability of diagnostic research to molecularly characterize and stratify patients. This detailed outcome allowed the discovery of new therapeutic targets and predictive biomarkers, which led to develop novel compounds (e.g., IDH 1 and 2 inhibitors), nowadays commonly used for the treatment of adult relapsed or refractory AML. In this review we summarize the most relevant mutations affecting tumor suppressor genes that contribute to the onset and progression of AML pathology. Epigenetic modifications (TET2, IDH1 and IDH2, DNMT3A, ASXL1, WT1, EZH2), DNA repair dysregulation (TP53, NPM1), cell cycle inhibition and deficiency in differentiation (NPM1, CEBPA, TP53 and GATA2) as a consequence of somatic mutations come out as key elements in acute myeloid leukemia and may contribute to relapse and resistance to therapies. Moreover, spliceosomal machinery mutations identified in the last years, even if in a small cohort of acute myeloid leukemia patients, suggested a new opportunity to exploit therapeutically. Targeting these cellular markers will be the main challenge in the near future in an attempt to eradicate leukemia stem cells.
Collapse
Affiliation(s)
- Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Elisabetta Signorino
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Chiara Calabrese
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Muhammad Shahzad Ali
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Jessica Petiti
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Enrico Bracco
- Department of Oncology, University of Turin, 10124 Turin, Italy;
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
- Correspondence: ; Tel.: +39-011-9026610; Fax: +39-011-9038636
| |
Collapse
|
49
|
Biernacki MA, Bleakley M. Neoantigens in Hematologic Malignancies. Front Immunol 2020; 11:121. [PMID: 32117272 PMCID: PMC7033457 DOI: 10.3389/fimmu.2020.00121] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
T cell cancer neoantigens are created from peptides derived from cancer-specific aberrant proteins, such as mutated and fusion proteins, presented in complex with human leukocyte antigens on the cancer cell surface. Because expression of the aberrant target protein is exclusive to malignant cells, immunotherapy directed against neoantigens should avoid “on-target, off-tumor” toxicity. The efficacy of neoantigen vaccines in melanoma and glioblastoma and of adoptive transfer of neoantigen-specific T cells in epithelial tumors indicates that neoantigens are valid therapeutic targets. Improvements in sequencing technology and innovations in antigen discovery approaches have facilitated the identification of neoantigens. In comparison to many solid tumors, hematologic malignancies have few mutations and thus fewer potential neoantigens. Despite this, neoantigens have been identified in a wide variety of hematologic malignancies. These include mutated nucleophosmin1 and PML-RARA in acute myeloid leukemia, ETV6-RUNX1 fusions and other mutated proteins in acute lymphoblastic leukemia, BCR-ABL1 fusions in chronic myeloid leukemia, driver mutations in myeloproliferative neoplasms, immunoglobulins in lymphomas, and proteins derived from patient-specific mutations in chronic lymphoid leukemias. We will review advances in the field of neoantigen discovery, describe the spectrum of identified neoantigens in hematologic malignancies, and discuss the potential of these neoantigens for clinical translation.
Collapse
Affiliation(s)
- Melinda A Biernacki
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
50
|
Chen Y, Hu J. Nucleophosmin1 (NPM1) abnormality in hematologic malignancies, and therapeutic targeting of mutant NPM1 in acute myeloid leukemia. Ther Adv Hematol 2020; 11:2040620719899818. [PMID: 32071709 PMCID: PMC6997955 DOI: 10.1177/2040620719899818] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/18/2019] [Indexed: 01/07/2023] Open
Abstract
Nucleophosmin (NPM1) is an abundant nucleolar protein that is
implicated in a variety of biological processes and in the pathogenesis of
several human malignancies. For hematologic malignancies, approximately
one-third of anaplastic large-cell non-Hodgkin’s lymphomas were found to express
a fusion between NPM1 and the catalytic domain of anaplastic
lymphoma receptor tyrosine kinase. About 50–60% of acute myeloid leukemia
patients with normal karyotype carry NPM1 mutations, which are
characterized by cytoplasmic dislocation of the NPM1 protein.
Nevertheless, NPM1 is overexpressed in various hematologic and
solid tumor malignancies. NPM1 overexpression is considered a
prognostic marker of recurrence and progression of cancer. Thus,
NPM1 abnormalities play a critical role in several types of
hematologic malignancies. This has led to intense interest in the development of
an NPM1 targeting strategy for cancer therapy. The aim of this
review is to summarize present knowledge on NPM1 origin,
pathogenesis, and therapeutic interventions in hematologic malignancies.
Collapse
Affiliation(s)
- Yingyu Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian 350001, China
| | - Jianda Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|