1
|
Bonisoli GL, Argentino G, Friso S, Tinazzi E. Extracellular Vesicles Analysis as Possible Signatures of Antiphospholipid Syndrome Clinical Features. Int J Mol Sci 2025; 26:2834. [PMID: 40243411 PMCID: PMC11989148 DOI: 10.3390/ijms26072834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/09/2025] [Accepted: 03/15/2025] [Indexed: 04/18/2025] Open
Abstract
Antiphospholipid syndrome (APS) is a rare autoimmune disease characterized by thrombosis and obstetric complications. Extracellular vesicles (EVs) of either platelet and endothelial origin are recognized to be involved in the pathophysiology of the disease. This study aimed to evaluate the potential role of endothelial- and platelet-derived extracellular vesicles and the clinical features or progression of APS. We enrolled 22 patients diagnosed with APS and 18 age and sex-matched healthy controls. We determined APS-specific antibody positivity and clinical manifestations in APS affected patients, with a focus on neurological, cardiovascular, dermatological, hematological manifestations, and pregnancy-related complications. Platelet-poor plasma was collected from either patients and controls for the analysis of EVs by flow cytometry technology using monoclonal antibodies to specifically identify those derived from either platelets and/or endothelial cells. EVs of endothelial and platelet origins were overall significantly increased in patients as compared to healthy controls. Furthermore, a significant association was also observed between the number of extracellular vesicles and specific organ involvement, particularly central nervous system manifestations, hematological abnormalities, and obstetric complications. An elevated proportion of endothelial-derived EVs in APS and a reduction of resting endothelial cell-derived EVs were observed in APS-affected women with obstetric complications. Our findings highlight the involvement of endothelial cells and platelets in mirroring the activities of endothelial cells and platelets in APS. Additionally, extracellular vesicles may serve as potential predictors of organ involvement and disease-related damage.
Collapse
Affiliation(s)
| | | | | | - Elisa Tinazzi
- Department of Medicine, University of Verona, 37134 Verona, Italy
| |
Collapse
|
2
|
Yang L, Guo R, Liu H, Chen B, Li C, Liu R, Liao S, Xie Q, Yin G. Mechanism of antiphospholipid antibody-mediated thrombosis in antiphospholipid syndrome. Front Immunol 2025; 16:1527554. [PMID: 40181965 PMCID: PMC11966034 DOI: 10.3389/fimmu.2025.1527554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Antiphospholipid syndrome (APS) is an autoimmune disease characterized by the occurrence of thrombotic or obstetrical events in patients with persistent antiphospholipid antibodies (aPL). Thrombotic events, the primary pathological hallmarks and clinical manifestations, are among the leading causes of mortality in APS. Our understanding of the mechanism underlying APS-related thrombosis has significantly advanced in recent years. The presence of aPL, particularly anti-β2-glycoprotein I (anti-β2GPI) antibodies, is a major driver of thrombosis. The proposed pathophysiological mechanisms of aPL-mediated pro-thrombotic events can be broadly categorized into three types: disruption of anticoagulant reactions and fibrinolysis, interference with coagulation cascade cells, and complement activation. A triggering 'second hit' is typically necessary to initiate thrombosis. The development of animal models of APS has further refined our understanding of the role of aPL in thrombosis. In this review, we focused on the role of β2GPI-dependent aPL in thrombosis of thrombotic APS.
Collapse
Affiliation(s)
- Leiyi Yang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruibing Guo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongjiang Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Changpei Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruiting Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyi Liao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Geng Yin
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Xie A, Liu Z, Wang S, Yuan M, Xie L, Liu S, Wei X. Long-Term Follow-Up of Patients With Positive Antiphospholipid Antibodies After Fetal Death: Five Typical Cases From a Prospective Cohort Study. Immun Inflamm Dis 2025; 13:e70158. [PMID: 39945244 PMCID: PMC11822662 DOI: 10.1002/iid3.70158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/30/2024] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Testing of antiphospholipid antibodies (aPLs) has attracted increasing attention for its association with thrombosis and pregnancy loss. However, few studies reported long-term monitoring outcomes of patients who experienced pregnancy loss and exhibited positivity for aPLs. OBJECTIVE We investigated the causes of fetal death in five cases with positive aPLs and traced the patients for changes in aPLs, subsequent pregnancy outcomes, and thrombotic events. METHODS This is a report of five typical cases from a prospective cohort study on the diagnosis of antiphospholipid syndrome (APS) in patients who were hospitalized for fetal death in Xining, China. Long-term follow-up was conducted and repeat aPL testing was recommended when the patients were confirmed or suspect APS. RESULTS All five patients had subsequent pregnancies that resulted in term livebirths. None of the patients experienced thrombotic events. One showed progression of aPL serostatus from alone IgM of aβ2GP-1 to both IgM and IgG of aβ2GP-1, two exhibited fluctuation of aPL serostatus, and one had negative conversion, and the other one had not retested aPLs and did not receive any intervention with uneventful subsequent pregnancy. CONCLUSIONS The aPLs of a patient with APS may develop or may disappear, so long-term monitoring cannot be discounted. Also, a woman who has experienced fetal death and exhibits positivity for aPLs may not necessarily be a patient with APS, as there are a variety of conditions in which aPLs appear.
Collapse
Affiliation(s)
- Anxia Xie
- Research Center for High Altitude MedicineQinghai UniversityXiningChina
- Department of ObstetricsQinghai Provincial People's HospitalXiningChina
| | - Zhanmei Liu
- Department of ObstetricsQinghai Red Cross HospitalXiningChina
| | - Shenglan Wang
- Department of ObstetricsQinghai Red Cross HospitalXiningChina
| | - Mingqian Yuan
- Department of ObstetricsQinghai Provincial People's HospitalXiningChina
| | - Ling Xie
- Department of ObstetricsQinghai Red Cross HospitalXiningChina
| | - Shengdong Liu
- Department of ObstetricsQinghai Red Cross HospitalXiningChina
| | - Xiaoxing Wei
- Research Center for High Altitude MedicineQinghai UniversityXiningChina
- Medical CollegeQinghai UniversityXiningChina
| |
Collapse
|
4
|
Xu W, Huang M, Dong R, Yan S, An Y, Liu B, Ma Z, Mu K, Yang Q. Anti-carbamylated protein antibodies drive AEC II toward a profibrotic phenotype by interacting with carbamylated TLR5. Rheumatology (Oxford) 2024; 63:2874-2886. [PMID: 38366924 DOI: 10.1093/rheumatology/keae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/19/2024] Open
Abstract
OBJECTIVES This study looked at the role of anti-carbamylated protein (anti-CarP) antibodies in contributing to lung fibrosis in CTD-associated interstitial lung disease (ILD) in an autoantigen-dependent manner. METHODS ELISA was used to test serum samples, including 89 from the CTD-ILD group and 170 from the non-CTD-ILD group, for anti-CarP levels. Male C57BL/6 mice were used for the pulmonary fibrosis model and anti-CarP treatment in vivo (n = 5) and patient serum-derived or commercialized anti-CarP was used for cell treatment. We identified the carbamylated membrane protein via immunofluorescence (IF) and co-immunoprecipitation followed by mass spectrometry (MS) analysis. Quantitative RT-PCR, IF and western blot were performed to explore the antigen-dependent role of anti-CarP. A native electrophoretic mobility shift assay and MS analysis were used to verify direct interaction and carbamylation sites. RESULTS A significantly higher serum anti-CarP level was observed in CTD with ILD than without ILD. In vivo, intrapulmonary delivery of anti-CarP induces epithelial-mesenchymal transition (EMT) and microfibrotic foci. Carbamylation was enriched in type II alveolar epithelial cells (AEC II). A novel carbamylated membrane receptor, specifically recognized by anti-CarP, was identified as toll-like receptor 5 (TLR5). We found anti-CarP induces the nuclear translocation of NF-κB and downstream events, including EMT and expression of inflammatory cytokines in AEC II, which were reversed by TLR5 blocking or TLR5 knockdown. Moreover, up to 12 lysine carbamylation sites were found in TLR5 ectodomain, allowing the interaction of anti-CarP with carbamylated TLR5. CONCLUSIONS Overall, we found anti-CarP drives aberrant AEC II activation by interacting with carbamylated TLR5 to promote ILD progression.
Collapse
Affiliation(s)
- Wei Xu
- Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Minghua Huang
- Department of Respiratory Medicine, Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Rongrong Dong
- Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Suyan Yan
- Department of Rheumatology and Immunology, Shandong Province Hospital of Shandong First Medical University, Jinan, China
| | - Yan An
- Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baocheng Liu
- Department of Rheumatology and Immunology, Shandong Province Hospital of Shandong First Medical University, Jinan, China
| | - Zhenzhen Ma
- Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Rheumatology and Immunology, Shandong Province Hospital of Shandong First Medical University, Jinan, China
- Department of Integrated traditional Chinese and Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kun Mu
- Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Qingrui Yang
- Department of Rheumatology and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Rheumatology and Immunology, Shandong Province Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
5
|
Meroni PL, Borghi MO, Raschi E, Grossi C, Lonati PA, Bodio C, Da Via A, Curreli D, Cecchini G. TO SHOw how we have been ENgaged in the APS FiELD (What we learned on APS collaborating with Professor Yehuda Shoenfeld). Autoimmun Rev 2024; 23:103613. [PMID: 39216616 DOI: 10.1016/j.autrev.2024.103613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The present review reports the history of our scientific collaboration with Professor Shoenfeld's group. The collaboration started at the end of the 80s and was mainly focused on studies on the pathogenetic mechanisms of the anti-phospholipid syndrome (APS). Following the initial collaborative studies on antibodies against endothelium in systemic autoimmune vasculitis, we were able to use a similar strategy in APS. This line of research has resulted in the characterization of beta 2 glycoprotein I (β2GPI)-dependent anti-phospholipid antibodies (aPL) as mechanisms capable of mediating an endothelial perturbation crucial for the pathogenesis of APS. Thanks to these studies, the collaboration has led to the characterization of the membrane receptors for β2GPI and the cellular signaling resulting from antibody binding. This mechanism has also been shown to mediate the aPL effect on other cell types involved in APS pathogenesis. Finally, the exchange of information made it possible to replicate and extend the setting of animal models of the syndrome, which proved to be valuable tools for understanding the pathogenesis of the syndrome. It has been a long story recently refueled by common studies on the similarity of pro-inflammatory and pro-coagulant endotheliopathy in APS and in COVID-19.
Collapse
Affiliation(s)
- Pier Luigi Meroni
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy.
| | - Maria Orietta Borghi
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy; Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| | - Elena Raschi
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Claudia Grossi
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Paola Adele Lonati
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Caterina Bodio
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Arianna Da Via
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Daniele Curreli
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Germana Cecchini
- Immunorheumatology Research Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
6
|
Müller-Calleja N, Ruf W, Lackner KJ. Lipid-binding antiphospholipid antibodies: significance for pathophysiology and diagnosis of the antiphospholipid syndrome. Crit Rev Clin Lab Sci 2024; 61:370-387. [PMID: 38293818 DOI: 10.1080/10408363.2024.2305121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/13/2023] [Accepted: 01/10/2024] [Indexed: 02/01/2024]
Abstract
The antiphospholipid syndrome (APS) is an autoimmune disease characterized by the presence of pathogenic antiphospholipid antibodies (aPL). Since approximately 30 years ago, lipid-binding aPL, which do not require a protein cofactor, have been regarded as irrelevant for APS pathogenesis even though anticardiolipin are a diagnostic criterion of APS. In this review, we will summarize the available evidence from in vitro studies, animal models, and epidemiologic studies, which suggest that this concept is no longer tenable. Accordingly, we will only briefly touch on the role of other aPL in APS. This topic has been amply reviewed in detail elsewhere. We will discuss the consequences for laboratory diagnostics and future research required to resolve open questions related to the pathogenic role of different aPL specificities.
Collapse
Affiliation(s)
- Nadine Müller-Calleja
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Karl J Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
7
|
Feng W, Qiao J, Tan Y, Liu Q, Wang Q, Yang B, Yang S, Cui L. Interaction of antiphospholipid antibodies with endothelial cells in antiphospholipid syndrome. Front Immunol 2024; 15:1361519. [PMID: 39044818 PMCID: PMC11263079 DOI: 10.3389/fimmu.2024.1361519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Antiphospholipid syndrome (APS) is an autoimmune disease with arteriovenous thrombosis and recurrent miscarriages as the main clinical manifestations. Due to the complexity of its mechanisms and the diversity of its manifestations, its diagnosis and treatment remain challenging issues. Antiphospholipid antibodies (aPL) not only serve as crucial "biomarkers" in diagnosing APS but also act as the "culprits" of the disease. Endothelial cells (ECs), as one of the core target cells of aPL, bridge the gap between the molecular level of these antibodies and the tissue and organ level of pathological changes. A more in-depth exploration of the relationship between ECs and the pathogenesis of APS holds the potential for significant advancements in the precise diagnosis, classification, and therapy of APS. Many researchers have highlighted the vital involvement of ECs in APS and the underlying mechanisms governing their functionality. Through extensive in vitro and in vivo experiments, they have identified multiple aPL receptors on the EC membrane and various intracellular pathways. This article furnishes a comprehensive overview and summary of these receptors and signaling pathways, offering prospective targets for APS therapy.
Collapse
Affiliation(s)
- Weimin Feng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Health Science Centre, Peking University, Beijing, China
| | - Jiao Qiao
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Health Science Centre, Peking University, Beijing, China
| | - Yuan Tan
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Health Science Centre, Peking University, Beijing, China
| | - Qi Liu
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Health Science Centre, Peking University, Beijing, China
| | - Qingchen Wang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Boxin Yang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Shuo Yang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Health Science Centre, Peking University, Beijing, China
| |
Collapse
|
8
|
Mineo C, Shaul PW, Bermas BL. The pathogenesis of obstetric APS: a 2023 update. Clin Immunol 2023; 255:109745. [PMID: 37625670 PMCID: PMC11366079 DOI: 10.1016/j.clim.2023.109745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
The antiphospholipid syndrome (APS) is an autoimmune disease characterized by the persistent presence of antibodies directed against phospholipids and phospholipid-binding proteins that are associated with thrombosis and pregnancy-related morbidity. The latter includes fetal deaths, premature birth and maternal complications. In the early 1990s, a distinct set of autoantibodies, termed collectively antiphospholipid antibodies (aPL), were identified as the causative agents of this disorder. Subsequently histological analyses of the placenta from APS pregnancies revealed various abnormalities, including inflammation at maternal-fetal interface and poor placentation manifested by reduced trophoblast invasion and limited uterine spiral artery remodeling. Further preclinical investigations identified the molecular targets of aPL and the downstream intracellular pathways of key placental cell types. While these discoveries suggest potential therapeutics for this disorder, definitive clinical trials have not been completed. This concise review focuses on the recent developments in the field of basic and translational research pursuing novel mechanisms underlying obstetric APS.
Collapse
Affiliation(s)
- Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, United States.
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, United States
| | - Bonnie L Bermas
- Division of Rheumatic Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
9
|
Tang Z, Shi H, Chen C, Teng J, Dai J, Ouyang X, Liu H, Hu Q, Cheng X, Ye J, Su Y, Sun Y, Pan H, Wang X, Liu J, Su B, Yang C, Xu Y, Liu T. Activation of Platelet mTORC2/Akt Pathway by Anti-β2GP1 Antibody Promotes Thrombosis in Antiphospholipid Syndrome. Arterioscler Thromb Vasc Biol 2023; 43:1818-1832. [PMID: 37381985 DOI: 10.1161/atvbaha.123.318978] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Anti-β2GP1 (β2-glycoprotein 1) antibodies are the primary pathogenic antibody to promote thrombosis in antiphospholipid syndrome (APS), yet the underlying mechanism remains obscure. We aimed to explore the intracellular pathway that mediated platelet activation. METHODS Platelets were isolated from patients with APS and subjected to RNA sequencing. Platelet aggregation, the release of platelet granules, platelet spreading, and clot retraction were detected to evaluate platelet activation. We purified anti-β2GP1 antibodies from patients with APS and the total IgG from healthy donors to stimulate platelets with/without FcγRIIA (Fcγ receptor IIA) blocking antibody or Akt (protein kinase B) inhibitor. Platelet-specific Sin1 (stress-activated protein kinase-interacting protein) deficiency mice were established. The thrombus model of inferior vena cava flow restriction, ferric chloride-induced carotid injury model, and laser-induced vessel wall injury in cremaster arterioles model were constructed after administration of anti-β2GP1 antibodies. RESULTS Combined RNA sequencing and bioinformatics analysis suggested that APS platelets exhibited increased levels of mRNA associated with platelet activation, which was in line with the hyperactivation of APS platelets in response to stimuli. Platelet activation in APS platelets was accompanied by upregulation of the mTORC2 (mammalian target of the rapamycin complex 2)/Akt pathway and increased levels of SIN1 phosphorylation at threonine 86. Anti-β2GP1 antibody derived from patients with APS enhanced platelet activation and upregulated the mTORC2/Akt pathway. Moreover, the Akt inhibitor weakened the potentiating effect of the anti-β2GP1 antibody on platelet activation. Notably, Sin1 deficiency suppresses anti-β2GP1 antibody-enhanced platelet activation in vitro and thrombosis in all 3 models. CONCLUSIONS This study elucidated the novel mechanism involving the mTORC2/Akt pathway, which mediates the promotion of platelet activation and induction of thrombosis by the anti-β2GP1 antibody. The findings suggest that SIN1 may be a promising therapeutic target for the treatment of APS.
Collapse
Affiliation(s)
- Zihan Tang
- Department of Rheumatology and Immunology, Ruijin Hospital (Z.T., H.S., J.T., H.L., Q.H., X.C., J.Y., Y. Su, Y. Sun, H.P., C.Y., T.L.), Shanghai Jiao Tong University School of Medicine, China
| | - Hui Shi
- Department of Rheumatology and Immunology, Ruijin Hospital (Z.T., H.S., J.T., H.L., Q.H., X.C., J.Y., Y. Su, Y. Sun, H.P., C.Y., T.L.), Shanghai Jiao Tong University School of Medicine, China
| | - Changming Chen
- Department of Laboratory Medicine, Ruijin Hospital (C.C., J.D., X.W.), Shanghai Jiao Tong University School of Medicine, China
| | - Jialin Teng
- Department of Rheumatology and Immunology, Ruijin Hospital (Z.T., H.S., J.T., H.L., Q.H., X.C., J.Y., Y. Su, Y. Sun, H.P., C.Y., T.L.), Shanghai Jiao Tong University School of Medicine, China
| | - Jing Dai
- Department of Laboratory Medicine, Ruijin Hospital (C.C., J.D., X.W.), Shanghai Jiao Tong University School of Medicine, China
| | - Xinxing Ouyang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Ministry of Education Key Laboratory of Cell Death and Differentiation (X.O., B.S.), Shanghai Jiao Tong University School of Medicine, China
- Department of Tumor Biology, Shanghai Chest Hospital (X.O.), Shanghai Jiao Tong University School of Medicine, China
| | - Honglei Liu
- Department of Rheumatology and Immunology, Ruijin Hospital (Z.T., H.S., J.T., H.L., Q.H., X.C., J.Y., Y. Su, Y. Sun, H.P., C.Y., T.L.), Shanghai Jiao Tong University School of Medicine, China
| | - Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital (Z.T., H.S., J.T., H.L., Q.H., X.C., J.Y., Y. Su, Y. Sun, H.P., C.Y., T.L.), Shanghai Jiao Tong University School of Medicine, China
| | - Xiaobing Cheng
- Department of Rheumatology and Immunology, Ruijin Hospital (Z.T., H.S., J.T., H.L., Q.H., X.C., J.Y., Y. Su, Y. Sun, H.P., C.Y., T.L.), Shanghai Jiao Tong University School of Medicine, China
| | - Junna Ye
- Department of Rheumatology and Immunology, Ruijin Hospital (Z.T., H.S., J.T., H.L., Q.H., X.C., J.Y., Y. Su, Y. Sun, H.P., C.Y., T.L.), Shanghai Jiao Tong University School of Medicine, China
| | - Yutong Su
- Department of Rheumatology and Immunology, Ruijin Hospital (Z.T., H.S., J.T., H.L., Q.H., X.C., J.Y., Y. Su, Y. Sun, H.P., C.Y., T.L.), Shanghai Jiao Tong University School of Medicine, China
| | - Yue Sun
- Department of Rheumatology and Immunology, Ruijin Hospital (Z.T., H.S., J.T., H.L., Q.H., X.C., J.Y., Y. Su, Y. Sun, H.P., C.Y., T.L.), Shanghai Jiao Tong University School of Medicine, China
| | - Haoyu Pan
- Department of Rheumatology and Immunology, Ruijin Hospital (Z.T., H.S., J.T., H.L., Q.H., X.C., J.Y., Y. Su, Y. Sun, H.P., C.Y., T.L.), Shanghai Jiao Tong University School of Medicine, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital (C.C., J.D., X.W.), Shanghai Jiao Tong University School of Medicine, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology (J.L., Y.X.), Shanghai Jiao Tong University School of Medicine, China
| | - Bing Su
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Ministry of Education Key Laboratory of Cell Death and Differentiation (X.O., B.S.), Shanghai Jiao Tong University School of Medicine, China
- Center for Human Translational Immunology at Shanghai Institute of Immunology, Ruijin Hospital (B.S.), Shanghai Jiao Tong University School of Medicine, China
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism (B.S.), Shanghai Jiao Tong University School of Medicine, China
- Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China (B.S.)
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital (Z.T., H.S., J.T., H.L., Q.H., X.C., J.Y., Y. Su, Y. Sun, H.P., C.Y., T.L.), Shanghai Jiao Tong University School of Medicine, China
| | - Yanyan Xu
- Department of Biochemistry and Molecular Cell Biology (J.L., Y.X.), Shanghai Jiao Tong University School of Medicine, China
| | - Tingting Liu
- Department of Rheumatology and Immunology, Ruijin Hospital (Z.T., H.S., J.T., H.L., Q.H., X.C., J.Y., Y. Su, Y. Sun, H.P., C.Y., T.L.), Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
10
|
Patsouras M, Alexopoulou E, Foutadakis S, Tsiki E, Karagianni P, Agelopoulos M, Vlachoyiannopoulos PG. Antiphospholipid antibodies induce proinflammatory and procoagulant pathways in endothelial cells. J Transl Autoimmun 2023; 6:100202. [PMID: 37216142 PMCID: PMC10197110 DOI: 10.1016/j.jtauto.2023.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/01/2023] [Accepted: 04/30/2023] [Indexed: 05/24/2023] Open
Abstract
Antiphospholipid syndrome (APS) is an autoimmune thrombophilia characterized by recurrent thrombotic events and/or pregnancy morbidity in the presence of antiphospholipid antibodies detected either as anti-cardiolipin, anti-β2 Glycoprotein I (anti-β2GPI) or Lupus anticoagulant (LA). Endothelial deregulation characterizes the syndrome. To address gene expression changes accompanying the development of autoimmune phenotype in endothelial cells in the context of APS, we performed transcriptomics analysis in Human Umbilical Vein Endothelial Cells (HUVECs) stimulated with IgG from APS patients and β2GPI, followed by intersection of RNA-seq data with published microarray and ChIP-seq results (Chromatin Immunoprecipitation). Our strategy revealed that during HUVEC activation diverse signaling pathways such as TNF-α, TGF-β, MAPK38, and Hippo are triggered as indicated by Gene Ontology (GO) classification and pathway analysis. Finally, cell biology approaches performed side-by-side in naïve and stimulated cultured HUVECs, as well as, in placenta specimens derived from Healthy donors (HDs) and APS-patients verified the evolution of an APS-characteristic gene expression program in endothelial cells during the initial stages of the disease's development.
Collapse
Affiliation(s)
- Markos Patsouras
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Eirini Alexopoulou
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Spyros Foutadakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou Street, Athens, 11527, Greece
| | - Eirini Tsiki
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Panagiota Karagianni
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Marios Agelopoulos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou Street, Athens, 11527, Greece
| | | |
Collapse
|
11
|
Álvarez D, Morales-Prieto DM, Cadavid ÁP. Interaction between endothelial cell-derived extracellular vesicles and monocytes: A potential link between vascular thrombosis and pregnancy-related morbidity in antiphospholipid syndrome. Autoimmun Rev 2023; 22:103274. [PMID: 36649876 DOI: 10.1016/j.autrev.2023.103274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Antiphospholipid syndrome (APS) is an autoimmune disease driven by a wide group of autoantibodies primarily directed against phospholipid-binding proteins (antiphospholipid antibodies). APS is defined by two main kinds of clinical manifestations: vascular thrombosis and pregnancy-related morbidity. In recent years, in vitro and in vivo assays, as well as the study of large groups of patients with APS, have led some authors to suggest that obstetric and vascular manifestations of the disease are probably the result of different pathogenic mechanisms. According to this hypothesis, the disease could be differentiated into two parallel entities: Vascular APS and obstetric APS. Thus, vascular APS is understood as an acquired thrombophilia in which a generalised phenomenon of endothelial activation and dysfunction (coupled with a triggering factor) causes thrombosis at any location. In contrast, obstetric APS seems to be due to an inflammatory phenomenon accompanied by trophoblast cell dysfunction. The recent approach to APS raises new issues; for instance, the mechanisms by which a single set of autoantibodies can lead to two different clinical entities are unclear. This review will address the monocyte, a cell with well-known roles in haemostasis and pregnancy, as a potential participant in vascular thrombosis and pregnancy-related morbidity in APS. We will discuss how in a steady state the monocyte-endothelial interaction occurs via extracellular vesicles (EVs), and how antiphospholipid antibodies, by inducing endothelial activation and dysfunction, may disturb this interaction to promote the release of monocyte-targeted procoagulant and inflammatory messages.
Collapse
Affiliation(s)
- Daniel Álvarez
- Grupo Reproducción, Departamento Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Diana M Morales-Prieto
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Ángela P Cadavid
- Grupo Reproducción, Departamento Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Grupo de Investigación en Trombosis, Departamento Medicina Interna, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.
| |
Collapse
|
12
|
Abstract
Antiphospholipid syndrome (APS) is a thrombo-inflammatory disease propelled by circulating autoantibodies that recognize cell surface phospholipids and phospholipid binding proteins. The result is an increased risk of thrombotic events, pregnancy morbidity, and various other autoimmune and inflammatory complications. Although antiphospholipid syndrome was first recognized in patients with lupus, the stand alone presentation of antiphospholipid syndrome is at least equally common. Overall, the diagnosis appears to affect at least one in 2000 people. Studies of antiphospholipid syndrome pathogenesis have long focused on logical candidates such as coagulation factors, endothelial cells, and platelets. Recent work has shed light on additional potential therapeutic targets within the innate immune system, including the complement system and neutrophil extracellular traps. Vitamin K antagonists remain the mainstay of treatment for most patients with thrombotic antiphospholipid syndrome and, based on current data, appear superior to the more targeted direct oral anticoagulants. The potential role of immunomodulatory treatments in antiphospholipid syndrome management is receiving increased attention. As for many systemic autoimmune diseases, the most important future direction is to more precisely identify mechanistic drivers of disease heterogeneity in pursuit of unlocking personalized and proactive treatments for patients.
Collapse
Affiliation(s)
- Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - D Ware Branch
- James R. and Jo Scott Research Chair, Department of Obstetrics and Gynecology, University of Utah Health and Intermountain Healthcare, Salt Lake City, Utah, USA
| | - Thomas L Ortel
- Division of Hematology, Departments of Medicine and Pathology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
13
|
Killian M, van Mens TE. Risk of Thrombosis, Pregnancy Morbidity or Death in Antiphospholipid Syndrome. Front Cardiovasc Med 2022; 9:852777. [PMID: 35299976 PMCID: PMC8921454 DOI: 10.3389/fcvm.2022.852777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
The antiphospholipid syndrome is an autoimmune disease characterized by thrombosis and pregnancy morbidity. The manifestations are caused by antibodies targeting cell membrane phospholipids and/or associated proteins. The triggers leading to these antibodies' production are unknown but recent work suggests cross-reactivity between the autoantigens and peptides produced by the intestinal microbiome. Work on how the autoantibodies could cause clinical manifestations implicates different mechanisms. Binding to surface proteins of different cell types can induce intracellular signaling leading to cell activation and tissue factor expression. Complement activation and neutrophil extracellular-traps are also involved, and recent evidence implicates endothelial protein C receptor-lysobisphosphatidic acid complex. Pregnancy is a high-risk situation for antiphospholipid syndrome patients due to the increased risk of thrombosis and obstetric complications. Epidemiological and clinical research on APS is hampered by heterogeneity in populations, testing and treatment strategies. About one in 10 to one in fifty APS pregnancies is complicated by thrombosis, despite treatment. Pregnant patients with prior thrombosis are prescribed therapeutic dose heparins and low dose aspirin. Without prior thrombosis a prophylactic dose is used. The most frequent obstetrical manifestation is recurrent early pregnancy loss. The association of APS antibodies with late pregnancy loss is stronger, however. Prevention of recurrence is achieved with aspirin and prophylactic dose heparin, although the evidence is of low certainty. The third obstetrical classifying manifestation comprises preterm delivery due to placenta-mediated complications and is treated in subsequent pregnancies with aspirin with or without prophylactic dose heparin, again based on low quality evidence. New therapies are under investigation.
Collapse
Affiliation(s)
- Martin Killian
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, Saint-Étienne, France.,Internal Medicine Department, Saint-Etienne University Hospital, Saint-Étienne, France
| | - Thijs E van Mens
- Amsterdam UMC, Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
14
|
Shi H, Zuo Y, Navaz S, Harbaugh A, Hoy CK, Gandhi AA, Sule G, Yalavarthi S, Gockman K, Madison JA, Wang J, Zuo M, Shi Y, Maile MD, Knight JS, Kanthi Y. Endothelial cell-activating antibodies in COVID-19. Arthritis Rheumatol 2022; 74:1132-1138. [PMID: 35174669 PMCID: PMC9082472 DOI: 10.1002/art.42094] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/01/2022] [Accepted: 02/13/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE While endothelial dysfunction has been implicated in the widespread thrombo-inflammatory complications of coronavirus disease-19 (COVID-19), the upstream mediators of endotheliopathy remain for the most part cryptic. Our aim was to identify circulating factors contributing to endothelial cell activation and dysfunction in COVID-19. METHODS Human endothelial cells were cultured in the presence of serum or plasma from 244 patients hospitalized with COVID-19 and plasma from 100 patients with non-COVID sepsis. Cell adhesion molecules (E-selectin, VCAM-1, and ICAM-1) were quantified by in-cell ELISA. RESULTS Serum and plasma from patients with COVID-19 increased surface expression of cell adhesion molecules. Furthermore, levels of soluble ICAM-1 and E-selectin were elevated in patient serum and tracked with disease severity. The presence of circulating antiphospholipid antibodies was a strong marker of the ability of COVID-19 serum to activate endothelium. Depletion of total IgG from antiphospholipid antibody-positive serum markedly restrained upregulation of cell adhesion molecules. Conversely, supplementation of control serum with patient IgG was sufficient to trigger endothelial activation. CONCLUSION These data are the first to suggest that some patients with COVID-19 have potentially diverse antibodies that drive endotheliopathy, adding important context regarding thrombo-inflammatory effects of autoantibodies in severe COVID-19.
Collapse
Affiliation(s)
- Hui Shi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Division of Rheumatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zuo
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sherwin Navaz
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alyssa Harbaugh
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Claire K Hoy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alex A Gandhi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Gautam Sule
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Srilakshmi Yalavarthi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kelsey Gockman
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jacqueline A Madison
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jintao Wang
- Division of Intramural Research National Heart, Lung and Blood Institute Bethesda, Maryland, USA
| | - Melanie Zuo
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yue Shi
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Michael D Maile
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA.,Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yogendra Kanthi
- Division of Intramural Research National Heart, Lung and Blood Institute Bethesda, Maryland, USA.,Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Molecular Insights on the Possible Role of Annexin A2 in COVID-19 Pathogenesis and Post-Infection Complications. Int J Mol Sci 2021; 22:ijms222011028. [PMID: 34681689 PMCID: PMC8538098 DOI: 10.3390/ijms222011028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has infected >235 million people and killed over 4.8 million individuals worldwide. Although vaccines have been developed for prophylactic management, there are no clinically proven antivirals to treat the viral infection. Continuous efforts are being made all over the world to develop effective drugs but these are being delayed by periodic outbreak of mutated SARS-CoV-2 and a lack of knowledge of molecular mechanisms underlying viral pathogenesis and post-infection complications. In this regard, the involvement of Annexin A2 (AnxA2), a lipid-raft related phospholipid-binding protein, in SARS-CoV-2 attachment, internalization, and replication has been discussed. In addition to the evidence from published literature, we have performed in silico docking of viral spike glycoprotein and RNA-dependent RNA polymerase with human AnxA2 to find the molecular interactions. Overall, this review provides the molecular insights into a potential role of AnxA2 in the SARS-CoV-2 pathogenesis and post-infection complications, especially thrombosis, cytokine storm, and insulin resistance.
Collapse
|
16
|
Shi H, Zuo Y, Navaz S, Harbaugh A, Hoy C, Gandhi AA, Sule G, Yalavarthi S, Gockman K, Madison JA, Wang J, Zuo M, Shi Y, Maile MD, Knight JS, Kanthi Y. Endothelial cell-activating antibodies in COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 33501469 DOI: 10.1101/2021.01.18.21250041] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objectives Patients with coronavirus disease 19 ( COVID-19 ) are at high risk for fibrin-based occlusion of vascular beds of all sizes. Considering endothelial cell activation has regularly been described as part of the COVID-19 thrombo-inflammatory storm, we aimed to find upstream mediators of this activation. Methods Cultured endothelial cells were exposed to sera or plasma from 244 patients hospitalized with COVID-19 or plasma from 100 patients in the intensive care unit with sepsis. Cell adhesion molecules E-selectin, VCAM-1, and ICAM-1 were detected by in-cell ELISA. Soluble E-selectin was measured in serum. Results As compared with healthy controls, sera and plasma from patients with COVID-19, and to a lesser extent plasma from patients with sepsis, increased expression of E-selectin, VCAM-1, and ICAM-1 on cultured endothelial cells. We found modest correlations between serum neutrophil extracellular trap (NET) remnants and upregulation of cell adhesion molecules on endothelial cells. A stronger marker of the ability of COVID-19 serum to activate endothelial cells was the presence of circulating antiphospholipid antibodies, specifically anticardiolipin IgG and IgM and anti-phosphatidlyserine/prothrombin (anti-PS/PT) IgG and IgM. Depletion of total IgG from anticardiolipin-positive and anti-PS/PT-positive samples markedly restrained upregulation of E-selectin, VCAM-1, and ICAM-1. At the same time, supplementation of control serum with patient IgG was sufficient to trigger endothelial cell activation. Conclusions These data are the first to suggest that some patients with COVID-19 have potentially diverse antibodies that drive endothelial cell activation in COVID-19. The data also add important context regarding thrombo-inflammatory effects of autoantibodies in severe COVID-19. KEY MESSAGES What is already known about this subject?: Patients with COVID-19 are at high risk for fibrin-based occlusion of vascular beds of all sizes.Endothelial cell activation has regularly been described as part of the COVID-19 thrombo-inflammatory storm.What does this study add?: The presence of circulating antiphospholipid antibodies may be a predictor of the ability of a patient’s total antibody profile to activate endothelial cells.Purified COVID-19 IgG with high levels of anticardiolipin and anti-PS/PT activity trigger a pro-adhesive phenotype in endothelial cells.How might this impact on clinical practice or future developments?: Patients might be screened for antiphospholipid antibodies to evaluate their risk of having an antibody profile likely to activate endothelial cells.Patients with high antiphospholipid antibody titers might benefit from treatments used in traditional cases of severe APS such as therapeutic anticoagulation, corticosteroids, and plasmapheresis.
Collapse
|
17
|
Calianese D, Kreiss T, Kasikara C, Davra V, Lahey KC, Gadiyar V, Geng K, Singh S, Honnen W, Jaijyan DK, Reichman C, Siekierka J, Gennaro ML, Kotenko SV, Ucker DS, Brekken RA, Pinter A, Birge RB, Choudhary A. Phosphatidylserine-Targeting Monoclonal Antibodies Exhibit Distinct Biochemical and Cellular Effects on Anti-CD3/CD28-Stimulated T Cell IFN-γ and TNF-α Production. THE JOURNAL OF IMMUNOLOGY 2021; 207:436-448. [PMID: 34215655 DOI: 10.4049/jimmunol.2000763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 05/11/2021] [Indexed: 11/19/2022]
Abstract
Phosphatidylserine (PS)-targeting monoclonal Abs (mAbs) that directly target PS and target PS via β2-gp1 (β2GP1) have been in preclinical and clinical development for over 10 y for the treatment of infectious diseases and cancer. Although the intended targets of PS-binding mAbs have traditionally included pathogens as well as stressed tumor cells and its associated vasculature in oncology, the effects of PS-targeting mAbs on activated immune cells, notably T cells, which externalize PS upon Ag stimulation, is not well understood. Using human T cells from healthy donor PBMCs activated with an anti-CD3 + anti-CD28 Ab mixture (anti-CD3/CD28) as a model for TCR-mediated PS externalization and T cell stimulation, we investigated effects of two different PS-targeting mAbs, 11.31 and bavituximab (Bavi), on TCR activation and TCR-mediated cytokine production in an ex vivo paradigm. Although 11.31 and Bavi bind selectivity to anti-CD3/28 activated T cells in a PS-dependent manner, surprisingly, they display distinct functional activities in their effect on IFN-γ and TNF-ɑ production, whereby 11.31, but not Bavi, suppressed cytokine production. This inhibitory effect on anti-CD3/28 activated T cells was observed on both CD4+ and CD8+ cells and independently of monocytes, suggesting the effects of 11.31 were directly mediated by binding to externalized PS on activated T cells. Imaging showed 11.31 and Bavi bind at distinct focal depots on the cell membrane. Collectively, our findings indicate that PS-targeting mAb 11.31 suppresses cytokine production by anti-CD3/28 activated T cells.
Collapse
Affiliation(s)
- David Calianese
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ
| | - Tamara Kreiss
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ.,Department of Chemistry and Biochemistry, The Herman and Margaret Sokol Institute for Pharmaceutical Life Sciences, Montclair State University, Montclair, NJ
| | - Canan Kasikara
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ
| | - Viralkumar Davra
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ
| | - Kevin C Lahey
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ
| | - Varsha Gadiyar
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ
| | - Ke Geng
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ
| | - Sukhwinder Singh
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - William Honnen
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Dabbu Kumar Jaijyan
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ
| | - Charles Reichman
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ
| | - John Siekierka
- Department of Chemistry and Biochemistry, The Herman and Margaret Sokol Institute for Pharmaceutical Life Sciences, Montclair State University, Montclair, NJ
| | - Maria Laura Gennaro
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Sergei V Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ
| | - David S Ucker
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL
| | - Rolf A Brekken
- Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, Dallas, TX; and.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Abraham Pinter
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School Cancer Center, Rutgers University, Newark, NJ
| | - Alok Choudhary
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ;
| |
Collapse
|
18
|
Liu T, Han J, Zhang R, Tang Z, Yi G, Gong W, Wan L, Hu Q, Teng J, Liu H, Cheng X, Ye J, Su Y, Sun Y, Shi Y, Gu J, Ren S, Yang C, Shi H. Characteristics of purified Anti-β2GPI IgG N-glycosylation associate with thrombotic, obstetric, and catastrophic antiphospholipid syndrome. Rheumatology (Oxford) 2021; 61:1243-1254. [PMID: 34015111 DOI: 10.1093/rheumatology/keab416] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/03/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Anti-β-2 glycoprotein I (anti-β2GPI) antibodies, defined as primary pathogenic antibody in antiphospholipid syndrome (APS). It has been reported that IgG Fc N-glycosylation affects IgG effector, we aim to investigate the association of Fc glycosylation profiles of purified anti-β2GP1 IgG with clinical features of APS. METHODS We purify anti-β2GPI IgG and total IgG from 82 APS patients including 9 catastrophic antiphospholipid syndrome (CAPS) patients, as well as total IgG from 103 healthy controls to quantitatively analyze all detectable Fc N-glycanforms of all IgG subclasses with Multiple Reaction Monitoring (MRM) method based on UPLC-ESI-QqQ mass spectrometry. RESULTS Both purified anti-β2GPI IgG and APS total IgG showed altered N-glycan profiles when compared with HC IgG. Anti-β2GPI IgG presented with lower galactosylation, increased bisection and core fucosylation compared with APS total IgG and HC IgG. We found higher galactosylation of aβ2GPI IgG2 in thrombotic APS compared with the obstetric APS, and lower galactosylation of aβ2GPI IgG2 associated with late pregnancy morbidity. Moreover, low galactosylation of all anti-β2GPI IgG subclasses, increased bisection and core fucosylation of anti-β2GPI IgG1/2 were strongly associated with CAPS and triple positivity of antiphospholipid antibodies (aPLs). CONCLUSION We comprehensively characterize the N-Glycans landscape of both anti-β2GP1 and total IgG in APS. Altered N-glycan profiles of anti-β2GPI IgG enables enabled the antibodies with proinflammatory properties. Furthermore, we associated levels of IgG Fc-glycosylation with clinical features antiphospholipid syndrome. These findings could increase our understanding of anti-β2GPI antibody mediated mechanisms in APS and be used to develop diagnostics and new target treatments.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Jing Han
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Rongrong Zhang
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Zihan Tang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Gang Yi
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wen Gong
- Department of Rheumatology and Immunology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First people's Hospital of Yancheng, Yancheng, 224001, China
| | - Liyan Wan
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Jialin Teng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Honglei Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Xiaobing Cheng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Junna Ye
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Yutong Su
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Yue Sun
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Yi Shi
- Bio-X institutes, Key laboratory for the Genetic of Departmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 20030, China
| | - Jianxin Gu
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Shifang Ren
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Hui Shi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| |
Collapse
|
19
|
Tan Y, Bian Y, Song Y, Zhang Q, Wan X. Exosome-Contained APOH Associated With Antiphospholipid Syndrome. Front Immunol 2021; 12:604222. [PMID: 34040601 PMCID: PMC8143051 DOI: 10.3389/fimmu.2021.604222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
Background Antiphospholipid syndrome (APS) is a systemic autoimmune disease that can lead to thrombosis and/or pregnancy complications. Exosomes, membrane-encapsulated vesicles that are released into the extracellular environment by many types of cells, can carry signals to recipient cells to affect angiogenesis, apoptosis, and inflammation. There is increasing evidence suggesting that exosomes play critical roles in pregnancy. However, the contribution of exosomes to APS is still unknown. Methods Peripheral plasma was collected from healthy early pregnancy patients (NC-exos) and early pregnancy patients with APS (APS-exos) for exosome extraction and characterization. The effect of exosomes from different sources on pregnancy outcomes was determined by establishing a mouse pregnancy model. Following the coincubation of exosomes and human umbilical vein endothelial cells (HUVECs), functional tests examined the features of APS-exos. The APS-exos and NC-exos were analyzed by quantitative proteomics of whole protein tandem mass tag (TMT) markers to explore the different compositions and identify key proteins. After incubation with HUVECs, functional tests investigated the characteristics of key exosomal proteins. Western blot analysis was used to identify the key pathways. Results In the mouse model, APS-exos caused an APS-like birth outcome. In vitro experiments showed that APS-exos inhibited the migration and tube formation of HUVECs. Quantitative proteomics analysis identified 27 upregulated proteins and 9 downregulated proteins in APS-exos versus NC-exos. We hypothesized that apolipoprotein H (APOH) may be a core protein, and the analysis of clinical samples was consistent with finding from the proteomic TMT analysis. APOH-exos led to APS-like birth outcomes. APOH-exos directly enter HUVECs and may play a role through the phospho-extracellular signal-regulated kinase pathway. Conclusions Our study suggests that both APS-exos and APOH-exos impair vascular development and lead to pregnancy complications. APOH-exos may be key actors in the pathogenesis of APS. This study provides new insights into the pathogenesis of APS and potential new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yuan Tan
- Department of Integrated Traditional Chinese Medicine (TCM) & Western Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiding Bian
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunfeng Song
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qinhua Zhang
- Department of Integrated Traditional Chinese Medicine (TCM) & Western Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
20
|
Álvarez D, Rúa C, Cadavid J ÁP. Microparticles: An Alternative Explanation to the Behavior of Vascular Antiphospholipid Syndrome. Semin Thromb Hemost 2021; 47:787-799. [PMID: 33930895 DOI: 10.1055/s-0041-1727111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antiphospholipid syndrome is an autoimmune disease characterized by the persistent presence of antiphospholipid antibodies, along with occurrence of vascular thrombosis and pregnancy morbidity. The variety of antiphospholipid antibodies and their related mechanisms, as well as the behavior of disease in wide groups of patients, have led some authors to propose a differentiation of this syndrome into two independent entities: vascular and obstetric antiphospholipid syndrome. Thus, previous studies have discussed whether specific autoantibodies may be responsible for this differentiation or, in contrast, how the same antibodies are able to generate two different clinical presentations. This discussion is yet to be settled. The capability of serum IgG from patients with vascular thrombosis to trigger the biogenesis of endothelial cell-derived microparticles in vitro is one of the previously discussed differences between the clinical entities of antiphospholipid syndrome. These vesicles constitute a prothrombotic mechanism as they can directly lead to clot activation in murine models and recalcified human plasma. Nevertheless, other indirect mechanisms by which microparticles can spread a procoagulant phenotype could be critical to understanding their role in antiphospholipid syndrome. For this reason, questions regarding the cargo of microparticles, and the signaling pathways involved in their biogenesis, are of interest in attempting to explain the behavior of this autoimmune disease.
Collapse
Affiliation(s)
- Daniel Álvarez
- Grupo Reproducción, Departamento Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Carolina Rúa
- Grupo de Investigación en Trombosis, Departamento Medicina Interna, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Ángela P Cadavid J
- Grupo Reproducción, Departamento Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.,Grupo de Investigación en Trombosis, Departamento Medicina Interna, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
21
|
VWF, Platelets and the Antiphospholipid Syndrome. Int J Mol Sci 2021; 22:ijms22084200. [PMID: 33919627 PMCID: PMC8074042 DOI: 10.3390/ijms22084200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022] Open
Abstract
The antiphospholipid syndrome (APS) is characterized by thrombosis and/or pregnancy morbidity with the persistent presence of antiphospholipid antibodies (aPLs). Laboratory criteria for the classification of APS include the detection of lupus anticoagulant (LAC), anti-cardiolipin (aCL) antibodies and anti-β2glycoprotein I (aβ2GPI) antibodies. Clinical criteria for the classification of thrombotic APS include venous and arterial thrombosis, along with microvascular thrombosis. Several aPLs, including LAC, aβ2GPI and anti-phosphatidylserine/prothrombin antibodies (aPS/PT) have been associated with arterial thrombosis. The Von Willebrand Factor (VWF) plays an important role in arterial thrombosis by mediating platelet adhesion and aggregation. Studies have shown that aPLs antibodies present in APS patients are able to increase the risk of arterial thrombosis by upregulating the plasma levels of active VWF and by promoting platelet activation. Inflammatory reactions induced by APS may also provide a suitable condition for arterial thrombosis, mostly ischemic stroke and myocardial infarction. The presence of other cardiovascular risk factors can enhance the effect of aPLs and increase the risk for thrombosis even more. These factors should therefore be taken into account when investigating APS-related arterial thrombosis. Nevertheless, the exact mechanism by which aPLs can cause thrombosis remains to be elucidated.
Collapse
|
22
|
Uludag G, Onghanseng N, Tran ANT, Hassan M, Halim MS, Sepah YJ, Do DV, Nguyen QD. Current concepts in the diagnosis and management of antiphospholipid syndrome and ocular manifestations. J Ophthalmic Inflamm Infect 2021; 11:11. [PMID: 33834305 PMCID: PMC8032459 DOI: 10.1186/s12348-021-00240-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 03/02/2021] [Indexed: 12/18/2022] Open
Abstract
Antiphospholipid syndrome (APS) is an autoimmune disorder associated with obstetrical complications, thrombotic complications involving both arteries and veins, and non-thrombotic manifestations affecting multiple other systems presenting in various clinical forms. Diagnosis requires the presence of antiphospholipid antibodies. The exact pathogenesis of APS is not fully known. However, it has recently been shown that activation of different types of cells by antiphospholipid antibodies plays an important role in thrombosis formation. Ocular involvement is one of the important clinical manifestations of APS and can vary in presentations. Therefore, as an ophthalmologist, it is crucial to be familiar with the ocular findings of APS to prevent further complications that can develop. Furthermore, the ongoing identification of new and specific factors contributing to the pathogenesis of APS may provide new therapeutic options in the management of the disease in the future.
Collapse
Affiliation(s)
- Gunay Uludag
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA
| | - Neil Onghanseng
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA
| | - Anh N T Tran
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA
| | - Muhammad Hassan
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA
| | - Muhammad Sohail Halim
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA.,Ocular Imaging Research and Reading Center, Sunnyvale, CA, USA
| | - Yasir J Sepah
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA.,Ocular Imaging Research and Reading Center, Sunnyvale, CA, USA
| | - Diana V Do
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA
| | - Quan Dong Nguyen
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, 94303, USA.
| |
Collapse
|
23
|
Understanding the Pathophysiology of Thrombotic APS through Animal Models. Int J Mol Sci 2021; 22:ijms22052588. [PMID: 33806694 PMCID: PMC7961365 DOI: 10.3390/ijms22052588] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Antiphospholipid syndrome (APS) is a leading acquired cause of thrombotic events, with a notable tendency to promote thrombosis in vascular beds of all sizes, including both arterial and venous circuits. While pathogenic antiphospholipid antibodies circulate at relatively stable levels in blood, thrombosis tends to manifest as discrete and acute events, suggesting the requirement for a “second hit.” While this two-hit model is generally accepted, much remains to be learned about exactly how antiphospholipid antibodies predispose to thrombosis in vivo and exactly how this predisposition interacts with the second hit. To this end, investigators have turned to animal models. Numerous approaches for modeling APS in animals have been described to date, each with potential advantages and disadvantages. This review will attempt to describe the most common APS models employed so far while discussing some pros and cons of each. Mechanisms of thrombotic APS that have thus far been explored in animal models will also be briefly addressed.
Collapse
|
24
|
Abstract
Antiphospholipid syndrome (APS) is a thromboinflammatory disease with a variety of clinical phenotypes. Primary thrombosis prophylaxis should take an individualized risk stratification approach. Moderate-intensity vitamin K antagonist such as warfarin remains the primary strategy for secondary thrombosis prophylaxis among APS patients, especially for patients with predominantly venous disease. For now, direct oral anti-coagulants should be avoided in most APS patients, especially those with history of arterial manifestations. Obstetric APS management should be tailored based on an individual patient's antiphospholipid antibody profile, and obstetric and thrombotic history. Pharmacological agents beyond anticoagulants may be considered for the management of microthrombotic and nonthrombotic manifestations of APS, although more data are needed. A relatively recent discovery in the area of APS pathogenesis is the implication of neutrophil extracellular traps in thrombin generation and initiation of inflammatory cascades. APS is a complex thromboinflammatory disease with a broad clinical spectrum. Personalized therapy according to an individual's unique thrombosis and obstetric risk should be advocated.
Collapse
|
25
|
Vester SK, Beavil RL, Lynham S, Beavil AJ, Cunninghame Graham DS, McDonnell JM, Vyse TJ. Nucleolin acts as the receptor for C1QTNF4 and supports C1QTNF4-mediated innate immunity modulation. J Biol Chem 2021; 296:100513. [PMID: 33676896 PMCID: PMC8042453 DOI: 10.1016/j.jbc.2021.100513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
The C1q and TNF related 4 (C1QTNF4) protein is a structurally unique member of the C1QTNF family, a family of secreted proteins that have structural homology with both complement C1q and the tumor necrosis factor superfamily. C1QTNF4 has been linked to the autoimmune disease systemic lupus erythematosus through genetic studies; however, its role in immunity and inflammation remains poorly defined and a cell surface receptor of C1QTNF4 has yet to be identified. Here we report identification of nucleolin as a cell surface receptor of C1QTNF4 using mass spectrometric analysis. Additionally, we present evidence that the interaction between C1QTNF4 and nucleolin is mediated by the second C1q-like domain of C1QTNF4 and the C terminus of nucleolin. We show that monocytes and B cells are target cells of C1QTNF4 and observe extensive binding to dead cells. Imaging flow cytometry experiments in monocytes show that C1QTNF4 becomes actively internalized upon cell binding. Our results suggest that nucleolin may serve as a docking molecule for C1QTNF4 and act in a context-dependent manner through coreceptors. Taken together, these findings further our understanding of C1QTNF4's function in the healthy immune system and how dysfunction may contribute to the development of systemic lupus erythematosus.
Collapse
Affiliation(s)
- Susan K Vester
- Department of Medical & Molecular Genetics, King's College London, London, UK
| | - Rebecca L Beavil
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK; Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Steven Lynham
- Proteomics Facility, Centre of Excellence for Mass Spectrometry, King's College London, London, UK
| | - Andrew J Beavil
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK; Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | | | - James M McDonnell
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK; Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Timothy J Vyse
- Department of Medical & Molecular Genetics, King's College London, London, UK.
| |
Collapse
|
26
|
Zuo Y, Estes SK, Ali RA, Gandhi AA, Yalavarthi S, Shi H, Sule G, Gockman K, Madison JA, Zuo M, Yadav V, Wang J, Woodard W, Lezak SP, Lugogo NL, Smith SA, Morrissey JH, Kanthi Y, Knight JS. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med 2020; 12:eabd3876. [PMID: 33139519 PMCID: PMC7724273 DOI: 10.1126/scitranslmed.abd3876] [Citation(s) in RCA: 439] [Impact Index Per Article: 87.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/14/2020] [Accepted: 10/30/2020] [Indexed: 01/08/2023]
Abstract
Patients with COVID-19 are at high risk for thrombotic arterial and venous occlusions. Lung histopathology often reveals fibrin-based blockages in the small blood vessels of patients who succumb to the disease. Antiphospholipid syndrome is an acquired and potentially life-threatening thrombophilia in which patients develop pathogenic autoantibodies targeting phospholipids and phospholipid-binding proteins (aPL antibodies). Case series have recently detected aPL antibodies in patients with COVID-19. Here, we measured eight types of aPL antibodies in serum samples from 172 patients hospitalized with COVID-19. These aPL antibodies included anticardiolipin IgG, IgM, and IgA; anti-β2 glycoprotein I IgG, IgM, and IgA; and anti-phosphatidylserine/prothrombin (aPS/PT) IgG and IgM. We detected aPS/PT IgG in 24% of serum samples, anticardiolipin IgM in 23% of samples, and aPS/PT IgM in 18% of samples. Antiphospholipid autoantibodies were present in 52% of serum samples using the manufacturer's threshold and in 30% using a more stringent cutoff (≥40 ELISA-specific units). Higher titers of aPL antibodies were associated with neutrophil hyperactivity, including the release of neutrophil extracellular traps (NETs), higher platelet counts, more severe respiratory disease, and lower clinical estimated glomerular filtration rate. Similar to IgG from patients with antiphospholipid syndrome, IgG fractions isolated from patients with COVID-19 promoted NET release from neutrophils isolated from healthy individuals. Furthermore, injection of IgG purified from COVID-19 patient serum into mice accelerated venous thrombosis in two mouse models. These findings suggest that half of patients hospitalized with COVID-19 become at least transiently positive for aPL antibodies and that these autoantibodies are potentially pathogenic.
Collapse
Affiliation(s)
- Yu Zuo
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shanea K Estes
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ramadan A Ali
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alex A Gandhi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Srilakshmi Yalavarthi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hui Shi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Rheumatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gautam Sule
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kelsey Gockman
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jacqueline A Madison
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Melanie Zuo
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vinita Yadav
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jintao Wang
- Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Wrenn Woodard
- Michigan Clinical Research Unit, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sean P Lezak
- Michigan Clinical Research Unit, University of Michigan, Ann Arbor, MI 48109, USA
| | - Njira L Lugogo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephanie A Smith
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - James H Morrissey
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yogendra Kanthi
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
- Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
27
|
Zuo Y, Estes SK, Ali RA, Gandhi AA, Yalavarthi S, Shi H, Sule G, Gockman K, Madison JA, Zuo M, Yadav V, Wang J, Woodard W, Lezak SP, Lugogo NL, Smith SA, Morrissey JH, Kanthi Y, Knight JS. Prothrombotic antiphospholipid antibodies in COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 32587992 DOI: 10.1101/2020.06.15.20131607] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with coronavirus disease 19 (COVID-19) are at high risk for thrombotic arterial and venous occlusions. At the same time, lung histopathology often reveals fibrin-based occlusion in the small vessels of patients who succumb to the disease. Antiphospholipid syndrome (APS) is an acquired and potentially life-threatening thrombophilia in which patients develop pathogenic autoantibodies (aPL) targeting phospholipids and phospholipid-binding proteins. Case series have recently detected aPL in patients with COVID-19. Here, we measured eight types of aPL [anticardiolipin IgG/IgM/IgA, anti-beta-2 glycoprotein I IgG/IgM/IgA, and anti- phosphatidylserine/prothrombin (aPS/PT) IgG/IgM] in the sera of 172 patients hospitalized with COVID-19. We detected aPS/PT IgG in 24%, anticardiolipin IgM in 23%, and aPS/PT IgM in 18%. Any aPL was present in 52% of patients using the manufacturer's threshold and in 30% using a more stringent cutoff (≥40 units). Higher levels of aPL were associated with neutrophil hyperactivity (including the release of neutrophil extracellular traps/NETs), higher platelet count, more severe respiratory disease, and lower glomerular filtration rate. Similar to patients with longstanding APS, IgG fractions isolated from patients with COVID-19 promoted NET release from control neutrophils. Furthermore, injection of these COVID-19 IgG fractions into mice accelerated venous thrombosis. Taken together, these studies suggest that a significant percentage of patients with COVID-19 become at least transiently positive for aPL and that these aPL are potentially pathogenic.
Collapse
|
28
|
Ruben E, Planer W, Chinnaraj M, Chen Z, Zuo X, Pengo V, De Filippis V, Alluri RK, McCrae KR, Macor P, Tedesco F, Pozzi N. The J-elongated conformation of β 2-glycoprotein I predominates in solution: implications for our understanding of antiphospholipid syndrome. J Biol Chem 2020; 295:10794-10806. [PMID: 32518155 PMCID: PMC7397106 DOI: 10.1074/jbc.ra120.013939] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/06/2020] [Indexed: 01/07/2023] Open
Abstract
β2-Glycoprotein I (β2GPI) is an abundant plasma protein displaying phospholipid-binding properties. Because it binds phospholipids, it is a target of antiphospholipid antibodies (aPLs) in antiphospholipid syndrome (APS), a life-threatening autoimmune thrombotic disease. Indeed, aPLs prefer membrane-bound β2GPI to that in solution. β2GPI exists in two almost equally populated redox states: oxidized, in which all the disulfide bonds are formed, and reduced, in which one or more disulfide bonds are broken. Furthermore, β2GPI can adopt multiple conformations (i.e. J-elongated, S-twisted, and O-circular). While strong evidence indicates that the J-form is the structure bound to aPLs, which conformation exists and predominates in solution remains controversial, and so is the conformational pathway leading to the bound state. Here, we report that human recombinant β2GPI purified under native conditions is oxidized. Moreover, under physiological pH and salt concentrations, this oxidized form adopts a J-elongated, flexible conformation, not circular or twisted, in which the N-terminal domain I (DI) and the C-terminal domain V (DV) are exposed to the solvent. Consistent with this model, binding kinetics and mutagenesis experiments revealed that in solution the J-form interacts with negatively charged liposomes and with MBB2, a monoclonal anti-DI antibody that recapitulates most of the features of pathogenic aPLs. We conclude that the preferential binding of aPLs to phospholipid-bound β2GPI arises from the ability of its preexisting J-form to accumulate on the membranes, thereby offering an ideal environment for aPL binding. We propose that targeting the J-form of β2GPI provides a strategy to block pathogenic aPLs in APS.
Collapse
Affiliation(s)
- Eliza Ruben
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - William Planer
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Mathivanan Chinnaraj
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Zhiwei Chen
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Xiaobing Zuo
- X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois, USA
| | - Vittorio Pengo
- Thrombosis Research Laboratory, Department of Cardiac Thoracic and Vascular Sciences, and Public Health, University of Padova, Padova, Italy,Arianna Foundation on Anticoagulation, Bologna, Italy
| | - Vincenzo De Filippis
- Department of Pharmaceutical & Pharmacological Sciences, University of Padua, Padua, Italy
| | - Ravi K. Alluri
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Keith R. McCrae
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Francesco Tedesco
- Istituto Auxologico Italiano, IRCCS, Laboratory of Immuno-Rheumatology, Milan, Italy
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA,For correspondence: Nicola Pozzi,
| |
Collapse
|
29
|
Patsouras M, Tsiki E, Karagianni P, Vlachoyiannopoulos PG. The role of thrombospondin-1 in the pathogenesis of antiphospholipid syndrome. J Autoimmun 2020; 115:102527. [PMID: 32709480 DOI: 10.1016/j.jaut.2020.102527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Antiphospholipid syndrome (APS) is an acquired thrombophilia characterized by recurrent thrombosis and/or pregnancy morbidity, in the presence of antibodies to β2 glycoprotein-I (β2GPI), prothrombin or Lupus anticoagulant (LA). Anti-β2GPI antibodies recognize complexes of β2GPI dimers with CXCL4 chemokine and activate platelets. Thrombospondin 1 (TSP-1) is secreted by platelets and exhibits prothrombotic and proinflammatory properties. Therefore, we investigated its implication in APS. METHODS Plasma from APS patients (n = 100), Systemic Lupus Erythematosus (SLE) (n = 27) and healthy donors (HD) (n = 50) was analyzed for TSP-1, IL-1β, IL-17A and free active TGF-β1 by ELISA. Human Umbilical Vein Endothelial Cells (HUVECs) and HD monocytes were treated with total HD-IgG or anti-β2GPI, β2GPI and CXCL4 and CD4+ T-cells were stimulated by monocyte supernatants. TSP-1, IL-1β, IL-17A TGF-β1 levels were quantified by ELISA and Real-Time PCR. RESULTS Higher plasma levels of TSP-1 and TGF-β1, which positively correlated each other, were observed in APS but not HDs or SLE patients. Patients with arterial thrombotic events or those undergoing a clinical event had the highest TSP-1 levels. These patients also had detectable IL-1β, IL-17A in their plasma. HD-derived monocytes and HUVECs stimulated with anti-β2GPI-IgG-β2GPI-CXCL4 secreted the highest TSP-1 and IL-1β levels. Supernatants from anti-β2GPI-β2GPI-CXCL4 treated monocytes induced IL-17A expression from CD4+ T-cells. Transcript levels followed a similar pattern. CONCLUSIONS TSP-1 is probably implicated in the pathogenesis of APS. In vitro cell treatments along with high TSP-1 levels in plasma of APS patients suggest that high TSP-1 levels could mark a prothrombotic state and an underlying inflammatory process.
Collapse
Affiliation(s)
- M Patsouras
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Greece
| | - E Tsiki
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Greece
| | - P Karagianni
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Greece
| | - P G Vlachoyiannopoulos
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
30
|
Madison JA, Zuo Y, Knight JS. Pediatric antiphospholipid syndrome. Eur J Rheumatol 2020; 7:S3-S12. [PMID: 31804173 PMCID: PMC7004270 DOI: 10.5152/eurjrheum.2019.19160] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Despite its potential to cause significant morbidity in children, pediatric antiphospholipid syndrome (APS) is an understudied condition. In this review, we will cover what is known about pediatric APS epidemiology and how the clinician might approach the diagnosis of pediatric APS. We will highlight similarities and differences with the adult disease, both for primary APS and in the context of lupus. Clinical manifestations beyond thrombosis, especially neurologic and hematologic in nature, will be discussed. We will also consider what unique implications antiphospholipid antibody-positivity may have for children with lupus and for neonates born to mothers with APS. The approach to treatment will be covered, including the unique impact of APS medications on children as compared with adults. Finally, the importance of future mechanistic research is emphasized as physicians endeavor to provide the personalized care that children with APS clearly deserve.
Collapse
Affiliation(s)
- Jacqueline A. Madison
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Yu Zuo
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason S. Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
31
|
Shirshev SV. Mechanisms of Antiphospholipid Syndrome Induction: Role of NKT Cells. BIOCHEMISTRY (MOSCOW) 2019; 84:992-1007. [PMID: 31693459 DOI: 10.1134/s0006297919090025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The review discusses the mechanisms of participation of natural killer T cells (NKT cells) in the induction of antiphospholipid antibodies (APA) that play a major pathogenetic role in the formation of antiphospholipid syndrome (APS), summarizes the data on APS pathogenesis, and presents modern concepts on the antibody formation involving follicular helper type II NK cells.
Collapse
Affiliation(s)
- S V Shirshev
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Perm, 614081, Russia.
| |
Collapse
|
32
|
Mechanisms of activation induced by antiphospholipid antibodies in multiple sclerosis: Potential biomarkers of disease? J Immunol Methods 2019; 474:112663. [DOI: 10.1016/j.jim.2019.112663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 11/23/2022]
|
33
|
Patsouras M, Karagianni P, Kogionou P, Vlachoyiannopoulos P. Differential CpG methylation of the promoter of interleukin 8 and the first intron of tissue factor in Antiphospholipid syndrome. J Autoimmun 2019; 102:159-166. [DOI: 10.1016/j.jaut.2019.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 02/07/2023]
|
34
|
News and meta-analysis regarding anti-Beta 2 glycoprotein I antibodies and their determination. Clin Immunol 2019; 205:106-115. [DOI: 10.1016/j.clim.2019.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 11/18/2022]
|
35
|
Ali RA, Gandhi AA, Meng H, Yalavarthi S, Vreede AP, Estes SK, Palmer OR, Bockenstedt PL, Pinsky DJ, Greve JM, Diaz JA, Kanthi Y, Knight JS. Adenosine receptor agonism protects against NETosis and thrombosis in antiphospholipid syndrome. Nat Commun 2019; 10:1916. [PMID: 31015489 PMCID: PMC6478874 DOI: 10.1038/s41467-019-09801-x] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/29/2019] [Indexed: 12/11/2022] Open
Abstract
Potentiation of neutrophil extracellular trap (NET) release is one mechanism by which antiphospholipid antibodies (aPL Abs) effect thrombotic events in patients with antiphospholipid syndrome (APS). Surface adenosine receptors trigger cyclic AMP (cAMP) formation in neutrophils, and this mechanism has been proposed to regulate NETosis in some contexts. Here we report that selective agonism of the adenosine A2A receptor (CGS21680) suppresses aPL Ab-mediated NETosis in protein kinase A-dependent fashion. CGS21680 also reduces thrombosis in the inferior vena cavae of both control mice and mice administered aPL Abs. The antithrombotic medication dipyridamole is known to potentiate adenosine signaling by increasing extracellular concentrations of adenosine and interfering with the breakdown of cAMP. Like CGS21680, dipyridamole suppresses aPL Ab-mediated NETosis via the adenosine A2A receptor and mitigates venous thrombosis in mice. In summary, these data suggest an anti-inflammatory therapeutic paradigm in APS, which may extend to thrombotic disease in the general population. Antiphospholipid syndrome is characterised by increased neutrophil extracellular trap formation (NETosis) and, consequently, increased thrombotic events. Here Ali et al. show that treatment with adenosine receptor agonists suppresses NETosis and venous thrombosis in mouse models of antiphospholipid syndrome.
Collapse
Affiliation(s)
- Ramadan A Ali
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alex A Gandhi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - He Meng
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Srilakshmi Yalavarthi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrew P Vreede
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shanea K Estes
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Olivia R Palmer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Paula L Bockenstedt
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - David J Pinsky
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA.,Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joan M Greve
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jose A Diaz
- Department of Vascular Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yogendra Kanthi
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Division of Cardiology, Ann Arbor Veterans Administration Healthcare System, Ann Arbor, MI, 48109, USA
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
36
|
D'Angelo C, Franch O, Fernández-Paredes L, Oreja-Guevara C, Núñez-Beltrán M, Comins-Boo A, Reale M, Sánchez-Ramón S. Antiphospholipid Antibodies Overlapping in Isolated Neurological Syndrome and Multiple Sclerosis: Neurobiological Insights and Diagnostic Challenges. Front Cell Neurosci 2019; 13:107. [PMID: 30941020 PMCID: PMC6433987 DOI: 10.3389/fncel.2019.00107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 03/04/2019] [Indexed: 01/19/2023] Open
Abstract
Antiphospholipid syndrome (APS) is characterized by arterial and venous thrombosis, pregnancy morbidity and fetal loss caused by pathogenic autoantibodies directed against phospholipids (PL) and PL-cofactors. Isolated neurological APS may represent a significant diagnostic challenge, as epidemiological, clinical and neuroimaging features may overlap with those of multiple sclerosis (MS). In an open view, MS could be considered as an organ-specific anti-lipid (phospholipid and glycosphingolipid associated proteins) disease, in which autoreactive B cells and CD8+ T cells play a dominant role in its pathophysiology. In MS, diverse autoantibodies against the lipid-protein cofactors of the myelin sheath have been described, whose pathophysiologic role has not been fully elucidated. We carried out a review to select clinical studies addressing the prevalence of antiphospholipid (aPL) autoantibodies in the so-called MS-like syndrome. The reported prevalence ranged between 2% and 88%, particularly aCL and aβ2GPI, with predominant IgM isotype and suggesting worse MS prognosis. Secondarily, an updated summary of current knowledge on the pathophysiological mechanisms and events responsible for these conditions is presented. We draw attention to the clinical relevance of diagnosing isolated neurological APS. Prompt and accurate diagnosis and antiaggregant and anticoagulant treatment of APS could be vital to prevent or at least reduce APS-related morbidity and mortality.
Collapse
Affiliation(s)
- Chiara D'Angelo
- Department of Clinical Immunology and IdISSC, Hospital Clínico San Carlos, Madrid, Spain.,Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain.,Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Oriol Franch
- Department of Neurology, Hospital Ruber Internacional, Madrid, Spain
| | - Lidia Fernández-Paredes
- Department of Clinical Immunology and IdISSC, Hospital Clínico San Carlos, Madrid, Spain.,Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| | | | - María Núñez-Beltrán
- Department of Clinical Immunology and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Alejandra Comins-Boo
- Department of Clinical Immunology and IdISSC, Hospital Clínico San Carlos, Madrid, Spain.,Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| | - Marcella Reale
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Silvia Sánchez-Ramón
- Department of Clinical Immunology and IdISSC, Hospital Clínico San Carlos, Madrid, Spain.,Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| |
Collapse
|
37
|
Fleetwood T, Cantello R, Comi C. Antiphospholipid Syndrome and the Neurologist: From Pathogenesis to Therapy. Front Neurol 2018; 9:1001. [PMID: 30534110 PMCID: PMC6275383 DOI: 10.3389/fneur.2018.01001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022] Open
Abstract
Antiphospholipid syndrome (APS) is an autoimmune antibody-mediated condition characterized by thrombotic events and/or pregnancy morbidity in association with persistent positivity to antiphospholipid antibodies (aPL). The nervous system is frequently affected, as intracranial vessels are the most frequent site of arterial pathology. Over the course of years, many other neurological conditions not included in the diagnostic criteria, have been associated with APS. The pathogenic mechanisms behind the syndrome are complex and not fully elucidated. aPL enhance thrombosis, interfering with different pathways. Nevertheless, ischemic injury is not always sufficient to explain clinical features of the syndrome and immune-mediated damage has been advocated. This may be particularly relevant in the context of neurological complications. The reason why only a subgroup of patients develop non-criteria nervous system disorders and what determines the clinical phenotype are questions that remain open. The double nature, thrombotic and immunologic, of APS is also reflected by therapeutic strategies. In this review we summarize known neurological manifestations of APS, revisiting pathogenesis and current treatment options.
Collapse
Affiliation(s)
- Thomas Fleetwood
- Section of Neurology, Department of Translational Medicine University of Eastern Piedmont, Novara, Italy
| | - Roberto Cantello
- Section of Neurology, Department of Translational Medicine University of Eastern Piedmont, Novara, Italy
| | - Cristoforo Comi
- Section of Neurology, Department of Translational Medicine University of Eastern Piedmont, Novara, Italy.,Interdisciplinary Research Centre of Autoimmune Diseases University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
38
|
Noureldine MHA, Nour-Eldine W, Khamashta MA, Uthman I. Insights into the diagnosis and pathogenesis of the antiphospholipid syndrome. Semin Arthritis Rheum 2018; 48:860-866. [PMID: 30217394 DOI: 10.1016/j.semarthrit.2018.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/30/2018] [Accepted: 08/14/2018] [Indexed: 11/16/2022]
Abstract
The Antiphospholipid syndrome (APS), formerly known as Anticardiolipin or Hughes syndrome, is a systemic autoimmune disorder characterized by obstetrical complications and thrombotic events affecting almost every organ-system in patients persistently testing positive for antiphospholipid antibodies (aPL). The contribution of the extra-criteria aPL to the pathogenesis of APS have exceeded the expectations of a simple, direct pathologic 'hit' leading to thrombogenesis or obstetrical complications, and more pathologic pathways are being linked directly or indirectly to aPL. The value of extra-criteria aPL is on the rise, and these antibodies are nowadays evaluated as markers for risk assessment in the diagnostic approach to APS. A diagnosis of APS should be considered in pediatric patients with suggestive clinical and laboratory picture. Management of APS remains mostly based on anticoagulation, while other drugs are being tested for efficacy and side effects. Low-dose aspirin may have a role in the management of thrombotic and obstetric APS. Due to the high variability in disease severity and complication recurrence outcomes, new tools are being developed and validated to assess the damage index and quality of life of APS patients.
Collapse
Affiliation(s)
| | - Wared Nour-Eldine
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Imad Uthman
- Division of Rheumatology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
39
|
Kay SD, Carlsen AL, Voss A, Burton M, Diederichsen ACP, Poulsen MK, Heegaard NHH. Associations of circulating cell-free microRNA with vasculopathy and vascular events in systemic lupus erythematosus patients. Scand J Rheumatol 2018; 48:32-41. [DOI: 10.1080/03009742.2018.1450892] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- SD Kay
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | - AL Carlsen
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark
| | - A Voss
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | - M Burton
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, Research Unit and Human Genetics, University of Southern Denmark, Odense, Denmark
| | - ACP Diederichsen
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - MK Poulsen
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - NHH Heegaard
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
40
|
Zha C, Zhang W, Gao F, Xu J, Jia R, Cai J, Liu Y. Anti-β 2GPI/β 2GPI induces neutrophil extracellular traps formation to promote thrombogenesis via the TLR4/MyD88/MAPKs axis activation. Neuropharmacology 2018; 138:140-150. [PMID: 29883691 DOI: 10.1016/j.neuropharm.2018.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022]
Abstract
Antiphospholipid antibodies (aPLs) are a large group of heterogeneous antibodies that bind to anionic phospholipids alone or in combination with phospholipid binding proteins. Increasing evidence has converged to indicate that aPLs especially anti-β2 glycoprotein I antibody (anti-β2GPI) correlate with stroke severity and outcome. Though studies have shown that aPLs promote thrombus formation in a neutrophil-dependent way, the underlying mechanisms remain largely unknown. In the present study, we investigated the effect of anti-β2GPI in complex with β2GPI (anti-β2GPI/β2GPI) on neutrophil extracellular traps (NETs) formation and thrombus generation in vitro and in vivo. We found that anti-β2GPI/β2GPI immune complex induced NETs formation in a time- and concentration-dependent manner. This effect was mediated by its interaction with TLR4 and the production of ROS. We demonstrated that MyD88-IRAKs-MAPKs, an intracellular signaling pathway, was involved in anti-β2GPI/β2GPI-induced NETs formation. We also presented evidence that tissue factor was expressed on anti-β2GPI/β2GPI-induced NETs, and NETs could promote platelet aggregation in vitro. In addition, we identified that anti-β2GPI/β2GPI-induced NETs enhanced thrombus formation in vivo, and this effect was counteracted by using DNase I. Our data suggest that anti-β2GPI/β2GPI induces NETs formation to promote thrombogenesis via the TLR4/MyD88/MAPKs axis activation, and could be a potentially novel target for aPLs related ischemic stroke.
Collapse
Affiliation(s)
- Caijun Zha
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Wenjing Zhang
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Fei Gao
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jiali Xu
- Laboratory of Endocrinology and Metabolism Department, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ruichun Jia
- Department of Blood Transfusion, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Yanhong Liu
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
41
|
Chaturvedi S, McCrae KR. Clinical Risk Assessment in the Antiphospholipid Syndrome: Current Landscape and Emerging Biomarkers. Curr Rheumatol Rep 2018; 19:43. [PMID: 28711993 DOI: 10.1007/s11926-017-0668-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Laboratory criteria for the classification of antiphospholipid syndrome include the detection of a lupus anticoagulant and/or anticardiolipin and anti-β2-glycoprotein I antibodies. However, the majority of patients who test positive in these assays do not have thrombosis. Current risk-stratification tools are largely limited to the antiphospholipid antibody profile and traditional thrombotic risk factors. RECENT FINDINGS Novel biomarkers that correlate with disease activity and potentially provide insight into future clinical events include domain 1 specific anti-β2GPI antibodies, antibodies to other phospholipids or phospholipid/protein antigens (such as anti-PS/PT), and functional/biological assays such as thrombin generation, complement activation, levels of circulating microparticles, and annexin A5 resistance. Clinical risk scores may also have value in predicting clinical events. Biomarkers that predict thrombosis risk in patients with antiphospholipid antibodies have been long sought, and several biomarkers have been proposed. Ultimately, integration of biomarkers with established assays and clinical characteristics may offer the best chance of identifying patients at highest risk of APS-related complications.
Collapse
Affiliation(s)
- Shruti Chaturvedi
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37235, USA
| | - Keith R McCrae
- Department of Cellular and Molecular Medicine, Taussig Cancer Institute, Cleveland Clinic, CA6-154, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
42
|
Ng CJ, McCrae KR, Ashworth K, Sosa LJ, Betapudi V, Manco‐Johnson MJ, Liu A, Dong J, Chung D, White‐Adams TC, López JA, Di Paola J. Effects of anti-β2GPI antibodies on VWF release from human umbilical vein endothelial cells and ADAMTS13 activity. Res Pract Thromb Haemost 2018; 2:380-389. [PMID: 30046742 PMCID: PMC5974922 DOI: 10.1002/rth2.12090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/30/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Antiphospholipid syndrome (APS) is characterized by recurrent thromboembolic events in the setting of pathologic autoantibodies, some of which are directed to β2-Glycoprotein 1 (β2GPI). The mechanisms of thrombosis in APS appear to be multifactorial and likely include a component of endothelial activation. Among other things, activated endothelium secretes von Willebrand factor, a hemostatic protein that in excess can increase the risk of thrombosis. OBJECTIVE We hypothesized that anti-β2GPI antibodies could regulate the release and modulation of VWF from endothelial cells. PATIENTS/METHODS Isolated anti-β2GPI antibodies from patients with APS were assayed for their ability to induced VWF release from HUVECs and modulate the effects of ADAMTS13 in a shear-dependent assay. RESULTS We observed that anti-β2GPI antibodies from some patients with APS induced VWF release from human endothelial cells but did not induce formation of cell-anchored VWF-platelet strings. Finally, we also determined that one of the Anti-β2GPI antibodies tested can inhibit the function of ADAMTS13, the main modulator of extracellular VWF. CONCLUSIONS These results suggest that VWF and ADAMTS13 may play a role in the prothrombotic phenotype of APS.
Collapse
Affiliation(s)
- Christopher J. Ng
- Department of PediatricsUniversity of Colorado and Children's Hospital ColoradoAuroraCOUSA
| | - Keith R. McCrae
- Department of Cellular and Molecular MedicineLerner Research InstituteClevelandOHUSA
- Taussig Cancer InstituteCleveland ClinicClevelandOHUSA
| | - Katrina Ashworth
- Department of PediatricsUniversity of Colorado and Children's Hospital ColoradoAuroraCOUSA
| | - Lucas J. Sosa
- Department of PediatricsUniversity of Colorado and Children's Hospital ColoradoAuroraCOUSA
| | | | | | - Alice Liu
- Department of PediatricsUniversity of Colorado and Children's Hospital ColoradoAuroraCOUSA
| | - Jing‐Fei Dong
- Bloodworks Research Institute‐Puget SoundSeattleWAUSA
| | - Dominic Chung
- Bloodworks Research Institute‐Puget SoundSeattleWAUSA
| | - Tara C. White‐Adams
- Department of PediatricsUniversity of Colorado and Children's Hospital ColoradoAuroraCOUSA
| | - José A. López
- Bloodworks Research Institute‐Puget SoundSeattleWAUSA
| | - Jorge Di Paola
- Department of PediatricsUniversity of Colorado and Children's Hospital ColoradoAuroraCOUSA
- Human Medical Genetics and GenomicsUniversity of Colorado DenverAuroraCOUSA
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Antiphospholipid syndrome (APS) is a leading acquired cause of thrombosis and pregnancy loss. Upon diagnosis (which is unlikely to be made until at least one morbid event has occurred), anticoagulant medications are typically prescribed in an attempt to prevent future events. This approach is not uniformly effective and does not prevent associated autoimmune and inflammatory complications. The goal of this review is to update clinicians and scientists on mechanistic and clinically relevant studies from the past 18 months, which have especially focused on inflammatory aspects of APS pathophysiology. RECENT FINDINGS How antiphospholipid antibodies leverage receptors and signaling pathways to activate cells is being increasingly defined. Although established mediators of disease pathogenesis (like endothelial cells and the complement system) continue to receive intensive study, emerging concepts (such as the role of neutrophils) are also receiving increasing attention. In-vivo animal studies and small clinical trials are demonstrating how repurposed medications (hydroxychloroquine, statins, and rivaroxaban) may have clinical benefit in APS, with these concepts importantly supported by mechanistic data. SUMMARY As anticoagulant medications are not uniformly effective and do not comprehensively target the underlying pathophysiology of APS, there is a continued need to reveal the inflammatory aspects of APS, which may be modulated by novel and repurposed therapies.
Collapse
|
44
|
Cavazzana I, Andreoli L, Limper M, Franceschini F, Tincani A. Update on Antiphospholipid Syndrome: Ten Topics in 2017. Curr Rheumatol Rep 2018. [DOI: 10.1007/s11926-018-0718-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
45
|
Harifi G, Nour-Eldine W, Noureldine MHA, Berjaoui MB, Kallas R, Khoury R, Uthman I, Al-Saleh J, Khamashta MA. Arterial stenosis in antiphospholipid syndrome: Update on the unrevealed mechanisms of an endothelial disease. Autoimmun Rev 2018; 17:256-266. [PMID: 29339317 DOI: 10.1016/j.autrev.2017.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/29/2017] [Indexed: 12/20/2022]
Abstract
First described in 1983, antiphospholipid syndrome (APS) is an autoimmune condition characterized by the occurrence of recurrent arterial and/or venous thrombosis, and/or pregnancy morbidity, in the setting of persistent presence of antiphospholipid antibodies (aPL). While thrombosis is the most well-known pathogenic mechanism in this disorder, the relevance of some other mechanisms such as arterial stenosis is being increasingly recognized. Arterial stenosis has been first described in the renal arteries in patients with APS, however intracranial and coeliac arteries can also be involved with various and treatable clinical manifestations. The underlying pathophysiology of this stenotic arterial vasculopathy is not fully understood but some recent studies revealed new insights into the molecular mechanism behind this endothelial cell activation in APS. In this review, we discuss these newly discovered mechanisms and highlight the diagnostic and therapeutic modalities of the APS related arterial stenosis.
Collapse
Affiliation(s)
- Ghita Harifi
- Dr Humeira Badsha Rheumatology Center, Dubai, United Arab Emirates.
| | - Wared Nour-Eldine
- Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Paris, France; Université Paris-Descartes, Paris, France
| | | | - Mohammad Baker Berjaoui
- Department of Internal Medicine, Lebanese American University Medical Center, Beirut, Lebanon
| | - Romy Kallas
- Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Rita Khoury
- Department of Internal Medicine, Lebanese American University Medical Center, Beirut, Lebanon
| | - Imad Uthman
- Division of Rheumatology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jamal Al-Saleh
- Division of Rheumatology, Department of Internal Medicine, Dubai Hospital, United Arab Emirates
| | - Munther A Khamashta
- Division of Rheumatology, Department of Internal Medicine, Dubai Hospital, United Arab Emirates
| |
Collapse
|
46
|
Quao ZC, Tong M, Bryce E, Guller S, Chamley LW, Abrahams VM. Low molecular weight heparin and aspirin exacerbate human endometrial endothelial cell responses to antiphospholipid antibodies. Am J Reprod Immunol 2018; 79:10.1111/aji.12785. [PMID: 29135051 PMCID: PMC5728699 DOI: 10.1111/aji.12785] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/26/2017] [Indexed: 12/25/2022] Open
Abstract
PROBLEM Women with antiphospholipid antibodies (aPL) are at risk for pregnancy complications despite treatment with low molecular weight heparin (LMWH) or aspirin (ASA). aPL recognizing beta2 glycoprotein I can target the uterine endothelium, however, little is known about its response to aPL. This study characterized the effect of aPL on human endometrial endothelial cells (HEECs), and the influence of LMWH and ASA. METHOD OF STUDY HEECs were exposed to aPL or control IgG, with or without low-dose LMWH and ASA, alone or in combination. Chemokine and angiogenic factor secretion were measured by ELISA. A tube formation assay was used to measure angiogenesis. RESULTS aPL increased HEEC secretion of pro-angiogenic VEGF and PlGF; increased anti-angiogenic sFlt-1; inhibited basal secretion of the chemokines MCP-1, G-CSF, and GRO-α; and impaired angiogenesis. LMWH and ASA, alone and in combination, exacerbated the aPL-induced changes in the HEEC angiogenic factor and chemokine profile. There was no reversal of the aPL inhibition of HEEC angiogenesis by either single or combination therapy. CONCLUSION By aPL inhibiting HEEC chemokine secretion and promoting sFlt-1 release, the uterine endothelium may contribute to impaired placentation and vascular transformation. LMWH and ASA may further contribute to endothelium dysfunction in women with obstetric APS.
Collapse
Affiliation(s)
- Zola Chihombori Quao
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University, New Haven, CT, USA
| | - Mancy Tong
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University, New Haven, CT, USA
| | - Elena Bryce
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University, New Haven, CT, USA
- Albert Einstein College of Medicine, Bronx, NY
| | - Seth Guller
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University, New Haven, CT, USA
| | - Lawrence W Chamley
- Department of Obstetrics & Gynecology, University of Auckland, Auckland, New Zealand
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University, New Haven, CT, USA
| |
Collapse
|
47
|
Manukyan D, Müller-Calleja N, Lackner K. Pathophysiological insights into the antiphospholipid syndrome. Hamostaseologie 2017; 37:202-207. [DOI: 10.5482/hamo-16-07-0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/06/2016] [Indexed: 11/05/2022] Open
Abstract
SummaryThe antiphospholipid syndrome (APS) is characterized by venous and/or arterial thrombosis and severe pregnancy morbidity in presence of antiphospholipid antibodies (aPL). While there is compelling evidence that aPL cause the clinical manifestations of APS, the underlying mechanisms are still a matter of scientific debate. This is mainly related to the broad heterogeneity of aPL. There are three major types of aPL: The first one binds to (anionic) phospholipids, e.g. cardiolipin, in absence of other factors (cofactor independent aPL). The second type binds to phospholipids only in presence of protein cofactors, e.g. ß2-glycoprotein I (ß2GPI) (cofactor dependent aPL). The third type binds to cofactor proteins directly without need for phospholipids. It is widely believed that cofactor independent aPL (type 1) are associated with infections and, more importantly, non-pathogenic, while pathogenic aPL belong to the second and in particular to the third type. This view, in particular with regard to type 1 aPL, has not been undisputed and novel research data have shown that it is in fact untenable. We summarize the available data on the pathogenetic role of aPL and the implications for diagnosis of APS and future research.
Collapse
|
48
|
Knight JS, Meng H, Coit P, Yalavarthi S, Sule G, Gandhi AA, Grenn RC, Mazza LF, Ali RA, Renauer P, Wren JD, Bockenstedt PL, Wang H, Eitzman DT, Sawalha AH. Activated signature of antiphospholipid syndrome neutrophils reveals potential therapeutic target. JCI Insight 2017; 2:93897. [PMID: 28931754 DOI: 10.1172/jci.insight.93897] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/15/2017] [Indexed: 01/05/2023] Open
Abstract
Antiphospholipid antibodies, present in one-third of lupus patients, increase the risk of thrombosis. We recently reported a key role for neutrophils - neutrophil extracellular traps (NETs), in particular - in the thrombotic events that define antiphospholipid syndrome (APS). To further elucidate the role of neutrophils in APS, we performed a comprehensive transcriptome analysis of neutrophils isolated from patients with primary APS. Moreover, APS-associated venous thrombosis was modeled by treating mice with IgG prepared from APS patients, followed by partial restriction of blood flow through the inferior vena cava. In patients, APS neutrophils demonstrated a proinflammatory signature with overexpression of genes relevant to IFN signaling, cellular defense, and intercellular adhesion. For in vivo studies, we focused on P-selectin glycoprotein ligand-1 (PSGL-1), a key adhesion molecule overexpressed in APS neutrophils. The introduction of APS IgG (as compared with control IgG) markedly potentiated thrombosis in WT mice, but not PSGL-1-KOs. PSGL-1 deficiency was also associated with reduced leukocyte vessel wall adhesion and NET formation. The thrombosis phenotype was restored in PSGL-1-deficient mice by infusion of WT neutrophils, while an anti-PSGL-1 monoclonal antibody inhibited APS IgG-mediated thrombosis in WT mice. PSGL-1 represents a potential therapeutic target in APS.
Collapse
Affiliation(s)
- Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - He Meng
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Patrick Coit
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Srilakshmi Yalavarthi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gautam Sule
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alex A Gandhi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Robert C Grenn
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Levi F Mazza
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ramadan A Ali
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Paul Renauer
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jonathan D Wren
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.,Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Hui Wang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Daniel T Eitzman
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Amr H Sawalha
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
49
|
Neutrophil extracellular traps (NETs) in autoimmune diseases: A comprehensive review. Autoimmun Rev 2017; 16:1160-1173. [PMID: 28899799 DOI: 10.1016/j.autrev.2017.09.012] [Citation(s) in RCA: 417] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 12/26/2022]
Abstract
Neutrophil extracellular traps (NETs) are fibrous networks which protrude from the membranes of activated neutrophils. NETs are found in a variety of conditions such as infection, malignancy, atherosclerosis, and autoimmune diseases including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV), psoriasis, and gout. Studies suggest that an imbalance between "NETosis," which is a process by which NETs are formed, and NET degradation may be associated with autoimmune diseases. Neutrophils, interleukin-8, ANCA and other inflammatory molecules are considered to play a key role in NET formation. Prolonged exposure to NETs-related cascades is associated with autoimmunity and increases the chance of systemic organ damage. In this review, we discuss the roles of various inflammatory molecules in relation to NETs. We also describe the role of NETs in the pathogenesis of autoimmune diseases and discuss the possibility of using targeted therapies directed to NETs and associated molecules to treat autoimmune diseases.
Collapse
|
50
|
Bai A. β2-glycoprotein I and its antibodies involve in the pathogenesis of the antiphospholipid syndrome. Immunol Lett 2017; 186:15-19. [DOI: 10.1016/j.imlet.2017.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/05/2017] [Accepted: 03/23/2017] [Indexed: 11/26/2022]
|