1
|
Liu B, Cai Z, Wang Y, Liu X, Zhang B, Zheng Q, Li J, Li C, Cui Y, Lv P, Yang D. Transglutaminase 2 regulates endothelial cell calcification via IL-6-mediated autophagy. Front Pharmacol 2024; 15:1393534. [PMID: 39654623 PMCID: PMC11625581 DOI: 10.3389/fphar.2024.1393534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/31/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Endothelial cell (EC) calcification is an important marker of atherosclerotic calcification. ECs play a critical role not only in atherogenesis but also in intimal calcification, as they have been postulated to serve as a source of osteoprogenitor cells that initiate this process. While the role of transglutaminase 2 (TG2) in cellular differentiation, survival, apoptosis, autophagy, and cell adhesion is well established, the mechanism underlying the TG2-mediated regulation of EC calcification is yet to be fully elucidated. Methods The TG2 gene was overexpressed or silenced by using siRNA and recombinant adenovirus. RT-PCR and WB were used to analyze the relative expression of target genes and proteins. 5-BP method analyzed TG2 activity. mCherry-eGFP-LC3 adenovirus and transmission electron microscopy analyzed EC autophagy level. Calcium concentrations were measured by using a calcium colorimetric assay kit. Alizarin red S staining assay analyzed EC calcification level. Elisa analyzed IL-6 level. Establishing EC calcification model by using a calcification medium (CM). Results Our findings demonstrated that CM increased TG2 activity and expression, which activated the NF-κB signaling pathway, and induced IL-6 autocrine signaling in ECs. Furthermore, IL-6 activated the JAK2/STAT3 signaling pathway to suppress cell autophagy and promoted ECs calcification. Discussion ECs are not only critical for atherogenesis but also believed to be a source of osteoprogenitor cells that initiate intimal calcification. Previous research has shown that TG2 plays an important role in the development of VC, but the mechanism by which it exerts this effect is not yet fully understood. Our results demonstrated that TG2 forms complexes with NF-κB components inhibition of autophagy promoted endothelial cell calcification through EndMT. Therefore, our research investigated the molecular mechanism of EC calcification, which can provide new insights into the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Bo Liu
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiyuan Cai
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Wang
- The First Department of Ocular Fundus Diseases, Zhengzhou Second Hospital, Zhengzhou, Henan, China
| | - Xinye Liu
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Zhang
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Zheng
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingye Li
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Cien Li
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanbo Cui
- Translational Medical Center, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Pengju Lv
- Department of clinical laboratory, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Dongwei Yang
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Chen J, Wen J, Fu Y, Li X, Huang J, Guan X, Zhou Y. A bifunctional bortezomib-loaded porous nano-hydroxyapatite/alginate scaffold for simultaneous tumor inhibition and bone regeneration. J Nanobiotechnology 2023; 21:174. [PMID: 37264410 DOI: 10.1186/s12951-023-01940-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
Treatments of osteolytic lesions due to malignant metastasis remain one of the major clinical challenges. The residual tumor cells after surgical resections and an acidic tumor microenvironment are unfavorable for osteogenic induction. Bortezomib (BTZ), a proteasome inhibitor used in chemotherapy, also has an osteogenic potential in concentration- and Ca2+-dependent manners. In this study, controlled delivery of BTZ in a novel bifunctional scaffold based on nano-hydroxyapatite (nHA) and sodium alginate (SA) nanocomposite, namely BTZ/nHA@SA, has been explored. By smartly adjusting microenvironments, a sustainable release of Ca2+ from nHA could be achieved, which was not only able to cross-link SA but also to regulate the switch between the dual functions of tumor inhibition and bone regeneration of BTZ to promote the osteogenic pathway. The freeze-dried BTZ/nHA@SA scaffold has excellent interconnectivity, is capable to promote the attachment and proliferation of mouse embryonic osteoblast precursor cells, as well as effectively induces breast cancer cell death in vitro. Furthermore, in vivo, studies using a mouse tumor model and a rabbit femoral defect model showed that the BTZ/nHA@SA scaffold could promote tumor ablation, and also enhance bone repair. Therefore, the BTZ/nHA@SA scaffold has unique dual functions of inhibiting tumor recurrence and promoting bone tissue regeneration simultaneously. This smart bi-functional scaffold offers a promising novel approach for oncological treatments by synchronously orchestrating tumor inhibition and tissue regeneration for the repair of neoplastic bone defects.
Collapse
Affiliation(s)
- Jiafei Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, China
| | - Junru Wen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, China
| | - Yike Fu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, P.R. China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, P.R. China.
| | - Jie Huang
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
| | - Xiaoxu Guan
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, China.
| | - Yi Zhou
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
3
|
Tempest R, Guarnerio S, Maani R, Cooper J, Peake N. The Biological and Biomechanical Role of Transglutaminase-2 in the Tumour Microenvironment. Cancers (Basel) 2021; 13:cancers13112788. [PMID: 34205140 PMCID: PMC8199963 DOI: 10.3390/cancers13112788] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Transglutaminase-2 (TG2) is the most highly and ubiquitously expressed member of the transglutaminase enzyme family and is primarily involved in protein cross-linking. TG2 has been implicated in the development and progression of numerous cancers, with a direct role in multiple cellular processes and pathways linked to apoptosis, chemoresistance, epithelial-mesenchymal transition, and stem cell phenotype. The tumour microenvironment (TME) is critical in the formation, progression, and eventual metastasis of cancer, and increasing evidence points to a role for TG2 in matrix remodelling, modulation of biomechanical properties, cell adhesion, motility, and invasion. There is growing interest in targeting the TME therapeutically in response to advances in the understanding of its critical role in disease progression, and a number of approaches targeting biophysical properties and biomechanical signalling are beginning to show clinical promise. In this review we aim to highlight the wide array of processes in which TG2 influences the TME, focussing on its potential role in the dynamic tissue remodelling and biomechanical events increasingly linked to invasive and aggressive behaviour. Drug development efforts have yielded a range of TG2 inhibitors, and ongoing clinical trials may inform strategies for targeting the biomolecular and biomechanical function of TG2 in the TME.
Collapse
|
4
|
Berditchevski F, Fennell E, Murray PG. Calcium-dependent signalling in B-cell lymphomas. Oncogene 2021; 40:6321-6328. [PMID: 34625709 PMCID: PMC8585665 DOI: 10.1038/s41388-021-02025-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022]
Abstract
Induced waves of calcium fluxes initiate multiple signalling pathways that play an important role in the differentiation and maturation of B-cells. Finely tuned transient Ca+2 fluxes from the endoplasmic reticulum in response to B-cell receptor (BCR) or chemokine receptor activation are followed by more sustained calcium influxes from the extracellular environment and contribute to the mechanisms responsible for the proliferation of B-cells, their migration within lymphoid organs and their differentiation. Dysregulation of these well-balanced mechanisms in B-cell lymphomas results in uncontrolled cell proliferation and resistance to apoptosis. Consequently, several cytotoxic drugs (and anti-proliferative compounds) used in standard chemotherapy regimens for the treatment of people with lymphoma target calcium-dependent pathways. Furthermore, ~10% of lymphoma associated mutations are found in genes with functions in calcium-dependent signalling, including those affecting B-cell receptor signalling pathways. In this review, we provide an overview of the Ca2+-dependent signalling network and outline the contribution of its key components to B cell lymphomagenesis. We also consider how the oncogenic Epstein-Barr virus, which is causally linked to the pathogenesis of a number of B-cell lymphomas, can modify Ca2+-dependent signalling.
Collapse
Affiliation(s)
- Fedor Berditchevski
- grid.6572.60000 0004 1936 7486Institute of Cancer and Genomic Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT UK
| | - Eanna Fennell
- grid.10049.3c0000 0004 1936 9692Health Research Institute, University of Limerick, Castletroy, Limerick, V94 T9PX Ireland
| | - Paul G. Murray
- grid.10049.3c0000 0004 1936 9692Health Research Institute, University of Limerick, Castletroy, Limerick, V94 T9PX Ireland ,grid.6572.60000 0004 1936 7486Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|
5
|
Hu JW, Yang ZF, Li J, Hu B, Luo CB, Zhu K, Dai Z, Cai JB, Zhan H, Hu ZQ, Hu J, Cao Y, Qiu SJ, Zhou J, Fan J, Huang XW. TGM3 promotes epithelial-mesenchymal transition and hepatocellular carcinogenesis and predicts poor prognosis for patients after curative resection. Dig Liver Dis 2020; 52:668-676. [PMID: 31822388 DOI: 10.1016/j.dld.2019.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Prognosis of hepatocellular carcinoma (HCC) remains poor despite significant recent improvement in therapy. Recent studies have reported that transglutaminase 3 (TGM3) plays an important role in several human cancer types. However, the role of TGM3 in HCC have not been previously elucidated. METHODS We evaluated the role of TGM3 in regulating HCC cell proliferation, migration, and invasion. We also investigated the prognostic significance of TGM3 in an HCC cohort. Finally, we explored the signalling pathways that TGM3 regulates in HCC. RESULTS We identified TGM3 to be overexpressed in HCC compared to normal tissues. Higher expression of TGM3 predicts poor prognosis in HCC patients. TGM3 knockdown led to decreased HCC cell proliferation, invasion, and xenograft tumour growth. TGM3 depletion inhibited AKT, extracellular signal-regulated kinase (ERK), p65, and glycogen synthase kinase 3β (GSK3β)/β-catenin activation, but promoted levels of cleaved caspase 3. Moreover, TGM3 knockdown cells had increased E-cadherin levels and decreased vimentin levels, suggesting that TGM3 contributes to epithelial-mesenchymal transition (EMT) in HCC. CONCLUSION Our results suggest that TGM3 controls multiple oncogenic pathways in HCC, thereby contributing to increased cell proliferation and EMT, and TGM3 potentially enhances HCC metastasis. TGM3 may serve as a novel therapeutic target in HCC.
Collapse
Affiliation(s)
- Jin-Wu Hu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Zhang-Fu Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Jia Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Bo Hu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Chu-Bin Luo
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Kai Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Zhi Dai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Jia-Bin Cai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Hao Zhan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Zhi-Qiang Hu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Jie Hu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Ya Cao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, China
| | - Shuang-Jian Qiu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China; Key Laboratory of Medical Epigenetics and Metabolism, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China; Key Laboratory of Medical Epigenetics and Metabolism, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiao-Wu Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China.
| |
Collapse
|
6
|
Gonzalez-Santamarta M, Quinet G, Reyes-Garau D, Sola B, Roué G, Rodriguez MS. Resistance to the Proteasome Inhibitors: Lessons from Multiple Myeloma and Mantle Cell Lymphoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:153-174. [PMID: 32274756 DOI: 10.1007/978-3-030-38266-7_6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Since its introduction in the clinics in early 2000s, the proteasome inhibitor bortezomib (BTZ) significantly improved the prognosis of patients with multiple myeloma (MM) and mantle cell lymphoma (MCL), two of the most challenging B cell malignancies in western countries. However, relapses following BTZ therapy are frequent, while primary resistance to this agent remains a major limitation for further development of its therapeutic potential. In the present chapter, we recapitulate the molecular mechanisms associated with intrinsic and acquired resistance to BTZ learning from MM and MCL experience, including mutations of crucial genes and activation of prosurvival signalling pathways inherent to malignant B cells. We also outline the preclinical and clinical evaluations of some potential druggable targets associated to BTZ resistance, considering the most meaningful findings of the past 10 years. Although our understanding of BTZ resistance is far from being completed, recent discoveries are contributing to develop new approaches to treat relapsed MM and MCL patients.
Collapse
Affiliation(s)
| | | | - Diana Reyes-Garau
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona (Barcelona), Spain
| | - Brigitte Sola
- Normandie University, INSERM UMR1245, UNICAEN, Caen, France
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona (Barcelona), Spain
| | | |
Collapse
|
7
|
Seow BKL, McDougall ARA, Short KL, Wallace MJ, Hooper SB, Cole TJ. Identification of Betamethasone-Regulated Target Genes and Cell Pathways in Fetal Rat Lung Mesenchymal Fibroblasts. Endocrinology 2019; 160:1868-1884. [PMID: 31107524 DOI: 10.1210/en.2018-01071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
Preterm birth is characterized by severe lung immaturity that is frequently treated antenatally or postnatally with the synthetic steroid betamethasone. The underlying cellular targets and pathways stimulated by betamethasone in the fetal lung are poorly defined. In this study, betamethasone was compared with corticosterone in steroid-treated primary cultures of fetal rat lung fibroblasts stimulated for 6 hours and analyzed by whole-cell transcriptome sequencing and glucocorticoid (GC) receptor (GR) chromatin immunoprecipitation sequencing (ChIP-Seq) analysis. Strikingly, betamethasone stimulated a much stronger transcriptional response compared with corticosterone for both induced and repressed genes. A total of 483 genes were significantly stimulated by betamethasone or corticosterone, with 476 stimulated by both steroids, indicating a strong overlap in regulation. Changes in mRNA levels were confirmed by quantitative PCR for eight induced and repressed target genes. Pathway analysis identified cell proliferation and cytoskeletal/cell matrix remodeling pathways as key processes regulated by both steroids. One target, transglutaminase 2 (Tgm2), was localized to fetal lung mesenchymal cells. Tgm2 mRNA and protein levels were strongly increased in fibroblasts by both steroids. Whole-genome GR ChIP-Seq analysis with betamethasone identified GC response element-binding sites close to the previously characterized GR target genes Per1, Dusp1, Fkbp5, and Sgk1 and near the genes identified by transcriptome sequencing encoding Crispld2, Tgm2, Hif3α, and Kdr, defining direct genomic induction of expression in fetal lung fibroblasts via the GR. These results demonstrate that betamethasone stimulates specific genes and cellular pathways controlling cell proliferation and extracellular matrix remodeling in lung mesenchymal fibroblasts, providing a basis for betamethasone's treatment efficacy in preterm birth.
Collapse
Affiliation(s)
- Bennet K L Seow
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Annie R A McDougall
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Kelly L Short
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Megan J Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Timothy J Cole
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
- Division of Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
8
|
Eckert RL. Transglutaminase 2 takes center stage as a cancer cell survival factor and therapy target. Mol Carcinog 2019; 58:837-853. [PMID: 30693974 DOI: 10.1002/mc.22986] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/14/2022]
Abstract
Transglutaminase 2 (TG2) has emerged as a key cancer cell survival factor that drives epithelial to mesenchymal transition, angiogenesis, metastasis, inflammation, drug resistance, cancer stem cell survival and stemness, and invasion and migration. TG2 can exist in a GTP-bound signaling-active conformation or in a transamidase-active conformation. The GTP bound conformation of TG2 contributes to cell survival and the transamidase conformation can contribute to cell survival or death. We present evidence suggesting that TG2 has a role in human cancer, summarize what is known about the TG2 mechanism of action in a range of cancer types, and discuss TG2 as a cancer therapy target.
Collapse
Affiliation(s)
- Richard L Eckert
- Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
9
|
Halicka HD, Li J, Zhao H, Darzynkiewicz Z. Concurrent detection of lysosome and tissue transglutaminase activation in relation to cell cycle position during apoptosis induced by different anticancer drugs. Cytometry A 2018; 95:683-690. [PMID: 30422397 DOI: 10.1002/cyto.a.23652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/18/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022]
Abstract
Described is the new cytometric approach do detect either stimulation or a collapse of lysosomal proton pump (lysosomes rupture) combined with activation of transglutaminase 2 (TG2) during induction of apoptosis. Apoptosis of human lymphoblastoid TK6 cells was induced by combination of 2-deoxyglucose with the isoquinoline alkaloid berberine, by DNA topoisomerase I inhibitor camptothecin, its analog topotecan, topoisomerase II inhibitors etoposide or mitoxantrone, as well as by the cytotoxic anticancer ribonuclease ranpirnase (onconase). Activity of the proton pump of lysosomes was assessed by measuring entrapment and accumulation of the basic fluorochrome acridine orange (AO) resulting in its metachromatic red luminescence (F>640 ) within these organelles. Activation of TG2 was detected in the same cell subpopulation by the evidence of crosslinking of cytoplasmic proteins revealed by the increased intensity of the side light scatter (SSC) as well as following cell lysis by detergent, by its red fluorescence after staining by sulforhodamine 101. Because at low AO concentration nuclear DNA of the lysed cells was stoichiometrically stained green (F530 ) its quantity provided information on effects of the drug treatments on cell cycle in relation to activation of TG2. The data reveal that activation of lysosomal proton pump was evident in subpopulations of cells treated with 2-deoxyglucose plus berberine, topotecan, etoposide and mitoxantrone but not with ranpirnase. The collapse of lysosomal proton pump possibly reporting rupture of these organelles was observed in definite cell subpopulations after treatment with each of the studied drugs. Because regardless of the inducer of apoptosis TG2 activation invariably was correlated with lysosomes rupture it is likely that it was triggered by calcium ions or protons released from the ruptured lysosomes. This new methodological approach offers the means to investigate mechanisms and factors affecting autophagic lysosomes proton pump activity vis-à-vis TG2 activation that are common in several pathological states. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- H Dorota Halicka
- Department of Pathology, New York Medical College, Brander Cancer Research Institute, Valhalla, New York
| | - Jiangwei Li
- Department of Pathology, New York Medical College, Brander Cancer Research Institute, Valhalla, New York
| | - Hong Zhao
- Department of Pathology, New York Medical College, Brander Cancer Research Institute, Valhalla, New York
| | - Zbigniew Darzynkiewicz
- Department of Pathology, New York Medical College, Brander Cancer Research Institute, Valhalla, New York
| |
Collapse
|
10
|
Balaji S, Ahmed M, Lorence E, Yan F, Nomie K, Wang M. NF-κB signaling and its relevance to the treatment of mantle cell lymphoma. J Hematol Oncol 2018; 11:83. [PMID: 29907126 PMCID: PMC6002979 DOI: 10.1186/s13045-018-0621-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023] Open
Abstract
Mantle cell lymphoma is an aggressive subtype of non-Hodgkin B cell lymphoma that is characterized by a poor prognosis determined by Ki67 and Mantle Cell International Prognostic Index scores, but it is becoming increasingly treatable. The majority of patients, especially if young, achieve a progression-free survival of at least 5 years. Mantle cell lymphoma can initially be treated with an anti-CD20 antibody in combination with a chemotherapy backbone, such as VR-CAP (the anti-CD20 monoclonal antibody rituximab administered with cyclophosphamide, doxorubicin, and prednisone) or R-CHOP (the anti-CD20 monoclonal antibody rituximab administered with cyclophosphamide, doxorubicin, vincristine, and prednisone). While initial treatment can facilitate recovery and complete remission in a few patients, many patients experience relapsed or refractory mantle cell lymphoma within 2 to 3 years after initial treatment. Targeted agents such as ibrutinib, an inhibitor of Bruton’s tyrosine kinase, which has been approved only in the relapsed setting, can be used to treat patients with relapsed or refractory mantle cell lymphoma. However, mantle cell lymphoma cells often acquire resistance to such targeted agents and continue to survive by activating alternate signaling pathways such as the PI3K-Akt pathway or the NF-κB pathways. NF-κB is a transcription factor family that regulates the growth and survival of B cells; mantle cell lymphoma cells depend on NF-κB signaling for continued growth and proliferation. The NF-κB signaling pathways are categorized into canonical and non-canonical types, wherein the canonical pathway prompts inflammatory responses, immune regulation, and cell proliferation, while the non-canonical leads to B cell maturation and lymphoid organogenesis. Since these pathways upregulate survival genes and tumor-promoting cytokines, they can be activated to overcome the inhibitory effects of targeted agents, thereby having profound effects on tumorigenesis. The NF-κB pathways are also highly targetable in that they are interconnected with numerous other pathways, including B cell receptor signaling, PI3K/Akt/mTOR signaling, and toll-like receptor signaling pathways. Additionally, elements of the non-canonical NF- κB pathway, such as NF-κB-inducing kinase, can be targeted to overcome resistance to targeting of the canonical NF- κB pathway. Targeting the molecular mechanisms of the NF-κB pathways can facilitate the development of novel agents to treat malignancies and overcome drug resistance in patients with relapsed or refractory mantle cell lymphoma.
Collapse
Affiliation(s)
- Swathi Balaji
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 0429, Houston, TX, 77030-4009, USA
| | - Makhdum Ahmed
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 0429, Houston, TX, 77030-4009, USA
| | - Elizabeth Lorence
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 0429, Houston, TX, 77030-4009, USA
| | - Fangfang Yan
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 0429, Houston, TX, 77030-4009, USA
| | - Krystle Nomie
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 0429, Houston, TX, 77030-4009, USA
| | - Michael Wang
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 0429, Houston, TX, 77030-4009, USA.
| |
Collapse
|
11
|
Ding Y, Liu P, Zhang S, Tao L, Han J. Screening pathogenic genes in oral squamous cell carcinoma based on the mRNA expression microarray data. Int J Mol Med 2018; 41:3597-3603. [PMID: 29512771 DOI: 10.3892/ijmm.2018.3514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 01/22/2018] [Indexed: 11/05/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignancies and its survival rate has barely improved over the past few decades. The purpose of this study was to screen pathogenic genes of OSCC via microarray analysis. The mRNA expression microarray datasets (GSE2280 and GSE3524) were downloaded from the Gene Expression Omnibus (GEO) database. In GSE2280, there were 22 OSCC samples without metastasis and 5 OSCC samples with lymph node metastasis. In GSE3524, there were 16 OSCC samples and 4 normal tissue samples. The differentially expressed genes (DEGs) in OSCC samples with lymph node metastasis compared with those without metastasis (named as DEGs-1), and the DEGs in OSCC samples compared with normal tissue samples (named as DEGs-2), were obtained via limma package. The Database for Annotation, Visualization and Integrated Discovery (DAVID) was used to perform the functional enrichment analyses of DEGs-1 and DEGs-2. The miRNA-gene pairs of overlaps among DEGs were screened out with the TargetScan database, and the miRNA-gene regulated network was constructed by Cytoscape software. A total of 233 and 410 DEGs were identified in the sets of DEGs-1 and DEGs-2, respectively. DEGs-1 were enriched in 188 Gene Ontology (GO) terms and 8 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and DEGs-2 were enriched in 228 GO terms and 6 KEGG pathways. In total, 126 nodes and 135 regulated pairs were involved in the miRNA-gene regulated network. Our study indicated that transglutaminase 2 (TGM2) and Islet 1 (ISL1) may be biomarkers of OSCC and their metastases. Moreover, it provided some potential pathogenic genes (e.g. P2RY2 and RAPGEFL1) in OSCC.
Collapse
Affiliation(s)
- Yang Ding
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Pengfei Liu
- Department of Lymphoma, Sino-US Center of Lymphoma and Leukemia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Shengsheng Zhang
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Lin Tao
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, P.R. China
| | - Jianmin Han
- Dental Materials Laboratory, National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| |
Collapse
|
12
|
Emmons MF, Anreddy N, Cuevas J, Steinberger K, Yang S, McLaughlin M, Silva A, Hazlehurst LA. MTI-101 treatment inducing activation of Stim1 and TRPC1 expression is a determinant of response in multiple myeloma. Sci Rep 2017; 7:2685. [PMID: 28578393 PMCID: PMC5457439 DOI: 10.1038/s41598-017-02713-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/04/2017] [Indexed: 02/07/2023] Open
Abstract
The emergence of drug resistance continues to be a major hurdle towards improving patient outcomes for the treatment of Multiple Myeloma. MTI-101 is a first-in-class peptidomimetic that binds a CD44/ITGA4 containing complex and triggers necrotic cell death in multiple myeloma cell lines. In this report, we show that acquisition of resistance to MTI-101 correlates with changes in expression of genes predicted to attenuate Ca2+ flux. Consistent with the acquired resistant genotype, MTI-101 treatment induces a rapid and robust increase in intracellular Ca2+ levels in the parental cells; a finding that was attenuated in the acquired drug resistant cell line. Mechanistically, we show that pharmacological inhibition of store operated channels or reduction in the expression of a component of the store operated Ca2+ channel, TRPC1 blocks MTI-101 induced cell death. Importantly, MTI-101 is more potent in specimens obtained from relapsed myeloma patients, suggesting that relapse may occur at a cost for increased sensitivity to Ca2+ overload mediated cell death. Finally, we demonstrate that MTI-101 is synergistic when combined with bortezomib, using both myeloma cell lines and primary myeloma patient specimens. Together, these data continue to support the development of this novel class of compounds for the treatment of relapsed myeloma.
Collapse
Affiliation(s)
- Michael F Emmons
- Tumor Biology Department, Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Modulation Therapeutics, Inc., 3802 Spectrum Boulevard, Suite 124, Tampa, FL, 33620, USA
| | - Nagaraju Anreddy
- Department of Pharmaceutical Science, University of West Virginia, Morgantown, WV, 26506, USA
| | - Javier Cuevas
- Pharmacology and Physiology Department, University of South Florida, Tampa, FL, 33620, USA
| | - Kayla Steinberger
- Department of Pharmaceutical Science, University of West Virginia, Morgantown, WV, 26506, USA
| | - Shengyu Yang
- Tumor Biology Department, Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Mark McLaughlin
- Department of Pharmaceutical Science, University of West Virginia, Morgantown, WV, 26506, USA
| | - Ariosto Silva
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Lori A Hazlehurst
- Department of Pharmaceutical Science, University of West Virginia, Morgantown, WV, 26506, USA.
| |
Collapse
|
13
|
Arkwright R, Pham TM, Zonder JA, Dou QP. The preclinical discovery and development of bortezomib for the treatment of mantle cell lymphoma. Expert Opin Drug Discov 2016; 12:225-235. [PMID: 27917682 DOI: 10.1080/17460441.2017.1268596] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Mantle cell lymphoma (MCL) is an incurable, often aggressive B-cell malignancy. Bortezomib (BTZ), the 20S proteasome inhibitor was originally developed and approved for treatment of relapsed refractory multiple myeloma, and subsequently approved for treatment of MCL. BTZ's single-agent activity induces clinical responses in approximately one-third of relapsed MCL patients. BTZ-containing combination therapies have further improved the quality and duration of clinical responses compared to standard chemotherapies in previously untreated MCL patients. Areas covered: This review summarizes the discovery, mechanisms of -action and resistance, preclinical- clinical-developments, and FDA approval of BTZ for treatments of MCL. Expert opinion: Preclinical MCL models demonstrated the apoptotic effect of BTZ through multiple mechanisms, as well as synergistic anti-MCL activity between BTZ and other chemotherapeutics. Single-agent and combinational clinical trials have validated the therapeutic potential of targeting the ubiquitin proteasome system (UPS) in MCL. However, inherent and acquired drug resistance remains a significant clinical problem and multiple potential mechanisms have been identified. Next-generation proteasome inhibitors with different pharmacodynamic properties from BTZ may partially address the issue of inherent resistance, with increased response rates noted in some diseases. In addition, upstream UPS components, e.g., E3 ligases or deubiquitinating enzymes, may also be targetable in MCL.
Collapse
Affiliation(s)
- Richard Arkwright
- a Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan , USA.,b Barbara Ann Karmanos Cancer Institute , Detroit , Michigan , USA
| | - Tri Minh Pham
- c Department of Pathology , Wayne State University School of Medicine , Detroit , Michigan , USA
| | - Jeffrey A Zonder
- a Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan , USA.,b Barbara Ann Karmanos Cancer Institute , Detroit , Michigan , USA
| | - Q Ping Dou
- a Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan , USA.,b Barbara Ann Karmanos Cancer Institute , Detroit , Michigan , USA.,c Department of Pathology , Wayne State University School of Medicine , Detroit , Michigan , USA
| |
Collapse
|
14
|
Zhang H, Chen Z, Miranda RN, Medeiros LJ, McCarty N. TG2 and NF-κB Signaling Coordinates the Survival of Mantle Cell Lymphoma Cells via IL6-Mediated Autophagy. Cancer Res 2016; 76:6410-6423. [PMID: 27488529 DOI: 10.1158/0008-5472.can-16-0595] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/05/2016] [Indexed: 01/01/2023]
Abstract
Expression of the transglutaminase TG2 has been linked to constitutive activation of NF-κB and chemotherapy resistance in mantle cell lymphoma (MCL) cells. TG2 forms complexes with NF-κB components, but mechanistic insights that could be used to leverage therapeutic responses has been lacking. In the current study, we address this issue with the discovery of an unexpected role for TG2 in triggering autophagy in drug-resistant MCL cells through induction of IL6. CRISPR-mediated silencing of TG2 delayed apoptosis while overexpressing TG2 enhanced tumor progression. Under stress, TG2 and IL6 mediate enhanced autophagy formation to promote MCL cell survival. Interestingly, the autophagy product ATG5 involved in autophagosome elongation positively regulated TG2/NF-κB/IL6 signaling, suggesting a positive feedback loop. Our results uncover an interconnected network of TG2/NF-κB and IL6/STAT3 signaling with autophagy regulation in MCL cells, the disruption of which may offer a promising therapeutic strategy. Cancer Res; 76(21); 6410-23. ©2016 AACR.
Collapse
Affiliation(s)
- Han Zhang
- Center for Stem Cell and Regenerative Disease, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, Houston, Texas
| | - Zheng Chen
- Center for Stem Cell and Regenerative Disease, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, Houston, Texas
| | - Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nami McCarty
- Center for Stem Cell and Regenerative Disease, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
15
|
Mischiati C, Ura B, Roncoroni L, Elli L, Cervellati C, Squerzanti M, Conte D, Doneda L, Polverino de Laureto P, de Franceschi G, Calza R, Barrero CA, Merali S, Ferrari C, Bergamini CM, Agostinelli E. Changes in protein expression in two cholangiocarcinoma cell lines undergoing formation of multicellular tumor spheroids in vitro. PLoS One 2015; 10:e0118906. [PMID: 25756965 PMCID: PMC4355290 DOI: 10.1371/journal.pone.0118906] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 01/16/2015] [Indexed: 12/18/2022] Open
Abstract
Epithelial-to-Mesenchymal Transition (EMT) is relevant in malignant growth and frequently correlates with worsening disease progression due to its implications in metastases and resistance to therapeutic interventions. Although EMT is known to occur in several types of solid tumors, the information concerning tumors arising from the epithelia of the bile tract is still limited. In order to approach the problem of EMT in cholangiocarcinoma, we decided to investigate the changes in protein expression occurring in two cell lines under conditions leading to growth as adherent monolayers or to formation of multicellular tumor spheroids (MCTS), which are considered culture models that better mimic the growth characteristics of in-vivo solid tumors. In our system, changes in phenotypes occur with only a decrease in transmembrane E-cadherin and vimentin expression, minor changes in the transglutaminase protein/activity but with significant differences in the proteome profiles, with declining and increasing expression in 6 and in 16 proteins identified by mass spectrometry. The arising protein patterns were analyzed based on canonical pathways and network analysis. These results suggest that significant metabolic rearrangements occur during the conversion of cholangiocarcinomas cells to the MCTS phenotype, which most likely affect the carbohydrate metabolism, protein folding, cytoskeletal activity, and tissue sensitivity to oxygen.
Collapse
Affiliation(s)
- Carlo Mischiati
- Department of Biomedical and Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Blendi Ura
- Institute for Maternal and Child Health, IRCCS Burlo Garofalo, University of Trieste, Trieste, Italy
| | - Leda Roncoroni
- Center for Prevention and Diagnosis of Coeliac Disease/Gastroenterology 2, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milano, Italy
- Department of Biomedical, Surgical and Odontoiatric Sciences, University of Milano, Milano, Italy
| | - Luca Elli
- Center for Prevention and Diagnosis of Coeliac Disease/Gastroenterology 2, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Carlo Cervellati
- Department of Biomedical and Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Monica Squerzanti
- Department of Biomedical and Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Dario Conte
- Center for Prevention and Diagnosis of Coeliac Disease/Gastroenterology 2, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Luisa Doneda
- Department of Biomedical, Surgical and Odontoiatric Sciences, University of Milano, Milano, Italy
| | | | | | - Roberta Calza
- Department of Biomedical and Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Carlos A. Barrero
- Moulder Center for Drug Discovery Research, Temple University, School of Pharmacy, Philadelphia, Pennsylvania, United States of America
| | - Salim Merali
- Moulder Center for Drug Discovery Research, Temple University, School of Pharmacy, Philadelphia, Pennsylvania, United States of America
| | - Carlo Ferrari
- Department of Clinical and Molecular Sciences, Faculty of Medicine, Le Marche Polytechnic University, Ancona, Italy
| | - Carlo M. Bergamini
- Department of Biomedical and Surgical Sciences, University of Ferrara, Ferrara, Italy
- * E-mail:
| | - Enzo Agostinelli
- Istituto Pasteur, Fondazione Cenci Bolognetti and Department of Biochemical Sciences “A. Rossi Fanelli”, La Sapienza University of Rome and CNR, Biology and Molecular Pathology Institutes, Rome, Italy
| |
Collapse
|
16
|
Martins IM, Matos M, Costa R, Silva F, Pascoal A, Estevinho LM, Choupina AB. Transglutaminases: recent achievements and new sources. Appl Microbiol Biotechnol 2014; 98:6957-64. [PMID: 24962119 DOI: 10.1007/s00253-014-5894-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 02/07/2023]
Abstract
Transglutaminases are a family of enzymes (EC 2.3.2.13), widely distributed in various organs, tissues, and body fluids, that catalyze the formation of a covalent bond between a free amine group and the γ-carboxamide group of protein or peptide-bound glutamine. Besides forming these bonds, that exhibit high resistance to proteolytic degradation, transglutaminases also form extensively cross-linked, generally insoluble, protein biopolymers that are indispensable for the organism to create barriers and stable structures. The extremely high cost of transglutaminase of animal origin has hampered its wider application and has initiated efforts to find an enzyme of microbial origin. Since the early 1990s, many microbial transglutaminase-producing strains have been found, and production processes have been optimized. This has resulted in a rapidly increasing number of applications of transglutaminase in the food sector. However, applications of microbial transglutaminase in other sectors have also been explored, but in a much lesser extent. Our group has identified a transglutaminase in the oomycete Phytophthora cinnamomi, which is able to induct defense responses and disease-like symptoms. In this mini-review, we report the achievements in this area in order to illustrate the importance and the versatility of transglutaminases.
Collapse
Affiliation(s)
- Ivone M Martins
- CIMO-Mountain Research Center, Agricultural College of Bragança, Polytechnic Institute of Bragança, Campus de Santa Apolónia, Apartado 1172, 5301-855, Bragança, Portugal
| | | | | | | | | | | | | |
Collapse
|
17
|
Caffarel MM, Chattopadhyay A, Araujo AM, Bauer J, Scarpini CG, Coleman N. Tissue transglutaminase mediates the pro-malignant effects of oncostatin M receptor over-expression in cervical squamous cell carcinoma. J Pathol 2013; 231:168-79. [PMID: 23765377 PMCID: PMC4288975 DOI: 10.1002/path.4222] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/23/2013] [Accepted: 06/01/2013] [Indexed: 01/06/2023]
Abstract
Oncostatin M receptor (OSMR) is commonly over-expressed in advanced cervical squamous cell carcinoma (SCC), producing a significantly worse clinical outcome. Cervical SCC cells that over-express OSMR show enhanced responsiveness to the major ligand OSM, which induces multiple pro-malignant effects, including increased cell migration and invasiveness. Here, we show that tissue transglutaminase (TGM2) is an important mediator of the ligand-dependent phenotypic effects of OSMR over-expression in SCC cells. TGM2 expression correlated with disease progression and with OSMR levels in clinical samples of cervical and oral SCC. TGM2 depletion in cervical SCC cells abrogated OSM-induced migration on fibronectin-coated surfaces and invasiveness through extracellular matrix, while ectopic expression of TGM2 increased cell motility and invasiveness. Confocal microscopy and co-immunoprecipitation assays showed that TGM2 interacted with integrin-α5β1 in the presence of fibronectin in cervical SCC cells, with OSM treatment strengthening the interaction. Importantly, integrin-α5β1 and fibronectin were also over-expressed in cervical and oral SCC, where levels correlated with those of OSMR and TGM2. This combined tissue and in vitro study demonstrates for the first time that stimulation of over-expressed OSMR in cervical SCC cells activates TGM2/integrin-α5β1 interactions and induces pro-malignant changes. We conclude that an OSMR/TGM2/integrin-α5β1/fibronectin pathway is of biological significance in cervical SCC and a candidate for therapeutic targeting.
Collapse
|
18
|
KIM SEONGGON, CHOI JEYONG. 4-hexylresorcinol exerts antitumor effects via suppression of calcium oscillation and its antitumor effects are inhibited by calcium channel blockers. Oncol Rep 2013; 29:1835-40. [DOI: 10.3892/or.2013.2292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/29/2013] [Indexed: 11/06/2022] Open
|
19
|
Kumar S, Mehta K. Tissue transglutaminase constitutively activates HIF-1α promoter and nuclear factor-κB via a non-canonical pathway. PLoS One 2012. [PMID: 23185316 PMCID: PMC3501523 DOI: 10.1371/journal.pone.0049321] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Constitutive activation of nuclear factor kappa B (NF-κB) has been linked with carcinogenesis and cancer progression, including metastasis, chemoresistance, and radiation resistance. However, the molecular mechanisms that result in constitutive activation of NF-κB are poorly understood. Here we show that chronic expression of the pro-inflammatory protein tissue transglutaminase (TG2) reprograms the transcription regulatory network in epithelial cells via constitutive activation of NF-κB. TG2-induced NF-κB binds the functional NF-κB binding site in hypoxia-inducible factor-1 (HIF-1α) promoter and results in its increased expression at transcription and protein levels even under normoxic conditions. TG2/NF-κB-induced HIF-1 was deemed essential for increased expression of some transcription repressors, like Zeb1, Zeb2, Snail, and Twist. Unlike tumor necrosis factor-alpha (TNFα), TG2 did not require IκB kinase (IKK) for NF-κB activation. Our data suggest that TG2 binds with IκBα and results in its rapid degradation via a non-proteasomal pathway. Importantly, the catalytically inactive (C277S) mutant form of TG2 was as effective as was wild-type TG2 in activating NF-κB and inducing HIF-1 expression. We also found that TG2 interacted with p65/RelA protein, both in the cytosolic and the nuclear compartment. The TG2/p65(NF-κB) complex binds to the HIF-1 promoter and induced its transcriptional regulation. Inhibition of TG2 or p65/RelA also inhibited the HIF-1α expression and attenuated Zeb1, Zeb2, and Twist expression. To our knowledge, these findings show for the first time a direct link between TG2, NF-κB, and HIF-1α, demonstrating TG2's important role in cancer progression.
Collapse
Affiliation(s)
| | - Kapil Mehta
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|