1
|
Prockop SE, Hasan A, Doubrovina E, Dahi PB, Rodriguez-Sanchez I, Curry M, Mauguen A, Papanicolaou GA, Su Y, Yao J, Arcila M, Boulad F, Castro-Malaspina H, Cho C, Curran KJ, Giralt S, Kernan NA, Koehne G, Jakubowski A, Papadopoulos E, Perales MA, Politikos I, Price K, Selvakumar A, Sauter CS, Tamari R, Vizconde T, Young JW, O’Reilly RJ. Third-party cytomegalovirus-specific T cells improved survival in refractory cytomegalovirus viremia after hematopoietic transplant. J Clin Invest 2023; 133:e165476. [PMID: 36951958 PMCID: PMC10178844 DOI: 10.1172/jci165476] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/08/2023] [Indexed: 03/24/2023] Open
Abstract
BackgroundRefractory CMV viremia and disease are associated with significant morbidity and mortality in recipients of hematopoietic stem cell transplant (HCT).MethodsIn phase I/II trials, we treated 67 subjects for CMV viremia or disease arising after HCT with adoptive transfer of banked, third-party, CMVpp65-sensitized T cells (CMVpp65-VSTs). All were evaluable for toxicity and 59 for response. Evaluable subjects had CMV disease or persisting viremia that had failed at least 2 weeks of induction therapy with a median of 3 antiviral drugs; 84.7% had more than 3 of 11 high-risk features. CMVpp65-VSTs were specific for 1 to 3 CMVpp65 epitopes, presented by a limited set of HLA class I or II alleles, and were selected based on high-resolution HLA matching at 2 of 10 HLA alleles and matching for subject and subject's HCT donor for 1 or more alleles through which the CMVpp65-VSTs were restricted.ResultsT cell infusions were well tolerated. Of 59 subjects evaluable for response, 38 (64%) achieved complete or durable partial responses.ConclusionsRecipients responding to CMVpp65VSTs experienced an improved overall survival. Of the risk factors evaluated, transplant type, recipient CD4+ and CD8+ T cell levels prior to adoptive therapy, and the HLA restriction of CMVpp65-VSTs infused each significantly affected responses. In addition, CMVpp65-specific T cells of HCT donor or recipient origin contributed to the durability of both complete and partial responses.Trial RegistrationNCT00674648; NCT01646645; NCT02136797 (NIH).FundingNIH (P01 CA23766, R21 CA162002 and P30 CA008748); Aubrey Fund; Claire Tow Foundation; Major Family Foundation; "Rick" Eisemann Pediatric Research Fund; Banbury Foundation; Edith Robertson Foundation; Larry Smead Foundation.
Collapse
Affiliation(s)
- Susan E. Prockop
- Stem Cell Transplantation and Cellular Therapies Service, Department of Pediatrics, and
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
- Stem Cell Transplant Service, Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Aisha Hasan
- Stem Cell Transplantation and Cellular Therapies Service, Department of Pediatrics, and
| | - Ekaterina Doubrovina
- Stem Cell Transplantation and Cellular Therapies Service, Department of Pediatrics, and
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Parastoo B. Dahi
- Stem Cell Transplant Service, Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
- Adult Bone Marrow Transplant Service, Department of Medicine, MSKCC, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Irene Rodriguez-Sanchez
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | | | | | - Genovefa A. Papanicolaou
- Department of Pediatrics Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Infectious Disease Service, Department of Medicine, and
| | - Yiqi Su
- Adult Bone Marrow Transplant Service, Department of Medicine, MSKCC, New York, New York, USA
| | - JinJuan Yao
- Department of Pathology, MSKCC, New York, New York, USA
| | - Maria Arcila
- Department of Pathology, MSKCC, New York, New York, USA
| | - Farid Boulad
- Stem Cell Transplantation and Cellular Therapies Service, Department of Pediatrics, and
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
- Department of Pediatrics, Weill Cornell Medical College, New York, New York, USA
| | - Hugo Castro-Malaspina
- Adult Bone Marrow Transplant Service, Department of Medicine, MSKCC, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Christina Cho
- Adult Bone Marrow Transplant Service, Department of Medicine, MSKCC, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Kevin J. Curran
- Stem Cell Transplantation and Cellular Therapies Service, Department of Pediatrics, and
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
- Department of Pediatrics, Weill Cornell Medical College, New York, New York, USA
| | - Sergio Giralt
- Adult Bone Marrow Transplant Service, Department of Medicine, MSKCC, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Nancy A. Kernan
- Stem Cell Transplantation and Cellular Therapies Service, Department of Pediatrics, and
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
- Department of Pediatrics, Weill Cornell Medical College, New York, New York, USA
| | - Guenther Koehne
- Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Ann Jakubowski
- Adult Bone Marrow Transplant Service, Department of Medicine, MSKCC, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Esperanza Papadopoulos
- Adult Bone Marrow Transplant Service, Department of Medicine, MSKCC, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplant Service, Department of Medicine, MSKCC, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Ioannis Politikos
- Adult Bone Marrow Transplant Service, Department of Medicine, MSKCC, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Keith Price
- Stem Cell Transplantation and Cellular Therapies Service, Department of Pediatrics, and
| | - Annamalai Selvakumar
- Stem Cell Transplantation and Cellular Therapies Service, Department of Pediatrics, and
| | - Craig S. Sauter
- Blood and Marrow Transplant Program, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Roni Tamari
- Adult Bone Marrow Transplant Service, Department of Medicine, MSKCC, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Teresa Vizconde
- Stem Cell Transplantation and Cellular Therapies Service, Department of Pediatrics, and
| | - James W. Young
- Adult Bone Marrow Transplant Service, Department of Medicine, MSKCC, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Richard J. O’Reilly
- Stem Cell Transplantation and Cellular Therapies Service, Department of Pediatrics, and
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
- Department of Pediatrics, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
2
|
Lak S, Janelle V, Djedid A, Boudreau G, Brasey A, Lisi V, Smaani A, Carli C, Busque L, Lavallée VP, Delisle JS. Combined PD-L1 and TIM3 blockade improves expansion of fit human CD8 + antigen-specific T cells for adoptive immunotherapy. Mol Ther Methods Clin Dev 2022; 27:230-245. [PMID: 36320412 PMCID: PMC9593254 DOI: 10.1016/j.omtm.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 09/29/2022] [Indexed: 11/27/2022]
Abstract
Antigen-specific T cell expansion ex vivo followed by adoptive transfer enables targeting of a multitude of microbial and cancer antigens. However, clinical-scale T cell expansion from rare precursors requires repeated stimulation, which may lead to T cell dysfunction and limited therapeutic potential. We used a clinically compliant protocol to expand Epstein-Barr virus (EBV) and Wilms tumor 1 (WT1) antigen-specific CD8+ T cells, and leveraged T cell exhaustion-associated inhibitory receptor blockade to improve T cell expansion. Several inhibitory receptors were expressed early by ex vivo-expanded antigen-specific CD8+ T cells, including PD-1 and TIM3, with co-expression matching evidence of T cell dysfunction as the cultures progressed. Introduction of anti-PD-L1 and anti-TIM3 blockade in combination (but not individually) to the culture led to markedly improved antigen-specific T cell expansion without inducing T cell dysfunction. Single-cell RNA sequencing (RNA-seq) and T cell receptor (TCR) repertoire profiling revealed that double blockade does not impart specific transcriptional programs in T cells or alterations in TCR repertoires. However, combined blockade may affect gene expression in a minority of clonotypes in a donor-specific fashion. We conclude that antigen-specific CD8+ T cell manufacturing can be improved by using TIM3 and PD-L1/PD-1 axis blockade in combination. This approach is readily applicable to several adoptive immunotherapy strategies.
Collapse
Affiliation(s)
- Shirin Lak
- Centre de Recherche de L’Hôpital Maisonneuve-Rosemont, 5415 Boul. de L’Assomption, Montréal, QC H1T 2M4, Canada
| | - Valérie Janelle
- Centre de Recherche de L’Hôpital Maisonneuve-Rosemont, 5415 Boul. de L’Assomption, Montréal, QC H1T 2M4, Canada
| | - Anissa Djedid
- Centre de Recherche Du CHU Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Gabrielle Boudreau
- Centre de Recherche de L’Hôpital Maisonneuve-Rosemont, 5415 Boul. de L’Assomption, Montréal, QC H1T 2M4, Canada
| | - Ann Brasey
- Centre de Recherche de L’Hôpital Maisonneuve-Rosemont, 5415 Boul. de L’Assomption, Montréal, QC H1T 2M4, Canada,Biomarker Unit, Centre C3i, 5415 Boul. de L’Assomption, Montréal, QC H1T 2M4, Canada
| | - Véronique Lisi
- Centre de Recherche Du CHU Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Ali Smaani
- Centre de Recherche de L’Hôpital Maisonneuve-Rosemont, 5415 Boul. de L’Assomption, Montréal, QC H1T 2M4, Canada
| | - Cédric Carli
- Centre de Recherche de L’Hôpital Maisonneuve-Rosemont, 5415 Boul. de L’Assomption, Montréal, QC H1T 2M4, Canada
| | - Lambert Busque
- Centre de Recherche de L’Hôpital Maisonneuve-Rosemont, 5415 Boul. de L’Assomption, Montréal, QC H1T 2M4, Canada,Biomarker Unit, Centre C3i, 5415 Boul. de L’Assomption, Montréal, QC H1T 2M4, Canada,Department of Medicine, Université de Montréal, CP 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada,Hematology-Oncology and Cell Therapy Division, Hôpital Maisonneuve-Rosemont, Montréal, QC Canada
| | - Vincent-Philippe Lavallée
- Centre de Recherche Du CHU Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada,Department of Pediatrics, Université de Montréal, Montréal, QC, Canada,Hematology-Oncology Division, CHU Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Jean-Sébastien Delisle
- Centre de Recherche de L’Hôpital Maisonneuve-Rosemont, 5415 Boul. de L’Assomption, Montréal, QC H1T 2M4, Canada,Department of Medicine, Université de Montréal, CP 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada,Hematology-Oncology and Cell Therapy Division, Hôpital Maisonneuve-Rosemont, Montréal, QC Canada,Corresponding author Jean-Sébastien Delisle, MD, FRCPC, PhD, Centre de recherche de l’Hôpital Maisonneuve-Rosemont 5415, Boul de L’Assomption, Montréal, QC, H1T 2M4, Canada.
| |
Collapse
|
3
|
Molvi Z, O'Reilly RJ. Allogeneic Tumor Antigen-Specific T Cells for Broadly Applicable Adoptive Cell Therapy of Cancer. Cancer Treat Res 2022; 183:131-159. [PMID: 35551658 DOI: 10.1007/978-3-030-96376-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
T cells specific for major histocompatibility complex (MHC)-presented tumor antigens are capable of inducing durable remissions when adoptively transferred to patients with refractory cancers presenting such antigens. When such T cells are derived from healthy donors, they can be banked for off-the-shelf administration in appropriately tissue matched patients. Therefore, tumor antigen-specific, donor-derived T cells are expected to be a mainstay in the cancer immunotherapy armamentarium. In this chapter, we analyze clinical evidence that tumor antigen-specific donor-derived T cells can induce tumor regressions when administered to appropriately matched patients whose tumors are refractory to standard therapy. We also delineate the landscape of MHC-presented and unconventional tumor antigens recognized by T cells in healthy individuals that have been targeted for adoptive T cell therapy, as well as emerging antigens for which mounting evidence suggests their utility as targets for adoptive T cell therapy. We discuss the growing technological advancements that have facilitated sequence identification of such antigens and their cognate T cells, and applicability of such technologies in the pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Zaki Molvi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Richard J O'Reilly
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
4
|
Friedman J, Gunti S, Lee M, Bai K, Hinrichs C, Allen CT. Determining if T cell antigens are naturally processed and presented on HLA class I molecules. BMC Immunol 2022; 23:5. [PMID: 35148673 PMCID: PMC8832792 DOI: 10.1186/s12865-022-00478-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
Background Determining T cell responses to naturally processed and presented antigens is a critical immune correlate to determine efficacy of an investigational immunotherapeutic in clinical trials. In most cases, minimal epitopes and HLA restriction elements are unknown. Results Here, we detail the experimental use of ex vivo expanded autologous B cells as antigen presenting cells to overcome the limitation of unknown HLA restriction, and the use of electroporated full length mRNA encoding full length parental proteins to ensure that any observed T cell responses are specific for antigens that are naturally processed and presented. Conclusions This technique can serve as useful experimental approach to determine the induction or enhancement of specific responses to naturally processed and presented antigens on HLA class I molecules in peripheral blood or tumor infiltrating T cells.
Collapse
Affiliation(s)
- Jay Friedman
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, Room 7N240C, Bethesda, MD, 20892, USA
| | - Sreenivasulu Gunti
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, Room 7N240C, Bethesda, MD, 20892, USA
| | - Maxwell Lee
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, Room 7N240C, Bethesda, MD, 20892, USA
| | - Ke Bai
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, Room 7N240C, Bethesda, MD, 20892, USA
| | - Christian Hinrichs
- Rutgers Cancer Center at Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Clint T Allen
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, Room 7N240C, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Ruggiero E, Carnevale E, Prodeus A, Magnani ZI, Camisa B, Merelli I, Politano C, Stasi L, Potenza A, Cianciotti BC, Manfredi F, Di Bono M, Vago L, Tassara M, Mastaglio S, Ponzoni M, Sanvito F, Liu D, Balwani I, Galli R, Genua M, Ostuni R, Doglio M, O'Connell D, Dutta I, Yazinski SA, McKee M, Arredouani MS, Schultes B, Ciceri F, Bonini C. CRISPR-based gene disruption and integration of high-avidity, WT1-specific T cell receptors improve antitumor T cell function. Sci Transl Med 2022; 14:eabg8027. [PMID: 35138911 DOI: 10.1126/scitranslmed.abg8027] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
T cell receptor (TCR)-based therapy has the potential to induce durable clinical responses in patients with cancer by targeting intracellular tumor antigens with high sensitivity and by promoting T cell survival. However, the need for TCRs specific for shared oncogenic antigens and the need for manufacturing protocols able to redirect T cell specificity while preserving T cell fitness remain limiting factors. By longitudinal monitoring of T cell functionality and dynamics in 15 healthy donors, we isolated 19 TCRs specific for Wilms' tumor antigen 1 (WT1), which is overexpressed by several tumor types. TCRs recognized several peptides restricted by common human leukocyte antigen (HLA) alleles and displayed a wide range of functional avidities. We selected five high-avidity HLA-A*02:01-restricted TCRs, three that were specific to the less explored immunodominant WT137-45 and two that were specific to the noncanonical WT1-78-64 epitopes, both naturally processed by primary acute myeloid leukemia (AML) blasts. With CRISPR-Cas9 genome editing tools, we combined TCR-targeted integration into the TCR α constant (TRAC) locus with TCR β constant (TRBC) knockout, thus avoiding TCRαβ mispairing and maximizing TCR expression and function. The engineered lymphocytes were enriched in memory stem T cells. A unique WT137-45-specific TCR showed antigen-specific responses and efficiently killed AML blasts, acute lymphoblastic leukemia blasts, and glioblastoma cells in vitro and in vivo in the absence of off-tumor toxicity. T cells engineered to express this receptor are being advanced into clinical development for AML immunotherapy and represent a candidate therapy for other WT1-expressing tumors.
Collapse
Affiliation(s)
- Eliana Ruggiero
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Erica Carnevale
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Zulma Irene Magnani
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Barbara Camisa
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy.,National Research Council, Institute for Biomedical Technologies, Segrate, Italy
| | - Claudia Politano
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Lorena Stasi
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessia Potenza
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy.,School of Medicine and Surgery, Milano-Bicocca University, 20126 Milan, Italy
| | - Beatrice Claudia Cianciotti
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesco Manfredi
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Mattia Di Bono
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luca Vago
- Immunogenetics, Leukemia Genomics and Immunobiology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy.,Hematology and Bone Marrow Transplantation Unit, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Michela Tassara
- Immunohematology and Transfusion Medicine Unit, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sara Mastaglio
- Hematology and Bone Marrow Transplantation Unit, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maurilio Ponzoni
- Vita-Salute San Raffaele University, 20132 Milan, Italy.,Pathology Unit, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesca Sanvito
- Pathology Unit, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Dai Liu
- Intellia Therapeutics, Cambridge, MA 02139, USA
| | | | - Rossella Galli
- Neural Stem Cell Biology Unit, Division of Neurosciences, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marco Genua
- Genomics of the Innate Immune System Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Renato Ostuni
- Vita-Salute San Raffaele University, 20132 Milan, Italy.,Genomics of the Innate Immune System Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Matteo Doglio
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Ivy Dutta
- Intellia Therapeutics, Cambridge, MA 02139, USA
| | | | - Mark McKee
- Intellia Therapeutics, Cambridge, MA 02139, USA
| | | | | | - Fabio Ciceri
- Vita-Salute San Raffaele University, 20132 Milan, Italy.,Hematology and Bone Marrow Transplantation Unit, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, Ospedale San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
6
|
Lahman MC, Schmitt TM, Paulson KG, Vigneron N, Buenrostro D, Wagener FD, Voillet V, Martin L, Gottardo R, Bielas J, McElrath JM, Stirewalt DL, Pogosova-Agadjanyan EL, Yeung CC, Pierce RH, Egan DN, Bar M, Hendrie PC, Kinsella S, Vakil A, Butler J, Chaffee M, Linton J, McAfee MS, Hunter DS, Bleakley M, Rongvaux A, Van den Eynde BJ, Chapuis AG, Greenberg PD. Targeting an alternate Wilms' tumor antigen 1 peptide bypasses immunoproteasome dependency. Sci Transl Med 2022; 14:eabg8070. [PMID: 35138909 DOI: 10.1126/scitranslmed.abg8070] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Designing effective antileukemic immunotherapy will require understanding mechanisms underlying tumor control or resistance. Here, we report a mechanism of escape from immunologic targeting in an acute myeloid leukemia (AML) patient, who relapsed 1 year after immunotherapy with engineered T cells expressing a human leukocyte antigen A*02 (HLA-A2)-restricted T cell receptor (TCR) specific for a Wilms' tumor antigen 1 epitope, WT1126-134 (TTCR-C4). Resistance occurred despite persistence of functional therapeutic T cells and continuous expression of WT1 and HLA-A2 by the patient's AML cells. Analysis of the recurrent AML revealed expression of the standard proteasome, but limited expression of the immunoproteasome, specifically the beta subunit 1i (β1i), which is required for presentation of WT1126-134. An analysis of a second patient treated with TTCR-C4 demonstrated specific loss of AML cells coexpressing β1i and WT1. To determine whether the WT1 protein continued to be processed and presented in the absence of immunoproteasome processing, we identified and tested a TCR targeting an alternative, HLA-A2-restricted WT137-45 epitope that was generated by immunoproteasome-deficient cells, including WT1-expressing solid tumor lines. T cells expressing this TCR (TTCR37-45) killed the first patients' relapsed AML resistant to WT1126-134 targeting, as well as other primary AML, in vitro. TTCR37-45 controlled solid tumor lines lacking immunoproteasome subunits both in vitro and in an NSG mouse model. As proteasome composition can vary in AML, defining and preferentially targeting these proteasome-independent epitopes may maximize therapeutic efficacy and potentially circumvent AML immune evasion by proteasome-related immunoediting.
Collapse
Affiliation(s)
- Miranda C Lahman
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Thomas M Schmitt
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kelly G Paulson
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Nathalie Vigneron
- Ludwig Institute for Cancer Research, 1200 Brussels, Belgium.,de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Denise Buenrostro
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Felecia D Wagener
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Valentin Voillet
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Hutchinson Centre Research Institute of South Africa, Cape Town 8001, South Africa
| | - Lauren Martin
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jason Bielas
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98115, USA.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Julie M McElrath
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Derek L Stirewalt
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | | | - Cecilia C Yeung
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98115, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Robert H Pierce
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Daniel N Egan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Merav Bar
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Paul C Hendrie
- University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Sinéad Kinsella
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Aesha Vakil
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jonah Butler
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mary Chaffee
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jonathan Linton
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Megan S McAfee
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Daniel S Hunter
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Marie Bleakley
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Anthony Rongvaux
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Immunology, University of Washington, Seattle, WA 98115, USA
| | - Benoit J Van den Eynde
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium.,Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
| | - Aude G Chapuis
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98115, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA
| | - Philip D Greenberg
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,University of Washington School of Medicine, Seattle, WA 98115, USA.,Department of Immunology, University of Washington, Seattle, WA 98115, USA
| |
Collapse
|
7
|
Acquired WT1 mutations contribute to relapse of NPM1-mutated acute myeloid leukemia following allogeneic hematopoietic stem cell transplant. Bone Marrow Transplant 2022; 57:370-376. [PMID: 34992253 DOI: 10.1038/s41409-021-01538-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 11/08/2022]
Abstract
The role of WT1 protein in hematopoiesis and leukemogenesisis incompletely elucidated. WT1 overexpression is common in acute myeloid leukemia (AML); however, WT1 mutations occur in only about 10% of cases, with increasing incidence in the setting of relapse. In this study, we investigated the clinical and molecular characteristics of WT1 mutations in NPM1-mutated AML, to enhance our understanding of the biology and potential therapeutic implications of WT1 mutations. Our study cohort included 67 patients with NPM1 mutated AML and a median follow-up of 13.7 months. WT1 mutations were identified in 7% (n = 5) of patients at the time of initial diagnosis. WT1 mutant clones were presumed to be present as co-dominant clones in 3/5 and in subclonal populations in 2/5 cases based on variant allelic frequency (VAF) when compared with NPM1 mutation VAF. All WT1 mutations became undetectable at time of MRD-negative (NPM1-wild type) remission. None of these patients experienced relapse at the time of last follow-up (median, 15 months; range, 4.5-20.2 months). A total of 15/67 (22%) patients relapsed; among these patient, four (27%) relapsed with WT1 mutant AML. Three of four patients had undergone allogeneic hematopoietic stem cell transplantation (HSCT). None of these patients had detectable WT1 mutations at the time of initial diagnosis. WT1 mutations were presumed clonal in two cases and subclonal in the other two cases, based on VAF. Our results indicate that WT1 mutations contribute to relapse in NPM1 mutated AML, especially in the setting of HSCT. These findings suggest that emerging WT1 mutations may serve as a conduit for relapse in NPM1-mutated AML, and that sequential molecular profiling to evaluate potential emergent WT1 mutations during surveillance and particularly at relapse likely has prognostic value in patients with NPM1 mutated AML.
Collapse
|
8
|
Kyi C, Doubrovina E, Zhou Q, Kravetz S, Iasonos A, Aghajanian C, Sabbatini P, Spriggs D, O'Reilly RJ, O'Cearbhaill RE. Phase I dose escalation safety and feasibility study of autologous WT1-sensitized T cells for the treatment of patients with recurrent ovarian cancer. J Immunother Cancer 2021; 9:jitc-2021-002752. [PMID: 34433633 PMCID: PMC8388302 DOI: 10.1136/jitc-2021-002752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
Background This phase I dose escalation trial evaluated the feasibility of production, safety, maximum tolerated dose, and preliminary efficacy of autologous T cells sensitized with peptides encoding Wilms’ tumor protein 1 (WT1) administered alone or following lymphodepleting chemotherapy, in the treatment of patients with recurrent WT1+ ovarian, primary peritoneal, or fallopian tube carcinomas. Methods A 3+3 dose escalation design was used to determine dose-limiting toxicity (DLT). In cohort I, patients received WT1-sensitized T cells dosed at 5×106/m2 (level I) without cyclophosphamide lymphodepletion. In cohorts II–IV, patients received lymphodepleting chemotherapy (a single intravenous dose of cyclophosphamide 750 mg/m2), 2 days prior to the first intravenous infusion of WT1-sensitized T cells administered at escalating doses (2×107/m2 (level II), 5×107/m2 (level III), and 1×108/m2 (level IV)). Results Twelve patients aged 23–72 years, with a median of 7 prior therapies (range 4–14), were treated on the study. No DLT was observed, even at the highest dose level of 1×108/m2 WT1-sensitized T cells tested. Common adverse events reported were grade 1–2 fatigue, fever, nausea, and headache. Median progression-free survival (PFS) was 1.8 months (95% CI, 0.8 to 2.6); 1 year PFS rate 8.3% (95% CI, 0.5 to 31.1). Median overall survival (OS) was 11.0 months (95% CI, 1.1 to 22.6); OS at 1 year was 41.7% (95% CI, 15.2% to 66.5%). Best response was stable disease in one patient (n=1) and progressive disease in the others (n=11). We observed a transient increase in the frequencies of WT1-specific cytotoxic T lymphocyte precursors (CTLp) in the peripheral blood of 9 of the 12 patients following WT1-sensitized T-cell infusion. Conclusion We demonstrated the safety of administration of WT1-sensitized T cells and the short-term increase in the WT1 CTLp. However, at the low doses evaluated we did not observe therapeutic activity in recurrent ovarian cancer. In this heavily pretreated population, we encountered challenges in generating sufficient numbers of WT1-reactive cytotoxic T cells. Future studies employing WT1-specific T cells generated from lymphocytes are warranted but should be done earlier in the disease course and prior to intensive myelosuppressive therapy. Trial registration number NCT00562640. One-sentence summary The authors describe the first human application of autologous WT1-sensitized T cells in the treatment of patients with recurrent ovarian, primary peritoneal, and fallopian tube carcinomas.
Collapse
Affiliation(s)
- Chrisann Kyi
- Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Medicine, Weill Cornell Medical College, New York, New York, USA
| | | | - Qin Zhou
- Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sara Kravetz
- Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexia Iasonos
- Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carol Aghajanian
- Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Paul Sabbatini
- Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Medicine, Weill Cornell Medical College, New York, New York, USA
| | | | | | - Roisin E O'Cearbhaill
- Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA .,Medicine, Weill Cornell Medical College, New York, New York, USA.,National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
9
|
Targeting intracellular WT1 in AML with a novel RMF-peptide-MHC specific T-cell bispecific antibody. Blood 2021; 138:2655-2669. [PMID: 34280257 DOI: 10.1182/blood.2020010477] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/01/2021] [Indexed: 11/20/2022] Open
Abstract
Antibody-based immunotherapy is a promising strategy for targeting chemo-resistant leukemic cells. However, classical antibody-based approaches are restricted to targeting lineage-specific cell-surface antigens. By targeting intracellular antigens, a large number of other leukemia-associated targets would become accessible. In this study, we evaluated a novel T-cell bispecific (TCB) antibody, generated using CrossMab and knob-into-holes technology, containing a bivalent T-cell receptor-like binding domain that recognizes the RMFPNAPYL peptide derived from the intracellular tumor antigen Wilms' tumor 1 (WT1) in the context of human leukocyte antigen (HLA) A*02. Binding to CD3ε recruits T cells irrespective of their T-cell receptor specificity. WT1-TCB elicited antibody-mediated T-cell cytotoxicity against AML cell lines in a WT1- and HLA-restricted manner. Specific lysis of primary AML cells was mediated in ex vivo long-term co-cultures utilizing allogenic (mean specific lysis: 67±6% after 13-14 days; ±SEM; n=18) or autologous, patient-derived T cells (mean specific lysis: 54±12% after 11-14 days; ±SEM; n=8). WT1-TCB-treated T cells exhibited higher cytotoxicity against primary AML cells than an HLA-A*02 RMF-specific T-cell clone. Combining WT1-TCB with the immunomodulatory drug lenalidomide further enhanced antibody-mediated T-cell cytotoxicity against primary AML cells (mean specific lysis on day 3-4: 45.4±9.0% vs 70.8±8.3%; p=0.015; ±SEM; n=9-10). In vivo, WT1-TCB-treated humanized mice bearing SKM-1 tumors showed a significant and dose-dependent reduction in tumor growth. In summary, we show that WT1-TCB facilitates potent in vitro, ex vivo and in vivo killing of AML cell lines and primary AML cells; these results led to the initiation of a phase I trial in patients with r/r AML (NCT04580121).
Collapse
|
10
|
Holmberg-Thydén S, Dufva IH, Gang AO, Breinholt MF, Schejbel L, Andersen MK, Kadivar M, Svane IM, Grønbæk K, Hadrup SR, El Fassi D. Epigenetic therapy in combination with a multi-epitope cancer vaccine targeting shared tumor antigens for high-risk myelodysplastic syndrome - a phase I clinical trial. Cancer Immunol Immunother 2021; 71:433-444. [PMID: 34218294 DOI: 10.1007/s00262-021-02993-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 06/19/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Standard care for patients with high-risk myelodysplastic syndrome (MDS) is hypomethylating agents such as azacitidine (AZA), which can induce expression of methylated tumor-associated antigens and therefore potentiate immunotherapeutic targeting. METHOD In this phase 1 trial, we combined AZA with a therapeutic peptide vaccine targeting antigens encoded from NY-ESO-1, MAGE-A3, PRAME, and WT-1, which have previously been demonstrated to be upregulated by AZA treatment. RESULT Five patients who had responded to AZA monotherapy were included in the study and treated with the vaccine. The combination therapy showed only few adverse events during the study period, whereof none classified as serious. However, no specific immune responses could be detected using intracellular cytokine staining or ELISpot assays. Minor changes in the phenotypic composition of immune cells and their expression of stimulatory and inhibitory markers were detected. All patients progressed to AML with a mean time to progression from inclusion (TTP) of 5.2 months (range 2.8 to 7.6). Mean survival was 18.1 months (range 10.9 to 30.6) from MDS diagnosis and 11.3 months (range 4.3 to 22.2) from inclusion. Sequencing of bone marrow showed clonal expansion of malignant cells, as well as appearance of novel mutations. CONCLUSION The patients progressed to AML with an average time of only five months after initiating the combination therapy. This may be unrelated to the experimental treatment, but the trial was terminated early as there was no sign of clinical benefit or immunological response. Why the manuscript is especially interesting This study is the first to exploit the potential synergistic effects of combining a multi-peptide cancer vaccine with epigenetic therapy in MDS. Although our results are negative, they emphasize challenges to induce immune reactivity in patients with high-risk MDS.
Collapse
Affiliation(s)
- Staffan Holmberg-Thydén
- Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark.,Experimental & Translational Immunology (XTI), Health Technology, T-Cells and Cancer, Technical University of Denmark, Lyngby, Denmark
| | - Inge Høgh Dufva
- Department of Oncology and Palliative Care, Copenhagen University Hospital, Hillerød, Denmark
| | - Anne Ortved Gang
- Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Lone Schejbel
- Department of Pathology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Mohammad Kadivar
- Experimental & Translational Immunology (XTI), Health Technology, T-Cells and Cancer, Technical University of Denmark, Lyngby, Denmark
| | - Inge Marie Svane
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark.,Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Kirsten Grønbæk
- Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| | - Sine Reker Hadrup
- Experimental & Translational Immunology (XTI), Health Technology, T-Cells and Cancer, Technical University of Denmark, Lyngby, Denmark.
| | - Daniel El Fassi
- Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark. .,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Jones HF, Molvi Z, Klatt MG, Dao T, Scheinberg DA. Empirical and Rational Design of T Cell Receptor-Based Immunotherapies. Front Immunol 2021; 11:585385. [PMID: 33569049 PMCID: PMC7868419 DOI: 10.3389/fimmu.2020.585385] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/04/2020] [Indexed: 01/04/2023] Open
Abstract
The use of T cells reactive with intracellular tumor-associated or tumor-specific antigens has been a promising strategy for cancer immunotherapies in the past three decades, but the approach has been constrained by a limited understanding of the T cell receptor's (TCR) complex functions and specificities. Newer TCR and T cell-based approaches are in development, including engineered adoptive T cells with enhanced TCR affinities, TCR mimic antibodies, and T cell-redirecting bispecific agents. These new therapeutic modalities are exciting opportunities by which TCR recognition can be further exploited for therapeutic benefit. In this review we summarize the development of TCR-based therapeutic strategies and focus on balancing efficacy and potency versus specificity, and hence, possible toxicity, of these powerful therapeutic modalities.
Collapse
Affiliation(s)
- Heather F. Jones
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, New York, NY, United States
| | - Zaki Molvi
- Weill Cornell Medicine, New York, NY, United States
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Martin G. Klatt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
12
|
Biernacki MA, Foster KA, Woodward KB, Coon ME, Cummings C, Cunningham TM, Dossa RG, Brault M, Stokke J, Olsen TM, Gardner K, Estey E, Meshinchi S, Rongvaux A, Bleakley M. CBFB-MYH11 fusion neoantigen enables T cell recognition and killing of acute myeloid leukemia. J Clin Invest 2020; 130:5127-5141. [PMID: 32831296 PMCID: PMC7524498 DOI: 10.1172/jci137723] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Proteins created from recurrent fusion genes like CBFB-MYH11 are prevalent in acute myeloid leukemia (AML), often necessary for leukemogenesis, persistent throughout the disease course, and highly leukemia specific, making them attractive neoantigen targets for immunotherapy. A nonameric peptide derived from a prevalent CBFB-MYH11 fusion protein was found to be immunogenic in HLA-B*40:01+ donors. High-avidity CD8+ T cell clones isolated from healthy donors killed CBFB-MYH11+ HLA-B*40:01+ AML cell lines and primary human AML samples in vitro. CBFB-MYH11-specific T cells also controlled CBFB-MYH11+ HLA-B*40:01+ AML in vivo in a patient-derived murine xenograft model. High-avidity CBFB-MYH11 epitope-specific T cell receptors (TCRs) transduced into CD8+ T cells conferred antileukemic activity in vitro. Our data indicate that the CBFB-MYH11 fusion neoantigen is naturally presented on AML blasts and enables T cell recognition and killing of AML. We provide proof of principle for immunologically targeting AML-initiating fusions and demonstrate that targeting neoantigens has clinical relevance even in low-mutational frequency cancers like fusion-driven AML. This work also represents a first critical step toward the development of TCR T cell immunotherapy targeting fusion gene-driven AML.
Collapse
Affiliation(s)
- Melinda A. Biernacki
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine
| | - Kimberly A. Foster
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kyle B. Woodward
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michael E. Coon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Carrie Cummings
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Tanya M. Cunningham
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Robson G. Dossa
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michelle Brault
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jamie Stokke
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Pediatrics, and
| | - Tayla M. Olsen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Elihu Estey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Pediatrics, and
| | - Anthony Rongvaux
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Pediatrics, and
| |
Collapse
|
13
|
Kurosawa N, Midorikawa A, Ida K, Fudaba YW, Isobe M. Development of a T-cell receptor mimic antibody targeting a novel Wilms tumor 1-derived peptide and analysis of its specificity. Cancer Sci 2020; 111:3516-3526. [PMID: 32770595 PMCID: PMC7540971 DOI: 10.1111/cas.14602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Wilms tumor 1 (WT1) is an intracellular tumor‐associated antigen that remains inaccessible to antibodies. Recently, T‐cell receptor (TCR) mimic antibodies (TCRm‐Abs), which recognize peptides loaded on human leukocyte antigen (HLA) with higher specificity and affinity than TCR, have been developed as a new antibody class that can target intracellular antigens. To expand the therapeutic targets in tumors with WT1, we developed TCRm‐Abs targeting a novel HLA‐A*02:01‐restricted peptide, WT1C (ALLPAVPSL), and validated their specificity using multiple techniques. Screening of these antibodies by ELISA with a panel of peptide/HLA complexes and by glycine scanning of peptide‐pulsed T2 cells identified one specific clone, #25‐8. Despite the low risk for eliciting broad cross–reactivity of this TCRm‐Ab, analysis of a panel of cell lines, in conjunction with exogenous expression of either or both the HLA‐A*02:01 and WT1 genes in HeLa cells, revealed that #25‐8 reacts with WT1C but also with unknown peptides in the context of HLA‐A*02:01. This potentially dangerous cross–reactivity was confirmed through analysis using chimeric antigen receptor T‐cells carrying the single‐chain variable fragment of #25‐8, which targets WT1‐negative HeLa/A02 cells. To determine the cross–reactive profiles of #25‐8, we applied the PresentER antigen presentation platform with the #25‐8‐recognition motif, which enables the identification of potential off–target peptides expressed in the human proteome. Our results demonstrate the potential of TCRm‐Abs to target a variety of peptides in the context of HLA but also depict the need for systematic validation to identify the cross–reactive peptides for the prediction of off–target toxicity in future clinical translation.
Collapse
Affiliation(s)
- Nobuyuki Kurosawa
- Laboratory of Molecular and Cellular Biology, Faculty of Science and Engineering, Graduate School, University of Toyama, Toyama, Japan
| | - Aki Midorikawa
- Graduate School of Science and Engineering for Education, University of Toyama, Toyama, Japan
| | - Kenta Ida
- Graduate School of Science and Engineering for Education, University of Toyama, Toyama, Japan
| | - Yuka Wakata Fudaba
- Laboratory of Molecular and Cellular Biology, Faculty of Science and Engineering, Graduate School, University of Toyama, Toyama, Japan
| | - Masaharu Isobe
- Laboratory of Molecular and Cellular Biology, Faculty of Science and Engineering, Graduate School, University of Toyama, Toyama, Japan
| |
Collapse
|
14
|
Mitra A, Andrews MC, Roh W, De Macedo MP, Hudgens CW, Carapeto F, Singh S, Reuben A, Wang F, Mao X, Song X, Wani K, Tippen S, Ng KS, Schalck A, Sakellariou-Thompson DA, Chen E, Reddy SM, Spencer CN, Wiesnoski D, Little LD, Gumbs C, Cooper ZA, Burton EM, Hwu P, Davies MA, Zhang J, Bernatchez C, Navin N, Sharma P, Allison JP, Wargo JA, Yee C, Tetzlaff MT, Hwu WJ, Lazar AJ, Futreal PA. Spatially resolved analyses link genomic and immune diversity and reveal unfavorable neutrophil activation in melanoma. Nat Commun 2020; 11:1839. [PMID: 32296058 PMCID: PMC7160105 DOI: 10.1038/s41467-020-15538-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
Complex tumor microenvironmental (TME) features influence the outcome of cancer immunotherapy (IO). Here we perform immunogenomic analyses on 67 intratumor sub-regions of a PD-1 inhibitor-resistant melanoma tumor and 2 additional metastases arising over 8 years, to characterize TME interactions. We identify spatially distinct evolution of copy number alterations influencing local immune composition. Sub-regions with chromosome 7 gain display a relative lack of leukocyte infiltrate but evidence of neutrophil activation, recapitulated in The Cancer Genome Atlas (TCGA) samples, and associated with lack of response to IO across three clinical cohorts. Whether neutrophil activation represents cause or consequence of local tumor necrosis requires further study. Analyses of T-cell clonotypes reveal the presence of recurrent priming events manifesting in a dominant T-cell clonotype over many years. Our findings highlight the links between marked levels of genomic and immune heterogeneity within the physical space of a tumor, with implications for biomarker evaluation and immunotherapy response.
Collapse
Affiliation(s)
- Akash Mitra
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Quantitative Sciences Graduate Training Program, Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Miles C Andrews
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Whijae Roh
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Courtney W Hudgens
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fernando Carapeto
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shailbala Singh
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexandre Reuben
- Department of Thoracic Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Feng Wang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xizeng Mao
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xingzhi Song
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Khalida Wani
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Samantha Tippen
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kwok-Shing Ng
- Institute for Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Aislyn Schalck
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Eveline Chen
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sangeetha M Reddy
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Diana Wiesnoski
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Latasha D Little
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Curtis Gumbs
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Elizabeth M Burton
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chantale Bernatchez
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas Navin
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - James P Allison
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jennifer A Wargo
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cassian Yee
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Michael T Tetzlaff
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wen-Jen Hwu
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexander J Lazar
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
15
|
Jost C, Darowski D, Challier J, Pulko V, Hanisch LJ, Xu W, Mössner E, Bujotzek A, Klostermann S, Umana P, Kontermann RE, Klein C. CAR-J cells for antibody discovery and lead optimization of TCR-like immunoglobulins. MAbs 2020; 12:1840709. [PMID: 33136521 PMCID: PMC7646475 DOI: 10.1080/19420862.2020.1840709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/15/2020] [Accepted: 10/19/2020] [Indexed: 01/07/2023] Open
Abstract
T-cell bispecific antibodies (TCBs) are a novel class of engineered immunoglobulins that unite monovalent binding to the T-cell receptor (TCR) CD3e chain and bivalent binding to tumor-associated antigens in order to recruit and activate T-cells for tumor cell killing. In vivo, T-cell activation is usually initiated via the interaction of the TCR with the peptide-HLA complex formed by the human leukocyte antigen (HLA) and peptides derived from intracellular proteins. TCR-like antibodies (TCRLs) that recognize pHLA-epitopes extend the target space of TCBs to peptides derived from intracellular proteins, such as those overexpressed during oncogenesis or created via mutations found in cancer. One challenge during lead identification of TCRL-TCBs is to identify TCRLs that specifically, and ideally exclusively, recognize the desired pHLA, but not unrelated pHLAs. In order to identify TCRLs suitable for TCRL-TCBs, large numbers of TCRLs have to be tested in the TCB format. Here, we propose a novel approach using chimeric antigen receptors (CARs) to facilitate the identification of highly selective TCRLs. In this new so-called TCRL-CAR-J approach, TCRL-candidates are transduced as CARs into Jurkat reporter-cells, and subsequently assessed for their specificity profile. This work demonstrates that the CAR-J reporter-cell assay can be applied to predict the profile of TCRL-TCBs without the need to produce each candidate in the final TCB format. It is therefore useful in streamlining the identification of TCRL-TCBs.
Collapse
Affiliation(s)
- Christian Jost
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
- Athebio AG, Zurich, Switzerland
| | - Diana Darowski
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - John Challier
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Vesna Pulko
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Lydia J Hanisch
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Wei Xu
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Ekkehard Mössner
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Alexander Bujotzek
- Roche Innovation Center Munich, Roche Pharma Research & Early Development, Penzberg, Germany
| | - Stefan Klostermann
- Roche Innovation Center Munich, Roche Pharma Research & Early Development, Penzberg, Germany
| | - Pablo Umana
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | | | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| |
Collapse
|
16
|
Pando A, Reagan JL, Nevola M, Fast LD. Induction of anti-leukemic responses by stimulation of leukemic CD3+ cells with allogeneic stimulator cells. Exp Hematol Oncol 2018; 7:25. [PMID: 30323982 PMCID: PMC6172765 DOI: 10.1186/s40164-018-0118-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/30/2018] [Indexed: 01/13/2023] Open
Abstract
Background Immunotherapeutic protocols have focused on identification of stimuli that induce effective anti-leukemic immune responses. One potent immune stimulus is the encounter with allogeneic cells. Our group previously showed that the infusion of haploidentical donor white blood cells (1-2 × 108 CD3+ cells/kg) into patients with refractory hematological malignancies induced responses of varying magnitude in over half of the patients. Because donor cells were eliminated within 2 weeks in these patients, it is presumed that the responses of recipient lymphocytes were critically important in achieving prolonged anti-leukemic responses. Methods The role of patient CD3+ cells in anti-leukemic responses was examined by isolating peripheral blood mononuclear cells from newly diagnosed leukemic patients. Immunophenotyping was performed on these peripheral blood mononuclear cells. CD3+ cells were isolated from the peripheral blood mononuclear cells and tested for their ability to proliferate and lyse autologous leukemic cells when stimulated with unrelated allogeneic cells. Results Allostimulated CD3+ cells effectively generated cytolytic responses to autologous CD3-cells in 11/21 patients. Increased numbers of CD4+ cells expressing high levels of granzyme A, B and perforin and CD8+CD39+ cells were found in nonresponsive CD3+ cells. Conclusions These results indicate that CD3+ cells from leukemic patients are capable of generating anti-leukemic responses when stimulated with unrelated allogeneic cells. This model can be used to identify approaches using alloreactive responses by patient lymphocytes to enhance in vivo anti-leukemic responses.
Collapse
Affiliation(s)
- Alejandro Pando
- Division of Hematology/Oncology, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, One Hoppin Street, Coro West Suite 5.0.1, Providence, RI 02903 USA
| | - John L Reagan
- Division of Hematology/Oncology, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, One Hoppin Street, Coro West Suite 5.0.1, Providence, RI 02903 USA
| | - Martha Nevola
- Division of Hematology/Oncology, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, One Hoppin Street, Coro West Suite 5.0.1, Providence, RI 02903 USA
| | - Loren D Fast
- Division of Hematology/Oncology, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, One Hoppin Street, Coro West Suite 5.0.1, Providence, RI 02903 USA
| |
Collapse
|
17
|
Matko S, Manderla J, Bonsack M, Schmitz M, Bornhauser M, Tonn T, Odendahl M. PRAME peptide-specific CD8 + T cells represent the predominant response against leukemia-associated antigens in healthy individuals. Eur J Immunol 2018; 48:1400-1411. [PMID: 29738081 DOI: 10.1002/eji.201747399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/10/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022]
Abstract
Antigen-specific T cells isolated from healthy individuals (HIs) have shown great therapeutic potential upon adoptive transfer for the treatment of viremia in immunosuppressed patients. The lack of comprehensive data on the prevalence and characteristics of leukemia-associated antigen (LAA)-specific T cells in HIs still limits such an approach for tumor therapy. Therefore, we have investigated T-cell responses against prominent candidates comprising Wilms' tumor protein 1 (WT1), preferentially expressed antigen in melanoma (PRAME), Survivin, NY-ESO, and p53 by screening PBMCs from HIs using intracellular IFN-γ staining following provocation with LAA peptide mixes. Here, we found predominantly poly-functional effector/effector memory CCR7- /CD45RA+/- /CD8+ LAA peptide-specific T cells with varying CD95 expression in 34 of 100 tested HIs, whereas CD4+ T cells responses were restricted to 5. Most frequent LAA peptide-specific T cell responses were directed against WT1 and PRAME peptides with a prevalence of 20 and 17%, respectively, showing the highest magnitude (0.16% ± 0.22% (mean ± SD)) for PRAME peptides. Cytotoxicity of PRAME peptide-specific T cells was demonstrated by specific killing of PRAME peptide-pulsed T2 cells. Furthermore, the proliferative capacity of PRAME peptide-specific T cells was confined to HIs responsive toward PRAME peptide challenge corroborating the accuracy of the screening results. In conclusion, we identified PRAME as a promising target antigen for adoptive leukemia therapy.
Collapse
Affiliation(s)
- Sarah Matko
- Experimental Transfusion Medicine, Medical Faculty Carl Gustav Carus, TU Dresden, Germany.,Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Julia Manderla
- Experimental Transfusion Medicine, Medical Faculty Carl Gustav Carus, TU Dresden, Germany.,Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Maria Bonsack
- Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Marc Schmitz
- Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany.,German Cancer Research Center (DKFZ) partner site Dresden; and German Cancer Consortium (DKTK), Heidelberg, Germany.,Institute of Immunology, Medical Faculty, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Martin Bornhauser
- Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany.,German Cancer Research Center (DKFZ) partner site Dresden; and German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Medicine 1, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Torsten Tonn
- Experimental Transfusion Medicine, Medical Faculty Carl Gustav Carus, TU Dresden, Germany.,Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany.,German Cancer Research Center (DKFZ) partner site Dresden; and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marcus Odendahl
- Experimental Transfusion Medicine, Medical Faculty Carl Gustav Carus, TU Dresden, Germany.,Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| |
Collapse
|
18
|
Dietz AC, Wayne AS. Cells to prevent/treat relapse following allogeneic stem cell transplantation. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:708-715. [PMID: 29222325 PMCID: PMC6142604 DOI: 10.1182/asheducation-2017.1.708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Relapse of cancer remains one of the primary causes of treatment failure and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). A multitude of approaches have been used in the management of posttransplant relapse. This review focuses on recent data with cellular therapies designed to treat or prevent posttransplant relapse of hematologic malignancies, although many of these therapeutic approaches also have applications to solid tumors and in the nontransplant setting. Currently available cell therapies include second transplant, natural killer cells, monocyte-derived dendritic cell vaccines, and lymphocytes via donor lymphocyte infusion, antigen-primed cytotoxic T lymphocytes, cytokine-induced killer cells, marrow-infiltrating lymphocytes, and chimeric antigen receptor T cells. These treatment options offer the prospect for improved relapse-free survival after HSCT.
Collapse
Affiliation(s)
- Andrew C. Dietz
- Children’s Center for Cancer and Blood Diseases, Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Los Angeles, CA; and
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Alan S. Wayne
- Children’s Center for Cancer and Blood Diseases, Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Los Angeles, CA; and
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
19
|
Grant ML, Bollard CM. Cell therapies for hematological malignancies: don't forget non-gene-modified t cells! Blood Rev 2017; 32:203-224. [PMID: 29198753 DOI: 10.1016/j.blre.2017.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 11/13/2017] [Accepted: 11/24/2017] [Indexed: 11/26/2022]
Abstract
Cell therapy currently performs an important role in the treatment of patients with various hematological malignancies. The response to the cell therapy is regulated by multiple factors including the patient's immune system status, genetic profile, stage at diagnosis, age, and underlying disease. Cell therapy that does not require genetic manipulation can be mediated by donor lymphocyte infusion strategies, selective depletion in the post-transplant setting and the ex vivo expansion of antigen-specific T cells. For hematologic malignancies, cell therapy is contributing to enhanced clinical responses and overall survival and the immune response to cell therapy is predictive of response in multiple cancer types. In this review we summarize the available T cell therapeutics that do not rely on gene engineering for the treatment of patients with blood cancers.
Collapse
Affiliation(s)
- Melanie L Grant
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System, Washington, DC, USA
| | - Catherine M Bollard
- Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System, Washington, DC, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
20
|
Goswami M, Hourigan CS. Novel Antigen Targets for Immunotherapy of Acute Myeloid Leukemia. Curr Drug Targets 2017; 18:296-303. [PMID: 25706110 DOI: 10.2174/1389450116666150223120005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) was the first malignancy for which immunotherapy, in the form of allogeneic hematopoietic stem cell transplantation (allo-HSCT), was integrated into the standard of care. Allo-HSCT however is an imperfect therapy associated with significant morbidity and mortality while offering only incomplete prevention of AML clinical relapse. These limitations have motivated the search for AML-related antigens that might be used as more specific and effective targets of immunotherapy. While historically such investigations have focused on protein targets expressed uniquely in AML or at significantly higher levels than in normal tissues, this article will review recent discoveries which have identified a novel selection of potential antigen targets for AML immunotherapy, such as non-protein targets including lipids and carbohydrates, neo-antigens created from genetic somatic mutations or altered splicing and post-translational modification of protein targets, together with innovative ways to target overexpressed protein targets presented by cell surface peptide-MHC complexes. These novel antigens represent promising candidates for further development as targets of AML immunotherapy.
Collapse
Affiliation(s)
- Meghali Goswami
- Myeloid Malignancies Section, National Heart, Lung and Blood Institute, Room 6C-104, 10 Center Drive, Bethesda, Maryland 20892-1583, United States
| | | |
Collapse
|
21
|
Dagvadorj N, Deuretzbacher A, Weisenberger D, Baumeister E, Trebing J, Lang I, Köchel C, Kapp M, Kapp K, Beilhack A, Hünig T, Einsele H, Wajant H, Grigoleit GU. Targeting of the WT1 91-138 fragment to human dendritic cells improves leukemia-specific T-cell responses providing an alternative approach to WT1-based vaccination. Cancer Immunol Immunother 2017; 66:319-332. [PMID: 27896368 PMCID: PMC11028450 DOI: 10.1007/s00262-016-1938-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/19/2016] [Indexed: 12/22/2022]
Abstract
Due to its immunogenicity and overexpression concomitant with leukemia progression, Wilms tumor protein 1 (WT1) is of particular interest for immunotherapy of AML relapse after allogeneic hematopoietic stem cell transplantation (allo-HSCT). So far, WT1-specific T-cell responses have mainly been induced by vaccination with peptides presented by certain HLA alleles. However, this approach is still not widely applicable in clinical practice due to common limitations of HLA restriction. Dendritic cell (DC) vaccines electroporated with mRNA encoding full-length protein have also been tested for generating WT1-derived peptides for presentation to T-cells. Alternatively, an efficient and broad WT1 peptide presentation could be elicited by triggering receptor-mediated protein endocytosis of DCs. Therefore, we developed antibody fusion proteins consisting of an antibody specific for the DEC205 endocytic receptor on human DCs and various fragments of WT1 as DC-targeting recombinant WT1 vaccines (anti-hDEC205-WT1). Of all anti-hDEC205-WT1 fusion proteins designed for overcoming insufficient expression, anti-hDEC205-WT110-35, anti-hDEC205-WT191-138, anti-hDEC205-WT1223-273, and anti-hDEC205-WT1324-371 were identified in good yields. The anti-hDEC205-WT191-138 was capable of directly inducing ex vivo T-cell responses by co-incubation of the fusion protein-loaded monocyte-derived mature DCs and autologous T-cells of either healthy or HSCT individuals. Furthermore, the DC-targeted WT191-138-induced specific T-cells showed a strong cytotoxic activity by lysing WT1-overexpressing THP-1 leukemia cells in vitro while sparing WT1-negative hematopoietic cells. In conclusion, our approach identifies four WT1 peptide-antibody fusion proteins with sufficient production and introduces an alternative vaccine that could be easily translated into clinical practice to improve WT1-directed antileukemia immune responses after allo-HSCT.
Collapse
Affiliation(s)
- Nergui Dagvadorj
- Laboratory for Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
- Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Anne Deuretzbacher
- Laboratory for Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Daniela Weisenberger
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Elke Baumeister
- Laboratory for Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Johannes Trebing
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Carolin Köchel
- Laboratory for Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Markus Kapp
- Laboratory for Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Kerstin Kapp
- Laboratory for Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Andreas Beilhack
- Division of Experimental Stem Cell Transplantation, Interdisciplinary Center for Clinical Research, University of Würzburg, Würzburg, Germany
| | - Thomas Hünig
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Laboratory for Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Götz Ulrich Grigoleit
- Laboratory for Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany.
| |
Collapse
|
22
|
Cruz CRY, Bollard CM. Adoptive Immunotherapy For Leukemia With Ex vivo Expanded T Cells. Curr Drug Targets 2017; 18:271-280. [PMID: 26648070 PMCID: PMC5016253 DOI: 10.2174/1389450117666160209143529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/31/2015] [Accepted: 06/16/2016] [Indexed: 11/22/2022]
Abstract
The development of novel T cell therapies to target leukemia has facilitated the translation of this approach for hematologic malignancies. Different methods of manufacturing leukemia-specific T cells have evolved, along with additional measures to increase the safety of this therapy. This is an overview of expanded T cell therapeutics with a focus on how the manufacturing strategies have been refined, and where the research is heading.
Collapse
Affiliation(s)
- Conrad Russell Y. Cruz
- Program for Cell Enhancement and Technologies for Immunotherapy (CETI), Children’s National Health System, USA
| | - Catherine M. Bollard
- Program for Cell Enhancement and Technologies for Immunotherapy (CETI), Children’s National Health System, USA
| |
Collapse
|
23
|
A High-avidity WT1-reactive T-Cell Receptor Mediates Recognition of Peptide and Processed Antigen but not Naturally Occurring WT1-positive Tumor Cells. J Immunother 2016; 39:105-16. [PMID: 26938944 DOI: 10.1097/cji.0000000000000116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Wilms tumor gene 1 (WT1) is an attractive target antigen for cancer immunotherapy because it is overexpressed in many hematologic malignancies and solid tumors but has limited, low-level expression in normal adult tissues. Multiple HLA class I and class II restricted epitopes have been identified in WT1, and multiple investigators are pursuing the treatment of cancer patients with WT1-based vaccines and adoptively transferred WT1-reactive T cells. Here we isolated an HLA-A*0201-restricted WT1-reactive T-cell receptor (TCR) by stimulating peripheral blood lymphocytes of healthy donors with the peptide WT1:126-134 in vitro. This TCR mediated peptide recognition down to a concentration of ∼0.1 ng/mL when pulsed onto T2 cells as well as recognition of HLA-A*0201 target cells transfected with full-length WT1 cDNA. However, it did not mediate consistent recognition of many HLA-A*0201 tumor cell lines or freshly isolated leukemia cells that endogeneously expressed WT1. We dissected this pattern of recognition further and observed that WT1:126-134 was more efficiently processed by immunoproteasomes compared with standard proteasomes. However, pretreatment of WT1 tumor cell lines with interferon gamma did not appreciably enhance recognition by our TCR. In addition, we highly overexpressed WT1 in several leukemia cell lines by electroporation with full-length WT1 cDNA. Some of these lines were still not recognized by our TCR suggesting possible antigen processing defects in some leukemias. These results suggest WT1:126-134 may not be a suitable target for T-cell based tumor immunotherapies.
Collapse
|
24
|
Dao T, Korontsvit T, Zakhaleva V, Jarvis C, Mondello P, Oh C, Scheinberg DA. An immunogenic WT1-derived peptide that induces T cell response in the context of HLA-A*02:01 and HLA-A*24:02 molecules. Oncoimmunology 2016; 6:e1252895. [PMID: 28344864 DOI: 10.1080/2162402x.2016.1252895] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 12/18/2022] Open
Abstract
The Wilms' tumor oncogene protein (WT1) is a highly validated tumor antigen for immunotherapy. WT1-targeted immunotherapy has been extensively explored in multiple human trials in various cancers. However, clinical investigations using WT1 epitopes have generally focused on two peptides, HLA-restricted to HLA-A*02:01 or HLA-A*24:02. The goal of this study was to identify new epitopes derived from WT1, to expand the potential use of WT1 as a target of immunotherapy. Using computer-based MHC-binding algorithms and in vitro validation of the T cell responses specific for the identified peptides, we found that a recently identified HLA-A*24:02-binding epitope (239-247), NQMNLGATL (NQM), was also a strong CD8+ T cell epitope for HLA-A*02:01 molecule. A peptide second position Q240L substitution (NLM) or Q240Y substitution (NYM), further enhanced the T cell responses in both HLA-A*02:01 positive and HLA-A*24:02 positive healthy donors. Importantly, T cells stimulated with the new analog peptides displayed heteroclitic cross-reactivity with the native NQM sequence and were able to kill HLA-matched WT1-positive tumor cell lines and primary leukemia blasts. In addition, longer native and heteroclitic HLA-DR.B1-binding peptides, comprising the nine amino acid NQM or NLM sequences, could induce T cell response that recognized the CD8+ epitope NQM, suggesting the processing and the presentation by HLA-A*02:01 molecules of the CD8+ T cell epitope embedded within it. Our studies suggest that the analog peptides NLM and NYM could be potential candidates for future immunotherapy targeting WT1 positive cancers in the context of HLA-A*02:01 and A*24:02 positive populations.
Collapse
Affiliation(s)
- Tao Dao
- Molecular Pharmacology Program, Sloan Kettering Institute , New York, NY, USA
| | - Tatyana Korontsvit
- Molecular Pharmacology Program, Sloan Kettering Institute , New York, NY, USA
| | - Victoria Zakhaleva
- Molecular Pharmacology Program, Sloan Kettering Institute , New York, NY, USA
| | - Casey Jarvis
- Molecular Pharmacology Program, Sloan Kettering Institute , New York, NY, USA
| | - Patrizia Mondello
- Department of Medicine, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Claire Oh
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA; Weill Cornell Medicine, New York, NY, USA
| | - David A Scheinberg
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
25
|
BCR-ABL-specific T-cell therapy in Ph+ ALL patients on tyrosine-kinase inhibitors. Blood 2016; 129:582-586. [PMID: 27927646 DOI: 10.1182/blood-2016-07-731091] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/29/2016] [Indexed: 12/21/2022] Open
Abstract
Although the emergence of bone marrow (BM)-resident p190BCR-ABL-specific T lymphocytes has been correlated with hematologic and cytogenetic remissions in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) undergoing maintenance tyrosine-kinase inhibitor treatment, little is known about the possibility of culturing these cells ex vivo and using them in T-cell therapy strategies. We investigated the feasibility of expanding/priming p190BCR-ABL-specific T cells in vitro by stimulation with dendritic cells pulsed with p190BCR-ABL peptides derived from the BCR-ABL junctional region and alternative splicing, and of adoptively administering them to patients with relapsed disease. We report on the feasibility of producing clinical-grade BCR-ABL-specific cytotoxic T lymphocytes (CTLs), endowed with antileukemia activity, from Ph+ ALL patients and healthy donors. We treated 3 patients with Ph+ ALL with autologous or allogeneic p190BCR-ABL-specific CTLs. No postinfusion toxicity was observed, except for a grade II skin graft-versus-host disease in the patient treated for hematologic relapse. All patients achieved a molecular or hematologic complete remission (CR) after T-cell therapy, upon emergence of p190BCR-ABL-specific T cells in the BM. Our results show that p190BCR-ABL-specific CTLs are capable of controlling treatment-refractory Ph+ ALL in vivo, and support the development of adoptive immunotherapeutic approaches with BCR-ABL CTLs in Ph+ ALL.
Collapse
|
26
|
Coelho-Dos-Reis JG, Huang J, Tsao T, Pereira FV, Funakoshi R, Nakajima H, Sugiyama H, Tsuji M. Co-administration of α-GalCer analog and TLR4 agonist induces robust CD8(+) T-cell responses to PyCS protein and WT-1 antigen and activates memory-like effector NKT cells. Clin Immunol 2016; 168:6-15. [PMID: 27132023 DOI: 10.1016/j.clim.2016.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/18/2016] [Accepted: 04/26/2016] [Indexed: 12/28/2022]
Abstract
In the present study, the combined adjuvant effect of 7DW8-5, a potent α-GalCer-analog, and monophosphoryl lipid A (MPLA), a TLR4 agonist, on the induction of vaccine-induced CD8(+) T-cell responses and protective immunity was evaluated. Mice were immunized with peptides corresponding to the CD8(+) T-cell epitopes of a malaria antigen, a circumsporozoite protein of Plasmodium yoelii, and a tumor antigen, a Wilms Tumor antigen-1 (WT-1), together with 7DW8-5 and MPLA, as an adjuvant. These immunization regimens were able to induce higher levels of CD8(+) T-cell responses and, ultimately, enhanced levels of protection against malaria and tumor challenges compared to the levels induced by immunization with peptides mixed with 7DW8-5 or MPLA alone. Co-administration of 7DW8-5 and MPLA induces activation of memory-like effector natural killer T (NKT) cells, i.e. CD44(+)CD62L(-)NKT cells. Our study indicates that 7DW8-5 greatly enhances important synergistic pathways associated to memory immune responses when co-administered with MPLA, thus rendering this combination of adjuvants a novel vaccine adjuvant formulation.
Collapse
Affiliation(s)
- Jordana G Coelho-Dos-Reis
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA; Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Minas Gerais 30192, Brazil.
| | - Jing Huang
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA
| | - Tiffany Tsao
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA
| | - Felipe V Pereira
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA; Federal University of Sao Paulo, Sao Paulo 04021, Brazil
| | - Ryota Funakoshi
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA
| | - Hiroko Nakajima
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Haruo Sugiyama
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA.
| |
Collapse
|
27
|
Therapeutic bispecific T-cell engager antibody targeting the intracellular oncoprotein WT1. Nat Biotechnol 2015; 33:1079-86. [PMID: 26389576 DOI: 10.1038/nbt.3349] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/29/2015] [Indexed: 11/08/2022]
Abstract
Intracellular tumor antigens presented on the cell surface in the context of human leukocyte antigen (HLA) molecules have been targeted by T cell-based therapies, but there has been little progress in developing small-molecule drugs or antibodies directed to these antigens. Here we describe a bispecific T-cell engager (BiTE) antibody derived from a T-cell receptor (TCR)-mimic monoclonal antibody (mAb) ESK1, which binds a peptide derived from the intracellular oncoprotein WT1 presented on HLA-A*02:01. Despite the very low density of the complexes at the cell surface, ESK1-BiTE selectively activated and induced proliferation of cytolytic human T cells that killed cells from multiple leukemias and solid tumors in vitro and in mice. We also discovered that in an autologous in vitro setting, ESK1-BiTE induced a robust secondary CD8 T-cell response specific for tumor-associated antigens other than WT1. Our study provides an approach that targets tumor-specific intracellular antigens without using cell therapy and suggests that epitope spreading could contribute to the therapeutic efficacy of this BiTE.
Collapse
|
28
|
Koehne G, Hasan A, Doubrovina E, Prockop S, Tyler E, Wasilewski G, O'Reilly RJ. Immunotherapy with Donor T Cells Sensitized with Overlapping Pentadecapeptides for Treatment of Persistent Cytomegalovirus Infection or Viremia. Biol Blood Marrow Transplant 2015; 21:1663-78. [PMID: 26028505 PMCID: PMC4537838 DOI: 10.1016/j.bbmt.2015.05.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/18/2015] [Indexed: 11/22/2022]
Abstract
We conducted a phase I trial of allogeneic T cells sensitized in vitro against a pool of pentadecapeptides (15-mer peptides) spanning the sequence of CMVpp65 for adoptive therapy of 17 allogeneic hematopoietic cell transplant recipients with cytomegalovirus (CMV) viremia or clinical infection persisting despite prolonged treatment with antiviral drugs. All but 3 of the patients had received T cell-depleted transplants without graft-versus-host disease (GVHD) prophylaxis with immunosuppressive drugs after transplantation. The CMVpp65-specific T cells (CMVpp65CTLs) generated were oligoclonal and specific for only 1 to 3 epitopes, presented by a limited set of HLA class I or II alleles. T cell infusions were well tolerated without toxicity or GVHD. Of 17 patients treated with transplant donor (n = 16) or third-party (n = 1) CMVpp65CTLs, 15 cleared viremia, including 3 of 5 with overt disease. In responding patients, the CMVpp65CTLs infused consistently proliferated and could be detected by T cell receptor Vβ usage in CMVpp65/HLA tetramer + populations for period of 120 days to up to 2 years after infusion. Thus, CMVpp65CTLs generated in response to synthetic 15-mer peptides of CMVpp65 are safe and can clear persistent CMV infections in the post-transplantation period.
Collapse
Affiliation(s)
- Guenther Koehne
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York; Transplantation Biology Laboratory, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York.
| | - Aisha Hasan
- Transplantation Biology Laboratory, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York; Bone Marrow Transplantation Service, Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Ekaterina Doubrovina
- Transplantation Biology Laboratory, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York; Bone Marrow Transplantation Service, Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Susan Prockop
- Transplantation Biology Laboratory, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York; Bone Marrow Transplantation Service, Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Eleanor Tyler
- Transplantation Biology Laboratory, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Gloria Wasilewski
- Bone Marrow Transplantation Service, Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Richard J O'Reilly
- Transplantation Biology Laboratory, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York; Bone Marrow Transplantation Service, Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
29
|
Bollard CM, Cruz CR, Barrett AJ. Directed T-cell therapies for leukemia and lymphoma after hematopoietic stem cell transplant: beyond chimeric antigen receptors. Int J Hematol Oncol 2015. [DOI: 10.2217/ijh.15.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review focuses on the recent advances utilizing adoptive T-cell immunotherapies for patients after hematopoietic stem cell transplant using T cells after autologous transplant to treat the highest risk patients. The particular emphasis is the use of T cells to treat leukemias and lymphomas with gene transfer and nongene transfer approaches to direct specificity to tumor associated antigens. In this review, we will highlight how these novel therapeutics can be successfully used to prevent or treat high-risk patients who relapse after hematopoietic stem cell transplant.
Collapse
Affiliation(s)
- Catherine M Bollard
- Children’s National Health System & The George Washington University, Washington, DC, USA
| | - C Russell Cruz
- Children’s National Health System & The George Washington University, Washington, DC, USA
| | - A John Barrett
- National Heart Lung & Blood Institute, National Institutes for Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Brayer J, Lancet JE, Powers J, List A, Balducci L, Komrokji R, Pinilla-Ibarz J. WT1 vaccination in AML and MDS: A pilot trial with synthetic analog peptides. Am J Hematol 2015; 90:602-7. [PMID: 25802083 DOI: 10.1002/ajh.24014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 01/31/2023]
Abstract
Peptide vaccines are capable of eliciting immune responses targeting tumor-associated antigens such as the Wilms' Tumor 1 (WT1) antigen, often overexpressed in myeloid malignancies. Here, we assessed the safety, tolerability, and immunogenicity of a polyvalent WT1 peptide vaccine. Individuals with WT1-positive acute myeloid leukemia (AML) in first (CR1) or second (CR2) remission or with higher-risk myelodysplastic syndrome (MDS) following at least 1 prior line of therapy were vaccinated with a mixture of peptides derived from the WT1 protein, with sargramostim injections before vaccination to amplify immunogenicity. Six vaccinations were delivered biweekly, continuing then monthly until patients received 12 vaccinations or showed disease relapse or progression. Therapeutic efficacy was evaluated by progression-free and overall survival. Immune responses were evaluated by delayed-type hypersensitivity testing and T-cell IFNγ ELISPOT at specified intervals. In 16 patients who received at least one vaccination, 10 completed the planned course of six vaccinations and six continued for up to six additional monthly vaccinations. Vaccinations were well tolerated, with no patients discontinuing due to toxicity. One of two patients with high-risk MDS experienced a prolonged decrease in transfusion dependence. Two of 14 AML patients demonstrated relapse-free survival >1 year. Both patients were in CR2 at time of vaccination, with duration of their remission exceeding duration of their first remission, suggesting a potential benefit. Our WT1 vaccine was well-tolerated. The clinical benefit that we observed in several patients suggests engagement of a protective immune response, indicating a need for further trials.
Collapse
Affiliation(s)
- Jason Brayer
- Department of Malignant Hematology; H. Lee Moffitt Cancer Center and Research Institute; Tampa Florida
| | - Jeffrey E. Lancet
- Department of Malignant Hematology; H. Lee Moffitt Cancer Center and Research Institute; Tampa Florida
- Department of Oncologic Sciences; University of South Florida; Tampa Florida
| | - John Powers
- Department of Immunology; H. Lee Moffitt Cancer Center and Research Institute; Tampa Florida
| | - Alan List
- Department of Malignant Hematology; H. Lee Moffitt Cancer Center and Research Institute; Tampa Florida
- Department of Oncologic Sciences; University of South Florida; Tampa Florida
| | - Lodovico Balducci
- Department of Malignant Hematology; H. Lee Moffitt Cancer Center and Research Institute; Tampa Florida
- Department of Oncologic Sciences; University of South Florida; Tampa Florida
| | - Rami Komrokji
- Department of Malignant Hematology; H. Lee Moffitt Cancer Center and Research Institute; Tampa Florida
- Department of Oncologic Sciences; University of South Florida; Tampa Florida
| | - Javier Pinilla-Ibarz
- Department of Malignant Hematology; H. Lee Moffitt Cancer Center and Research Institute; Tampa Florida
- Department of Oncologic Sciences; University of South Florida; Tampa Florida
- Department of Immunology; H. Lee Moffitt Cancer Center and Research Institute; Tampa Florida
| |
Collapse
|
31
|
O'Reilly RJ, Koehne G, Hasan AN, Doubrovina E, Prockop S. T-cell depleted allogeneic hematopoietic cell transplants as a platform for adoptive therapy with leukemia selective or virus-specific T-cells. Bone Marrow Transplant 2015; 50 Suppl 2:S43-50. [PMID: 26039207 PMCID: PMC4787269 DOI: 10.1038/bmt.2015.95] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Allogeneic hematopoietic cell transplants adequately depleted of T-cells can reduce or prevent acute and chronic GVHD in both HLA-matched and haplotype-disparate hosts, without post-transplant prophylaxis with immunosuppressive drugs. Recent trials indicate that high doses of CD34+ progenitors from G-CSF mobilized peripheral blood leukocytes isolated and T-cell depleted by immunoadsorption to paramagnetic beads, when administered after myeloablative conditioning with TBI and chemotherapy or chemotherapy alone can secure consistent engraftment and abrogate GVHD in patients with acute leukemia without incurring an increased risk of a recurrent leukemia. Early clinical trials also indicate that high doses of in vitro generated leukemia-reactive donor T-cells can be adoptively transferred and can induce remissions of leukemia relapse without GVHD. Similarly, virus-specific T-cells generated from the transplant donor or an HLA partially matched third party, have induced remissions of Rituxan-refractory EBV lymphomas and can clear CMV disease or viremia persisting despite antiviral therapy in a high proportion of cases. Analyses of treatment responses and failures illustrate both the advantages and limitations of donor or banked, third party-derived T-cells, but underscore the potential of adoptive T-cell therapy in the absence of ongoing immunosuppression.
Collapse
Affiliation(s)
- R J O'Reilly
- Departments of Pediatrics and Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - G Koehne
- Departments of Pediatrics and Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A N Hasan
- Departments of Pediatrics and Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Doubrovina
- Departments of Pediatrics and Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - S Prockop
- Departments of Pediatrics and Medicine, Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
32
|
de Haar C, Plantinga M, Blokland NJ, van Til NP, Flinsenberg TW, Van Tendeloo VF, Smits EL, Boon L, Spel L, Boes M, Boelens JJ, Nierkens S. Generation of a cord blood-derived Wilms Tumor 1 dendritic cell vaccine for AML patients treated with allogeneic cord blood transplantation. Oncoimmunology 2015; 4:e1023973. [PMID: 26451309 DOI: 10.1080/2162402x.2015.1023973] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/20/2015] [Accepted: 02/20/2015] [Indexed: 01/08/2023] Open
Abstract
The poor survival rates of refractory/relapsed acute myeloid leukemia (AML) patients after haematopoietic cell transplantation (HCT) requires the development of additional immune therapeutic strategies. As the elicitation of tumor-antigen specific cytotoxic T lymphocytes (CTLs) is associated with reduced relapses and enhanced survival, enhanced priming of these CTLs using an anti-AML vaccine may result in long-term immunity against AML. Cord blood (CB), as allogeneic HCT source, may provide a unique setting for such post-HCT vaccination, considering its enhanced graft-versus-leukemia (GvL) effects and population of highly responsive naïve T cells. It is our goal to develop a powerful and safe immune therapeutic strategy composed of CB-HCT followed by vaccination with CB CD34+-derived dendritic cells (DCs) presenting the oncoprotein Wilms Tumor-1 (WT1), which is expressed in AML-blasts in the majority of patients. Here, we describe the optimization of a clinically applicable DC culture protocol. This two-step protocol consisting of an expansion phase followed by the differentiation toward DCs, enables us to generate sufficient cord blood-derived DCs (CBDCs) in the clinical setting. At the end of the culture, the CBDCs exhibit a mature surface phenotype, are able to migrate, express tumor antigen (WT1) after electroporation with mRNA encoding the full-length WT1 protein, and stimulate WT1-specific T cells.
Collapse
Affiliation(s)
- Colin de Haar
- U-DANCE; Laboratory for Translational Immunology; UMC Utrecht ; Utrecht, The Netherlands
| | - Maud Plantinga
- U-DANCE; Laboratory for Translational Immunology; UMC Utrecht ; Utrecht, The Netherlands
| | - Nina Jg Blokland
- U-DANCE; Laboratory for Translational Immunology; UMC Utrecht ; Utrecht, The Netherlands
| | - Niek P van Til
- U-DANCE; Laboratory for Translational Immunology; UMC Utrecht ; Utrecht, The Netherlands
| | - Thijs Wh Flinsenberg
- U-DANCE; Laboratory for Translational Immunology; UMC Utrecht ; Utrecht, The Netherlands
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology; Tumor Immunology Group (TIGR); Vaccine & Infectious Disease Institute; University of Antwerp ; Wilrijk, Antwerp, Belgium
| | - Evelien L Smits
- Center for Oncological Research (CORE); University of Antwerp ; Wilrijk, Antwerp, Belgium ; Center for Cell Therapy and Regenerative Medicine; Antwerp University Hospital ; Wilrijk, Belgium
| | - Louis Boon
- Bioceros B.V. ; Utrecht, The Netherlands
| | - Lotte Spel
- U-DANCE; Laboratory for Translational Immunology; UMC Utrecht ; Utrecht, The Netherlands
| | - Marianne Boes
- Clinical Immunology Section; LTI; UMC Utrecht ; Utrecht, The Netherlands
| | - Jaap Jan Boelens
- U-DANCE; Laboratory for Translational Immunology; UMC Utrecht ; Utrecht, The Netherlands ; Department Pediatrics; Blood and Marrow Transplantation Program; UMC Utrecht ; Utrecht, The Netherlands
| | - Stefan Nierkens
- U-DANCE; Laboratory for Translational Immunology; UMC Utrecht ; Utrecht, The Netherlands ; U-DAIR; LTI; UMC Utrecht ; Utrecht, The Netherlands
| |
Collapse
|
33
|
Zhao Q, Ahmed M, Tassev DV, Hasan A, Kuo TY, Guo HF, O'Reilly RJ, Cheung NKV. Affinity maturation of T-cell receptor-like antibodies for Wilms tumor 1 peptide greatly enhances therapeutic potential. Leukemia 2015; 29:2238-47. [PMID: 25987253 PMCID: PMC4788467 DOI: 10.1038/leu.2015.125] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 01/01/2023]
Abstract
WT1126 (RMFPNAPYL) is a human leukocyte antigen-A2 (HLA-A2)-restricted peptide derived from Wilms tumor protein 1 (WT1), which is widely expressed in a broad spectrum of leukemias, lymphomas and solid tumors. A novel T-cell-receptor (TCR)-like single-chain variable fragment (scFv) antibody specific for the T-cell epitope consisting of the WT1/HLA-A2 complex was isolated from a human scFv phage library. This scFv was affinity-matured by mutagenesis combined with yeast display and structurally analyzed using a homology model. This monovalent scFv showed a 100-fold affinity improvement (dissociation constant (KD)=3 nm) and exquisite specificity towards its targeted epitope or HLA-A2+/WT1+ tumor cells. Bivalent scFv-huIgG1-Fc fusion protein demonstrated an even higher avidity (KD=2 pm) binding to the T-cell epitope and to tumor targets and was capable of mediating antibody-dependent cell-mediated cytotoxicity or tumor lysis by chimeric antigen receptor-expressing human T- or NK-92-MI-transfected cells. This antibody demonstrated specific and potent cytotoxicity in vivo towards WT1-positive leukemia xenograft that was HLA-A2 restricted. In summary, T-cell epitopes can provide novel targets for antibody-based therapeutics. By combining phage and yeast displays and scFv-Fc fusion platforms, a strategy for developing high-affinity TCR-like antibodies could be rapidly explored for potential clinical development.
Collapse
Affiliation(s)
- Q Zhao
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M Ahmed
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - D V Tassev
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Hasan
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Pediatric Stem Cell Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - T-Y Kuo
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Pediatric Stem Cell Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - H-F Guo
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - R J O'Reilly
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Pediatric Stem Cell Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - N-K V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
34
|
Prommersberger S, Höfflin S, Schuler-Thurner B, Schuler G, Schaft N, Dörrie J. A new method to monitor antigen-specific CD8+ T cells, avoiding additional target cells and the restriction to human leukocyte antigen haplotype. Gene Ther 2015; 22:516-20. [DOI: 10.1038/gt.2015.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/27/2015] [Accepted: 02/02/2015] [Indexed: 11/09/2022]
|
35
|
Generation of human memory stem T cells after haploidentical T-replete hematopoietic stem cell transplantation. Blood 2015; 125:2865-74. [PMID: 25736310 DOI: 10.1182/blood-2014-11-608539] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/22/2015] [Indexed: 01/13/2023] Open
Abstract
Memory stem T cells (TSCM) have been proposed as key determinants of immunologic memory. However, their exact contribution to a mounting immune response, as well as the mechanisms and timing of their in vivo generation, are poorly understood. We longitudinally tracked TSCM dynamics in patients undergoing haploidentical hematopoietic stem cell transplantation (HSCT), thereby providing novel hints on the contribution of this subset to posttransplant immune reconstitution in humans. We found that donor-derived TSCM are highly enriched early after HSCT. We showed at the antigen-specific and clonal level that TSCM lymphocytes can differentiate directly from naive precursors infused within the graft and that the extent of TSCM generation might correlate with interleukin 7 serum levels. In vivo fate mapping through T-cell receptor sequencing allowed defining the in vivo differentiation landscapes of human naive T cells, supporting the notion that progenies of single naive cells embrace disparate fates in vivo and highlighting TSCM as relevant novel players in the diversification of immunological memory after allogeneic HSCT.
Collapse
|
36
|
Iampietro M, Morissette G, Gravel A, Dubuc I, Rousseau M, Hasan A, O'Reilly RJ, Flamand L. Human herpesvirus 6B immediate-early I protein contains functional HLA-A*02, HLA-A*03, and HLA-B*07 class I restricted CD8(+) T-cell epitopes. Eur J Immunol 2014; 44:3573-84. [PMID: 25243920 DOI: 10.1002/eji.201444931] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/11/2014] [Accepted: 09/18/2014] [Indexed: 11/07/2022]
Abstract
Human herpesvirus 6B (HHV-6B) is a ubiquitous pathogen with frequent reactivation observed in immunocompromised patients such as BM transplant (BMT) recipients. Adoptive immunotherapy is a promising therapeutic avenue for the treatment of opportunistic infections, including herpesviruses. While T-cell immunotherapy can successfully control CMV and EBV reactivations in BMT recipients, such therapy is not available for HHV-6 infections, in part due to a lack of identified protective CD8(+) T-cell epitopes. Our goal was to identify CD8(+) T-cell viral epitopes derived from the HHV-6B immediate-early protein I and presented by common human leukocyte Ag (HLA) class I alleles including HLA-A*02, HLA-A*03, and HLA-B*07. These epitopes were functionally tested for their ability to induce CD8(+) T-cell expansion and kill HHV-6-infected autologous cells. Cross-reactivity of specific HHV-6B-expanded T cells against HHV-6A-infected cells was also confirmed for a conserved epitope presented by HLA-A*02 molecule. Our findings will help push forward the field of adoptive immunotherapy for the treatment and/or the prevention of HHV-6 reactivation in BMT recipients.
Collapse
Affiliation(s)
- Mathieu Iampietro
- Division of Infectious Disease and Immunity, CHU de Quebec Research Center, Quebec City, Canada
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Krakow EF, Bergeron J, Lachance S, Roy DC, Delisle JS. Harnessing the power of alloreactivity without triggering graft-versus-host disease: how non-engrafting alloreactive cellular therapy might change the landscape of acute myeloid leukemia treatment. Blood Rev 2014; 28:249-61. [PMID: 25228333 DOI: 10.1016/j.blre.2014.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 06/13/2014] [Accepted: 08/19/2014] [Indexed: 12/20/2022]
Abstract
Human leukocyte antigen-mismatched leukocyte infusions outside of the context of transplantation are a promising strategy for acute myeloid leukemia. Recent studies using such non-engrafting alloreactive cellular therapy (NEACT) revealed that survival of elderly patients increased from 10% to 39% when NEACT was given following chemotherapy, and that durable complete remissions were achieved in about a third of patients with relapsed or chemorefractory disease. We review the clinical reports of different NEACT approaches to date and describe how although T-cell and NK alloreactivity could generate immediate anti-leukemic effects, long-term disease control may be achieved by stimulating recipient-derived T-cell responses against tumor-associated antigens. Other variables likely impacting NEACT such as the release of pro-inflammatory cytokines from donor-host bidirectional alloreactivity and the choice of chemotherapeutics as well as future avenues for improving NEACT, such as optimizing the cell dose and potential synergies with adjuvant pharmacologic immune checkpoint blockade, are discussed.
Collapse
Affiliation(s)
- Elizabeth F Krakow
- Department of Medicine, Division of Hematology and Oncology, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, 5415 de l'Assomption, Montreal, Quebec, H1T 2M4, Canada.
| | - Julie Bergeron
- Department of Medicine, Division of Hematology and Oncology, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, 5415 de l'Assomption, Montreal, Quebec, H1T 2M4, Canada.
| | - Silvy Lachance
- Department of Medicine, Division of Hematology and Oncology, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, 5415 de l'Assomption, Montreal, Quebec, H1T 2M4, Canada.
| | - Denis-Claude Roy
- Department of Medicine, Division of Hematology and Oncology, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, 5415 de l'Assomption, Montreal, Quebec, H1T 2M4, Canada.
| | - Jean-Sébastien Delisle
- Department of Medicine, Division of Hematology and Oncology, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, 5415 de l'Assomption, Montreal, Quebec, H1T 2M4, Canada.
| |
Collapse
|
38
|
Garber HR, Mirza A, Mittendorf EA, Alatrash G. Adoptive T-cell therapy for Leukemia. MOLECULAR AND CELLULAR THERAPIES 2014; 2:25. [PMID: 26056592 PMCID: PMC4452065 DOI: 10.1186/2052-8426-2-25] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/02/2014] [Indexed: 01/15/2023]
Abstract
Allogeneic stem cell transplantation (alloSCT) is the most robust form of adoptive cellular therapy (ACT) and has been tremendously effective in the treatment of leukemia. It is one of the original forms of cancer immunotherapy and illustrates that lymphocytes can specifically recognize and eliminate aberrant, malignant cells. However, because of the high morbidity and mortality that is associated with alloSCT including graft-versus-host disease (GvHD), refining the anti-leukemia immunity of alloSCT to target distinct antigens that mediate the graft-versus-leukemia (GvL) effect could transform our approach to treating leukemia, and possibly other hematologic malignancies. Over the past few decades, many leukemia antigens have been discovered that can separate malignant cells from normal host cells and render them vulnerable targets. In concert, the field of T-cell engineering has matured to enable transfer of ectopic high-affinity antigen receptors into host or donor cells with greater efficiency and potency. Many preclinical studies have demonstrated that engineered and conventional T-cells can mediate lysis and eradication of leukemia via one or more leukemia antigen targets. This evidence now serves as a foundation for clinical trials that aim to cure leukemia using T-cells. The recent clinical success of anti-CD19 chimeric antigen receptor (CAR) cells for treating patients with acute lymphoblastic leukemia and chronic lymphocytic leukemia displays the potential of this new therapeutic modality. In this review, we discuss some of the most promising leukemia antigens and the novel strategies that have been implemented for adoptive cellular immunotherapy of lymphoid and myeloid leukemias. It is important to summarize the data for ACT of leukemia for physicians in-training and in practice and for investigators who work in this and related fields as there are recent discoveries already being translated to the patient setting and numerous accruing clinical trials. We primarily focus on ACT that has been used in the clinical setting or that is currently undergoing preclinical testing with a foreseeable clinical endpoint.
Collapse
Affiliation(s)
- Haven R Garber
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center Houston, Houston, 77030 Texas
| | - Asma Mirza
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center Houston, Houston, 77030 Texas
| | - Elizabeth A Mittendorf
- Department Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Gheath Alatrash
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center Houston, Houston, 77030 Texas
| |
Collapse
|
39
|
Garber HR, Mirza A, Mittendorf EA, Alatrash G. Adoptive T-cell therapy for Leukemia. MOLECULAR AND CELLULAR THERAPIES 2014; 2:25. [PMID: 26056592 PMCID: PMC4452065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/02/2014] [Indexed: 11/21/2023]
Abstract
Allogeneic stem cell transplantation (alloSCT) is the most robust form of adoptive cellular therapy (ACT) and has been tremendously effective in the treatment of leukemia. It is one of the original forms of cancer immunotherapy and illustrates that lymphocytes can specifically recognize and eliminate aberrant, malignant cells. However, because of the high morbidity and mortality that is associated with alloSCT including graft-versus-host disease (GvHD), refining the anti-leukemia immunity of alloSCT to target distinct antigens that mediate the graft-versus-leukemia (GvL) effect could transform our approach to treating leukemia, and possibly other hematologic malignancies. Over the past few decades, many leukemia antigens have been discovered that can separate malignant cells from normal host cells and render them vulnerable targets. In concert, the field of T-cell engineering has matured to enable transfer of ectopic high-affinity antigen receptors into host or donor cells with greater efficiency and potency. Many preclinical studies have demonstrated that engineered and conventional T-cells can mediate lysis and eradication of leukemia via one or more leukemia antigen targets. This evidence now serves as a foundation for clinical trials that aim to cure leukemia using T-cells. The recent clinical success of anti-CD19 chimeric antigen receptor (CAR) cells for treating patients with acute lymphoblastic leukemia and chronic lymphocytic leukemia displays the potential of this new therapeutic modality. In this review, we discuss some of the most promising leukemia antigens and the novel strategies that have been implemented for adoptive cellular immunotherapy of lymphoid and myeloid leukemias. It is important to summarize the data for ACT of leukemia for physicians in-training and in practice and for investigators who work in this and related fields as there are recent discoveries already being translated to the patient setting and numerous accruing clinical trials. We primarily focus on ACT that has been used in the clinical setting or that is currently undergoing preclinical testing with a foreseeable clinical endpoint.
Collapse
Affiliation(s)
- Haven R Garber
- />Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center Houston, Houston, 77030 Texas
| | - Asma Mirza
- />Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center Houston, Houston, 77030 Texas
| | - Elizabeth A Mittendorf
- />Department Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Gheath Alatrash
- />Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center Houston, Houston, 77030 Texas
| |
Collapse
|
40
|
Ruben JM, Bontkes HJ, Westers TM, Hooijberg E, Ossenkoppele GJ, van de Loosdrecht AA, de Gruijl TD. In situ loading of skin dendritic cells with apoptotic bleb-derived antigens for the induction of tumor-directed immunity. Oncoimmunology 2014; 3:e946360. [PMID: 25610730 DOI: 10.4161/21624011.2014.946360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/05/2014] [Indexed: 11/19/2022] Open
Abstract
The generation and loading of dendritic cells (DC) ex-vivo for tumor vaccination purposes is laborious and costly. Direct intradermal (i.d.) administration of tumor-associated antigens could be an attractive alternative approach, provided that efficient uptake and cross-presentation by appropriately activated skin DCs can be achieved. Here, we compare the efficiency of i.d. delivery of relatively small apoptotic blebs (diameter ∼0.1-1 μm) derived from MART-1 transduced acute myeloid leukemia (AML) HL60 cells, to that of larger apoptotic cell remnants (ACR; 2-10 μm) in a physiologically highly relevant human skin explant model. Injection of either fluorescently-labelled ACRs or blebs alone did not affect the number or distribution of migrated DC subsets from skin biopsies after 48 hours, but resulted in a general up-regulation of the co-stimulatory molecules CD83 and CD86 on skin DCs that had ingested apoptotic material. We have previously shown that i.d. administration of GM-CSF and IL-4 resulted in preferential migration of a mature and highly T cell-stimulatory CD11hiCD1a+CD14- dermal DC subset. Here, we found that co-injection of GM-CSF and IL-4 together with either ACRs or blebs resulted in uptake efficiencies within this dermal DC subset of 7.6% (±6.1%) and 19.1% (±15.9%), respectively, thus revealing a significantly higher uptake frequency of blebs (P < 0.02). Intradermal delivery of tumor-derived blebs did not affect the T-cell priming and TH-skewing abilities of migratory skin DC. Nevertheless, in contrast to i.d. administration of ACR, the injection of blebs lead to effective cross-presentation of MART-1 to specific CD8+ effector T cells. We conclude that apoptotic bleb-based vaccines delivered through the skin may offer an attractive, and broadly applicable, cancer immunotherapy.
Collapse
Key Words
- 4/GM, IL-4 and GM-CSF
- ACR, apoptotic cell remnant
- AML, acute myeloid leukemia
- CFSE, carboxyfluorescein succinimidyl ester
- DC, dendritic cell
- DDC, dermal DC
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HLA, human leukocyte antigen
- HSCT, hematopoietic stem cell transplantation
- IFN, interferon
- IL, interleukin
- Ig, immune globulin
- LC, Langerhans cell
- LN, lymph node
- MART-1/melan-A, melanoma antigen recognized by T cell 1
- MLR, mixed leukocyte reaction
- MoDC, monocyte-derived dendritic cell
- TAA, tumor-associated antigen
- TH, T Helper
- TLR, Toll-like receptor
- TNFα, tumor necrosis factor α
- apoptotic cells
- blebs
- cross-presentation
- dendritic cells
- dermis
- i.d., intradermal
- phagocytosis
- skin
Collapse
Affiliation(s)
- Jurjen M Ruben
- Department of Hematology; VU University Medical Center; Cancer Center Amsterdam ; Amsterdam, The Netherlands
| | - Hetty J Bontkes
- Department of Hematology; VU University Medical Center; Cancer Center Amsterdam ; Amsterdam, The Netherlands ; Department of Pathology; VU University Medical Center; Cancer Center Amsterdam ; Amsterdam, The Netherlands
| | - Theresia M Westers
- Department of Hematology; VU University Medical Center; Cancer Center Amsterdam ; Amsterdam, The Netherlands
| | - Erik Hooijberg
- Department of Pathology; VU University Medical Center; Cancer Center Amsterdam ; Amsterdam, The Netherlands
| | - Gert J Ossenkoppele
- Department of Hematology; VU University Medical Center; Cancer Center Amsterdam ; Amsterdam, The Netherlands
| | - Arjan A van de Loosdrecht
- Department of Hematology; VU University Medical Center; Cancer Center Amsterdam ; Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology; VU University Medical Center; Cancer Center Amsterdam ; Amsterdam, The Netherlands
| |
Collapse
|
41
|
|
42
|
A TCR-mimic antibody to WT1 bypasses tyrosine kinase inhibitor resistance in human BCR-ABL+ leukemias. Blood 2014; 123:3296-304. [PMID: 24723681 DOI: 10.1182/blood-2014-01-549022] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acute and chronic leukemias, including CD34(+) CML cells, demonstrate increased expression of the Wilms tumor gene 1 product (WT1), making WT1 an attractive therapeutic target. However, WT1 is a currently undruggable, intracellular protein. ESKM is a human IgG1 T-cell receptor mimic monoclonal antibody directed to a 9-amino acid sequence of WT1 in the context of cell surface HLA-A*02. ESKM was therapeutically effective, alone and in combination with tyrosine kinase inhibitors (TKIs), against Philadelphia chromosome-positive acute leukemia in murine models, including a leukemia with the most common, pan-TKI, gatekeeper resistance mutation, T315I. ESKM was superior to the first-generation TKI, imatinib. Combination therapy with ESKM and TKIs was superior to either drug alone, capable of curing mice. ESKM showed no toxicity to human HLA-A*02:01(+) stem cells under the conditions of this murine model. These features of ESKM make it a promising nontoxic therapeutic agent for sensitive and resistant Ph(+) leukemias.
Collapse
|
43
|
Veomett N, Dao T, Scheinberg DA. Therapeutic antibodies to intracellular targets in cancer therapy. Expert Opin Biol Ther 2013; 13:1485-8. [PMID: 23991764 DOI: 10.1517/14712598.2013.833602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Therapeutic monoclonal antibodies (mAbs) are a proven therapeutic platform, but they cannot readily cross the cell membranes to bind intracellular antigens, while some of the most important disease-associated proteins are intracellular, protected from direct mAb attack. However, the cellular processes of necrosis and major histocompatibility complex (MHC) class I antigen presentation expose epitopes from intracellular proteins to the extracellular environment or cell surface. Antibodies that exploit these processes can therefore specifically target diseased cells based on their intracellular protein content. These strategies expose important new targets for mAb therapy and expand the potential for effective therapies.
Collapse
|
44
|
Brehm C, Huenecke S, Pfirrmann V, Rossig C, Mackall CL, Bollard CM, Gottschalk S, Schlegel PG, Klingebiel T, Bader P. Highlights of the third International Conference on Immunotherapy in Pediatric Oncology. Pediatr Hematol Oncol 2013; 30:349-66. [PMID: 23758210 DOI: 10.3109/08880018.2013.802106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The third International Conference on Immunotherapy in Pediatric Oncology was held in Frankfurt/Main, Germany, October 1-2, 2012. Major topics of the conference included (i) cellular therapies using antigen-specific and gene-modified T cells for targeting leukemia and pediatric solid tumors; (ii) overcoming hurdles and barriers with regard to immunogenicity, immune escape, and the role of tumor microenvironment; (iii) vaccine strategies and antigen presentation; (iv) haploidentical transplantation and innate immunity; (v) the role of immune cells in allogeneic transplantation; and (vi) current antibody/immunoconjugate approaches for the treatment of pediatric malignancies. During the past decade, major advances have been made in improving the efficacy of these modalities and regulatory hurdles have been taken. Nevertheless, there is still a long way to go to fully exploit the potential of immunotherapeutic strategies to improve the cure of children and adolescents with malignancies. This and future meetings will support new collaborations and insights for further translational and clinical immunotherapy studies.
Collapse
Affiliation(s)
- Claudia Brehm
- Department for Stem Cell Transplantation and Immunology, J.W. Goethe-University Hospital, University Hospital for Children and Adolescents, Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Weber G, Caruana I, Rouce RH, Barrett AJ, Gerdemann U, Leen AM, Rabin KR, Bollard CM. Generation of tumor antigen-specific T cell lines from pediatric patients with acute lymphoblastic leukemia--implications for immunotherapy. Clin Cancer Res 2013; 19:5079-91. [PMID: 23838315 DOI: 10.1158/1078-0432.ccr-13-0955] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE Although modern cure rates for childhood acute lymphoblastic leukemia (ALL) exceed 80%, the outlook remains poor in patients with high-risk disease and those who relapse, especially when allogeneic hematopoietic stem cell transplantation is not feasible. Strategies to improve outcome and prevent relapse are therefore required. Immunotherapy with antigen-specific T cells can have antileukemic activity without the toxicities seen with intensive chemotherapy, and therefore represents an attractive strategy to improve the outcome of high-risk patients with ALL. We explored the feasibility of generating tumor antigen-specific T cells ex vivo from the peripheral blood of 50 patients with ALL [26 National Cancer Institute (NCI) high-risk and 24 standard-risk] receiving maintenance therapy. EXPERIMENTAL DESIGN Peripheral blood mononuclear cells were stimulated with autologous dendritic cells pulsed with complete peptide libraries of WT1, Survivin, MAGE-A3, and PRAME, antigens frequently expressed on ALL blasts. RESULTS T-cell lines were successfully expanded from all patients, despite low lymphocyte counts and irrespective of NCI risk group. Antigen-specificity was observed in more than 50% of patients after the initial stimulation and increased to more than 90% after three stimulations as assessed in IFN-γ-enzyme-linked immunospot (ELISpot) and (51)Cr-release assays. Moreover, tumor-specific responses were observed by reduction of autologous leukemia blasts in short- and long-term coculture experiments. CONCLUSION This study supports the use of immunotherapy with adoptively transferred autologous tumor antigen-specific T cells to prevent relapse and improve the prognosis of patients with high-risk ALL.
Collapse
Affiliation(s)
- Gerrit Weber
- Authors' Affiliations: Center for Cell and Gene Therapy, Departments of Pediatrics, Medicine, and Immunology, Baylor College of Medicine; The Methodist Hospital; Texas Children's Hospital; Texas Children's Cancer Center, Houston, Texas; and Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Shah NN, Dave H, Wayne AS. Immunotherapy for pediatric leukemia. Front Oncol 2013; 3:166. [PMID: 23847759 PMCID: PMC3696894 DOI: 10.3389/fonc.2013.00166] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/10/2013] [Indexed: 12/31/2022] Open
Abstract
Substantial progress has been made in the treatment of leukemia in childhood. Despite this, leukemia remains a leading cause of pediatric cancer-related mortality and the prognosis is guarded for individuals with relapsed or refractory disease. Standard therapies are associated with a wide array of acute and long-term toxicities and further treatment intensification may not be tolerable or beneficial. The curative potential of allogeneic stem cell transplantation is due in part to the graft-versus-leukemia effect, which provides evidence for the therapeutic capacity of immune-based therapies. In recent years there have been significant advances in the development and application of immunotherapy in the treatment of leukemias, including the demonstration of activity in chemotherapy-resistant cases. This review summarizes immunotherapeutic approaches in the treatment of pediatric leukemia including current results and future directions.
Collapse
Affiliation(s)
- Nirali N. Shah
- Pediatric Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - Hema Dave
- Pediatric Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - Alan S. Wayne
- Pediatric Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
47
|
Ghosh A, Dogan Y, Moroz M, Holland AM, Yim NL, Rao UK, Young LF, Tannenbaum D, Masih D, Velardi E, Tsai JJ, Jenq RR, Penack O, Hanash AM, Smith OM, Piersanti K, Lezcano C, Murphy GF, Liu C, Palomba ML, Sauer MG, Sadelain M, Ponomarev V, van den Brink MRM. Adoptively transferred TRAIL+ T cells suppress GVHD and augment antitumor activity. J Clin Invest 2013; 123:2654-62. [PMID: 23676461 DOI: 10.1172/jci66301] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 03/14/2013] [Indexed: 01/24/2023] Open
Abstract
Current strategies to suppress graft-versus-host disease (GVHD) also compromise graft-versus-tumor (GVT) responses. Furthermore, most experimental strategies to separate GVHD and GVT responses merely spare GVT function without actually enhancing it. We have previously shown that endogenously expressed TNF-related apoptosis-inducing ligand (TRAIL) is required for optimal GVT activity against certain malignancies in recipients of allogeneic hematopoietic stem cell transplantation (allo-HSCT). In order to model a donor-derived cellular therapy, we genetically engineered T cells to overexpress TRAIL and adoptively transferred donor-type unsorted TRAIL+ T cells into mouse models of allo-HSCT. We found that murine TRAIL+ T cells induced apoptosis of alloreactive T cells, thereby reducing GVHD in a DR5-dependent manner. Furthermore, murine TRAIL+ T cells mediated enhanced in vitro and in vivo antilymphoma GVT response. Moreover, human TRAIL+ T cells mediated enhanced in vitro cytotoxicity against both human leukemia cell lines and against freshly isolated chronic lymphocytic leukemia (CLL) cells. Finally, as a model of off-the-shelf, donor-unrestricted antitumor cellular therapy, in vitro-generated TRAIL+ precursor T cells from third-party donors also mediated enhanced GVT response in the absence of GVHD. These data indicate that TRAIL-overexpressing donor T cells could potentially enhance the curative potential of allo-HSCT by increasing GVT response and suppressing GVHD.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department of Immunology and Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Weber G, Gerdemann U, Caruana I, Savoldo B, Hensel NF, Rabin KR, Shpall EJ, Melenhorst JJ, Leen AM, Barrett AJ, Bollard CM. Generation of multi-leukemia antigen-specific T cells to enhance the graft-versus-leukemia effect after allogeneic stem cell transplant. Leukemia 2013; 27:1538-47. [PMID: 23528871 DOI: 10.1038/leu.2013.66] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/07/2013] [Accepted: 02/20/2013] [Indexed: 12/16/2022]
Abstract
Adoptive immunotherapy with ex vivo expanded T cells is a promising approach to prevent or treat leukemia. Myeloid leukemias express tumor-associated antigens (TAA) that induce antigen-specific cytotoxic T lymphocyte (CTL) responses in healthy individuals. We explored the feasibility of generating TAA-specific CTLs from stem cell donors of patients with myeloid leukemia to enhance the graft-versus-leukemia effect after stem cell transplantation. CTL lines were manufactured from peripheral blood of 10 healthy donors by stimulation with 15mer peptide libraries of five TAA (proteinase 3 (Pr3), preferentially expressed antigen in melanoma, Wilms tumor gene 1 (WT1), human neutrophil elastase (NE) and melanoma-associated antigen A3) known to be expressed in myeloid leukemias. All CTL lines responded to the mix of five TAA and were multi-specific as assessed by interferon-γ enzyme-linked immunospot. Although donors showed individual patterns of antigen recognition, all responded comparably to the TAAmix. Immunogenic peptides of WT1, Pr3 or NE could be identified by epitope mapping in all donor CTL lines. In vitro experiments showed recognition of partially human leukocyte antigen (HLA)-matched myeloid leukemia blasts. These findings support the development of a single clinical grade multi-tumor antigen-specific T-cell product from the stem cell source, capable of broad reactivity against myeloid malignancies for use in donor-recipient pairs without limitation to a certain HLA-type.
Collapse
Affiliation(s)
- G Weber
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
WT1-specific T-cell responses in high-risk multiple myeloma patients undergoing allogeneic T cell-depleted hematopoietic stem cell transplantation and donor lymphocyte infusions. Blood 2012; 121:308-17. [PMID: 23160468 DOI: 10.1182/blood-2012-06-435040] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
While the emergence of WT1-specific cytotoxic T lymphocytes (WT1-CTL) has been correlated with better relapse-free survival after allogeneic stem cell transplantation in patients with myeloid leukemias, little is known about the role of these cells in multiple myeloma (MM). We examined the significance of WT1-CTL responses in patients with relapsed MM and high-risk cytogenetics who were undergoing allogeneic T cell-depleted hematopoietic stem cell transplantation (alloTCD-HSCT) followed by donor lymphocyte infusions. Of 24 patients evaluated, all exhibited WT1-CTL responses before allogeneic transplantation. These T-cell frequencies were universally correlated with pretransplantation disease load. Ten patients received low-dose donor lymphocyte infusions beginning 5 months after transplantation. All patients subsequently developed increments of WT1-CTL frequencies that were associated with reduction in specific myeloma markers, in the absence of graft-versus-host disease. Immunohistochemical analyses of WT1 and CD138 in bone marrow specimens demonstrated consistent coexpression within malignant plasma cells. WT1 expression in the bone marrow correlated with disease outcome. Our results suggest an association between the emergence of WT1-CTL and graft-versus-myeloma effect in patients treated for relapsed MM after alloTCD-HSCT and donor lymphocyte infusions, supporting the development of adoptive immunotherapeutic approaches using WT1-CTL in the treatment of MM.
Collapse
|
50
|
Abstract
The Wilms tumor protein, WT-1, is a widely recognized tumor antigen that is aberrantly expressed in myeloid and lymphoid leukemia and in this issue of Blood, Doubrovina et al report the most extensive catalog heretofore of HLA-restricted immunogenic peptides derived from WT-1, which are recognized by CD8 and CD4T cells.
Collapse
|