1
|
Giacomini A, Taranto S, Gazzaroli G, Faletti J, Capoferri D, Marcheselli R, Sciumè M, Presta M, Sacco A, Roccaro AM. The FGF/FGFR/c-Myc axis as a promising therapeutic target in multiple myeloma. J Exp Clin Cancer Res 2024; 43:294. [PMID: 39482742 PMCID: PMC11529022 DOI: 10.1186/s13046-024-03217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/26/2024] [Indexed: 11/03/2024] Open
Abstract
Among blood cancers, multiple myeloma (MM) represents the second most common neoplasm and is characterized by the accumulation and proliferation of monoclonal plasma cells within the bone marrow. Despite the last few decades being characterized by the development of different therapeutic strategies against MM, at present such disease is still considered incurable. Although MM is highly heterogeneous in terms of genetic and molecular subtypes, about 67% of MM cases are associated with abnormal activity of the transcription factor c-Myc, which has so far revealed a protein extremely difficult to target. We have recently demonstrated that activation of fibroblast growth factor (FGF) signaling protects MM cells from oxidative stress-induced apoptosis by stabilizing the oncoprotein c-Myc. Accordingly, secretion of FGF ligands and autocrine activation of FGF receptors (FGFR) is observed in MM cells and FGFR3 genomic alterations represent some 15-20% MM cases and are associated with poor outcome. Thus, FGF/FGFR blockade may represent a promising strategy to indirectly target c-Myc in MM. On this basis, the present review aims at providing an overview of recently explored connections between the FGF/FGFR system and c-Myc oncoprotein, sustaining the therapeutic potential of targeting the FGF/FGFR/c-Myc axis in MM by using inhibitors targeting FGF ligands or FGF receptors. Importantly, the provided findings may represent the rationale for using FDA approved FGFR TK inhibitors (i.e. Pemigatinib, Futibatinib, Erdafitinib) for the treatment of MM patients presenting with an aberrant activation of this axis.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Sara Taranto
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Giorgia Gazzaroli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Jessica Faletti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Davide Capoferri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Raffaella Marcheselli
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Margherita Sciumè
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonio Sacco
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Aldo M Roccaro
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy.
| |
Collapse
|
2
|
Ubanako P, Mirza S, Ruff P, Penny C. Exosome-mediated delivery of siRNA molecules in cancer therapy: triumphs and challenges. Front Mol Biosci 2024; 11:1447953. [PMID: 39355533 PMCID: PMC11442288 DOI: 10.3389/fmolb.2024.1447953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024] Open
Abstract
The discovery of novel and innovative therapeutic strategies for cancer treatment and management remains a major global challenge. Exosomes are endogenous nanoscale extracellular vesicles that have garnered increasing attention as innovative vehicles for advanced drug delivery and targeted therapy. The attractive physicochemical and biological properties of exosomes, including increased permeability, biocompatibility, extended half-life in circulation, reduced toxicity and immunogenicity, and multiple functionalization strategies, have made them preferred drug delivery vehicles in cancer and other diseases. Small interfering RNAs (siRNAs) are remarkably able to target any known gene: an attribute harnessed to knock down cancer-associated genes as a viable strategy in cancer management. Extensive research on exosome-mediated delivery of siRNAs for targeting diverse types of cancer has yielded promising results for anticancer therapy, with some formulations progressing through clinical trials. This review catalogs recent advances in exosome-mediated siRNA delivery in several types of cancer, including the manifold benefits and minimal drawbacks of such innovative delivery systems. Additionally, we have highlighted the potential of plant-derived exosomes as innovative drug delivery systems for cancer treatment, offering numerous advantages such as biocompatibility, scalability, and reduced toxicity compared to traditional methods. These exosomes, with their unique characteristics and potential for effective siRNA delivery, represent a significant advancement in nanomedicine and cancer therapeutics. Further exploration of their manufacturing processes and biological mechanisms could significantly advance natural medicine and enhance the efficacy of exosome-based therapies.
Collapse
Affiliation(s)
- Philemon Ubanako
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sheefa Mirza
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Paul Ruff
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Jin X, Li H, Zhang D, Liu S, Song Y, Zhang F, Li Z, Zhuang J. Myc rearrangement redefines the stratification of high-risk multiple myeloma. Cancer Med 2024; 13:e7194. [PMID: 38845529 PMCID: PMC11157166 DOI: 10.1002/cam4.7194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Myc rearrangement (Myc-R) is a controversial factor linked to adverse outcomes in newly diagnosed multiple myeloma (NDMM). AIMS This study aimed to evaluate the impact of Myc-R on the prognosis of NDMM patients and its role in risk stratification compared with traditional high-risk cytogenetic abnormalities (HRCAs). MATERIALS & METHODS A total of 417 NDMM patients enrolled from May 2009 to September 2022 were included. Fluorescence in situ hybridization (FISH) was used to detect Myc-R and other Myc abnormalities (Myc-OA). Median progression-free survival (PFS) and overall survival (OS) were analyzed using Kaplan-Meier methods and log-rank tests. Multivariate Cox regression analysis was used to identify independent risk factors. RESULTS Myc-R was identified in 13.7% of patients, while 14.6% had Myc-OA. Patients with Myc-R had significantly shorter median PFS (15.9 months) and OS (25.1 months) compared with those with Myc-OA (24.5 months PFS; 29.8 months OS) and Myc-negative (Myc-N) status (29.8 months PFS, 29.8 months OS). Myc-R was independently associated with worse PFS and OS compared to Myc-OA. Patients with Myc-R alone had inferior median PFS (15.9 months vs. 28.1 months, p = 0.032) and OS (25.1 months vs. 61.2 months, p = 0.04) compared to those with traditional single HRCA. DISCUSSION The study suggests that traditional single HRCA may not significantly impact survival in NDMM patients. However, incorporating Myc rearrangement or traditional double/triple-hit HRCAs into the risk stratification model improves its predictive value, highlighting the importance of Myc rearrangement in risk assessment. CONCLUSION Myc rearrangement is an independent adverse prognostic factor in NDMM. The incorporation of Myc rearrangement or multiple HRCAs into risk stratification models improves their prognostic value, providing a novel perspective on high-risk factors in NDMM.
Collapse
Affiliation(s)
- Xianghong Jin
- Department of Hematology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
- Department of Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical SciencesBeijingChina
| | - Hui Li
- Department of Hematology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Dingding Zhang
- Medical Research Center, State Key laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shuangjiao Liu
- Department of Hematology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Yuhang Song
- Department of Hematology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Fujing Zhang
- Department of Hematology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Ziping Li
- Department of Hematology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| | - Junling Zhuang
- Department of Hematology, Peking Union Medical College HospitalChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
4
|
Tonon G. Myeloma and DNA damage. Blood 2024; 143:488-495. [PMID: 37992215 DOI: 10.1182/blood.2023021384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/24/2023] Open
Abstract
ABSTRACT DNA-damaging agents have represented the first effective treatment for the blood cancer multiple myeloma, and after 65 years since their introduction to the clinic, they remain one of the mainstay therapies for this disease. Myeloma is a cancer of plasma cells. Despite exceedingly slow proliferation, myeloma cells present extended genomic rearrangements and intense genomic instability, starting at the premalignant stage of the disease. Where does such DNA damage stem from? A reliable model argues that the powerful oncogenes activated in myeloma as well the phenotypic peculiarities of cancer plasma cells, including the dependency on the proteasome for survival and the constant presence of oxidative stress, all converge on modulating DNA damage and repair. Beleaguered by these contraposing forces, myeloma cells survive in a precarious balance, in which the robust engagement of DNA repair mechanisms to guarantee cell survival is continuously challenged by rampant genomic instability, essential for cancer cells to withstand hostile selective pressures. Shattering this delicate equilibrium has been the goal of the extensive use of DNA-damaging agents since their introduction in the clinic, now enriched by novel approaches that leverage upon synthetic lethality paradigms. Exploiting the impairment of homologous recombination caused by myeloma genetic lesions or treatments, it is now possible to design therapeutic combinations that could target myeloma cells more effectively. Furthermore, DNA-damaging agents, as demonstrated in solid tumors, may sensitize cells to immune therapies. In all, targeting DNA damage and repair remains as central as ever in myeloma, even for the foreseeable future.
Collapse
Affiliation(s)
- Giovanni Tonon
- Università Vita-Salute San Raffaele, Milan, Italy
- Division of Experimental Oncology and Center for Omics Sciences, Functional Genomics of Cancer Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
5
|
Daudignon A, Cuccuini W, Bracquemart C, Godon C, Quilichini B, Penther D. Cytogenetics in the management of multiple Myeloma: The guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103427. [PMID: 38035476 DOI: 10.1016/j.retram.2023.103427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023]
Abstract
Multiple myeloma (MM) is characterized by the accumulation of malignant plasma cells (PCs) in the bone marrow. Despite considerable advances in the treatment, MM is considered an incurable chronic disease with a very heterogeneous prognosis, mostly depending on genomic alterations whose complexity evolves over time. The cytogenetic analysis of MM is performed on CD138+ sorted PCs, in order to detect the following high risk cytogenetic abnormalities: t(4;14), 17p/TP53 deletion, 1q21 gain/amplification, 1p32 deletion, as well as t(11;14) because of its therapeutic implication. This minimal panel can be enlarged to detect other recurrent abnormalities, according to the prognostic score chosen by the laboratory. Although the knowledge of the genetic landscape of MM is evolving rapidly with improved molecular technologies, risk scores remain to be refined as they require more time for consensual validation. The GFCH present here the overview of genomics alterations identified in MM and related PCs diseases associated with their prognostic factor, when available, and recommendations from an expert group for identification and characterization of those alterations. This work is the update of previous 2016 recommendations.
Collapse
Affiliation(s)
- Agnès Daudignon
- Institut de Génétique Médicale - Hôpital Jeanne de Flandre - CHU de Lille, Lille, France
| | - Wendy Cuccuini
- Laboratoire d'hématologie, Hôpital Saint-Louis -Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Claire Bracquemart
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Structure Fédérative d'Oncogénétique cyto-moléculaire (MOCAE), Caen, France
| | - Catherine Godon
- Laboratoire d'Hématologie Biologique, CHU Nantes, Nantes, France
| | | | | |
Collapse
|
6
|
Yu Z, Qiu B, Zhou H, Li L, Niu T. Characterization and application of a lactate and branched chain amino acid metabolism related gene signature in a prognosis risk model for multiple myeloma. Cancer Cell Int 2023; 23:169. [PMID: 37580667 PMCID: PMC10426219 DOI: 10.1186/s12935-023-03007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND About 10% of hematologic malignancies are multiple myeloma (MM), an untreatable cancer. Although lactate and branched-chain amino acids (BCAA) are involved in supporting various tumor growth, it is unknown whether they have any bearing on MM prognosis. METHODS MM-related datasets (GSE4581, GSE136337, and TCGA-MM) were acquired from the Gene Expression Omnibus (GEO) database and the Cancer Genome Atlas (TCGA) database. Lactate and BCAA metabolism-related subtypes were acquired separately via the R package "ConsensusClusterPlus" in the GSE4281 dataset. The R package "limma" and Venn diagram were both employed to identify lactate-BCAA metabolism-related genes. Subsequently, a lactate-BCAA metabolism-related prognostic risk model for MM patients was constructed by univariate Cox, Least Absolute Shrinkage and Selection Operator (LASSO), and multivariate Cox regression analyses. The gene set enrichment analysis (GSEA) and R package "clusterProfiler"were applied to explore the biological variations between two groups. Moreover, single-sample gene set enrichment analysis (ssGSEA), Microenvironment Cell Populations-counter (MCPcounte), and xCell techniques were applied to assess tumor microenvironment (TME) scores in MM. Finally, the drug's IC50 for treating MM was calculated using the "oncoPredict" package, and further drug identification was performed by molecular docking. RESULTS Cluster 1 demonstrated a worse prognosis than cluster 2 in both lactate metabolism-related subtypes and BCAA metabolism-related subtypes. 244 genes were determined to be involved in lactate-BCAA metabolism in MM. The prognostic risk model was constructed by CKS2 and LYZ selected from this group of genes for MM, then the prognostic risk model was also stable in external datasets. For the high-risk group, a total of 13 entries were enriched. 16 entries were enriched to the low-risk group. Immune scores, stromal scores, immune infiltrating cells (except Type 17 T helper cells in ssGSEA algorithm), and 168 drugs'IC50 were statistically different between two groups. Alkylating potentially serves as a new agent for MM treatment. CONCLUSIONS CKS2 and LYZ were identified as lactate-BCAA metabolism-related genes in MM, then a novel prognostic risk model was built by using them. In summary, this research may uncover novel characteristic genes signature for the treatment and prognostic of MM.
Collapse
Affiliation(s)
- Zhengyu Yu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bingquan Qiu
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hui Zhou
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Linfeng Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
Zuo X, Liu D. Mechanism of immunomodulatory drug resistance and novel therapeutic strategies in multiple myeloma. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:1110-1121. [PMID: 36121114 DOI: 10.1080/16078454.2022.2124694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The mechanism of immunomodulatory drugs (IMiDs) resistance to multiple myeloma (MM) cells has been gradually demonstrated by recently studies, and some potential novel strategies have been confirmed to have antimyeloma activity and be associated with IMiD activity in MM. METHODS This article searched the Pubmed library, reviewed some recently studies related to IMiD resistance to MM cells and summarized some potent agents to improve IMiD resistance to MM cells. RESULTS Studies have confirmed that cereblon is a primary direct protein target of IMiDs. IRF4 not only is affected by the IKZF protein but also can directly inhibit the expression of BMF and BIM, thereby promoting the survival of MM cells. Additionally, the expression of IRF4 and MYC also plays an important role in three important signaling pathways (Wnt, STAT3 and MAPK/ERK) related to IMiD resistance. Notably, MYC, a downstream factor of IRF4, may be upregulated by BRD4, and upregulation of MYC promotes cell proliferation in MM and disease progression. Recently, some novel therapeutic agents targeting BRD4, a histone modification-related 'reader' of epigenetic marks, or other important factors (e.g. TAK1) in relevant signaling pathways have been developed and they may provide new options for relapse/refractory MM therapy, such as BET inhibitors, CBP/EP300 inhibitors, dual-target BET-CBP/EP300 inhibitors, TAK1 inhibitors, and they may provide new options for relapsed/refractory MM therapy. CONCLUSIONS Accumulated studies have revealed that some key factors associated with the mechanism of IMiD resistance to MM cells. Some agents represent promising new therapeutics of MM to regulate the IRF4/MYC axis by inhibiting BRD4 expression or signaling pathway activation.
Collapse
Affiliation(s)
- Xiaojia Zuo
- Department of Hematology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, People's Republic of China.,Department of Oncology and Hematology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, People's Republic of China.,Guizhou Medical University, Guiyang, People's Republic of China
| | - Dingsheng Liu
- Department of Hematology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Shi Y, Sun F, Cheng Y, Holmes B, Dhakal B, Gera JF, Janz S, Lichtenstein A. Critical Role for Cap-Independent c-MYC Translation in Progression of Multiple Myeloma. Mol Cancer Ther 2022; 21:502-510. [PMID: 35086951 PMCID: PMC8983490 DOI: 10.1158/1535-7163.mct-21-0016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/30/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
Dysregulated c-myc is a determinant of multiple myeloma progression. Translation of c-myc can be achieved by an mTOR-mediated, cap-dependent mechanism or a cap-independent mechanism where a sequence in the 5'UTR of mRNA, termed the internal ribosome entry site (IRES), recruits the 40S ribosomal subunit. This mechanism requires the RNA-binding factor hnRNP A1 (A1) and becomes critical when cap-dependent translation is inhibited during endoplasmic reticulum (ER) stress. Thus, we studied the role of A1 and the myc IRES in myeloma biology. A1 expression correlated with enhanced c-myc expression in patient samples. Expression of A1 in multiple myeloma lines was mediated by c-myc itself, suggesting a positive feedback circuit where myc induces A1 and A1 enhances myc translation. We then deleted the A1 gene in a myc-driven murine myeloma model. A1-deleted multiple myeloma cells demonstrated downregulated myc expression and were inhibited in their growth in vivo. Decreased myc expression was due to reduced translational efficiency and depressed IRES activity. We also studied the J007 inhibitor, which prevents A1's interaction with the myc IRES. J007 inhibited myc translation and IRES activity and diminished myc expression in murine and human multiple myeloma lines as well as primary samples. J007 also inhibited tumor outgrowth in mice after subcutaneous or intravenous challenge and prevented osteolytic bone disease. When c-myc was ectopically reexpressed in A1-deleted multiple myeloma cells, tumor growth was reestablished. These results support the critical role of A1-dependent myc IRES translation in myeloma.
Collapse
Affiliation(s)
- Yijiang Shi
- Hematology-Oncology, VA West LA Medical Center
- Jonsson Cancer Center, UCLA
| | - Fumou Sun
- Hematology-Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yan Cheng
- Hematology-Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brent Holmes
- Hematology-Oncology, VA West LA Medical Center
- Jonsson Cancer Center, UCLA
| | - Binod Dhakal
- Hematology-Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Joseph F. Gera
- Hematology-Oncology, VA West LA Medical Center
- Jonsson Cancer Center, UCLA
| | - Siegfried Janz
- Hematology-Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alan Lichtenstein
- Hematology-Oncology, VA West LA Medical Center
- Jonsson Cancer Center, UCLA
| |
Collapse
|
9
|
Soma E, Yamayoshi A, Toda Y, Mishima Y, Hosogi S, Ashihara E. Successful Incorporation of Exosome-Capturing Antibody-siRNA Complexes into Multiple Myeloma Cells and Suppression of Targeted mRNA Transcripts. Cancers (Basel) 2022; 14:cancers14030566. [PMID: 35158834 PMCID: PMC8833399 DOI: 10.3390/cancers14030566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Although nucleic acid medicines are expected to function as new therapeutic agents, their targeted delivery into cancer cells, particularly hematologic cancer cells, via systemic administration, is limited. Based on our previous finding that tumor cell-derived exosomes are preferentially incorporated into their parental cancer cells, we previously demonstrated that anti-CD63 monoclonal antibody (mAb)-oligonucleotide complexes targeting exosomal microRNAs with linear oligo-D-arginine (Arg) linkers (9mer) were transferred into solid cancer cells and inhibited exosomal miRNA functions. To challenge the delivery of siRNAs into hematologic cancer cells, we developed exosome-capturing anti-CD63 mAb-conjugated small interfering RNAs (siRNA) with branched Arg linkers (9+9mer). Anti-CD63 mAb-conjugated complexes were incorporated into multiple myeloma (MM) cells. Moreover, these exosome-capturing mAb-conjugated siRNAs successfully decreased the mRNA transcript levels of targeted mRNAs in the MM cells. This technology could lead to a breakthrough in drug delivery systems for hematologic cancer therapy. Abstract Nucleic acid medicines have been developed as new therapeutic agents against various diseases; however, targeted delivery of these reagents into cancer cells, particularly hematologic cancer cells, via systemic administration is limited by the lack of efficient and cell-specific delivery systems. We previously demonstrated that monoclonal antibody (mAb)-oligonucleotide complexes targeting exosomal microRNAs with linear oligo-D-arginine (Arg) linkers were transferred into solid cancer cells and inhibited exosomal miRNA functions. In this study, we developed exosome-capturing anti-CD63 mAb-conjugated small interfering RNAs (siRNAs) with branched Arg linkers and investigated their effects on multiple myeloma (MM) cells. Anti-CD63 mAb-conjugated siRNAs were successfully incorporated into MM cells. The incorporation of exosomes was inhibited by endocytosis inhibitors. We also conducted a functional analysis of anti-CD63 mAb-conjugated siRNAs. Ab-conjugated luciferase+ (luc+) siRNAs significantly decreased the luminescence intensity in OPM-2-luc+ cells. Moreover, treatment with anti-CD63 mAb-conjugated with MYC and CTNNB1 siRNAs decreased the mRNA transcript levels of MYC and CTNNB1 to 52.5% and 55.3%, respectively, in OPM-2 cells. In conclusion, exosome-capturing Ab-conjugated siRNAs with branched Arg linkers can be effectively delivered into MM cells via uptake of exosomes by parental cells. This technology has the potential to lead to a breakthrough in drug delivery systems for hematologic cancers.
Collapse
Affiliation(s)
- Emi Soma
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, 5 Nakauchi, Misasagi, Yamashina, Kyoto 607-8414, Japan; (E.S.); (Y.T.); (S.H.)
| | - Asako Yamayoshi
- Chemistry of Functional Molecules, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan;
| | - Yuki Toda
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, 5 Nakauchi, Misasagi, Yamashina, Kyoto 607-8414, Japan; (E.S.); (Y.T.); (S.H.)
| | - Yuji Mishima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
| | - Shigekuni Hosogi
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, 5 Nakauchi, Misasagi, Yamashina, Kyoto 607-8414, Japan; (E.S.); (Y.T.); (S.H.)
| | - Eishi Ashihara
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, 5 Nakauchi, Misasagi, Yamashina, Kyoto 607-8414, Japan; (E.S.); (Y.T.); (S.H.)
- Correspondence: ; Tel.: +81-75-595-4705
| |
Collapse
|
10
|
Botrugno OA, Tonon G. Genomic Instability and Replicative Stress in Multiple Myeloma: The Final Curtain? Cancers (Basel) 2021; 14:cancers14010025. [PMID: 35008191 PMCID: PMC8750813 DOI: 10.3390/cancers14010025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Genomic instability is recognized as a driving force in most cancers as well as in the haematological cancer multiple myeloma and remains among the leading cause of drug resistance. Several evidences suggest that replicative stress exerts a fundamental role in fuelling genomic instability. Notably, cancer cells rely on a single protein, ATR, to cope with the ensuing DNA damage. In this perspective, we provide an overview depicting how replicative stress represents an Achilles heel for multiple myeloma, which could be therapeutically exploited either alone or in combinatorial regimens to preferentially ablate tumor cells. Abstract Multiple Myeloma (MM) is a genetically complex and heterogeneous hematological cancer that remains incurable despite the introduction of novel therapies in the clinic. Sadly, despite efforts spanning several decades, genomic analysis has failed to identify shared genetic aberrations that could be targeted in this disease. Seeking alternative strategies, various efforts have attempted to target and exploit non-oncogene addictions of MM cells, including, for example, proteasome inhibitors. The surprising finding that MM cells present rampant genomic instability has ignited concerted efforts to understand its origin and exploit it for therapeutic purposes. A credible hypothesis, supported by several lines of evidence, suggests that at the root of this phenotype there is intense replicative stress. Here, we review the current understanding of the role of replicative stress in eliciting genomic instability in MM and how MM cells rely on a single protein, Ataxia Telangiectasia-mutated and Rad3-related protein, ATR, to control and survive the ensuing, potentially fatal DNA damage. From this perspective, replicative stress per se represents not only an opportunity for MM cells to increase their evolutionary pool by increasing their genomic heterogeneity, but also a vulnerability that could be leveraged for therapeutic purposes to selectively target MM tumor cells.
Collapse
Affiliation(s)
- Oronza A. Botrugno
- Functional Genomics of Cancer Unit, Experimental Oncology Division, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Correspondence: (O.A.B.); (G.T.); Tel.: +39-02-2643-6661 (O.A.B.); +39-02-2643-5624 (G.T.); Fax: +39-02-2643-6352 (O.A.B. & G.T.)
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Experimental Oncology Division, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Correspondence: (O.A.B.); (G.T.); Tel.: +39-02-2643-6661 (O.A.B.); +39-02-2643-5624 (G.T.); Fax: +39-02-2643-6352 (O.A.B. & G.T.)
| |
Collapse
|
11
|
Luminescence complementation technology for the identification of MYC:TRRAP inhibitors. Oncotarget 2021; 12:2147-2157. [PMID: 34676047 PMCID: PMC8522838 DOI: 10.18632/oncotarget.28078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/04/2021] [Indexed: 11/25/2022] Open
Abstract
Mechanism-based targeted therapies have exhibited remarkable success in treating otherwise untreatable or unresectable cancers. Novel targeted therapies that correct dysregulated transcriptional programs in cancer are an unmet medical need. The transcription factor MYC is the most frequently amplified gene in human cancer and is overexpressed because of mutations in an array of oncogenic signaling pathways. The fact that many cancer cells cannot survive without MYC – a phenomenon termed “MYC addiction” – provides a compelling case for the development of MYC-specific targeted therapies. We propose a new strategy to inhibit MYC function by disrupting its essential interaction with TRRAP using small molecules. To achieve our goal, we developed a platform using luminescence complementation for identifying small molecules as inhibitors of the MYC:TRRAP interaction. Here we present validation of this assay by measuring the disruption of TRRAP binding caused by substitutions to the invariant and essential MYC homology 2 region of MYC.
Collapse
|
12
|
Targeting Reactive Oxygen Species Metabolism to Induce Myeloma Cell Death. Cancers (Basel) 2021; 13:cancers13102411. [PMID: 34067602 PMCID: PMC8156203 DOI: 10.3390/cancers13102411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a common hematological disease characterized by the accumulation of clonal malignant plasma cells in the bone marrow. Over the past two decades, new therapeutic strategies have significantly improved the treatment outcome and patients survival. Nevertheless, most MM patients relapse underlying the need of new therapeutic approaches. Plasma cells are prone to produce large amounts of immunoglobulins causing the production of intracellular ROS. Although adapted to high level of ROS, MM cells die when exposed to drugs increasing ROS production either directly or by inhibiting antioxidant enzymes. In this review, we discuss the efficacy of ROS-generating drugs for inducing MM cell death and counteracting acquired drug resistance specifically toward proteasome inhibitors.
Collapse
|
13
|
Cardona-Benavides IJ, de Ramón C, Gutiérrez NC. Genetic Abnormalities in Multiple Myeloma: Prognostic and Therapeutic Implications. Cells 2021; 10:336. [PMID: 33562668 PMCID: PMC7914805 DOI: 10.3390/cells10020336] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Some genetic abnormalities of multiple myeloma (MM) detected more than two decades ago remain major prognostic factors. In recent years, the introduction of cutting-edge genomic methodologies has enabled the extensive deciphering of genomic events in MM. Although none of the alterations newly discovered have significantly improved the stratification of the outcome of patients with MM, some of them, point mutations in particular, are promising targets for the development of personalized medicine. This review summarizes the main genetic abnormalities described in MM together with their prognostic impact, and the therapeutic approaches potentially aimed at abrogating the undesirable pathogenic effect of each alteration.
Collapse
Affiliation(s)
- Ignacio J. Cardona-Benavides
- Hematology Department, University Hospital, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (I.J.C.-B.); (C.d.R.)
- Cancer Research Center-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Cristina de Ramón
- Hematology Department, University Hospital, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (I.J.C.-B.); (C.d.R.)
- Cancer Research Center-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Norma C. Gutiérrez
- Hematology Department, University Hospital, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (I.J.C.-B.); (C.d.R.)
- Cancer Research Center-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| |
Collapse
|
14
|
Caracciolo D, Scionti F, Juli G, Altomare E, Golino G, Todoerti K, Grillone K, Riillo C, Arbitrio M, Iannone M, Morelli E, Amodio N, Di Martino MT, Rossi M, Neri A, Tagliaferri P, Tassone P. Exploiting MYC-induced PARPness to target genomic instability in multiple myeloma. Haematologica 2021; 106:185-195. [PMID: 32079692 PMCID: PMC7776341 DOI: 10.3324/haematol.2019.240713] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/17/2020] [Indexed: 11/09/2022] Open
Abstract
Multiple Myeloma (MM) is a hematologic malignancy strongly characterized by genomic instability, which promotes disease progression and drug resistance. Since we previously demonstrated that LIG3-dependent repair is involved in the genomic instability, drug resistance and survival of MM cells, we here investigated the biological relevance of PARP1, a driver component of Alternative-Non Homologous End Joining (Alt-NHEJ) pathway, in MM. We found a significant correlation between higher PARP1 mRNA expression and poor prognosis of MM patients. PARP1 knockdown or its pharmacological inhibition by Olaparib impaired MM cells viability in vitro and was effective against in vivo xenografts of human MM. Anti-proliferative effects induced by PARP1-inhibition were correlated to increase of DNA double-strand breaks, activation of DNA Damage Response (DDR) and finally apoptosis. Importantly, by comparing a gene expression signature of PARP inhibitors (PARPi) sensitivity to our plasma cell dyscrasia (PC) gene expression profiling (GEP), we identified a subset of MM patients which could benefit from PARP inhibitors. In particular, Gene Set Enrichment Analysis (GSEA) suggested that high MYC expression correlates to PARPi sensitivity in MM. Indeed, we identified MYC as promoter of PARP1-mediated repair in MM and, consistently, we demonstrate that cytotoxic effects induced by PARP inhibition are mostly detectable on MYC-proficient MM cells. Taken together, our findings indicate that MYC-driven MM cells are addicted to PARP1 Alt-NHEJ repair, which represents therefore a druggable target in this still incurable disease.
Collapse
Affiliation(s)
- Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro
| | - Giada Juli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro
| | - Emanuela Altomare
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro
| | - Gaetanina Golino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro
| | - Katia Todoerti
- University of Milan, Fondazione Cà Granda IRCCS Policlinico, Milan
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | | | - Eugenio Morelli
- Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute,Boston, USA
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Marco Rossi
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro
| | - Antonino Neri
- University of Milan, Fondazione Cà Granda IRCCS Policlinico, Milan
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro
| |
Collapse
|
15
|
Ryan KR, Giles F, Morgan GJ. Targeting both BET and CBP/EP300 proteins with the novel dual inhibitors NEO2734 and NEO1132 leads to anti-tumor activity in multiple myeloma. Eur J Haematol 2020; 106:90-99. [PMID: 32997383 DOI: 10.1111/ejh.13525] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Two promising epigenetic therapeutic targets have emerged for the treatment of hematologic malignancies, BET and CBP/EP300 proteins. Several studies have shown that targeting these individual classes of proteins has anti-tumor activity in multiple myeloma (MM), as well as other cancers. Here, we present the first data exploring the anti-tumor activity of two novel dual inhibitors, NEO2734 and NEO1132, of both BET and CBP/EP300 proteins in MM. METHODS Sixteen MM cell lines (MMCLs) were treated with the dual inhibitors NEO2734 and NEO1132, the single BET inhibitors JQ1, OTX015, IBET-762, and IBET-151, and a single CBP/EP300 inhibitor CPI-637. RESULTS The dual inhibitor NEO2734 showed strong anti-tumor activity and was consistently highly active against all MMCLs, being as potent as JQ1 and more so than other single inhibitors. NEO2734 and NEO11132 induced a significant G1 cell cycle arrest and decreased c-MYC and IRF4 protein levels in MMCLs compared to the other single inhibitors. Sensitivity to the dual inhibitors was not dependent on a specific MM molecular subgroup but correlated with c-MYC protein expression levels. CONCLUSIONS The dual inhibition of BET and CBP/EP300 has potential therapeutic benefits for patients with MM.
Collapse
Affiliation(s)
| | - Francis Giles
- Developmental Therapeutics Consortium, Chicago, IL, USA
| | | |
Collapse
|
16
|
C1orf35 contributes to tumorigenesis by activating c-MYC transcription in multiple myeloma. Oncogene 2020; 39:3354-3366. [PMID: 32103167 DOI: 10.1038/s41388-020-1222-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
Multiple myeloma (MM) is a clinically and biologically heterogenous event that accounts for approximately 10% of all hematological malignancies. Chromosome 1 open reading frame 35 (C1orf35) is a gene cloned and identified in our laboratory from a MM cell line (GenBank: AY137773), but little is known about its function. In the current study, we have confirmed that C1orf35 is a candidate oncogene, and it can promote cell cycle progression from G1 to S. Later, we found that C1orf35 is able to affect the cell proliferation by modulating the expression of c-MYC (v-myc myelocytomatosis viral oncogene homolog), and the oncogenic property of C1orf35 can be rescued by c-MYC inhibition. Herein, we found positive association between C1orf35 and c-MYC in MM patients and in MM cell lines. The correlation analysis of the genes coamplified in MM patients from GEO datasets showed a correlation between C1orf35 and c-MYC, and the expression data of different stages of plasma cell neoplasm acquired from GEO datasets showed that the expression of C1orf35 increase with the progression of the disease. This indicates that C1orf35 may play a role in the disease progression. Moreover, C1orf35 can modulate c-MYC expression and rescue c-MYC transcription inhibited by Act D. Finally, we have shown that C1orf35 activates c-MYC transcription by binding to the i-motif of Nuclease hypersensitivity element III1 (NHE III1) in the c-MYC promoter. Not only does our current study advance our knowledge of the pathogenesis and therapeutic landscape of MM, but also of other cancer types and diseases that are initiated with deregulated c-MYC transcription.
Collapse
|
17
|
Qiu Q, Li M, Yang L, Tang M, Zheng L, Wang F, Qiu H, Liang C, Li N, Yi D, Yi Y, Pan C, Yang S, Chen L, Hu Y. Targeting glutaminase1 and synergizing with clinical drugs achieved more promising antitumor activity on multiple myeloma. Oncotarget 2019; 10:5993-6005. [PMID: 31666930 PMCID: PMC6800263 DOI: 10.18632/oncotarget.27243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/10/2019] [Indexed: 02/05/2023] Open
Abstract
Multiple myeloma (MM) pathogenesis remains incompletely understood and biomarkers predicting treatment response still remain lacking. Here we describe the rational mechanisms of combining targeting glautaminase1 (GLS1) with other chemo-reagents for MM treatment. Gls1 is highly expressed cMYC/KRAS12V-drived plasmacytoma (PCT) cells. Down-regulation of Gls1 with miRNAi in cMYC/KRAS12V-expressing BaF3 cells prevented them from growing independence of interleukin 3 (IL3). By using our cMYC/KRAS12V-transduced adoptive plasmacytoma mouse model, we found that Gls1 is involved in PCT pathogenesis. Down-regulation of Gls1 significantly prolonged the survival of PCT recipients. Knockdown of Gls1 increased the expression of Cdkn1a and Cdkn1b and decreased the expression of some critical oncogenes for cancer cell survival, such as c-Myc, Cdk4, and NfκB, as well as some genes which are essential for MM cell survival, such as Irf4, Prdm1, Csnk1α1, and Rassf5. Combination of Gls1 inhibition with LBH589, Bortezomib, or Lenalidomide significantly impaired tumor growth in a MM xenograft mouse model. Our data strongly suggest that Gls1 plays an important role for MM pathogenesis and that combination of GLS1 inhibitor with other MM therapy agents could benefit to MM patients.
Collapse
Affiliation(s)
- Qiang Qiu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Mengyuan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Linyu Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Li Zheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Fang Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Huandi Qiu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Cailing Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Ning Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Dongni Yi
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuyao Yi
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cong Pan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China.,Guizhou Normal College, Guiyang, China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Yiguo Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China.,Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Sze JH, Raninga PV, Nakamura K, Casey M, Khanna KK, Berners-Price SJ, Di Trapani G, Tonissen KF. Anticancer activity of a Gold(I) phosphine thioredoxin reductase inhibitor in multiple myeloma. Redox Biol 2019; 28:101310. [PMID: 31514052 PMCID: PMC6742860 DOI: 10.1016/j.redox.2019.101310] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/13/2019] [Accepted: 08/27/2019] [Indexed: 12/22/2022] Open
Abstract
Multiple myeloma (MM), the second most common haematological malignancy, is a clonal plasma B-cell neoplasm that forms within the bone marrow. Despite recent advancements in treatment, MM remains an incurable disease. Auranofin, a linear gold(I) phosphine compound, has previously been shown to exert a significant anti-myeloma activity by inhibiting thioredoxin reductase (TrxR) activity. A bis-chelated tetrahedral gold(I) phosphine complex [Au(d2pype)2]Cl (where d2pype is 1,2-bis(di-2-pyridylphosphino)ethane) was previously designed to improve the gold(I) compound selectivity towards selenol- and thiol-containing proteins, such as TrxR. In this study, we show that [Au(d2pype)2]Cl significantly inhibited TrxR activity in both bortezomib-sensitive and resistant myeloma cells, which led to a significant reduction in cell proliferation and induction of apoptosis, both of which were dependent on ROS. In clonogenic assays, treatment with [Au(d2pype)2]Cl completely abrogated the tumourigenic capacity of MM cells, whereas auranofin was less effective. We also show that [Au(d2pype)2]Cl exerted a significant anti-myeloma activity in vivo in human RPMI8226 xenograft model in immunocompromised NOD/SCID mice. The MYC oncogene, known to drive myeloma progression, was downregulated in both in vitro and in vivo models when treated with [Au(d2pype)2]Cl. This study highlights the "proof of concept" that improved gold(I)-based compounds could potentially be used to not only treat MM but as an alternative tool to understand the role of the Trx system in the pathogenesis of this blood disease.
Collapse
Affiliation(s)
- Jun Hui Sze
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia
| | - Prahlad V Raninga
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Kyohei Nakamura
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Mika Casey
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Kum Kum Khanna
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | | | - Giovanna Di Trapani
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia.
| | - Kathryn F Tonissen
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
19
|
Zhu YX, Shi CX, Bruins LA, Wang X, Riggs DL, Porter B, Ahmann JM, de Campos CB, Braggio E, Bergsagel PL, Stewart AK. Identification of lenalidomide resistance pathways in myeloma and targeted resensitization using cereblon replacement, inhibition of STAT3 or targeting of IRF4. Blood Cancer J 2019; 9:19. [PMID: 30741931 PMCID: PMC6370766 DOI: 10.1038/s41408-019-0173-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 11/29/2022] Open
Abstract
To understand immunomodulatory drug (IMiD) resistance in multiple myeloma (MM), we created isogenic human multiple myeloma cell lines (HMCLs) sensitive and resistant to lenalidomide, respectively. Four HMCLs were demonstrated to be resistant to all IMiDs including lenalidomide, pomalidomide, and CC-220, but not to Bortezomib. In three HMLCs (MM.1.SLenRes, KMS11LenRes and OPM2LenRes), CRBN abnormalities were found, including chromosomal deletion, point mutation, and low CRBN expression. The remaining HMCL, XG1LenRes, showed no changes in CRBN but exhibited CD147 upregulation and impaired IRF4 downregulation after lenalidomide treatment. Depletion of CD147 in XG1LenRes and three additional HMCLs had no significant impact on MM viability and lenalidomide response. Further analysis of XG1LenRes demonstrated increased IL6 expression and constitutive STAT3 activation. Inhibition of STAT3 with a selective compound (PB-1-102) re-sensitized XG1LenRes to lenalidomide. Since XG1LenRes harbors a truncated IRF4 that is not downregulated by lenalidomide, we targeted IRF4/MYC axis with a selective inhibitor of the bromodomain of CBP/EP300 (SGC-CBP30), which restored lenalidomide response in XG1LenRes. This strategy also appeared to be more broadly applicable as SGC-CBP30 could re-sensitize two resistant HMCLs with low but detectable CRBN expression to lenalidomide, suggesting that targeting CBP/E300 is a promising approach to restore IMiD sensitivity in MM with detectable CRBN expression.
Collapse
Affiliation(s)
- Yuan Xiao Zhu
- Division of Hematology, Mayo Clinic, Scottsdale, AZ, USA
| | - Chang-Xin Shi
- Division of Hematology, Mayo Clinic, Scottsdale, AZ, USA
| | - Laura A Bruins
- Division of Hematology, Mayo Clinic, Scottsdale, AZ, USA
| | - Xuewei Wang
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Daniel L Riggs
- Division of Hematology, Mayo Clinic, Scottsdale, AZ, USA
| | - Brooke Porter
- Division of Hematology, Mayo Clinic, Scottsdale, AZ, USA
| | | | | | | | | | - A Keith Stewart
- Division of Hematology, Mayo Clinic, Scottsdale, AZ, USA. .,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
20
|
Went M, Sud A, Försti A, Halvarsson BM, Weinhold N, Kimber S, van Duin M, Thorleifsson G, Holroyd A, Johnson DC, Li N, Orlando G, Law PJ, Ali M, Chen B, Mitchell JS, Gudbjartsson DF, Kuiper R, Stephens OW, Bertsch U, Broderick P, Campo C, Bandapalli OR, Einsele H, Gregory WA, Gullberg U, Hillengass J, Hoffmann P, Jackson GH, Jöckel KH, Johnsson E, Kristinsson SY, Mellqvist UH, Nahi H, Easton D, Pharoah P, Dunning A, Peto J, Canzian F, Swerdlow A, Eeles RA, Kote-Jarai ZS, Muir K, Pashayan N, Nickel J, Nöthen MM, Rafnar T, Ross FM, da Silva Filho MI, Thomsen H, Turesson I, Vangsted A, Andersen NF, Waage A, Walker BA, Wihlborg AK, Broyl A, Davies FE, Thorsteinsdottir U, Langer C, Hansson M, Goldschmidt H, Kaiser M, Sonneveld P, Stefansson K, Morgan GJ, Hemminki K, Nilsson B, Houlston RS. Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma. Nat Commun 2018; 9:3707. [PMID: 30213928 PMCID: PMC6137048 DOI: 10.1038/s41467-018-04989-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/06/2018] [Indexed: 02/08/2023] Open
Abstract
Genome-wide association studies (GWAS) have transformed our understanding of susceptibility to multiple myeloma (MM), but much of the heritability remains unexplained. We report a new GWAS, a meta-analysis with previous GWAS and a replication series, totalling 9974 MM cases and 247,556 controls of European ancestry. Collectively, these data provide evidence for six new MM risk loci, bringing the total number to 23. Integration of information from gene expression, epigenetic profiling and in situ Hi-C data for the 23 risk loci implicate disruption of developmental transcriptional regulators as a basis of MM susceptibility, compatible with altered B-cell differentiation as a key mechanism. Dysregulation of autophagy/apoptosis and cell cycle signalling feature as recurrently perturbed pathways. Our findings provide further insight into the biological basis of MM.
Collapse
Affiliation(s)
- Molly Went
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Asta Försti
- German Cancer Research Center, 69120, Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, SE-205 02, Malmo, Sweden
| | - Britt-Marie Halvarsson
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, Lund University, SE-221 84, Lund, Sweden
| | - Niels Weinhold
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Department of Internal Medicine V, University of Heidelberg, 69117, Heidelberg, Germany
| | - Scott Kimber
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Mark van Duin
- Department of Hematology, Erasmus MC Cancer Institute, 3075 EA, Rotterdam, The Netherlands
| | | | - Amy Holroyd
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - David C Johnson
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Ni Li
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Giulia Orlando
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Philip J Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Mina Ali
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, Lund University, SE-221 84, Lund, Sweden
| | - Bowang Chen
- German Cancer Research Center, 69120, Heidelberg, Germany
| | - Jonathan S Mitchell
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Daniel F Gudbjartsson
- deCODE Genetics, Sturlugata 8, IS-101, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, IS-101, Reykjavik, Iceland
| | - Rowan Kuiper
- Department of Hematology, Erasmus MC Cancer Institute, 3075 EA, Rotterdam, The Netherlands
| | - Owen W Stephens
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Uta Bertsch
- German Cancer Research Center, 69120, Heidelberg, Germany
- National Centre of Tumor Diseases, 69120, Heidelberg, Germany
| | - Peter Broderick
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Chiara Campo
- German Cancer Research Center, 69120, Heidelberg, Germany
| | | | | | - Walter A Gregory
- Clinical Trials Research Unit, University of Leeds, Leeds, LS2 9PH, UK
| | - Urban Gullberg
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, Lund University, SE-221 84, Lund, Sweden
| | - Jens Hillengass
- Department of Internal Medicine V, University of Heidelberg, 69117, Heidelberg, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, D-53127, Bonn, Germany
- Division of Medical Genetics, Department of Biomedicine, University of Basel, 4003, Basel, Switzerland
| | | | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, D-45147, Germany
| | - Ellinor Johnsson
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, Lund University, SE-221 84, Lund, Sweden
| | - Sigurður Y Kristinsson
- Department of Hematology, Landspitali, National University Hospital of Iceland, IS-101, Reykjavik, Iceland
| | - Ulf-Henrik Mellqvist
- Section of Hematology, Sahlgrenska University Hospital, Gothenburg, 413 45, Sweden
| | - Hareth Nahi
- Center for Hematology and Regenerative Medicine, SE-171 77, Stockholm, Sweden
| | - Douglas Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Paul Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Alison Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Anthony Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Rosalind A Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
- Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - ZSofia Kote-Jarai
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Kenneth Muir
- Institute of Population Health, University of Manchester, Manchester, M13 9PL, UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Nora Pashayan
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
- Department of Applied Health Research, University College London, London, WC1E 7HB, UK
| | - Jolanta Nickel
- Department of Internal Medicine V, University of Heidelberg, 69117, Heidelberg, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, D-53127, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, D-53127, Bonn, Germany
| | - Thorunn Rafnar
- deCODE Genetics, Sturlugata 8, IS-101, Reykjavik, Iceland
| | - Fiona M Ross
- Wessex Regional Genetics Laboratory, University of Southampton, Salisbury, SP2 8BJ, UK
| | | | - Hauke Thomsen
- German Cancer Research Center, 69120, Heidelberg, Germany
| | - Ingemar Turesson
- Hematology Clinic, Skåne University Hospital, SE-221 85, Lund, Sweden
| | - Annette Vangsted
- Department of Haematology, University Hospital of Copenhagen at Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Niels Frost Andersen
- Department of Haematology, Aarhus University Hospital, Tage-Hansens Gade 2, DK-8000, Aarhus C, Denmark
| | - Anders Waage
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Box 8905, N-7491, Trondheim, Norway
| | - Brian A Walker
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Anna-Karin Wihlborg
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, Lund University, SE-221 84, Lund, Sweden
| | - Annemiek Broyl
- Department of Hematology, Erasmus MC Cancer Institute, 3075 EA, Rotterdam, The Netherlands
| | - Faith E Davies
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Unnur Thorsteinsdottir
- deCODE Genetics, Sturlugata 8, IS-101, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, IS-101, Reykjavik, Iceland
| | - Christian Langer
- Department of Internal Medicine III, University of Ulm, D-89081, Ulm, Germany
| | - Markus Hansson
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, Lund University, SE-221 84, Lund, Sweden
- Hematology Clinic, Skåne University Hospital, SE-221 85, Lund, Sweden
| | - Hartmut Goldschmidt
- Department of Internal Medicine V, University of Heidelberg, 69117, Heidelberg, Germany
- National Centre of Tumor Diseases, 69120, Heidelberg, Germany
| | - Martin Kaiser
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Pieter Sonneveld
- Department of Hematology, Erasmus MC Cancer Institute, 3075 EA, Rotterdam, The Netherlands
| | | | - Gareth J Morgan
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Kari Hemminki
- German Cancer Research Center, 69120, Heidelberg, Germany.
- Center for Primary Health Care Research, Lund University, SE-205 02, Malmo, Sweden.
| | - Björn Nilsson
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, Lund University, SE-221 84, Lund, Sweden.
- Broad Institute, 7 Cambridge Center, Cambridge, MA, 02142, USA.
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK.
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW7 3RP, UK.
| |
Collapse
|
21
|
Sundaramoorthy P, Gasparetto C, Kang Y. The combination of a sphingosine kinase 2 inhibitor (ABC294640) and a Bcl-2 inhibitor (ABT-199) displays synergistic anti-myeloma effects in myeloma cells without a t(11;14) translocation. Cancer Med 2018; 7:3257-3268. [PMID: 29761903 PMCID: PMC6051232 DOI: 10.1002/cam4.1543] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/31/2022] Open
Abstract
Multiple myeloma (MM) remains an incurable disease in need of the development of novel therapeutic agents and drug combinations. ABT‐199 is a specific Bcl‐2 inhibitor in clinical trials for MM; however, its activity as a single agent was limited to myeloma patients with the t(11;14) translocation who acquire resistance due to co‐expression of Mcl‐1 and Bcl‐xL. These limitations preclude its use in a broader patient population. We have recently found that a sphingosine kinase 2‐specific inhibitor (ABC294640) induces apoptosis in primary human CD138+ cells and MM cell lines. ABC294640 is currently in phase I/II clinical trials for myeloma (clinicaltrials.gov: #NCT01410981). Interestingly, ABC294640 down‐regulates c‐Myc and Mcl‐1, but does not have any effects on Bcl‐2. We first evaluated the combinatorial anti‐myeloma effect of ABC294640 and ABT‐199 in vitro in 7 MM cell lines, all of which harbor no t(11;14) translocation. Combination index calculation demonstrated a synergistic anti‐myeloma effect of the combination of ABC294640 and ABT‐199. This synergistic anti‐myeloma effect was maintained even in the presence of bone marrow (BM) stromal cells. The combination of ABC294640 and ABT‐199 led to enhanced cleavage of PARP and caspase‐3/9 and increased Annexin‐V expression, consistent with the induction of apoptosis by the combination treatment. In addition, the combination of ABC294640 and ABT‐199 resulted in the down‐regulation of the anti‐apoptotic proteins Mcl‐1, Bcl‐2, and Bcl‐xL and the cleavage of Bax and Bid. The combination induced both the mitochondrial mediated‐ and caspase‐mediated apoptosis pathways. Finally, the combination of ABC294640 and ABT‐199 resulted in augmented anti‐myeloma effect in vivo in a mouse xenograft model. These findings demonstrate that the co‐administration of ABC294640 and ABT‐199 exhibits synergistic anti‐myeloma activity in vitro and in vivo, providing justification for a clinical study of this novel combination in patients with relapsed/refractory multiple myeloma.
Collapse
Affiliation(s)
- Pasupathi Sundaramoorthy
- Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| | - Cristina Gasparetto
- Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| | - Yubin Kang
- Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
22
|
Jovanović KK, Roche-Lestienne C, Ghobrial IM, Facon T, Quesnel B, Manier S. Targeting MYC in multiple myeloma. Leukemia 2018; 32:1295-1306. [PMID: 29467490 DOI: 10.1038/s41375-018-0036-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/11/2017] [Accepted: 11/16/2017] [Indexed: 12/18/2022]
Abstract
Multiple myeloma (MM) is a plasma cell tumor marked by clonal evolution and preceded by a premalignant stage, which progresses via molecular pathway deregulation, including MYC activation. This activation relates to translocation or gain of the MYC locus and deregulation of upstream pathways such as IRF4, DIS3/LIN28B/let-7, or MAPK. Precision medicine is an approach to predict more accurately which treatment strategies for a particular disease will work in which groups of patients, in contrast to a "one-size-fits-all" approach. The knowledge of mechanisms responsible for MYC deregulation in MM enables identification of vulnerabilities and therapeutic targets in MYC-driven tumors. MYC can be targeted directly or indirectly, by interacting with several of its functions in cancer. Several such therapeutic strategies are evaluated in clinical trials in MM. In this review, we describe the mechanism of MYC activation in MM, the role of MYC in cancer progression, and the therapeutic options to targeting MYC.
Collapse
Affiliation(s)
| | - C Roche-Lestienne
- IRCL, INSERM UMR-S1172, Univ. Lille, Lille, France.,Institute of Medical Genetics, Univ. Lille, CHU, Lille, France
| | - I M Ghobrial
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - T Facon
- Department of Hematology, Univ. Lille,, CHU, Lille, France
| | - B Quesnel
- IRCL, INSERM UMR-S1172, Univ. Lille, Lille, France.,Department of Hematology, Univ. Lille,, CHU, Lille, France
| | - S Manier
- IRCL, INSERM UMR-S1172, Univ. Lille, Lille, France. .,Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA. .,Department of Hematology, Univ. Lille,, CHU, Lille, France.
| |
Collapse
|
23
|
He D, Guo X, Zhang E, Zi F, Chen J, Chen Q, Lin X, Yang L, Li Y, Wu W, Yang Y, He J, Cai Z. Quercetin induces cell apoptosis of myeloma and displays a synergistic effect with dexamethasone in vitro and in vivo xenograft models. Oncotarget 2018; 7:45489-45499. [PMID: 27329589 PMCID: PMC5216736 DOI: 10.18632/oncotarget.9993] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/28/2016] [Indexed: 12/01/2022] Open
Abstract
Quercetin, a kind of dietary flavonoid, has shown its anticancer activity in many kinds of cancers including hematological malignancies (acute myelogenous leukemia, chronic myelogenous leukemia, chronic lymphocytic leukemia, and MM) in vitro and in vivo. However, its effects on MM need further investigation. In this study, MM cell lines were treated with quercetin alone or in combination with dexamethasone. In order to observe the effects in vivo, a xenograft model of human myeloma was established. Quercetin inhibited proliferation of MM cells (RPMI8226, ARP-1, and MM.1R) by inducing cell cycle arrest in the G2/M phase and apoptosis. Western blot showed that quercetin downregulated c-myc expression and upregulated p21 expression. Quercetin also activated caspase-3, caspase-9, and poly(ADP-ribose)polymerase 1. Caspase inhibitors partially blocked apoptosis induced by quercetin. Furthermore, quercetin combined with dexamethasone significantly increased MM cell apoptosis. In vivo xenograft models, quercetin obviously inhibited tumor growth. Caspase-3 was activated to a greater extent when quercetin was combined with dexamethasone. In conclusion, quercetin alone or in combination with dexamethasone may be an effective therapy for MM.
Collapse
Affiliation(s)
- Donghua He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xing Guo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Enfan Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fuming Zi
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qingxiao Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuanru Lin
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Yang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenjun Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yang Yang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Wang J, Li L, Liu S, Zhao Y, Wang L, Du G. FOXC1 promotes melanoma by activating MST1R/PI3K/AKT. Oncotarget 2016; 7:84375-84387. [PMID: 27533251 PMCID: PMC5356666 DOI: 10.18632/oncotarget.11224] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/19/2016] [Indexed: 12/27/2022] Open
Abstract
FOXC1 is a member of Forkhead box family transcription factors. We showed that FOXC1 level was increased in melanoma cells and tissues and correlated with hypomethylation of the FOXC1 gene. Overexpression of FOXC1 promoted proliferation, migration, invasion, colony formation and growth in 3D Matrigel of melanoma cells. FOXC1 increased MST1R and activated the PI3K/AKT pathway. Also, FOXC1 expression was associated with disease progression and poor prognosis of melanoma. We suggest that FOXC1 is a potential prognostic biomarker for treating melanoma and predicting outcome of patients.
Collapse
Affiliation(s)
- Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Department of Molecular Oncology, John Wayne Cancer Institute (JWCI) at Providence Saint John's Health Center, Santa Monica 90404, CA, USA
| | - Li Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Shiwei Liu
- Department of Endocrinology, Shanxi DAYI Hospital, Shanxi Medical University, Taiyuan, Shanxi 030002, China
| | - Ying Zhao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Lin Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
25
|
Wogonin inhibits multiple myeloma-stimulated angiogenesis via c-Myc/VHL/HIF-1α signaling axis. Oncotarget 2016; 7:5715-27. [PMID: 26735336 PMCID: PMC4868716 DOI: 10.18632/oncotarget.6796] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 12/23/2015] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is associated with the progression of multiple myeloma (MM). Wogonin is an active mono-flavonoid with remarkable antitumor activity. However, its impact on MM-stimulated angiogenesis remains largely unknown. Here, we demonstrated that wogonin decreased expression and secretion of pro-angiogenic factors in MM cells via c-Myc/HIF-1α signaling axis, reducing MM-stimulated angiogenesis and MM cell proliferation in vivo. Overexpression of c-Myc in MM cells disrupted the balance between VHL SUMOylation and ubiquitination, and thus inhibited proteasome-mediated HIF-1α degradation. Impaired function of VHL ubiquitination complex in c-Myc-overexpressing cells was fully reversed by wogonin treatment via increasing HIF-1α-VHL interaction and promoting HIF-1α degradation. Collectively, our in vitro and in vivo studies reveal for the first time that wogonin represses MM-stimulated angiogenesis and tumor progression via c-Myc/VHL/HIF-1α signaling axis.
Collapse
|
26
|
Preclinical activity of CPI-0610, a novel small-molecule bromodomain and extra-terminal protein inhibitor in the therapy of multiple myeloma. Leukemia 2016; 31:1760-1769. [PMID: 27890933 DOI: 10.1038/leu.2016.355] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/12/2016] [Accepted: 11/07/2016] [Indexed: 01/10/2023]
Abstract
Inhibition of the bromodomain and extra-terminal (BET) proteins is a promising therapeutic strategy for various hematologic cancers. Previous studies suggest that BET inhibitors constrain tumor cell proliferation and survival mainly through the suppression of MYC transcription and activity. However, suppression of the transcription of additional genes also contributes to the antitumor activity of BET inhibitors but is less well understood. Here we examined the therapeutic potential of CPI-0610, a potent BET inhibitor currently undergoing phase I clinical testing, in multiple myeloma (MM). CPI-0610 displays potent cytotoxicity against MM cell lines and patient-derived MM cells through G1 cell cycle arrest and caspase-dependent apoptosis. CPI-0610-mediated BET inhibition overcomes the protective effects conferred by cytokines and bone marrow stromal cells. We also confirmed the in vivo efficacy of CPI-0610 in a MM xenograft mouse model. Our study found IKZF1 and IRF4 to be among the primary targets of CPI-0610, along with MYC. Given that immunomodulatory drugs (IMiDs) stabilize cereblon and facilitate Ikaros degradation in MM cells, we combined it with CPI-0610. Combination studies of CPI-0610 with IMiDs show in vitro synergism, in part due to concomitant suppression of IKZF1, IRF4 and MYC, providing a rationale for clinical testing of this drug combination in MM patients.
Collapse
|
27
|
Szabo AG, Gang AO, Pedersen MØ, Poulsen TS, Klausen TW, Nørgaard P. Overexpression of c-myc is associated with adverse clinical features and worse overall survival in multiple myeloma. Leuk Lymphoma 2016; 57:2526-34. [PMID: 27243588 DOI: 10.1080/10428194.2016.1187275] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The role of c-myc in multiple myeloma (MM) is controversial. We conducted a retrospective study of 117 patients with MM diagnosed between 2004 and 2010 at Herlev Hospital. Immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) were performed on tissue microarrays (TMAs) made from diagnostic bone marrow aspirates. Clinical data were obtained from the Danish Multiple Myeloma Database (DMMD). Overexpression of c-myc was found in 40% of patients. MYC translocation was found in 10% of patients. Overexpression of c-myc was not associated with MYC translocation. Overexpression of c-myc was associated with hypercalcemia (p = 0.02) and extramedullary myeloma (p < 0.01). Overexpression of c-myc was associated with shorter overall survival (OS) by multivariable analysis of the entire patient cohort [HR 1.92 (1.06-3.45), p = 0.03] and univariable analysis of high-dose-therapy (HDT)-ineligible patients [HR 2.01 (1.05-3.86), p = 0.04]. Further studies of c-myc overexpression in larger cohorts of patients with MM are warranted.
Collapse
Affiliation(s)
- Agoston Gyula Szabo
- a Department of Pathology , Copenhagen University Hospital Herlev , Herlev , Denmark
| | - Anne Ortved Gang
- b Department of Hematology , Copenhagen University Hospital Herlev , Herlev , Denmark
| | - Mette Ølgod Pedersen
- a Department of Pathology , Copenhagen University Hospital Herlev , Herlev , Denmark
| | - Tim Svenstrup Poulsen
- a Department of Pathology , Copenhagen University Hospital Herlev , Herlev , Denmark
| | | | - Peter Nørgaard
- a Department of Pathology , Copenhagen University Hospital Herlev , Herlev , Denmark
| |
Collapse
|
28
|
Harada T, Hideshima T, Anderson KC. Histone deacetylase inhibitors in multiple myeloma: from bench to bedside. Int J Hematol 2016; 104:300-9. [PMID: 27099225 DOI: 10.1007/s12185-016-2008-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 12/22/2022]
Abstract
Histone deacetylases (HDACs) deacetylate the lysine residues of both histones and non-histone proteins. Histone acetylation results in a loose local chromatin structure that regulates gene-specific transcription. Non-histone proteins can also be acetylated, leading to dynamic changes in their activity and stability. For these reasons, HDAC inhibition has emerged as a potential approach for the treatment of MM. Specifically, combination treatment with HDAC inhibitors and proteasome inhibitors or immunomodulatory drugs shows remarkable anti-MM activity in both preclinical and clinical settings. However, the clinical studies using non-selective HDAC inhibitors also cause unfavorable side effects in patients, leading us to develop more isoform- and/or class-selective HDAC inhibitors to enhance tolerability without diminishing anti-MM activity, thereby improving patient outcome in MM.
Collapse
Affiliation(s)
- Takeshi Harada
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Teru Hideshima
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA.
| | - Kenneth C Anderson
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA
| |
Collapse
|
29
|
Shi Y, Yang Y, Hoang B, Bardeleben C, Holmes B, Gera J, Lichtenstein A. Therapeutic potential of targeting IRES-dependent c-myc translation in multiple myeloma cells during ER stress. Oncogene 2016; 35:1015-24. [PMID: 25961916 PMCID: PMC5104155 DOI: 10.1038/onc.2015.156] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/30/2015] [Accepted: 03/13/2015] [Indexed: 01/03/2023]
Abstract
Protein translation is inhibited by the unfolded protein response (UPR)-induced eIF-2α phosphorylation to protect against endoplasmic reticulum (ER) stress. In addition, we found additional inhibition of protein translation owing to diminished mTORC1 (mammalian target of rapamycin complex1) activity in ER-stressed multiple myeloma (MM) cells. However, c-myc protein levels and myc translation was maintained. To ascertain how c-myc was maintained, we studied myc IRES (internal ribosome entry site) function, which does not require mTORC1 activity. Myc IRES activity was upregulated in MM cells during ER stress induced by thapsigargin, tunicamycin or the myeloma therapeutic bortezomib. IRES activity was dependent on upstream MAPK (mitogen-activated protein kinase) and MNK1 (MAPK-interacting serine/threonine kinase 1) signaling. A screen identified hnRNP A1 (A1) and RPS25 as IRES-binding trans-acting factors required for ER stress-activated activity. A1 associated with RPS25 during ER stress and this was prevented by an MNK inhibitor. In a proof of principle, we identified a compound that prevented binding of A1 to the myc IRES and specifically inhibited myc IRES activity in MM cells. This compound, when used alone, was not cytotoxic nor did it inhibit myc translation or protein expression. However, when combined with ER stress inducers, especially bortezomib, a remarkable synergistic cytotoxicity ensued with associated inhibition of myc translation and expression. These results underscore the potential for targeting A1-mediated myc IRES activity in MM cells during ER stress.
Collapse
Affiliation(s)
- Yijiang Shi
- Division of Hematology-Oncology, UCLA-Greater Los Angeles VA Healthcare Center and Jonsson, Comprehensive Cancer Center, Los Angeles, California
| | - Yonghui Yang
- Division of Hematology-Oncology, UCLA-Greater Los Angeles VA Healthcare Center and Jonsson, Comprehensive Cancer Center, Los Angeles, California
| | - Bao Hoang
- Division of Hematology-Oncology, UCLA-Greater Los Angeles VA Healthcare Center and Jonsson, Comprehensive Cancer Center, Los Angeles, California
| | - Carolyne Bardeleben
- Division of Hematology-Oncology, UCLA-Greater Los Angeles VA Healthcare Center and Jonsson, Comprehensive Cancer Center, Los Angeles, California
| | - Brent Holmes
- Division of Hematology-Oncology, UCLA-Greater Los Angeles VA Healthcare Center and Jonsson, Comprehensive Cancer Center, Los Angeles, California
| | - Joseph Gera
- Division of Hematology-Oncology, UCLA-Greater Los Angeles VA Healthcare Center and Jonsson, Comprehensive Cancer Center, Los Angeles, California
| | - Alan Lichtenstein
- Division of Hematology-Oncology, UCLA-Greater Los Angeles VA Healthcare Center and Jonsson, Comprehensive Cancer Center, Los Angeles, California
| |
Collapse
|
30
|
Felsenstein KM, Saunders LB, Simmons JK, Leon E, Calabrese DR, Zhang S, Michalowski A, Gareiss P, Mock BA, Schneekloth JS. Small Molecule Microarrays Enable the Identification of a Selective, Quadruplex-Binding Inhibitor of MYC Expression. ACS Chem Biol 2016; 11:139-48. [PMID: 26462961 PMCID: PMC4719142 DOI: 10.1021/acschembio.5b00577] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
The
transcription factor MYC plays a pivotal role in cancer initiation,
progression, and maintenance. However, it has proven difficult to
develop small molecule inhibitors of MYC. One attractive route to
pharmacological inhibition of MYC has been the prevention of its expression
through small molecule-mediated stabilization of the G-quadruplex
(G4) present in its promoter. Although molecules that bind globally
to quadruplex DNA and influence gene expression are well-known, the
identification of new chemical scaffolds that selectively modulate
G4-driven genes remains a challenge. Here, we report an approach for
the identification of G4-binding small molecules using small molecule
microarrays (SMMs). We use the SMM screening platform to identify
a novel G4-binding small molecule that inhibits MYC expression in
cell models, with minimal impact on the expression of other G4-associated
genes. Surface plasmon resonance (SPR) and thermal melt assays demonstrated
that this molecule binds reversibly to the MYC G4 with single digit
micromolar affinity, and with weaker or no measurable binding to other
G4s. Biochemical and cell-based assays demonstrated that the compound
effectively silenced MYC transcription and translation via a G4-dependent
mechanism of action. The compound induced G1 arrest and was selectively
toxic to MYC-driven cancer cell lines containing the G4 in the promoter
but had minimal effects in peripheral blood mononucleocytes or a cell
line lacking the G4 in its MYC promoter. As a measure of selectivity,
gene expression analysis and qPCR experiments demonstrated that MYC
and several MYC target genes were downregulated upon treatment with
this compound, while the expression of several other G4-driven genes
was not affected. In addition to providing a novel chemical scaffold
that modulates MYC expression through G4 binding, this work suggests
that the SMM screening approach may be broadly useful as an approach
for the identification of new G4-binding small molecules.
Collapse
Affiliation(s)
- Kenneth M. Felsenstein
- Laboratory
of Cancer Biology and Genetics, National Cancer Institute, Building
37, Room 3146, Bethesda, Maryland 20892-4258, United States
- NCI/JHU Molecular Targets and Drug Discovery Program, Baltimore, Maryland, United States
| | - Lindsey B. Saunders
- Chemical
Biology Laboratory, National Cancer Institute, Building 376, Room 225C, P.O. Box B, Frederick, Maryland 21702-1201, United States
| | - John K. Simmons
- Laboratory
of Cancer Biology and Genetics, National Cancer Institute, Building
37, Room 3146, Bethesda, Maryland 20892-4258, United States
| | - Elena Leon
- Laboratory
of Cancer Biology and Genetics, National Cancer Institute, Building
37, Room 3146, Bethesda, Maryland 20892-4258, United States
- NCI/JHU Molecular Targets and Drug Discovery Program, Baltimore, Maryland, United States
| | - David R. Calabrese
- Chemical
Biology Laboratory, National Cancer Institute, Building 376, Room 225C, P.O. Box B, Frederick, Maryland 21702-1201, United States
| | - Shuling Zhang
- Laboratory
of Cancer Biology and Genetics, National Cancer Institute, Building
37, Room 3146, Bethesda, Maryland 20892-4258, United States
| | - Aleksandra Michalowski
- Laboratory
of Cancer Biology and Genetics, National Cancer Institute, Building
37, Room 3146, Bethesda, Maryland 20892-4258, United States
| | - Peter Gareiss
- Yale Center for Molecular Discovery, West Haven, Connecticut, United States
| | - Beverly A. Mock
- Laboratory
of Cancer Biology and Genetics, National Cancer Institute, Building
37, Room 3146, Bethesda, Maryland 20892-4258, United States
| | - John S. Schneekloth
- Chemical
Biology Laboratory, National Cancer Institute, Building 376, Room 225C, P.O. Box B, Frederick, Maryland 21702-1201, United States
| |
Collapse
|
31
|
Inhibition of sphingosine kinase 2 downregulates the expression of c-Myc and Mcl-1 and induces apoptosis in multiple myeloma. Blood 2015; 124:1915-25. [PMID: 25122609 DOI: 10.1182/blood-2014-03-559385] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sphingolipid metabolism is being increasingly recognized as a key pathway in regulating cancer cell survival and proliferation. However, very little is known about its role in multiple myeloma (MM). We investigated the potential of targeting sphingosine kinase 2 (SK2) for the treatment of MM. We found that SK2 was overexpressed in MM cell lines and in primary human bone marrow (BM) CD1381 myeloma cells. Inhibition of SK2 by SK2- specific short hairpin RNA or ABC294640 (a SK2 specific inhibitor) effectively inhibited myeloma cell proliferation and induced caspase 3–mediated apoptosis. ABC294640 inhibited primary human CD1381 myeloma cells with the same efficacy as with MM cell lines. ABC294640 effectively induced apoptosis of myeloma cells, even in the presence of BM stromal cells. Furthermore, we found that ABC294640 downregulated the expression of pS6 and directed c-Myc and myeloid cell leukemia 1 (Mcl-1) for proteasome degradation. In addition, ABC294640 increased Noxa gene transcription and protein expression. ABC294640, per se, did not affect the expression of B-cell lymphoma 2 (Bcl-2), but acted synergistically with ABT-737 (a Bcl-2 inhibitor) in inducing myeloma cell death. ABC294640 suppressed myeloma tumor growth in vivo in mouse myeloma xenograft models. Our data demonstrated that SK2 provides a novel therapeutic target for the treatment of MM.This trial was registered at www.clinicaltrials.gov as #NCT01410981.
Collapse
|
32
|
Edmunds LR, Sharma L, Wang H, Kang A, d’Souza S, Lu J, McLaughlin M, Dolezal JM, Gao X, Weintraub ST, Ding Y, Zeng X, Yates N, Prochownik EV. c-Myc and AMPK Control Cellular Energy Levels by Cooperatively Regulating Mitochondrial Structure and Function. PLoS One 2015; 10:e0134049. [PMID: 26230505 PMCID: PMC4521957 DOI: 10.1371/journal.pone.0134049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/04/2015] [Indexed: 12/25/2022] Open
Abstract
The c-Myc (Myc) oncoprotein and AMP-activated protein kinase (AMPK) regulate glycolysis and oxidative phosphorylation (Oxphos) although often for different purposes. Because Myc over-expression depletes ATP with the resultant activation of AMPK, we explored the potential co-dependency of and cross-talk between these proteins by comparing the consequences of acute Myc induction in ampk+/+ (WT) and ampk-/- (KO) murine embryo fibroblasts (MEFs). KO MEFs showed a higher basal rate of glycolysis than WT MEFs and an appropriate increase in response to activation of a Myc-estrogen receptor (MycER) fusion protein. However, KO MEFs had a diminished ability to increase Oxphos, mitochondrial mass and reactive oxygen species in response to MycER activation. Other differences between WT and KO MEFs, either in the basal state or following MycER induction, included abnormalities in electron transport chain function, levels of TCA cycle-related oxidoreductases and cytoplasmic and mitochondrial redox states. Transcriptional profiling of pathways pertinent to glycolysis, Oxphos and mitochondrial structure and function also uncovered significant differences between WT and KO MEFs and their response to MycER activation. Finally, an unbiased mass-spectrometry (MS)-based survey capable of quantifying ~40% of all mitochondrial proteins, showed about 15% of them to be AMPK- and/or Myc-dependent in their steady state. Significant differences in the activities of the rate-limiting enzymes pyruvate kinase and pyruvate dehydrogenase, which dictate pyruvate and acetyl coenzyme A abundance, were also differentially responsive to Myc and AMPK and could account for some of the differences in basal metabolite levels that were also detected by MS. Thus, Myc and AMPK are highly co-dependent and appear to engage in significant cross-talk across numerous pathways which support metabolic and ATP-generating functions.
Collapse
Affiliation(s)
- Lia R. Edmunds
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States of America
- The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Lokendra Sharma
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States of America
| | - Huabo Wang
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States of America
| | - Audry Kang
- The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Sonia d’Souza
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States of America
| | - Jie Lu
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States of America
| | - Michael McLaughlin
- The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - James M. Dolezal
- The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Xiaoli Gao
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio TX, United States of America
| | - Susan T. Weintraub
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio TX, United States of America
| | - Ying Ding
- Department of Biostatistics, The University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Xuemei Zeng
- Department of Cell Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Nathan Yates
- Department of Cell Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Edward V. Prochownik
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States of America
- The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- The Hillman Cancer Center, The University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
33
|
Identification of known drugs targeting the endoplasmic reticulum stress response. Anal Bioanal Chem 2015; 407:5343-51. [PMID: 25925857 PMCID: PMC9945465 DOI: 10.1007/s00216-015-8694-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/03/2015] [Accepted: 04/10/2015] [Indexed: 02/07/2023]
Abstract
The endoplasmic reticulum (ER), a multifunctional organelle, plays a central role in cellular signaling, development, and stress response. Dysregulation of ER homeostasis has been associated with human diseases, such as cancer, inflammation, and diabetes. A broad spectrum of stressful stimuli including hypoxia as well as a variety of pharmacological agents can lead to the ER stress response. In this study, we have developed a stable ER stress reporter cell line that stably expresses a β-lactamase reporter gene under the control of the ER stress response element (ESRE) present in the glucose-regulated protein, 78 kDa (GRP78) gene promoter. This assay has been optimized and miniaturized into a 1536-well plate format. In order to identify clinically used drugs that induce ER stress response, we screened approximately 2800 drugs from the NIH Chemical Genomics Center Pharmaceutical Collection (NPC library) using a quantitative high-throughput screening (qHTS) platform. From this study, we have identified several known ER stress inducers, such as 17-AAG (via HSP90 inhibition), as well as several novel ER stress inducers such as AMI-193 and spiperone. The confirmed drugs were further studied for their effects on the phosphorylation of eukaryotic initiation factor 2α (eIF2α), the X-box-binding protein (XBP1) splicing, and GRP78 gene expression. These results suggest that the ER stress inducers identified from the NPC library using the qHTS approach could shed new lights on the potential therapeutic targets of these drugs.
Collapse
|
34
|
Cottini F, Hideshima T, Suzuki R, Tai YT, Bianchini G, Richardson PG, Anderson KC, Tonon G. Synthetic Lethal Approaches Exploiting DNA Damage in Aggressive Myeloma. Cancer Discov 2015; 5:972-87. [PMID: 26080835 DOI: 10.1158/2159-8290.cd-14-0943] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 06/11/2015] [Indexed: 01/05/2023]
Abstract
UNLABELLED Ongoing DNA damage is a common feature of epithelial cancers. Here, we show that tumor cells derived from multiple myeloma, a disease of clonal plasma cells, demonstrate DNA-replicative stress, leading to DNA damage. We identified a poor-prognosis subset of multiple myeloma with extensive chromosomal instability and replicative stress, which rely on ATR to compensate for DNA-replicative stress; conversely, silencing of ATR or treatment with a specific ATR inhibitor triggers multiple myeloma cell apoptosis. We show that oncogenes, such as MYC, induce DNA damage in multiple myeloma cells not only by increased replicative stress, but also via increased oxidative stress, and that reactive oxygen species-inducer piperlongumine triggers further DNA damage and apoptosis. Importantly, ATR inhibition combined with piperlongumine triggers synergistic multiple myeloma cytotoxicity. This synthetic lethal approach, enhancing oxidative stress while concomitantly blocking replicative stress response, provides a novel combination targeted therapy to address an unmet medical need in this subset of multiple myeloma. SIGNIFICANCE Multiple myeloma remains an incurable disease. We have identified a subset of multiple myeloma patients with poor prognosis, whose tumors present chromosomal instability, replicative and oxidative stress, and DNA damage. We define a synthetic lethal approach enhancing oxidative stress while targeting replicative stress response, inducing tumor cell apoptosis in this patient subset. Cancer Discov; 5(9); 972-87. ©2015 AACR.This article is highlighted in the In This Issue feature, p. 893.
Collapse
Affiliation(s)
- Francesca Cottini
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Teru Hideshima
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Rikio Suzuki
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Giampaolo Bianchini
- Department of Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Hospital, Milan, Italy
| | - Paul G Richardson
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
35
|
Segalla S, Pivetti S, Todoerti K, Chudzik MA, Giuliani EC, Lazzaro F, Volta V, Lazarevic D, Musco G, Muzi-Falconi M, Neri A, Biffo S, Tonon G. The ribonuclease DIS3 promotes let-7 miRNA maturation by degrading the pluripotency factor LIN28B mRNA. Nucleic Acids Res 2015; 43:5182-93. [PMID: 25925570 PMCID: PMC4446438 DOI: 10.1093/nar/gkv387] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 04/12/2015] [Indexed: 12/03/2022] Open
Abstract
Multiple myeloma, the second most frequent hematologic tumor after lymphomas, is an incurable cancer. Recent sequencing efforts have identified the ribonuclease DIS3 as one of the most frequently mutated genes in this disease. DIS3 represents the catalytic subunit of the exosome, a macromolecular complex central to the processing, maturation and surveillance of various RNAs. miRNAs are an evolutionarily conserved class of small noncoding RNAs, regulating gene expression at post-transcriptional level. Ribonucleases, including Drosha, Dicer and XRN2, are involved in the processing and stability of miRNAs. However, the role of DIS3 on the regulation of miRNAs remains largely unknown. Here we found that DIS3 regulates the levels of the tumor suppressor let-7 miRNAs without affecting other miRNA families. DIS3 facilitates the maturation of let-7 miRNAs by reducing in the cytoplasm the RNA stability of the pluripotency factor LIN28B, a inhibitor of let-7 processing. DIS3 inactivation, through the increase of LIN28B and the reduction of mature let-7, enhances the translation of let-7 targets such as MYC and RAS leading to enhanced tumorigenesis. Our study establishes that the ribonuclease DIS3, targeting LIN28B, sustains the maturation of let-7 miRNAs and suggests the increased translation of critical oncogenes as one of the biological outcomes of DIS3 inactivation.
Collapse
Affiliation(s)
- Simona Segalla
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20133 Milan, Italy
| | - Silvia Pivetti
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20133 Milan, Italy
| | - Katia Todoerti
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Malgorzata Agata Chudzik
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20133 Milan, Italy
| | - Erica Claudia Giuliani
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20133 Milan, Italy
| | - Federico Lazzaro
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20132 Milan, Italy
| | - Viviana Volta
- Molecular Histology and Cell Growth Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Science Institute, 20132 Milan, Italy
| | - Dejan Lazarevic
- Center for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giovanna Musco
- Dulbecco Telethon Institute, S. Raffaele Hospital, 20132 Milan, Italy
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20132 Milan, Italy
| | - Antonino Neri
- Department of Clinical Sciences and Community Health, University of Milan, Hematology1 CTMO, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Stefano Biffo
- Molecular Histology and Cell Growth Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Science Institute, 20132 Milan, Italy Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, 15100 Alessandria, Italy
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20133 Milan, Italy Università Vita-Salute San Raffaele, Milan, 20132, Italy
| |
Collapse
|
36
|
Soodgupta D, Pan D, Cui G, Senpan A, Yang X, Lu L, Weilbaecher KN, Prochownik EV, Lanza GM, Tomasson MH. Small Molecule MYC Inhibitor Conjugated to Integrin-Targeted Nanoparticles Extends Survival in a Mouse Model of Disseminated Multiple Myeloma. Mol Cancer Ther 2015; 14:1286-1294. [PMID: 25824336 DOI: 10.1158/1535-7163.mct-14-0774-t] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/23/2015] [Indexed: 02/06/2023]
Abstract
UNLABELLED Multiple myeloma pathogenesis is driven by the MYC oncoprotein, its dimerization with MAX, and the binding of this heterodimer to E-Boxes in the vicinity of target genes. The systemic utility of potent small molecule inhibitors of MYC-MAX dimerization was limited by poor bioavailability, rapid metabolism, and inadequate target site penetration. We hypothesized that new lipid-based MYC-MAX dimerization inhibitor prodrugs delivered via integrin-targeted nanoparticles (NP) would overcome prior shortcomings of MYC inhibitor approaches and prolong survival in a mouse model of cancer. An Sn 2 lipase-labile prodrug inhibitor of MYC-MAX dimerization (MI1-PD) was developed which decreased cell proliferation and induced apoptosis in cultured multiple myeloma cell lines alone (P < 0.05) and when incorporated into integrin-targeted lipid-encapsulated NPs (P < 0.05). Binding and efficacy of NPs closely correlated with integrin expression of the target multiple myeloma cells. Using a KaLwRij metastatic multiple myeloma mouse model, VLA-4-targeted NPs (20 nm and 200 nm) incorporating MI1-PD (D) NPs conferred significant survival benefits compared with respective NP controls, targeted (T) no-drug (ND), and untargeted (NT) control NPs (T/D 200: 46 days vs. NT/ND 28 days, P < 0.05 and T/D 20: 52 days vs. NT/ND 29 days, P = 0.001). The smaller particles performed better of the two sizes. Neither MI1 nor MI1-PD provided survival benefit when administered systemically as free compounds. These results demonstrate for the first time that a small molecule inhibitor of the MYC transcription factor can be an effective anticancer agent when delivered using a targeted nanotherapy approach.
Collapse
Affiliation(s)
- Deepti Soodgupta
- Division of Oncology, Department of Medicine, Washington University Medical School, St. Louis, Missouri
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Illinois
| | - Grace Cui
- Division of Cardiology, Department of Medicine, Washington University Medical School, St. Louis, Missouri
| | - Angana Senpan
- Division of Cardiology, Department of Medicine, Washington University Medical School, St. Louis, Missouri
| | - Xiaoxia Yang
- Division of Cardiology, Department of Medicine, Washington University Medical School, St. Louis, Missouri
| | - Lan Lu
- Division of Oncology, Department of Medicine, Washington University Medical School, St. Louis, Missouri
| | - Katherine N Weilbaecher
- Division of Oncology, Department of Medicine, Washington University Medical School, St. Louis, Missouri
| | - Edward V Prochownik
- Division of Pediatric Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburg, Pennsylvania
| | - Gregory M Lanza
- Division of Cardiology, Department of Medicine, Washington University Medical School, St. Louis, Missouri
| | - Michael H Tomasson
- Division of Oncology, Department of Medicine, Washington University Medical School, St. Louis, Missouri
| |
Collapse
|
37
|
Saucedo-Cuevas LP, Ruppen I, Ximénez-Embún P, Domingo S, Gayarre J, Muñoz J, Silva JM, García MJ, Benítez J. CUL4A contributes to the biology of basal-like breast tumors through modulation of cell growth and antitumor immune response. Oncotarget 2015; 5:2330-43. [PMID: 24870930 PMCID: PMC4039166 DOI: 10.18632/oncotarget.1915] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The CUL4A E3 ubiquitin ligase is involved in the regulation of many cellular processes and its amplification and/or overexpression has been observed in breast cancer. The 13q34 amplification, which is associated with the basal-like breast cancer subtype, has been proposed as one of the mechanism behind CUL4A up-regulation. However, the specific contribution of CUL4A to the biology of basal-like breast tumors has not yet been elucidated. In this work, by using cellular models of basal phenotype, we show the inhibitory effect of CUL4A silencing in the proliferation and growth of breast cancer cells both, in vitro and in vivo. We also demonstrate the transforming capacity of CUL4A exogenous overexpression in the 184B5 human mammary epithelial cells in vitro. Our results suggest a synergistic effect between CUL4A high levels and the activation of the RAS pathway in the tumorigenesis of basal-like breast cancer tumors. In addition, by using a proteomics approach we have defined novel candidate proteins and pathways that might mediate the oncogenic effect of CUL4A. In particular, we report a putative role of CUL4A in bypassing the immune system in breast cancer through the down-regulation of several molecules involved in the immune surveillance. These findings provide insight into the oncogenic properties of CUL4A in basal-like breast cancer and highlight the therapeutic opportunities to target CUL4A.
Collapse
Affiliation(s)
- Laura P Saucedo-Cuevas
- Group of Human Genetics, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The debut of the proteasome inhibitor bortezomib (Btz; Velcade®) radically and immediately improved the treatment of multiple myeloma (MM), an incurable malignancy of the plasma cell. Therapeutic resistance is unavoidable, however, and represents a major obstacle to maximizing the clinical potential of the drug. To address this challenge, studies have been conducted to uncover the molecular mechanisms driving Btz resistance and to discover new targeted therapeutic strategies and combinations that restore Btz activity. This review discusses the literature describing molecular adaptations that confer Btz resistance with a primary disease focus on MM. Also discussed are the most recent advances in therapeutic strategies that overcome resistance, approaches that include redox-modulating agents, murine double minute 2 inhibitors, therapeutic monoclonal antibodies, and new epigenetic-targeted drugs like bromodomain and extra terminal domain inhibitors.
Collapse
Affiliation(s)
- Nathan G Dolloff
- Department of Cellular and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
39
|
Xia B, Tian C, Guo S, Zhang L, Zhao D, Qu F, Zhao W, Wang Y, Wu X, Da W, Wei S, Zhang Y. c-Myc plays part in drug resistance mediated by bone marrow stromal cells in acute myeloid leukemia. Leuk Res 2014; 39:92-9. [PMID: 25443862 DOI: 10.1016/j.leukres.2014.11.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/26/2014] [Accepted: 11/09/2014] [Indexed: 12/18/2022]
Abstract
Acute myeloid leukemia (AML) is a malignant and aggressive disease not sensitive to chemotherapy. The dynamic interaction between AML cells and bone marrow (BM) microenvironment plays a critical role in response of this disease to chemotherapy. It is reported that mesenchymal stromal cells (MSC) are essential component of bone marrow microenvironment which affects the survival of AML cells. The aim of our research is to elucidate the mechanism of drug resistance of AML cells associated with MSC. We found that adhesion of AML cell lines U937, KG1a and primary AML cells to MSC inhibited cytotoxic drug-induced apoptosis. Western blot showed that c-Myc of AML cells cocultured with stroma was up-regulated. Treatment with 10058-F4, a small molecule inhibitor of MYC-MAX heterodimerization, or c-Myc siRNA significantly induced apoptosis. Western blot analysis further showed that inhibition of c-Myc induced expression of caspases-3, cleavage of PARP and reduced expression of Bcl-2, Bcl-xL and vascular endothelial growth factor (VEGF). Thus, we conclude that MSCs protected leukemia cells from apoptosis, at least in part, through c-Myc dependent mechanisms, and that c-Myc contributed to microenvironment-mediated drug resistance in AML. In summary, we declared that c-Myc is a potential therapeutic target for overcoming drug resistance in AML.
Collapse
Affiliation(s)
- Bing Xia
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Chen Tian
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Shanqi Guo
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Le Zhang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Dandan Zhao
- Department of Hematology, First Affiliated Hospital of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Fulian Qu
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Weipeng Zhao
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yafei Wang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Xiaoxiong Wu
- Department of Hematology, First Affiliated Hospital of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Wanming Da
- Department of Hematology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Sheng Wei
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | - Yizhuo Zhang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| |
Collapse
|
40
|
Affiliation(s)
- Efstathios Kastritis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine , Athens , Greece
| | | |
Collapse
|
41
|
Wang J, Huang SK, Marzese DM, Hsu SC, Kawas NP, Chong KK, Long GV, Menzies AM, Scolyer RA, Izraely S, Sagi-Assif O, Witz IP, Hoon DSB. Epigenetic changes of EGFR have an important role in BRAF inhibitor-resistant cutaneous melanomas. J Invest Dermatol 2014; 135:532-541. [PMID: 25243790 PMCID: PMC4307785 DOI: 10.1038/jid.2014.418] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/18/2014] [Accepted: 08/22/2014] [Indexed: 01/19/2023]
Abstract
BRAF mutations are frequent in cutaneous melanomas and BRAF inhibitors(BRAFi) have shown remarkable clinical efficacy in BRAF mutant melanoma patients. However, acquired drug resistance can occur rapidly and tumor(s) often progress thereafter. Various mechanisms of BRAFi resistance have recently been described; however, the mechanism of resistance remains controversial. In this study we developed BRAFi resistant melanoma cell lines and found that metastasis related EMT properties of BRAFi resistant cells were enhanced significantly. Upregulation of EGFR was observed in BRAFi resistant cell lines and patient tumors due to demethylation of EGFR regulatory DNA elements. EGFR induced PI3K/AKT pathway activation in BRAFi resistant cells through epigenetic regulation. Treatment of EGFR inhibitor was effective in BRAFi resistant melanoma cell lines. The study demonstrates that EGFR epigenetic activation has important implications in BRAFi resistance in melanoma.
Collapse
Affiliation(s)
- Jinhua Wang
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, California, USA
| | - Sharon K Huang
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, California, USA
| | - Diego M Marzese
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, California, USA
| | - Sandy C Hsu
- Sequencing Center, John Wayne Cancer Institute, Santa Monica, California, USA
| | - Neal P Kawas
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, California, USA
| | - Kelly K Chong
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, California, USA
| | - Georgina V Long
- Melanoma Institute Australia and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia; Tissue Pathology and Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Sivan Izraely
- Department of Cell Research and Immunology, Tel-Aviv University, Tel-Aviv, Israel
| | - Orit Sagi-Assif
- Department of Cell Research and Immunology, Tel-Aviv University, Tel-Aviv, Israel
| | - Isaac P Witz
- Department of Cell Research and Immunology, Tel-Aviv University, Tel-Aviv, Israel
| | - Dave S B Hoon
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, California, USA; Sequencing Center, John Wayne Cancer Institute, Santa Monica, California, USA.
| |
Collapse
|
42
|
Attar-Schneider O, Drucker L, Zismanov V, Tartakover-Matalon S, Lishner M. Targeting eIF4GI translation initiation factor affords an attractive therapeutic strategy in multiple myeloma. Cell Signal 2014; 26:1878-87. [DOI: 10.1016/j.cellsig.2014.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 01/04/2023]
|
43
|
Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma. Leukemia 2014; 28:1725-1735. [PMID: 24518206 PMCID: PMC4126852 DOI: 10.1038/leu.2014.70] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/24/2014] [Accepted: 01/28/2014] [Indexed: 01/17/2023]
Abstract
MYC locus rearrangements – often complex combinations of translocations, insertions, deletions, and inversions - in multiple myeloma (MM) were thought to be a late progression event, which often did not involve immunoglobulin genes. Yet germinal center activation of MYC expression has been reported to cause progression to MM in an MGUS prone mouse strain. Although previously detected in 16% of MM, we find MYC rearrangements in nearly 50% of MM, including smoldering MM, and they are heterogeneous in some cases. Rearrangements reposition MYC near a limited number of genes associated with conventional enhancers, but mostly with super-enhancers (e.g., IGH, IGL, IGK, NSMCE2, TXNDC5, FAM46C, FOXO3, IGJ, PRDM1). MYC rearrangements are associated with a significant increase of MYC expression that is monoallelic, but MM tumors lacking a rearrangement have bi-allelic MYC expression at significantly higher levels than in MGUS. We also show that germinal center activation of MYC does not cause MM in a mouse strain that rarely develops spontaneous MGUS. It appears that increased MYC expression at the MGUS/MM transition usually is bi-allelic, but sometimes can be mono-allelic if there is a MYC rearrangement. Our data suggests that MYC rearrangements, regardless of when they occur during MM pathogenesis, provide one event that contributes to tumor autonomy.
Collapse
|
44
|
Abstract
The bromodomain and extraterminal (BET) protein BRD2-4 inhibitors hold therapeutic promise in preclinical models of hematologic malignancies. However, translation of these data to molecules suitable for clinical development has yet to be accomplished. Herein we expand the mechanistic understanding of BET inhibitors in multiple myeloma by using the chemical probe molecule I-BET151. I-BET151 induces apoptosis and exerts strong antiproliferative effect in vitro and in vivo. This is associated with contrasting effects on oncogenic MYC and HEXIM1, an inhibitor of the transcriptional activator P-TEFb. I-BET151 causes transcriptional repression of MYC and MYC-dependent programs by abrogating recruitment to the chromatin of the P-TEFb component CDK9 in a BRD2-4-dependent manner. In contrast, transcriptional upregulation of HEXIM1 is BRD2-4 independent. Finally, preclinical studies show that I-BET762 has a favorable pharmacologic profile as an oral agent and that it inhibits myeloma cell proliferation, resulting in survival advantage in a systemic myeloma xenograft model. These data provide a strong rationale for extending the clinical testing of the novel antimyeloma agent I-BET762 and reveal insights into biologic pathways required for myeloma cell proliferation.
Collapse
|
45
|
Understanding MYC-driven aggressive B-cell lymphomas: pathogenesis and classification. Blood 2013; 122:3884-91. [PMID: 24009228 DOI: 10.1182/blood-2013-05-498329] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MYC is a potent oncogene initially identified as the target of the t(8;14)(q24;q32) chromosome translocation in Burkitt lymphoma. MYC gene alterations have been identified in other mature B-cell neoplasms that are usually associated with an aggressive clinical behavior. Most of these tumors originate in cells that do not normally express MYC protein. The oncogenic events leading to MYC up-regulation seem to overcome the inhibitory effect of physiological repressors such as BCL6 or BLIMP1. Aggressive lymphomas frequently carry additional oncogenic alterations that cooperate with MYC dysregulation, likely counteracting its proapoptotic function. The development of FISH probes and new reliable antibodies have facilitated the study of MYC gene alterations and protein expression in large series of patients, providing new clinical and biological perspectives regarding MYC dysregulation in aggressive lymphomas. MYC gene alterations in large B-cell lymphomas are frequently associated with BCL2 or BCL6 translocations conferring a very aggressive behavior. Conversely, MYC protein up-regulation may occur in tumors without apparent gene alterations, and its association with BCL2 overexpression also confers a poor prognosis. In this review, we integrate all of this new information and discuss perspectives, challenges, and open questions for the diagnosis and management of patients with MYC-driven aggressive B-cell lymphomas.
Collapse
|
46
|
Coker WJ, Jeter A, Schade H, Kang Y. Plasma cell disorders in HIV-infected patients: epidemiology and molecular mechanisms. Biomark Res 2013; 1:8. [PMID: 24252328 PMCID: PMC4177611 DOI: 10.1186/2050-7771-1-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/04/2013] [Indexed: 12/19/2022] Open
Abstract
Highly active antiretroviral therapy (HAART) has significantly improved the outcome and survival of human immunodeficiency virus (HIV)-infected patients. Subsequently, long-term morbidities including cancer have become of major public health and clinical interest for this patient population. Plasma cell disorders occur at higher incidence in HIV-infected patients; however, the molecular mechanisms driving the plasma cell disease process and the optimal management for these patients remain to be defined. This article provides an up-to-date review of the characteristics and management of HIV-infected patients with plasma cell disorders. We first present 3 cases of plasma cell disorders in HIV-infected patients, ranging from polyclonal hypergammaglobulinemia to symptomatic multiple myeloma. We then discuss the epidemiology, clinical presentation, and management of each of these plasma cell disorders, with an emphasis on the molecular events underlying the progression of plasma cell diseases from monoclonal gammopathy to symptomatic multiple myeloma. We propose a three-step hypothesis for the development of multiple myeloma. Finally, we discuss the use of high dose chemotherapy and autologous hematopoietic stem cell transplantation in the treatment of HIV-infected patients with multiple myeloma. Our review includes the care of HIV-infected patients with plasma cell disorders in the current era of HAART and novel agents available for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Woodrow J Coker
- Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, 86 Jonathan Lucas Street, Hollings Cancer Center, Room# HO307, Charleston, SC, 29425, USA.
| | | | | | | |
Collapse
|
47
|
Ott G, Rosenwald A, Campo E. Understanding MYC-driven aggressive B-cell lymphomas: pathogenesis and classification. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2013; 2013:575-583. [PMID: 24319234 DOI: 10.1182/asheducation-2013.1.575] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
MYC is a potent oncogene initially identified as the target of the t(8;14)(q24;q32) chromosome translocation in Burkitt lymphoma. MYC gene alterations have been identified in other mature B-cell neoplasms that are usually associated with an aggressive clinical behavior. Most of these tumors originate in cells that do not normally express MYC protein. The oncogenic events leading to MYC up-regulation seem to overcome the inhibitory effect of physiological repressors such as BCL6 or BLIMP1. Aggressive lymphomas frequently carry additional oncogenic alterations that cooperate with MYC dysregulation, likely counteracting its proapoptotic function. The development of FISH probes and new reliable antibodies have facilitated the study of MYC gene alterations and protein expression in large series of patients, providing new clinical and biological perspectives regarding MYC dysregulation in aggressive lymphomas. MYC gene alterations in large B-cell lymphomas are frequently associated with BCL2 or BCL6 translocations conferring a very aggressive behavior. Conversely, MYC protein up-regulation may occur in tumors without apparent gene alterations, and its association with BCL2 overexpression also confers a poor prognosis. In this review, we integrate all of this new information and discuss perspectives, challenges, and open questions for the diagnosis and management of patients with MYC-driven aggressive B-cell lymphomas.
Collapse
Affiliation(s)
- German Ott
- 1Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | | | | |
Collapse
|