1
|
Gagoski D, Rube HT, Rastogi C, Melo LAN, Li X, Voleti R, Shah NH, Bussemaker HJ. Accurate sequence-to-affinity models for SH2 domains from multi-round peptide binding assays coupled with free-energy regression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.23.630085. [PMID: 39764007 PMCID: PMC11703206 DOI: 10.1101/2024.12.23.630085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Short linear peptide motifs play important roles in cell signaling. They can act as modification sites for enzymes and as recognition sites for peptide binding domains. SH2 domains bind specifically to tyrosine-phosphorylated proteins, with the affinity of the interaction depending strongly on the flanking sequence. Quantifying this sequence specificity is critical for deciphering phosphotyrosine-dependent signaling networks. In recent years, protein display technologies and deep sequencing have allowed researchers to profile SH2 domain binding across thousands of candidate ligands. Here, we present a concerted experimental and computational strategy that improves the predictive power of SH2 specificity profiling. Through multi-round affinity selection and deep sequencing with large randomized phosphopeptide libraries, we produce suitable data to train an additive binding free energy model that covers the full theoretical ligand sequence space. Our models can be used to predict signaling network connectivity and the impact of missense variants in phosphoproteins on SH2 binding.
Collapse
Affiliation(s)
- Dejan Gagoski
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| | - H. Tomas Rube
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Applied Mathematics, University of California-Merced, Merced, CA, USA
| | - Chaitanya Rastogi
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Lucas A. N. Melo
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Xiaoting Li
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Rashmi Voleti
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Neel H. Shah
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Harmen J. Bussemaker
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Floerchinger A, Seiffert M. Lessons learned from the Eµ-TCL1 mouse model of CLL. Semin Hematol 2024; 61:194-200. [PMID: 38839457 DOI: 10.1053/j.seminhematol.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
The Eµ-TCL1 mouse model has been used for over 20 years to study the pathobiology of chronic lymphocytic leukemia (CLL) and for preclinical testing of novel therapies. A CLL-like disease develops with increasing age in these mice due to a B cell specific overexpression of human TCL1. The reliability of this model to mirror human CLL is controversially discussed, as none of the known driver mutations identified in patients are found in Eµ-TCL1 mice. It has to be acknowledged that this mouse model was key to develop targeted therapies that aim at inhibiting the constitutive B cell receptor (BCR) signaling, a main driver of CLL. Inhibitors of BCR signaling became standard-of-care for a large proportion of patients with CLL as they are highly effective. The Eµ-TCL1 model further advanced our understanding of CLL biology owed to studies that crossed this mouse line with various transgenic mouse models and demonstrated the relevance of CLL-cell intrinsic and -extrinsic drivers of disease. These studies were instrumental in showing the relevance of the tumor microenvironment in the lymphoid tissues for disease progression and immune escape in CLL. It became clear that CLL cells shape and rely on stromal and immune cells, and that immune suppressive mechanisms and T cell exhaustion contribute to CLL progression. Based on this knowledge, new immunotherapy strategies were clinically tested for CLL, but so far with disappointing results. As some of these therapies were effective in the Eµ-TCL1 mouse model, the question arose concerning the translatability of preclinical studies in these mice. The aim of this review is to summarize lessons we have learnt over the last decades by studying CLL-like disease in the Eµ-TCL1 mouse model. The article focuses on pitfalls and limitations of the model, as well as the gained knowledge and potential of using this model for the development of novel treatment strategies to achieve the goal of curing patients with CLL.
Collapse
MESH Headings
- Animals
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Mice
- Disease Models, Animal
- Humans
- Mice, Transgenic
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/antagonists & inhibitors
- Tumor Microenvironment/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
Collapse
Affiliation(s)
- Alessia Floerchinger
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Biosciences of the University of Heidelberg, Heidelberg, Germany
| | - Martina Seiffert
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
3
|
de Oliveira TD, vom Stein A, Rebollido-Rios R, Lobastova L, Lettau M, Janssen O, Wagle P, Nguyen PH, Hallek M, Hansen HP. Stromal cells support the survival of human primary chronic lymphocytic leukemia (CLL) cells through Lyn-driven extracellular vesicles. Front Med (Lausanne) 2023; 9:1059028. [PMID: 36714146 PMCID: PMC9880074 DOI: 10.3389/fmed.2022.1059028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction In chronic lymphocytic leukemia (CLL), the tumor cells receive survival support from stromal cells through direct cell contact, soluble factors and extracellular vesicles (EVs). The protein tyrosine kinase Lyn is aberrantly expressed in the malignant and stromal cells in CLL tissue. We studied the role of Lyn in the EV-based communication and tumor support. Methods We compared the Lyn-dependent EV release, uptake and functionality using Lyn-proficient (wild-type) and -deficient stromal cells and primary CLL cells. Results Lyn-proficient cells caused a significantly higher EV release and EV uptake as compared to Lyn-deficient cells and also conferred stronger support of primary CLL cells. Proteomic comparison of the EVs from Lyn-proficient and -deficient stromal cells revealed 70 significantly differentially expressed proteins. Gene ontology studies categorized many of which to organization of the extracellular matrix, such as collagen, fibronectin, fibrillin, Lysyl oxidase like 2, integrins and endosialin (CD248). In terms of function, a knockdown of CD248 in Lyn+ HS-5 cells resulted in a diminished B-CLL cell feeding capacity compared to wildtype or scrambled control cells. CD248 is a marker of certain tumors and cancer-associated fibroblast (CAF) and crosslinks fibronectin and collagen in a membrane-associated context. Conclusion Our data provide preclinical evidence that the tyrosine kinase Lyn crucially influences the EV-based communication between stromal and primary B-CLL cells by raising EV release and altering the concentration of functional molecules of the extracellular matrix.
Collapse
Affiliation(s)
- Thaís Dolzany de Oliveira
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Alexander vom Stein
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Rocio Rebollido-Rios
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Liudmila Lobastova
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Marcus Lettau
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrecht University of Kiel, Kiel, Germany,Department of Hematology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ottmar Janssen
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Prerana Wagle
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Proteomics Facility, University of Cologne, Cologne, Germany
| | - Phuong-Hien Nguyen
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Hinrich P. Hansen
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany,*Correspondence: Hinrich P. Hansen,
| |
Collapse
|
4
|
Dave Z, Vondálová Blanářová O, Čada Š, Janovská P, Zezula N, Běhal M, Hanáková K, Ganji SR, Krejci P, Gömöryová K, Peschelová H, Šmída M, Zdráhal Z, Pavlová Š, Kotašková J, Pospíšilová Š, Bryja V. Lyn Phosphorylates and Controls ROR1 Surface Dynamics During Chemotaxis of CLL Cells. Front Cell Dev Biol 2022; 10:838871. [PMID: 35295854 PMCID: PMC8918536 DOI: 10.3389/fcell.2022.838871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/09/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) are malignancies characterized by the dependence on B-cell receptor (BCR) signaling and by the high expression of ROR1, the cell surface receptor for Wnt-5a. Both, BCR and ROR1 are therapeutic targets in these diseases and the understanding of their mutual cross talk is thus of direct therapeutic relevance. In this study we analyzed the role of Lyn, a kinase from the Src family participating in BCR signaling, as a mediator of the BCR-ROR1 crosstalk. We confirm the functional interaction between Lyn and ROR1 and demonstrate that Lyn kinase efficiently phosphorylates ROR1 in its kinase domain and aids the recruitment of the E3 ligase c-CBL. We show that ROR1 surface dynamics in migrating primary CLL cells as well as chemotactic properties of CLL cells were inhibited by Lyn inhibitor dasatinib. Our data establish Lyn-mediated phosphorylation of ROR1 as a point of crosstalk between BCR and ROR1 signaling pathways.
Collapse
Affiliation(s)
- Zankruti Dave
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Olga Vondálová Blanářová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Štěpán Čada
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavlína Janovská
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Nikodém Zezula
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Běhal
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kateřina Hanáková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Sri Ranjani Ganji
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Kristína Gömöryová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Helena Peschelová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Michal Šmída
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Šárka Pavlová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Kotašková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Šárka Pospíšilová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Brno, Czech Republic
- *Correspondence: Vítězslav Bryja,
| |
Collapse
|
5
|
Barbaglio F, Belloni D, Scarfò L, Sbrana FV, Ponzoni M, Bongiovanni L, Pavesi L, Zambroni D, Stamatopoulos K, Caiolfa VR, Ferrero E, Ghia P, Scielzo C. Three-dimensional co-culture model of chronic lymphocytic leukemia bone marrow microenvironment predicts patient-specific response to mobilizing agents. Haematologica 2021; 106:2334-2344. [PMID: 32732361 PMCID: PMC8409046 DOI: 10.3324/haematol.2020.248112] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) cells disseminate into supportive tissue microenvironments. To investigate the mechanisms involved in leukemic cell tissue retention we developed a 3D bone marrow (BM) microenvironment that recreates CLL - BM-stromal cells interactions inside a scaffold within a bioreactor. Our system allows the parallel analysis of CLL cells retained inside the scaffold and those released in the presence/absence of pharmacological agents, mimicking tissue and circulating cell compartments, respectively. CLL cells can be retained within the scaffold only in the presence of microenvironmental elements, which through direct contact down-regulate the expression of HS1 cytoskeletal protein in CLL cells. Consist with this, the expression of HS1 was lower in CLL cells obtained from patients' BM versus CLL cells circulating in the PB. Moreover, we demonstrate that CLL cells with inactive-HS1, impaired cytoskeletal activity and a more aggressive phenotype are more likely retained within the scaffold despite the presence of Ibrutinib, whose mobilizing effect is mainly exerted on those with active-HS1, ensuing dynamic cytoskeletal activity. This differential effect would not otherwise be assessable in a traditional 2D system and may underlie a distinctive resistance of single CLL clones. Notably, CLL cells mobilized in the peripheral blood of patients during Ibrutinib therapy exhibited activated HS1, underscoring that our model reliably mirrors the in vivo situation. The 3D model described herein is suitable to reproduce and identify critical CLL-BM interactions, opening the way to pathophysiological studies and the evaluation of novel targeted therapies in an individualized manner.
Collapse
Affiliation(s)
- Federica Barbaglio
- IIRCCS, Ospedale San Raffaele, Division of Experimental Oncology, Milan Italy
| | - Daniela Belloni
- IRCCS, Ospedale San Raffaele, Division of Experimental Oncology, Milan Italy
| | - Lydia Scarfò
- IRCCS, Ospedale San Raffaele, Division of Experimental Oncology, Milan Italy
| | | | | | | | - Luca Pavesi
- IRCCS, Ospedale San Raffaele, Division of Experimental Oncology, Milan Italy
| | - Desiree Zambroni
- IRCCS, Ospedale San Raffaele, Centre for Experimental Imaging, Milan Italy
| | - Kostas Stamatopoulos
- Hematology Department and HCT Unit, G. Papanicolaou Hospital, Thessaloniki, Greece
| | - Valeria R Caiolfa
- IRCCS, Ospedale San Raffaele, Centre for Experimental Imaging, Milan Italy
| | - Elisabetta Ferrero
- IRCCS, Ospedale San Raffaele, Division of Experimental Oncology, Milan Italy
| | - Paolo Ghia
- IRCCS, Ospedale San Raffaele, Division of Experimental Oncology, Milan Italy
| | - Cristina Scielzo
- IRCCS, Ospedale San Raffaele, Division of Experimental Oncology, Milan Italy
| |
Collapse
|
6
|
Sampietro M, Zamai M, Díaz Torres A, Labrador Cantarero V, Barbaglio F, Scarfò L, Scielzo C, Caiolfa VR. 3D-STED Super-Resolution Microscopy Reveals Distinct Nanoscale Organization of the Hematopoietic Cell-Specific Lyn Substrate-1 (HS1) in Normal and Leukemic B Cells. Front Cell Dev Biol 2021; 9:655773. [PMID: 34277604 PMCID: PMC8278786 DOI: 10.3389/fcell.2021.655773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022] Open
Abstract
HS1, the hematopoietic homolog of cortactin, acts as a versatile actin-binding protein in leucocytes. After phosphorylation, it is involved in GTPase and integrin activation, and in BCR, TCR, and CXCR4 downstream signaling. In normal and leukemic B cells, HS1 is a central cytoskeletal interactor and its phosphorylation and expression are prognostic factors in chronic lymphocytic leukemia (CLL) patients. We here introduce for the first time a super-resolution imaging study based on single-cell 3D-STED microscopy optimized for revealing and comparing the nanoscale distribution of endogenous HS1 in healthy B and CLL primary cells. Our study reveals that the endogenous HS1 forms heterogeneous nanoclusters, similar to those of YFP-HS1 overexpressed in the leukemic MEC1 cell line. HS1 nanoclusters in healthy and leukemic B cells form bulky assemblies at the basal sides, suggesting the recruitment of HS1 for cell adhesion. This observation agrees with a phasor-FLIM-FRET and STED colocalization analyses of the endogenous MEC1-HS1, indicating an increased interaction with Vimentin at the cell adhesion sites. In CLL cells isolated from patients with poor prognosis, we observed a larger accumulation of HS1 at the basal region and a higher density of HS1 nanoclusters in the central regions of the cells if compared to good-prognosis CLL and healthy B cells, suggesting a different role for the protein in the cell types analyzed. Our 3D-STED approach lays the ground for revealing tiny differences of HS1 distribution, its functionally active forms, and colocalization with protein partners.
Collapse
Affiliation(s)
- Marta Sampietro
- Malignant B Cells Biology and 3D Modeling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy.,Nanomedicine Center NANOMIB, School of Medicine and Surgery, Università di Milano Bicocca, Milan, Italy.,Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Moreno Zamai
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alfonsa Díaz Torres
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Veronica Labrador Cantarero
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Federica Barbaglio
- Malignant B Cells Biology and 3D Modeling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Lydia Scarfò
- B-Cell Neoplasia Unit and Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy.,School of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Scielzo
- Malignant B Cells Biology and 3D Modeling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valeria R Caiolfa
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Experimental Imaging Center, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
7
|
Shorer Arbel Y, Katz BZ, Gabizon R, Shraga A, Bronstein Y, Kamdjou T, Globerson Levin A, Perry C, Avivi I, London N, Herishanu Y. Proteolysis Targeting Chimeras for BTK Efficiently Inhibit B-Cell Receptor Signaling and Can Overcome Ibrutinib Resistance in CLL Cells. Front Oncol 2021; 11:646971. [PMID: 34055615 PMCID: PMC8159153 DOI: 10.3389/fonc.2021.646971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Proteolysis targeting chimeras (PROTACs) are small molecules that form ternary complexes between their target and E3 ligase, resulting in ubiquitination and proteasomal degradation of the target protein. Using our own designed Bruton's tyrosine kinase (BTK) PROTAC compounds, we show herein efficient BTK degradation in chronic lymphocytic leukemia (CLL) cells. The reversible non-covalent compound (NC-1) was the most potent and therefore we focused on this PROTAC to investigate its subsequent effects on the BCR pathway. NC-1 decreased baseline BTK phosphorylation as well as activation of BTK and other signaling molecules downstream of the BCR pathway, following IgM engagement. These effects were also obtained in samples from CLL patients with clinical resistance to ibrutinib and mutations at C481. NC-1 treatment further decreased baseline CD69 surface levels, completely abrogated its upregulation following IgM activation, decreased CLL cells migration toward SDF-1 and overcame stromal anti-apoptotic protection. In conclusion, our results indicate that targeting BTK using the PROTAC strategy could be a potential novel therapeutic approach for CLL.
Collapse
Affiliation(s)
| | - Ben-Zion Katz
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel.,Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ronen Gabizon
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Amit Shraga
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Yotam Bronstein
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Talia Kamdjou
- Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Anat Globerson Levin
- Immunology Research Laboratory, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Chava Perry
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel.,Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Irit Avivi
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel.,Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nir London
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Yair Herishanu
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel.,Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
8
|
Giannopoulos K, Karczmarczyk A, Karp M, Bojarska-Junak A, Kosior K, Kowal M, Tomczak W, Hus M, Machnicki M, Stokłosa T. In vivo, ex vivo and in vitro dasatinib activity in chronic lymphocytic leukemia. Oncol Lett 2021; 21:285. [PMID: 33732361 PMCID: PMC7905539 DOI: 10.3892/ol.2021.12546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 12/30/2020] [Indexed: 01/02/2023] Open
Abstract
Dasatinib inhibits the breakpoint cluster region-Abelson murine leukemia 1 (BCR-ABL1) gene along with other kinases known to be overexpressed and abnormally active in patients with chronic lymphocytic leukemia (CLL). The current study used primary leukemic cells obtained from 53 patients with CLL that were treated with dasatinib. A 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay and Annexin V staining was performed to assess the cytotoxic effects of dasatinib treatment. The XTT assay revealed that the median cytotoxicity of dasatinib was 8.30% (range, 0.00–77.89%). Due to high dispersion of dasatinib activity, patients were divided into sensitive (n=27; 50.94%; median cytotoxicity, 22.81%) and resistant groups (n=26; 49.06%; median cytotoxicity, 0.00%). A median cytotoxicity of 8.30% was selected as a cut off value. Using Annexin V staining and flow cytometry on exemplary sensitive and resistant CLL samples, it was revealed that 17.71 and 1.84% of cells were apoptotic, respectively. The current study presented a case of a patient with concomitant occurrence of CLL and chronic myeloid leukemia (CML) with a major molecular response after dasatinib treatment. A simultaneous reduction of circulating CLL cells indicated in vivo anti-CLL activity induced by dasatinib. After an in vitro culture of the patient's mononuclear cells with subsequent dasatinib treatment, a higher percentage of CLL cells undergoing apoptosis was obsevered when compared with untreated samples (38.19 vs. 21.99%, respectively). Similarly, the percentage of CLL apoptotic cells (ΔΨmlow) measured by chloromethyl-X-rosamine was higher after incubation with dasatinib (7.28%) than in the negative control (2.86%). In conclusion, dasatinib induced antileukemic effects against CML and CLL cells. The results of the current study indicated that dasatinib may induce apoptosis ex vivo, in vitro and in vivo in CLL.
Collapse
Affiliation(s)
- Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin 20-093, Poland
| | - Agnieszka Karczmarczyk
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin 20-093, Poland
| | - Marta Karp
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin 20-093, Poland
| | | | - Kamila Kosior
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin 20-093, Poland
| | - Małgorzata Kowal
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin 20-093, Poland
| | - Waldemar Tomczak
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin 20-093, Poland
| | - Marek Hus
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin 20-093, Poland
| | - Marcin Machnicki
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Warsaw 02-097, Poland
| | - Tomasz Stokłosa
- Department of Immunology, Center for Biostructure Research, Medical University of Warsaw, Warsaw 02-097, Poland
| |
Collapse
|
9
|
Constitutive activation of Lyn kinase enhances BCR responsiveness, but not the development of CLL in Eµ-TCL1 mice. Blood Adv 2020; 4:6106-6116. [PMID: 33351104 DOI: 10.1182/bloodadvances.2020002584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/17/2020] [Indexed: 01/02/2023] Open
Abstract
The treatment of chronic lymphocytic leukemia (CLL) has been improved dramatically by inhibitors targeting B-cell receptor (BCR)-associated kinases. The tyrosine kinase Lyn is a key modulator of BCR signaling and shows increased expression and activity in CLL. To evaluate the functional relevance of Lyn for CLL, we generated a conditional knockin mouse model harboring a gain-of-function mutation of the Lyn gene (LynY508F), which was specifically expressed in the B-cell lineage (Lynup-B). Kinase activity profiling revealed an enhanced responsiveness to BCR stimulation in Lynup-B B cells. When crossing Lynup-B mice with Eµ-TCL1 mice (TCL1tg/wt), a transgenic mouse model for CLL, the resulting TCL1tg/wt Lynup-B mice showed no significant change of hepatomegaly, splenomegaly, bone marrow infiltration, or overall survival when compared with TCL1tg/wt mice. Our data also suggested that TCL1 expression has partially masked the effect of the Lynup-B mutation, because the BCR response was only slightly increased in TCL1tg/wt Lynup-B compared with TCL1tg/wt. In contrast, TCL1tg/wt Lynup-B were protected at various degrees against spontaneous apoptosis in vitro and upon treatment with kinase inhibitors targeting the BCR. Collectively, and consistent with our previous data in a Lyn-deficient CLL model, these data lend further suggest that an increased activation of Lyn kinase in B cells does not appear to be a major driver of leukemia progression and the level of increased BCR responsiveness induced by Lynup-B is insufficient to induce clear changes to CLL pathogenesis in vivo.
Collapse
|
10
|
Scielzo C, Ghia P. Modeling the Leukemia Microenviroment In Vitro. Front Oncol 2020; 10:607608. [PMID: 33392097 PMCID: PMC7773937 DOI: 10.3389/fonc.2020.607608] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
Over the last decade, the active role of the microenvironment in the pathogenesis, development and drug resistance of B cell malignancies has been clearly established. It is known that the tissue microenvironment promotes proliferation and drug resistance of leukemic cells suggesting that successful treatments of B cell malignancies must target the leukemic cells within these compartments. However, the cross-talk occurring between cancer cells and the tissue microenvironment still needs to be fully elucidated. In solid tumors, this lack of knowledge has led to the development of new and more complex in vitro models able to successfully mimic the in vivo settings, while only a few simplified models are available for haematological cancers, commonly relying only on the co-culture with stabilized stromal cells and/or the addition of limited cocktails of cytokines. Here, we will review the known cellular and molecular interactions occurring between monoclonal B lymphocytes and their tissue microenvironment and the current literature describing innovative in vitro models developed in particular to study chronic lymphocytic leukemia (CLL). We will also elaborate on the possibility to further improve such systems based on the current knowledge of the key molecules/signals present in the microenvironment. In particular, we think that future models should be developed as 3D culture systems with a higher level of cellular and molecular complexity, to replicate microenvironmental-induced signaling. We believe that innovative 3D-models may therefore improve the knowledge on pathogenic mechanisms leading to the dissemination and homing of leukemia cells and consequently the identification of therapeutic targets.
Collapse
Affiliation(s)
- Cristina Scielzo
- Unit of Malignant B Cell Biology and 3D Modeling, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Paolo Ghia
- Unit of B Cell Neoplasia, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy.,Università Vita-Salute San Raffaele, Milano, Italy.,Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
11
|
Ghaderi A, Daneshmanesh AH, Moshfegh A, Kokhaei P, Vågberg J, Schultz J, Olin T, Harrysson S, Smedby KE, Drakos E, Rassidakis GZ, Österborg A, Mellstedt H, Hojjat-Farsangi M. ROR1 Is Expressed in Diffuse Large B-Cell Lymphoma (DLBCL) and a Small Molecule Inhibitor of ROR1 (KAN0441571C) Induced Apoptosis of Lymphoma Cells. Biomedicines 2020; 8:biomedicines8060170. [PMID: 32586008 PMCID: PMC7344684 DOI: 10.3390/biomedicines8060170] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022] Open
Abstract
The receptor tyrosine kinase ROR1 is absent in most normal adult tissues, but overexpressed in several malignancies. In this study, we explored clinical and functional inhibitory aspects of ROR1 in diffuse large B-cell lymphoma (DLBCL). ROR1 expression in tumor cells was more often observed in primary refractory DLBCL, Richter’s syndrome and transformed follicular lymphoma than in relapsed and non-relapsed DLBCL patients (p < 0.001). A survival effect of ROR1 expression was preliminarily observed in relapsed/refractory patients independent of gender and stage but not of age, cell of origin and international prognostic index. A second generation small molecule ROR1 inhibitor (KAN0441571C) induced apoptosis of ROR1+ DLBCL cell lines, similar to venetoclax (BCL-2 inhibitor) but superior to ibrutinib (BTK inhibitor). The combination of KAN0441571C and venetoclax at EC50 concentrations induced almost complete killing of DLBCL cell lines. Apoptosis was accompanied by the downregulation of BCL-2 and MCL-1 and confirmed by the cleavage of PARP and caspases 3, 8, 9. PI3Kδ/AKT/mTOR (non-canonical Wnt pathway) as well as β-catenin and CK1δ (canonical pathway) were inactivated. In zebra fishes transplanted with a ROR1+ DLBCL cell line, KAN0441571C induced a significant tumor reduction. New drugs with mechanisms of action other than those available for DLBCL are warranted. ROR1 inhibitors might represent a novel promising approach.
Collapse
Affiliation(s)
- Amineh Ghaderi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 17164 Stockholm, Sweden; (A.G.); (A.H.D.); (A.M.); (P.K.); (E.D.); (G.Z.R.); (A.Ö.); (M.H.-F.)
| | - Amir Hossein Daneshmanesh
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 17164 Stockholm, Sweden; (A.G.); (A.H.D.); (A.M.); (P.K.); (E.D.); (G.Z.R.); (A.Ö.); (M.H.-F.)
| | - Ali Moshfegh
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 17164 Stockholm, Sweden; (A.G.); (A.H.D.); (A.M.); (P.K.); (E.D.); (G.Z.R.); (A.Ö.); (M.H.-F.)
- Kancera AB, Karolinska Institute Science Park, 171 48 Solna, Sweden; (J.V.); (J.S.); (T.O.)
| | - Parviz Kokhaei
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 17164 Stockholm, Sweden; (A.G.); (A.H.D.); (A.M.); (P.K.); (E.D.); (G.Z.R.); (A.Ö.); (M.H.-F.)
- Department of Immunology, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Jan Vågberg
- Kancera AB, Karolinska Institute Science Park, 171 48 Solna, Sweden; (J.V.); (J.S.); (T.O.)
| | - Johan Schultz
- Kancera AB, Karolinska Institute Science Park, 171 48 Solna, Sweden; (J.V.); (J.S.); (T.O.)
| | - Thomas Olin
- Kancera AB, Karolinska Institute Science Park, 171 48 Solna, Sweden; (J.V.); (J.S.); (T.O.)
| | - Sara Harrysson
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, 171 76 Stockholm, Sweden; (S.H.); (K.E.S.)
- Department of Hematology, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden
| | - Karin E Smedby
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, 171 76 Stockholm, Sweden; (S.H.); (K.E.S.)
- Department of Hematology, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden
| | - Elias Drakos
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 17164 Stockholm, Sweden; (A.G.); (A.H.D.); (A.M.); (P.K.); (E.D.); (G.Z.R.); (A.Ö.); (M.H.-F.)
- Department of Pathology, Medical School, University of Crete, 71110 Heraklion Crete, Greece
| | - Georgios Z. Rassidakis
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 17164 Stockholm, Sweden; (A.G.); (A.H.D.); (A.M.); (P.K.); (E.D.); (G.Z.R.); (A.Ö.); (M.H.-F.)
| | - Anders Österborg
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 17164 Stockholm, Sweden; (A.G.); (A.H.D.); (A.M.); (P.K.); (E.D.); (G.Z.R.); (A.Ö.); (M.H.-F.)
- Department of Hematology, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden
| | - Håkan Mellstedt
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 17164 Stockholm, Sweden; (A.G.); (A.H.D.); (A.M.); (P.K.); (E.D.); (G.Z.R.); (A.Ö.); (M.H.-F.)
- Correspondence: ; Tel.: +46-70-658-9809
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 17164 Stockholm, Sweden; (A.G.); (A.H.D.); (A.M.); (P.K.); (E.D.); (G.Z.R.); (A.Ö.); (M.H.-F.)
| |
Collapse
|
12
|
Choi MY, Widhopf GF, Ghia EM, Kidwell RL, Hasan MK, Yu J, Rassenti LZ, Chen L, Chen Y, Pittman E, Pu M, Messer K, Prussak CE, Castro JE, Jamieson C, Kipps TJ. Phase I Trial: Cirmtuzumab Inhibits ROR1 Signaling and Stemness Signatures in Patients with Chronic Lymphocytic Leukemia. Cell Stem Cell 2019; 22:951-959.e3. [PMID: 29859176 DOI: 10.1016/j.stem.2018.05.018] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/29/2018] [Accepted: 05/16/2018] [Indexed: 11/17/2022]
Abstract
Cirmtuzumab is a humanized monoclonal antibody (mAb) that targets ROR1, an oncoembryonic orphan receptor for Wnt5a found on cancer stem cells (CSCs). Aberrant expression of ROR1 is seen in many malignancies and has been linked to Rho-GTPase activation and cancer stem cell self-renewal. For patients with chronic lymphocytic leukemia (CLL), self-renewing, neoplastic B cells express ROR1 in 95% of cases. High-level leukemia cell expression of ROR1 is associated with an unfavorable prognosis. We conducted a phase 1 study involving 26 patients with progressive, relapsed, or refractory CLL. Patients received four biweekly infusions, with doses ranging from 0.015 to 20 mg/kg. Cirmtuzumab had a long plasma half-life and did not have dose-limiting toxicity. Inhibition of ROR1 signaling was observed, including decreased activation of RhoA and HS1. Transcriptome analyses showed that therapy inhibited CLL stemness gene expression signatures in vivo. Cirmtuzumab is safe and effective at inhibiting tumor cell ROR1 signaling in patients with CLL.
Collapse
Affiliation(s)
- Michael Y Choi
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; CIRM Alpha Stem Cell Clinic at University of California, San Diego, and Sanford Stem Cell Clinical Center, La Jolla, CA 92037-0695, USA; Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - George F Widhopf
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emanuela M Ghia
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Reilly L Kidwell
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; CIRM Alpha Stem Cell Clinic at University of California, San Diego, and Sanford Stem Cell Clinical Center, La Jolla, CA 92037-0695, USA
| | - Md Kamrul Hasan
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jian Yu
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Laura Z Rassenti
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Liguang Chen
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yun Chen
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emily Pittman
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093-0901, USA
| | - Minya Pu
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093-0901, USA
| | - Karen Messer
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093-0901, USA
| | - Charles E Prussak
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Januario E Castro
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Catriona Jamieson
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; CIRM Alpha Stem Cell Clinic at University of California, San Diego, and Sanford Stem Cell Clinical Center, La Jolla, CA 92037-0695, USA; Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92037-0695, USA.
| | - Thomas J Kipps
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; CIRM Alpha Stem Cell Clinic at University of California, San Diego, and Sanford Stem Cell Clinical Center, La Jolla, CA 92037-0695, USA; Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
13
|
Castro-Ochoa KF, Guerrero-Fonseca IM, Schnoor M. Hematopoietic cell-specific lyn substrate (HCLS1 or HS1): A versatile actin-binding protein in leukocytes. J Leukoc Biol 2019; 105:881-890. [DOI: 10.1002/jlb.mr0618-212r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
Leukocytes are constantly produced in the bone marrow and released into the circulation. Many different leukocyte subpopulations exist that exert distinct functions. Leukocytes are recruited to sites of inflammation and combat the cause of inflammation via many different effector functions. Virtually all of these processes depend on dynamic actin remodeling allowing leukocytes to adhere, migrate, phagocytose, and release granules. However, actin dynamics are not possible without actin-binding proteins (ABP) that orchestrate the balance between actin polymerization, branching, and depolymerization. The homologue of the ubiquitous ABP cortactin in hematopoietic cells is hematopoietic cell-specific lyn substrate-1, often called hematopoietic cell-specific protein-1 (HCLS1 or HS1). HS1 has been reported in different leukocytes to regulate Arp2/3-dependent migration. However, more evidence is emerging that HS1 functions go far beyond just being a direct actin modulator. For example, HS1 is important for the activation of GTPases and integrins, and mediates signaling downstream of many receptors including BCR, TCR, and CXCR4. In this review, we summarize current knowledge on HS1 functions and discuss them in a pathophysiologic context.
Collapse
Affiliation(s)
| | | | - Michael Schnoor
- Department of Molecular Biomedicine, CINVESTAV-IPN , Mexico City, Mexico
| |
Collapse
|
14
|
Ten Hacken E, Gounari M, Ghia P, Burger JA. The importance of B cell receptor isotypes and stereotypes in chronic lymphocytic leukemia. Leukemia 2018; 33:287-298. [PMID: 30555163 DOI: 10.1038/s41375-018-0303-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/29/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022]
Abstract
B cell receptor (BCR) signaling is a central pathway promoting the survival and proliferation of normal and malignant B cells. Chronic lymphocytic leukemia (CLL) arises from mature B cells, expressing functional BCRs, mainly of immunoglobulin M (IgM) and IgD isotypes. Importantly, 30% of CLL patients express quasi-identical BCRs, the so-called "stereotyped" receptors, indicating the existence of common antigenic determinants, which may drive disease initiation and favor its progression. Although the antigenic specificity of IgM and IgD receptors is identical, there are distinct isotype-specific responses after IgM and IgD triggering. Here, we discuss the most important steps of normal B cell development, and highlight the importance of BCR signaling for CLL pathogenesis, with a focus on differences between IgM and IgD isotype signaling. We also highlight the main characteristics of CLL patient subsets, based on BCR stereotypy, and describe subset-specific BCR function and antigen-binding characteristics. Finally, we outline the key biologic and clinical responses to kinase inhibitor therapy, targeting the BCR-associated Bruton's tyrosine kinase, phosphoinositide-3-kinase, and spleen tyrosine kinase in patients with CLL.
Collapse
Affiliation(s)
- Elisa Ten Hacken
- Department of Leukemia, Unit 428, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Maria Gounari
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Paolo Ghia
- Strategic Research Program on CLL, IRCCS Ospedale San Raffaele and Università Vita-Salute San Raffaele, Milan, Italy
| | - Jan A Burger
- Department of Leukemia, Unit 428, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
15
|
Hacken ET, Valentin R, Regis FFD, Sun J, Yin S, Werner L, Deng J, Gruber M, Wong J, Zheng M, Gill AL, Seiler M, Smith P, Thomas M, Buonamici S, Ghia EM, Kim E, Rassenti LZ, Burger JA, Kipps TJ, Meyerson ML, Bachireddy P, Wang L, Reed R, Neuberg D, Carrasco RD, Brooks AN, Letai A, Davids MS, Wu CJ. Splicing modulation sensitizes chronic lymphocytic leukemia cells to venetoclax by remodeling mitochondrial apoptotic dependencies. JCI Insight 2018; 3:121438. [PMID: 30282833 PMCID: PMC6237462 DOI: 10.1172/jci.insight.121438] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/29/2018] [Indexed: 12/30/2022] Open
Abstract
The identification of targetable vulnerabilities in the context of therapeutic resistance is a key challenge in cancer treatment. We detected pervasive aberrant splicing as a characteristic feature of chronic lymphocytic leukemia (CLL), irrespective of splicing factor mutation status, which was associated with sensitivity to the spliceosome modulator, E7107. Splicing modulation affected CLL survival pathways, including members of the B cell lymphoma-2 (BCL2) family of proteins, remodeling antiapoptotic dependencies of human and murine CLL cells. E7107 treatment decreased myeloid cell leukemia-1 (MCL1) dependence and increased BCL2 dependence, sensitizing primary human CLL cells and venetoclax-resistant CLL-like cells from an Eμ-TCL1-based adoptive transfer murine model to treatment with the BCL2 inhibitor venetoclax. Our data provide preclinical rationale to support the combination of venetoclax with splicing modulators to reprogram apoptotic dependencies in CLL for treating venetoclax-resistant CLL cases.
Collapse
Affiliation(s)
- Elisa ten Hacken
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Rebecca Valentin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Fara Faye D. Regis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jing Sun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Shanye Yin
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lillian Werner
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jing Deng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Michaela Gruber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jessica Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mei Zheng
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Amy L. Gill
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Peter Smith
- H3 Biomedicine Inc., Cambridge, Massachusetts, USA
| | | | | | - Emanuela M. Ghia
- Moores Cancer Center, University of California, San Diego, La Jolla, California, USA
| | - Ekaterina Kim
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Laura Z. Rassenti
- Moores Cancer Center, University of California, San Diego, La Jolla, California, USA
| | - Jan A. Burger
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Thomas J. Kipps
- Moores Cancer Center, University of California, San Diego, La Jolla, California, USA
| | - Matthew L. Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| | - Pavan Bachireddy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Lili Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Robin Reed
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Donna Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ruben D. Carrasco
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Angela N. Brooks
- Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Moreira R, Pereiro P, Balseiro P, Milan M, Pauletto M, Bargelloni L, Novoa B, Figueras A. Revealing Mytilus galloprovincialis transcriptomic profiles during ontogeny. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:292-306. [PMID: 29481906 DOI: 10.1016/j.dci.2018.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
Mediterranean mussels are a worldwide spread bivalve species with extraordinary biological success. One of the reasons of this success could be the reproduction strategy of bivalves, characterized by the presence of trochophore larvae. Larval development in bivalves has been a topic of raising interest in the scientific community but it deserves much more attention. The principal objective of this work was to study the transcriptomic profile of the ontogeny of Mytilus galloprovincialis analyzing the gene expression in different developmental stages, from oocytes to juveniles. For this purpose, after conducting a 454 sequencing of the transcriptomes of mussel hemocytes, adult tissues and larvae, a new DNA microarray was designed and developed. The studied developmental stages: unfertilized oocytes, veliger, pediveliger, settled larvae and juveniles, showed very different transcriptomic profiles and clustered in groups defining their characteristic gene expression along ontogeny. Our results show that oocytes present a distinct and characteristic transcriptome. After metamorphosis, both settled larvae and juveniles showed a very similar transcriptome, with no enriched GO terms found between these two stages. This suggests: 1.- the progressive loss of RNA of maternal origin through larval development and 2.- the stabilization of the gene expression after settlement. On the other hand during metamorphosis a specific profile of differentially expressed genes was found. These genes were related to processes such as differentiation and biosynthesis. Processes related to the immune response were strongly down regulated. These suggest a development commitment at the expense of other non-essential functions, which are temporary set aside. Immune genes such as antimicrobial peptides suffer a decreased expression during metamorphosis. In fact, we found that the oocytes which express a higher quantity of genes such as myticins are more likely to reach success of the offspring, compared to oocytes poor in such mRNAs, whose progeny died before reaching metamorphosis.
Collapse
Affiliation(s)
- Rebeca Moreira
- Instituto de Investigaciones Marinas, IIM - CSIC, Eduardo Cabello, 6, 36208 Vigo, Spain.
| | - Patricia Pereiro
- Instituto de Investigaciones Marinas, IIM - CSIC, Eduardo Cabello, 6, 36208 Vigo, Spain.
| | - Pablo Balseiro
- Instituto de Investigaciones Marinas, IIM - CSIC, Eduardo Cabello, 6, 36208 Vigo, Spain; Uni Research Environment, Uni Research AS, Nygårdsgaten 112, 5008 Bergen, Norway.
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science (BCA) University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy.
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science (BCA) University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy.
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science (BCA) University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy.
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas, IIM - CSIC, Eduardo Cabello, 6, 36208 Vigo, Spain.
| | - Antonio Figueras
- Instituto de Investigaciones Marinas, IIM - CSIC, Eduardo Cabello, 6, 36208 Vigo, Spain.
| |
Collapse
|
17
|
Rupniewska E, Roy R, Mauri FA, Liu X, Kaliszczak M, Bellezza G, Cagini L, Barbareschi M, Ferrero S, Tommasi AM, Aboagye E, Seckl MJ, Pardo OE. Targeting autophagy sensitises lung cancer cells to Src family kinase inhibitors. Oncotarget 2018; 9:27346-27362. [PMID: 29937990 PMCID: PMC6007948 DOI: 10.18632/oncotarget.25213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/04/2018] [Indexed: 11/25/2022] Open
Abstract
Lung cancer is the main cancer killer in both men and women, mostly due to the rapid development of drug resistant metastatic disease. Here, we evaluate the potential involvement of SRC family kinases (SFK) in lung cancer biology and assess the possible benefits of their inhibition as a therapeutic approach. We demonstrated that various SRC family members, including LYN and LCK, normally expressed solely in hematopoietic cells and neural tissues, are overexpressed and activated in a panel of SCLC and NSCLC cell lines. This was clinically relevant as LYN and FYN are also overexpressed in lung cancer clinical specimens. Moreover, LYN overexpression correlated with decreased patient survival on univariate and multivariate analysis. Dasatinib (BMS-354825), a SRC/ABL inhibitor, effectively blocked SFK activation at nanomolar concentrations which correlated with a significant decrease in cell numbers of multiple lung cancer cell lines. This effect was matched by a decrease in DNA synthesis, but only moderate induction of apoptosis. Indeed, dasatinib as well as PP2, another SFK inhibitor, strongly induced autophagy that likely prevented apoptosis. However, inhibition of this autophagic response induced robust apoptosis and sensitised lung cancer cells to dasatinib in vitro and in vivo. Our results provide an explanation for why dasatinib failed in NSCLC clinical trials. Furthermore, our data suggest that combining SFK inhibitors with autophagy inhibitors could provide a novel therapeutic approach in this disease.
Collapse
Affiliation(s)
- Ewa Rupniewska
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Rajat Roy
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Francesco A Mauri
- Department of Histopathology and Imperial College London, London, United Kingdom
| | - Xinxue Liu
- Statistical Advisory Service, Imperial College London, London, United Kingdom
| | - Maciej Kaliszczak
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Guido Bellezza
- Institute of Pathology, Division of Cancer Research, Perugia Medical School, University of Perugia, Perugia, Italy
| | - Lucio Cagini
- Department of Thoracic Surgery, Division of Cancer Research, Perugia Medical School, University of Perugia, Perugia, Italy
| | - Mattia Barbareschi
- Unit of Surgical Pathology, Laboratory of Molecular Pathology S. Chiara Hospital, Trento, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Anna M Tommasi
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Eric Aboagye
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Michael J Seckl
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Olivier E Pardo
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
The role of mTOR-mediated signaling in the regulation of cellular migration. Immunol Lett 2018; 196:74-79. [PMID: 29408410 DOI: 10.1016/j.imlet.2018.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
Abstract
Mechanistic target for rapamycin (mTOR) is a serine/threonine protein kinase that forms two distinct complexes mTORC1 and mTORC2, integrating mitogen and nutrient signals to regulate cell survival and proliferation; processes which are commonly deregulated in human cancers. mTORC1 and mTORC2 have divergent molecular associations and cellular functions: mTORC1 regulates in mRNA translation and protein synthesis, while mTORC2 is involved in the regulation of cellular survival and metabolism. Through AKT phosphorylation/activation, mTORC2 has also been reported to regulate cell migration. Recent attention has focused on the aberrant activation of the PI3K/mTOR pathway in B cell malignancies and there is growing evidence for its involvement in disease pathogenesis, due to its location downstream of other established novel drug targets that intercept B cell receptor (BCR) signals. Shared pharmacological features of BCR signal inhibitors include a striking "lymphocyte redistribution" effect whereby patients experience a sharp increase in lymphocyte count on initiation of therapy followed by a steady decline. Chronic lymphocytic leukemia (CLL) serves as a paradigm for migration studies as lymphocytes are among the most widely travelled cells in the body, a product of their role in immunological surveillance. The subversion of normal lymphocyte movement in CLL is being elucidated; this review aims to describe the migration impairment which occurs as part of the wider context of cancer cell migration defects, with a focus on the role of mTOR in mediating migration effects downstream of BCR ligation and other microenvironmental signals.
Collapse
|
19
|
Cortactin: Cell Functions of A Multifaceted Actin-Binding Protein. Trends Cell Biol 2018; 28:79-98. [DOI: 10.1016/j.tcb.2017.10.009] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 12/30/2022]
|
20
|
Röselová P, Obr A, Holoubek A, Grebeňová D, Kuželová K. Adhesion structures in leukemia cells and their regulation by Src family kinases. Cell Adh Migr 2017; 12:286-298. [PMID: 28678601 DOI: 10.1080/19336918.2017.1344796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interaction of leukemia blasts with the bone marrow extracellular matrix often results in protection of leukemia cells from chemotherapy and in persistence of the residual disease which is on the basis of subsequent relapses. The adhesion signaling pathways have been extensively studied in adherent cells as well as in mature haematopoietic cells, but the adhesion structures and signaling in haematopoietic stem and progenitor cells, either normal or malignant, are much less explored. We analyzed the interaction of leukemia cells with fibronectin (FN) using interference reflection microscopy, immunofluorescence, measurement of adherent cell fraction, real-time microimpedance measurement and live cell imaging. We found that leukemia cells form very dynamic adhesion structures similar to early stages of focal adhesions. In contrast to adherent cells, where Src family kinases (SFK) belong to important regulators of focal adhesion dynamics, we observed only minor effects of SFK inhibitor dasatinib on leukemia cell binding to FN. The relatively weak involvement of SFK in adhesion structure regulation might be associated with the lack of cytoskeletal mechanical tension in leukemia cells. On the other hand, active Lyn kinase was found to specifically localize to leukemia cell adhesion structures and a less firm cell attachment to FN was often associated with higher Lyn activity (this unexpectedly occurred also after cell treatment with the inhibitor SKI-1). Lyn thus may be important for signaling from integrin-associated complexes to other processes in leukemia cells.
Collapse
Affiliation(s)
- Pavla Röselová
- a Department of Proteomics , Institute of Hematology and Blood Transfusion , U Nemocnice 1, Prague , Czech Republic
| | - Adam Obr
- a Department of Proteomics , Institute of Hematology and Blood Transfusion , U Nemocnice 1, Prague , Czech Republic
| | - Aleš Holoubek
- a Department of Proteomics , Institute of Hematology and Blood Transfusion , U Nemocnice 1, Prague , Czech Republic
| | - Dana Grebeňová
- a Department of Proteomics , Institute of Hematology and Blood Transfusion , U Nemocnice 1, Prague , Czech Republic
| | - Kateřina Kuželová
- a Department of Proteomics , Institute of Hematology and Blood Transfusion , U Nemocnice 1, Prague , Czech Republic
| |
Collapse
|
21
|
Wnt5a induces ROR1 to complex with HS1 to enhance migration of chronic lymphocytic leukemia cells. Leukemia 2017; 31:2615-2622. [PMID: 28465529 PMCID: PMC5670028 DOI: 10.1038/leu.2017.133] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/24/2017] [Accepted: 03/17/2017] [Indexed: 01/23/2023]
Abstract
ROR1 (receptor tyrosine kinase-like orphan receptor 1) is a conserved, oncoembryonic surface antigen expressed in chronic lymphocytic leukemia (CLL). We found that ROR1 associates with hematopoietic-lineage-cell-specific protein 1 (HS1) in freshly isolated CLL cells or in CLL cells cultured with exogenous Wnt5a. Wnt5a also induced HS1 tyrosine phosphorylation, recruitment of ARHGEF1, activation of RhoA and enhanced chemokine-directed migration; such effects could be inhibited by cirmtuzumab, a humanized anti-ROR1 mAb. We generated truncated forms of ROR1 and found its extracellular cysteine-rich domain or kringle domain was necessary for Wnt5a-induced HS1 phosphorylation. Moreover, the cytoplamic, and more specifically the proline-rich domain (PRD), of ROR1 was required for it to associate with HS1 and allow for F-actin polymerization in response to Wnt5a. Accordingly, we introduced single amino acid substitutions of proline (P) to alanine (A) in the ROR1 PRD at positions 784, 808, 826, 841 or 850 in potential SH3-binding motifs. In contrast to wild-type ROR1, or other ROR1P→A mutants, ROR1P(841)A had impaired capacity to recruit HS1 and ARHGEF1 to ROR1 in response to Wnt5a. Moreover, Wnt5a could not induce cells expressing ROR1P(841)A to phosphorylate HS1 or activate ARHGEF1, and was unable to enhance CLL-cell motility. Collectively, these studies indicate HS1 plays an important role in ROR1-dependent Wnt5a-enhanced chemokine-directed leukemia-cell migration.
Collapse
|
22
|
Bone marrow stroma-induced resistance of chronic lymphocytic leukemia cells to arsenic trioxide involves Mcl-1 upregulation and is overcome by inhibiting the PI3Kδ or PKCβ signaling pathways. Oncotarget 2016; 6:44832-48. [PMID: 26540567 PMCID: PMC4792595 DOI: 10.18632/oncotarget.6265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/22/2015] [Indexed: 11/25/2022] Open
Abstract
CLL remains an incurable disease in spite of the many new compounds being studied. Arsenic trioxide (ATO) induces apoptosis in all CLL cell types and could constitute an efficient therapy. To further explore this, we have studied the influence of stromal cells, key components of the CLL microenvironment, on the response of CLL cells to ATO. Bone marrow stromal cells induced CLL cell resistance to 2 μM ATO and led to activation of Lyn, ERK, PI3K and PKC, as well as NF-κB and STAT3. Mcl-1, Bcl-xL, and Bfl-1 were also upregulated after the co-culture. Inhibition experiments indicated that PI3K and PKC were involved in the resistance to ATO induced by stroma. Moreover, idelalisib and sotrastaurin, specific inhibitors for PI3Kδ and PKCβ, respectively, inhibited Akt phosphorylation, NF-κB/STAT3 activation and Mcl-1 upregulation, and rendered cells sensitive to ATO. Mcl-1 was central to the mechanism of resistance to ATO, since: 1) Mcl-1 levels correlated with the CLL cell response to ATO, and 2) blocking Mcl-1 expression or function with specific siRNAs or inhibitors overcame the protecting effect of stroma. We have therefore identified the mechanism involved in the CLL cell resistance to ATO induced by bone marrow stroma and show that idelalisib or sotrastaurin block this mechanism and restore sensibility to ATO. Combination of ATO with these inhibitors may thus constitute an efficient treatment for CLL.
Collapse
|
23
|
Nguyen PH, Fedorchenko O, Rosen N, Koch M, Barthel R, Winarski T, Florin A, Wunderlich FT, Reinart N, Hallek M. LYN Kinase in the Tumor Microenvironment Is Essential for the Progression of Chronic Lymphocytic Leukemia. Cancer Cell 2016; 30:610-622. [PMID: 27728807 DOI: 10.1016/j.ccell.2016.09.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 05/16/2016] [Accepted: 09/15/2016] [Indexed: 01/09/2023]
Abstract
Survival of chronic lymphocytic leukemia (CLL) cells strictly depends on the support of an appropriate tumor microenvironment. Here, we demonstrate that LYN kinase is essential for CLL progression. Lyn deficiency results in a significantly reduced CLL burden in vivo. Loss of Lyn within leukemic cells reduces B cell receptor (BCR) signaling including BTK phosphorylation, but surprisingly does not affect leukemic cell expansion. Instead, syngeneic CLL transplantation of CLL cells into Lyn- or Btk-deficient recipients results in a strongly delayed leukemic progression and prolonged survival. Moreover, Lyn deficiency in macrophages hinders nursing functions for CLL cells, which is mediated by direct contact rather than secretion of soluble factors. Taken together, LYN and BTK seem essential for the formation of a microenvironment supporting leukemic growth.
Collapse
MESH Headings
- Animals
- Cell Proliferation/physiology
- Disease Progression
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Signal Transduction
- Tumor Microenvironment
- src-Family Kinases/genetics
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Phuong-Hien Nguyen
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on "Cellular Stress Responses in Aging-Associated Diseases", University of Cologne, 50931 Cologne, Germany
| | - Oleg Fedorchenko
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on "Cellular Stress Responses in Aging-Associated Diseases", University of Cologne, 50931 Cologne, Germany
| | - Natascha Rosen
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on "Cellular Stress Responses in Aging-Associated Diseases", University of Cologne, 50931 Cologne, Germany
| | - Maximilian Koch
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on "Cellular Stress Responses in Aging-Associated Diseases", University of Cologne, 50931 Cologne, Germany
| | - Romy Barthel
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on "Cellular Stress Responses in Aging-Associated Diseases", University of Cologne, 50931 Cologne, Germany
| | - Tomasz Winarski
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on "Cellular Stress Responses in Aging-Associated Diseases", University of Cologne, 50931 Cologne, Germany
| | - Alexandra Florin
- Institute of Pathology, University Hospital of Cologne, 50931 Cologne, Germany
| | - F Thomas Wunderlich
- Max Planck Institute for Metabolism Research; Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Nina Reinart
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on "Cellular Stress Responses in Aging-Associated Diseases", University of Cologne, 50931 Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on "Cellular Stress Responses in Aging-Associated Diseases", University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
24
|
Ten Hacken E, Sivina M, Kim E, O'Brien S, Wierda WG, Ferrajoli A, Estrov Z, Keating MJ, Oellerich T, Scielzo C, Ghia P, Caligaris-Cappio F, Burger JA. Functional Differences between IgM and IgD Signaling in Chronic Lymphocytic Leukemia. THE JOURNAL OF IMMUNOLOGY 2016; 197:2522-31. [PMID: 27534555 DOI: 10.4049/jimmunol.1600915] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/14/2016] [Indexed: 01/31/2023]
Abstract
BCR signaling is a central pathogenetic pathway in chronic lymphocytic leukemia (CLL). Most CLL cells express BCRs of IgM and IgD isotypes, but the contribution of these isotypes to functional responses remains incompletely defined. We therefore investigated differences between IgM and IgD signaling in freshly isolated peripheral blood CLL cells and in CLL cells cultured with nurselike cells, a model that mimics the lymph node microenvironment. IgM signaling induced prolonged activation of ERK kinases and promoted CLL cell survival, CCL3 and CCL4 chemokine secretion, and downregulation of BCL6, the transcriptional repressor of CCL3 In contrast, IgD signaling induced activation of the cytoskeletal protein HS1, along with F-actin polymerization, which resulted in rapid receptor internalization and failure to support downstream responses, including CLL cell survival and chemokine secretion. IgM and IgD receptor downmodulation, HS1 and ERK activation, chemokine secretion, and BCL6 downregulation were also observed when CLL cells were cocultured with nurselike cells. The Bruton's tyrosine kinase inhibitor ibrutinib effectively inhibited both IgM and IgD isotype signaling. In conclusion, through a variety of functional readouts, we demonstrate very distinct outcomes of IgM and IgD isotype activation in CLL cells, providing novel insight into the regulation of BCR signaling in CLL.
Collapse
Affiliation(s)
- Elisa Ten Hacken
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77230
| | - Mariela Sivina
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77230
| | - Ekaterina Kim
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77230
| | - Susan O'Brien
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77230
| | - William G Wierda
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77230
| | - Alessandra Ferrajoli
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77230
| | - Zeev Estrov
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77230
| | - Michael J Keating
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77230
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt, Germany; and
| | - Cristina Scielzo
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele and Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Paolo Ghia
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele and Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Federico Caligaris-Cappio
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele and Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Jan A Burger
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77230;
| |
Collapse
|
25
|
Allen JC, Talab F, Slupsky JR. Targeting B-cell receptor signaling in leukemia and lymphoma: how and why? Int J Hematol Oncol 2016; 5:37-53. [PMID: 30302202 DOI: 10.2217/ijh-2016-0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/13/2016] [Indexed: 01/04/2023] Open
Abstract
B-lymphocytes are dependent on B-cell receptor (BCR) signaling for the constant maintenance of their physiological function, and in many B-cell malignancies this signaling pathway is prone to aberrant activation. This understanding has led to an ever-increasing interest in the signaling networks activated following ligation of the BCR in both normal and malignant cells, and has been critical in establishing an array of small molecule inhibitors targeting BCR-induced signaling. By dissecting how different malignancies signal through BCR, researchers are contributing to the design of more customized therapeutics which have greater efficacy and lower toxicity than previous therapies. This allows clinicians access to an array of approaches to best treat patients whose malignancies have BCR signaling as a driver of pathogenesis.
Collapse
Affiliation(s)
- John C Allen
- Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK.,Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK
| | - Fatima Talab
- Redx Oncology Plc, Duncan Building, Royal Liverpool University Hospital, Daulby Street, Liverpool, L69 3GA, UK.,Redx Oncology Plc, Duncan Building, Royal Liverpool University Hospital, Daulby Street, Liverpool, L69 3GA, UK
| | - Joseph R Slupsky
- Department of Molecular & Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK.,Department of Molecular & Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| |
Collapse
|
26
|
Duyvestyn JM, Taylor SJ, Dagger SA, Langdon WY. Dasatinib promotes the activation of quiescent hematopoietic stem cells in mice. Exp Hematol 2016; 44:410-421.e5. [DOI: 10.1016/j.exphem.2016.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 12/01/2022]
|
27
|
Ten Hacken E, Burger JA. Microenvironment interactions and B-cell receptor signaling in Chronic Lymphocytic Leukemia: Implications for disease pathogenesis and treatment. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:401-413. [PMID: 26193078 PMCID: PMC4715999 DOI: 10.1016/j.bbamcr.2015.07.009] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/11/2015] [Accepted: 07/13/2015] [Indexed: 01/01/2023]
Abstract
Chronic Lymphocytic Leukemia (CLL) is a malignancy of mature B lymphocytes which are highly dependent on interactions with the tissue microenvironment for their survival and proliferation. Critical components of the microenvironment are monocyte-derived nurselike cells (NLCs), mesenchymal stromal cells, T cells and NK cells, which communicate with CLL cells through a complex network of adhesion molecules, chemokine receptors, tumor necrosis factor (TNF) family members, and soluble factors. (Auto-) antigens and/or autonomous mechanisms activate the B-cell receptor (BCR) and its downstream signaling cascade in secondary lymphatic tissues, playing a central pathogenetic role in CLL. Novel small molecule inhibitors, including the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib and the phosphoinositide-3-kinase delta (PI3Kδ) inhibitor idelalisib, target BCR signaling and have become the most successful new therapeutics in this disease. We here review the cellular and molecular characteristics of CLL cells, and discuss the cellular components and key pathways involved in the cross-talk with their microenvironment. We also highlight the relevant novel treatment strategies, focusing on immunomodulatory agents and BCR signaling inhibitors and how these treatments disrupt CLL-microenvironment interactions. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.
Collapse
MESH Headings
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Models, Biological
- Molecular Targeted Therapy
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinases/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/drug effects
- Tumor Microenvironment
Collapse
Affiliation(s)
- Elisa Ten Hacken
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jan A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
28
|
HIF-1α regulates the interaction of chronic lymphocytic leukemia cells with the tumor microenvironment. Blood 2016; 127:1987-97. [PMID: 26825709 DOI: 10.1182/blood-2015-07-657056] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/07/2016] [Indexed: 12/19/2022] Open
Abstract
Hypoxia-inducible transcription factors (HIFs) regulate a wide array of adaptive responses to hypoxia and are often activated in solid tumors and hematologic malignancies due to intratumoral hypoxia and emerging new layers of regulation. We found that in chronic lymphocytic leukemia (CLL), HIF-1α is a novel regulator of the interaction of CLL cells with protective leukemia microenvironments and, in turn, is regulated by this interaction in a positive feedback loop that promotes leukemia survival and propagation. Through unbiased microarray analysis, we found that in CLL cells, HIF-1α regulates the expression of important chemokine receptors and cell adhesion molecules that control the interaction of leukemic cells with bone marrow and spleen microenvironments. Inactivation of HIF-1α impairs chemotaxis and cell adhesion to stroma, reduces bone marrow and spleen colonization in xenograft and allograft CLL mouse models, and prolongs survival in mice. Of interest, we found that in CLL cells, HIF-1α is transcriptionally regulated after coculture with stromal cells. Furthermore, HIF-1α messenger RNA levels vary significantly within CLL patients and correlate with the expression of HIF-1α target genes, including CXCR4, thus further emphasizing the relevance of HIF-1α expression to CLL pathogenesis.
Collapse
|
29
|
Bresin A, D'Abundo L, Narducci MG, Fiorenza MT, Croce CM, Negrini M, Russo G. TCL1 transgenic mouse model as a tool for the study of therapeutic targets and microenvironment in human B-cell chronic lymphocytic leukemia. Cell Death Dis 2016; 7:e2071. [PMID: 26821067 PMCID: PMC4816192 DOI: 10.1038/cddis.2015.419] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/22/2015] [Accepted: 12/27/2015] [Indexed: 01/13/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy with a mature phenotype. In spite of its relatively indolent nature, no radical cure is as yet available. CLL is not associated with either a unique cytogenetic or a molecular defect, which might have been a potential therapeutic target. Instead, several factors are involved in disease development, such as environmental signals which interact with genetic abnormalities to promote survival, proliferation and an immune surveillance escape. Among these, PI3-Kinase signal pathway alterations are nowadays considered to be clearly important. The TCL1 gene, an AKT co-activator, is the cause of a mature T-cell leukemia, as well as being highly expressed in all B-CLL. A TCL1 transgenic mouse which reproduces leukemia with a distinct immunophenotype and similar to the course of the human B-CLL was developed several years ago and is widely used by many groups. This is a review of the CLL biology arising from work of many independent investigators who have used TCL1 transgenic mouse model focusing on pathogenetic, microenviroment and therapeutic targets.
Collapse
Affiliation(s)
- A Bresin
- Laboratorio di Oncologia Molecolare, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - L D'Abundo
- Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Università di Ferrara, Ferrara, Italy
| | - M G Narducci
- Laboratorio di Oncologia Molecolare, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - M T Fiorenza
- Dipartimento di Psicologia, Sezione di Neuroscienze, Università La Sapienza di Roma, Rome, Italy
| | - C M Croce
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology and Medical Genetics, OSU School of Medicine, Ohio State University, Columbus, OH, USA
| | - M Negrini
- Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Università di Ferrara, Ferrara, Italy
| | - G Russo
- Laboratorio di Oncologia Molecolare, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| |
Collapse
|
30
|
Abstract
B-cell receptor (BCR) signaling plays a vital role in B-cell malignancies; Bruton tyrosine kinase is a critical mediator of this signaling. BCR signaling, either constitutively or following antigen binding, leads to activation of several downstream pathways involved in cell survival, proliferation and migration. The efficacy observed in studies of the Bruton tyrosine kinase inhibitor, ibrutinib, confirms that BCR signaling is critical for the growth of B-cell malignancies. Ibrutinib characteristically induces redistribution of malignant B cells from tissues into the peripheral blood and rapid resolution of adenopathy. Furthermore, ibrutinib therapy results in normalization of lymphocyte counts and improvement in cytopenias. Ibrutinib has been shown to have an excellent safety profile and does not cause myelosuppression. Early data from combination studies of ibrutinib with anti-CD20 monoclonal antibodies have shown more rapid responses compared to those seen with ibrutinib monotherapy. Current data strongly support continued clinical evaluation of ibrutinib in B-cell malignancies.
Collapse
Affiliation(s)
- Talha Badar
- Department of Leukemia, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 428, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
31
|
Mato A, Jauhari S, Schuster SJ. Management of chronic lymphocytic leukemia (CLL) in the era of B-cell receptor signal transduction inhibitors. Am J Hematol 2015; 90:657-64. [PMID: 25808792 DOI: 10.1002/ajh.24021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 02/01/2023]
Abstract
The treatment of patients with chronic lymphocytic leukemia (CLL), an indolent B-cell lymphoma is in the midst of a transformation. There are a large number of promising new therapeutic agents and cellular therapies being studied which exhibit remarkable activity, favorable toxicity profiles, convenient administration schedules, and treatment options are rapidly expanding. The recent advances in the management of CLL exemplify the value of translational medicine. This review highlights key aspects of B-cell receptor (BCR) signaling in relation to novel inhibitors of the BCR signaling pathway, currently at various stages of preclinical and clinical development.
Collapse
Affiliation(s)
- Anthony Mato
- Center for Chronic Lymphocytic Leukemia and Lymphoma Program; Abramson Cancer Center of the University of Pennsylvania; Philadelphia PA
| | - Shekeab Jauhari
- Center for Chronic Lymphocytic Leukemia and Lymphoma Program; Abramson Cancer Center of the University of Pennsylvania; Philadelphia PA
| | - Stephen J. Schuster
- Center for Chronic Lymphocytic Leukemia and Lymphoma Program; Abramson Cancer Center of the University of Pennsylvania; Philadelphia PA
| |
Collapse
|
32
|
Agathangelidis A, Scarfò L, Barbaglio F, Apollonio B, Bertilaccio MTS, Ranghetti P, Ponzoni M, Leone G, De Pascali V, Pecciarini L, Ghia P, Caligaris-Cappio F, Scielzo C. Establishment and Characterization of PCL12, a Novel CD5+ Chronic Lymphocytic Leukaemia Cell Line. PLoS One 2015; 10:e0130195. [PMID: 26110819 PMCID: PMC4481539 DOI: 10.1371/journal.pone.0130195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/17/2015] [Indexed: 12/20/2022] Open
Abstract
Immortalized cell lines representative of chronic lymphocytic leukemia (CLL) can assist in understanding disease pathogenesis and testing new therapeutic agents. At present, very few representative cell lines are available. We here describe the characterization of a new cell line (PCL12) that grew spontaneously from the peripheral blood (PB) of a CLL patient with progressive disease and EBV infection. The CLL cell origin of PCL12 was confirmed after the alignment of its IGH sequence against the “original” clonotypic sequence. The IGH gene rearrangement was truly unmutated and no CLL-related cytogenetic or genetic lesions were detected. PCL12 cells express CD19, CD20, CD5, CD23, low levels of IgM and IgD and the poor-outcome-associated prognostic markers CD38, ZAP70 and TCL1. In accordance with its aggressive phenotype the cell line is inactive in terms of LYN and HS1 phosphorylation. BcR signalling pathway is constitutively active and anergic in terms of p-ERK and Calcium flux response to α-IgM stimulation. PCL12 cells strongly migrate in vitro in response to SDF-1 and form clusters. Finally, they grow rapidly and localize in all lymphoid organs when xenotrasplanted in Rag2-/-γc-/- mice. PCL12 represents a suitable preclinical model for testing pharmacological agents.
Collapse
MESH Headings
- Animals
- CD5 Antigens/metabolism
- Cell Line, Tumor
- Gene Rearrangement
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Neoplasm Transplantation
- Phenotype
- ZAP-70 Protein-Tyrosine Kinase/metabolism
Collapse
Affiliation(s)
- Andreas Agathangelidis
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of B Cell Neoplasia, Milano, Italy
| | - Lydia Scarfò
- Università Vita-Salute San Raffaele, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of B Cell Neoplasia, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Lymphoma Unit, Department of Onco-Hematology, Milan, Italy
| | - Federica Barbaglio
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
| | - Benedetta Apollonio
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
| | - Maria Teresa Sabrina Bertilaccio
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Pamela Ranghetti
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
| | - Maurilio Ponzoni
- IRCCS San Raffaele Scientific Institute, Lymphoma Unit, Department of Onco-Hematology, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Pathology Unit, Milan, Italy
| | - Gabriella Leone
- IRCCS San Raffaele Scientific Institute, Lymphoma Unit, Department of Onco-Hematology, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Pathology Unit, Milan, Italy
| | | | | | - Paolo Ghia
- Università Vita-Salute San Raffaele, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of B Cell Neoplasia, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Lymphoma Unit, Department of Onco-Hematology, Milan, Italy
| | - Federico Caligaris-Cappio
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Lymphoma Unit, Department of Onco-Hematology, Milan, Italy
| | - Cristina Scielzo
- IRCCS San Raffaele Scientific Institute, Division of Experimental Oncology, Unit of Lymphoid Malignancies, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
- * E-mail:
| |
Collapse
|
33
|
Oksvold MP, Duyvestyn JM, Dagger SA, Taylor SJ, Forfang L, Myklebust JH, Smeland EB, Langdon WY. The targeting of human and mouse B lymphocytes by dasatinib. Exp Hematol 2015; 43:352-363.e4. [DOI: 10.1016/j.exphem.2015.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 10/24/2022]
|
34
|
ten Hacken E, Burger JA. Microenvironment dependency in Chronic Lymphocytic Leukemia: The basis for new targeted therapies. Pharmacol Ther 2014; 144:338-48. [PMID: 25050922 DOI: 10.1016/j.pharmthera.2014.07.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/11/2014] [Indexed: 02/03/2023]
Abstract
Chronic Lymphocytic Leukemia (CLL) is a prototype microenvironment-dependent B-cell malignancy, in which the neoplastic B cells co-evolve together with a supportive tissue microenvironment, which promotes leukemia cell survival, growth, and drug-resistance. Chemo-immunotherapy is an established treatment modality for CLL patients, resulting in high rates of responses and improved survival, especially in low-risk CLL. New, alternative treatments target B-cell receptor (BCR) signaling and the Chemokine (C-X-C motif) Receptor 4 (CXCR4)-Chemokine (C-X-C motif) Ligand 12 (CXCL12) axis, which are key pathways of CLL-microenvironment cross talk. The remarkable clinical efficacy of inhibitors targeting the BCR-associated kinases Bruton's tyrosine kinase (BTK) and phosphoinositide 3-kinase delta (PI3Kδ) challenges established therapeutic paradigms and corroborates the central role of BCR signaling in CLL pathogenesis. In this review, we discuss the cellular and molecular components of the CLL microenvironment. We also describe the emerging therapeutic options for CLL patients, with a focus on inhibitors of CXCR4-CXCL12 and BCR signaling.
Collapse
Affiliation(s)
- Elisa ten Hacken
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Jan A Burger
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
35
|
Lettau M, Kabelitz D, Janssen O. SDF1α-induced interaction of the adapter proteins Nck and HS1 facilitates actin polymerization and migration in T cells. Eur J Immunol 2014; 45:551-61. [PMID: 25359136 DOI: 10.1002/eji.201444473] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 10/07/2014] [Accepted: 10/24/2014] [Indexed: 12/22/2022]
Abstract
Noncatalytic region of tyrosine kinase (Nck) is an adapter protein that comprises one SH2 (Src homology) domain and three SH3 domains. Nck links receptors and receptor-associated tyrosine kinases or adapter proteins to proteins that regulate the actin cytoskeleton. Whereas the SH2 domain binds to phosphorylated receptors or associated phosphoproteins, individual interactions of the SH3 domains with proline-based recognition motifs result in the formation of larger protein complexes. In T cells, changes in cell polarity and morphology during T-cell activation and effector function require the T-cell receptor-mediated recruitment and activation of actin-regulatory proteins to initiate cytoskeletal reorganization at the immunological synapse. We previously identified the adapter protein HS1 as a putative Nck-interacting protein. We now demonstrate that the SH2 domain of Nck specifically interacts with HS1 upon phosphorylation of its tyrosine residue 378. We report that in human T cells, ligation of the chemokine receptor CXCR4 by stromal cell-derived factor 1α (SDF1α) induces a rapid and transient phosphorylation of tyrosine 378 of HS1 resulting in an increased association with Nck. Consequently, siRNA-mediated downregulation of HS1 and/or Nck impairs SDF1α-induced actin polymerization and T-cell migration.
Collapse
Affiliation(s)
- Marcus Lettau
- Institute of Immunology, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | | |
Collapse
|
36
|
Mele S, Devereux S, Ridley AJ. Rho and Rap guanosine triphosphatase signaling in B cells and chronic lymphocytic leukemia. Leuk Lymphoma 2014; 55:1993-2001. [PMID: 24237579 DOI: 10.3109/10428194.2013.866666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chronic lymphocytic leukemia (CLL) cells proliferate predominantly in niches in the lymph nodes, where signaling from the B cell receptor (BCR) and the surrounding microenvironment are critical for disease progression. In addition, leukemic cells traffic constantly from the bloodstream into the lymph nodes, migrate within lymphatic tissues and egress back to the bloodstream. These processes are driven by chemokines and their receptors, and depend on changes in cell migration and integrin-mediated adhesion. Here we describe how Rho and Rap guanosine triphosphatases (GTPases) contribute to both BCR signaling and chemokine receptor signaling, particularly by regulating cytoskeletal dynamics and integrin activity. We propose that new inhibitors of BCR-activated kinases are likely to affect CLL cell trafficking via Rho and Rap GTPases, and that upstream regulators or downstream effectors could be good targets for therapeutic intervention in CLL.
Collapse
Affiliation(s)
- Silvia Mele
- Randall Division of Cell and Molecular Biophysics, King's College London , London , UK
| | | | | |
Collapse
|
37
|
Abstract
Mouse models that recapitulate human malignancy are valuable tools for the elucidation of the underlying pathogenetic mechanisms and for preclinical studies. Several genetically engineered mouse models have been generated, either mimicking genetic aberrations or deregulated gene expression in chronic lymphocytic leukemia (CLL). The usefulness of such models in the study of the human disease may potentially be hampered by species-specific biological differences in the target cell of the oncogenic transformation. Specifically, do the genetic lesions or the deregulated expression of leukemia-associated genes faithfully recapitulate the spectrum of lymphoproliferations in humans? Do the CLL-like lymphoproliferations in the mouse have the phenotypic, histological, genetic, and clinical features of the human disease? Here we compare the various CLL mouse models with regard to disease phenotype, penetrance, and severity. We discuss similarities and differences of the murine lymphoproliferations compared with human CLL. We propose that the Eμ-TCL1 transgenic and 13q14-deletion models that have been comprehensively studied at the levels of leukemia phenotype, antigen-receptor repertoire, and disease course show close resemblance to the human disease. We conclude that modeling CLL-associated genetic dysregulations in mice can provide important insights into the molecular mechanisms of disease pathogenesis and generate valuable tools for the development of novel therapies.
Collapse
|
38
|
Slupsky JR. Does B cell receptor signaling in chronic lymphocytic leukaemia cells differ from that in other B cell types? SCIENTIFICA 2014; 2014:208928. [PMID: 25101192 PMCID: PMC4102070 DOI: 10.1155/2014/208928] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/02/2014] [Indexed: 06/03/2023]
Abstract
Chronic lymphocytic leukaemia (CLL) is an incurable malignancy of mature B cells. CLL is important clinically in Western countries because of its commonality and because of the significant morbidity and mortality associated with the progressive form of this incurable disease. The B cell receptor (BCR) expressed on the malignant cells in CLL contributes to disease pathogenesis by providing signals for survival and proliferation, and the signal transduction pathway initiated by engagement of this receptor is now the target of several therapeutic strategies. The purpose of this review is to outline current understanding of the BCR signal cascade in normal B cells and then question whether this understanding applies to CLL cells. In particular, this review studies the phenomenon of anergy in CLL cells, and whether certain adaptations allow the cells to overcome anergy and allow full BCR signaling to take place. Finally, this review analyzes how BCR signals can be therapeutically targeted for the treatment of CLL.
Collapse
Affiliation(s)
- Joseph R. Slupsky
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 6th Floor, Duncan Building, Daulby Street, Liverpool L69 3GA, UK
| |
Collapse
|
39
|
Luo W, Mayeux J, Gutierrez T, Russell L, Getahun A, Müller J, Tedder T, Parnes J, Rickert R, Nitschke L, Cambier J, Satterthwaite AB, Garrett-Sinha LA. A balance between B cell receptor and inhibitory receptor signaling controls plasma cell differentiation by maintaining optimal Ets1 levels. THE JOURNAL OF IMMUNOLOGY 2014; 193:909-920. [PMID: 24929000 DOI: 10.4049/jimmunol.1400666] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Signaling through the BCR can drive B cell activation and contribute to B cell differentiation into Ab-secreting plasma cells. The positive BCR signal is counterbalanced by a number of membrane-localized inhibitory receptors that limit B cell activation and plasma cell differentiation. Deficiencies in these negative signaling pathways may cause autoantibody generation and autoimmune disease in both animal models and human patients. We have previously shown that the transcription factor Ets1 can restrain B cell differentiation into plasma cells. In this study, we tested the roles of the BCR and inhibitory receptors in controlling the expression of Ets1 in mouse B cells. We found that Ets1 is downregulated in B cells by BCR or TLR signaling through a pathway dependent on PI3K, Btk, IKK2, and JNK. Deficiencies in inhibitory pathways, such as a loss of the tyrosine kinase Lyn, the phosphatase Src homology region 2 domain-containing phosphatase 1 (SHP1) or membrane receptors CD22 and/or Siglec-G, result in enhanced BCR signaling and decreased Ets1 expression. Restoring Ets1 expression in Lyn- or SHP1-deficient B cells inhibits their enhanced plasma cell differentiation. Our findings indicate that downregulation of Ets1 occurs in response to B cell activation via either BCR or TLR signaling, thereby allowing B cell differentiation and that the maintenance of Ets1 expression is an important function of the inhibitory Lyn → CD22/SiglecG → SHP1 pathway in B cells.
Collapse
Affiliation(s)
- Wei Luo
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Jessica Mayeux
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Toni Gutierrez
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Lisa Russell
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Andrew Getahun
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Jennifer Müller
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Thomas Tedder
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Jane Parnes
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Robert Rickert
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Lars Nitschke
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - John Cambier
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Anne B Satterthwaite
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203
| |
Collapse
|
40
|
Frezzato F, Trimarco V, Martini V, Gattazzo C, Ave E, Visentin A, Cabrelle A, Olivieri V, Zambello R, Facco M, Zonta F, Cristiani A, Brunati AM, Moro S, Semenzato G, Trentin L. Leukaemic cells from chronic lymphocytic leukaemia patients undergo apoptosis following microtubule depolymerization and Lyn inhibition by nocodazole. Br J Haematol 2014; 165:659-72. [PMID: 24606526 DOI: 10.1111/bjh.12815] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/18/2013] [Indexed: 12/25/2022]
Abstract
Functional abnormalities of chronic lymphocytic leukaemia (CLL) cells may be related to the microtubular network of cell cytoskeleton; specifically tubulin involvement in cells after B-cell receptor engagement. As microtubule inhibitors could represent a therapeutic strategy for CLL, this study investigated the capability of nocodazole, a synthetic depolymerizing agent, to kill CLL leukaemic cells. We demonstrated that nocodazole was highly specific for the in vitro induction of apoptosis in leukaemic cells from 90 CLL patients, without affecting the viability of T-cells and/or mesenchymal stromal cells (MSCs) recovered from the same patients. Nocodazole was observed to overcome the pro-survival signals provided by MSCs. Competing with ATP for the nucleotide-binding site, nocodazole has been observed to turn off the high basal tyrosine phosphorylation of leukaemic cells mediated by the Src-kinase Lyn. Considering that most anti-microtubule drugs have limited clinical use because of their strong toxic effects, the high selectivity of nocodazole for leukaemic cells in CLL and its capability to bypass microenvironmental pro-survival stimuli, suggests the use of this inhibitor for designing new therapeutic strategies in CLL treatment.
Collapse
Affiliation(s)
- Federica Frezzato
- Venetian Institute of Molecular Medicine (VIMM), Centro di Eccellenza per la Ricerca Biomedica, Padova, Italy; Department of Medicine, Haematology and Clinical Immunology Branch, Padova University School of Medicine, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gattazzo C, Martini V, Frezzato F, Trimarco V, Tibaldi E, Castelli M, Facco M, Zonta F, Brunati AM, Zambello R, Semenzato G, Trentin L. Cortactin, another player in the Lyn signaling pathway, is over-expressed and alternatively spliced in leukemic cells from patients with B-cell chronic lymphocytic leukemia. Haematologica 2014; 99:1069-77. [PMID: 24532043 DOI: 10.3324/haematol.2013.090183] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cortactin, an actin binding protein and Lyn substrate, is up-regulated in several cancers and its level is associated with increased cell migration, metastasis and poor prognosis. The identification that the Src kinase Lyn and its substrate HS1 are over-expressed in B-cell chronic lymphocytic leukemia and involved in resistance to chemotherapy and poor prognosis, prompted us to investigate the role of cortactin, an HS1 homolog, in the pathogenesis and progression of this disorder. In this study, we observed that cortactin is over-expressed in leukemic cells of patients (1.10 ± 0.12) with respect to normal B lymphocytes (0.19 ± 0.06; P=0.0065). Fifty-three percent of our patients expressed the WT mRNA and p80/85 protein isoforms, usually lacking in normal B lymphocytes which express the SV1 variant and the p70/75 protein isoforms. Moreover, we found an association of the cortactin overexpression and negative prognostic factors, including ZAP-70 (P<0.01), CD38 (P<0.01) and somatic hypermutations in the immunoglobulin heavy-chain variable region (P<0.01). Our results show that patients with B-cell chronic lymphocytic leukemia express high levels of cortactin with a particular overexpression of the WT isoform that is lacking in normal B cells, and a correlation to poor prognosis, suggesting that this protein could be relevant in the pathogenesis and aggressiveness of the disease.
Collapse
Affiliation(s)
- Cristina Gattazzo
- Departement of Medicine, Hematology and Clinical Immunology Branch, Padova University School of Medicine, Italy Venetian Institute of Molecular Medicine, Padova, Italy
| | - Veronica Martini
- Departement of Medicine, Hematology and Clinical Immunology Branch, Padova University School of Medicine, Italy Venetian Institute of Molecular Medicine, Padova, Italy
| | - Federica Frezzato
- Departement of Medicine, Hematology and Clinical Immunology Branch, Padova University School of Medicine, Italy Venetian Institute of Molecular Medicine, Padova, Italy
| | | | - Elena Tibaldi
- Department of Molecular Medicine, University of Padova, Italy
| | - Monica Castelli
- Departement of Medicine, Hematology and Clinical Immunology Branch, Padova University School of Medicine, Italy
| | - Monica Facco
- Departement of Medicine, Hematology and Clinical Immunology Branch, Padova University School of Medicine, Italy Venetian Institute of Molecular Medicine, Padova, Italy
| | - Francesca Zonta
- Department of Molecular Medicine, University of Padova, Italy
| | | | - Renato Zambello
- Departement of Medicine, Hematology and Clinical Immunology Branch, Padova University School of Medicine, Italy Venetian Institute of Molecular Medicine, Padova, Italy
| | - Gianpietro Semenzato
- Departement of Medicine, Hematology and Clinical Immunology Branch, Padova University School of Medicine, Italy Venetian Institute of Molecular Medicine, Padova, Italy
| | - Livio Trentin
- Departement of Medicine, Hematology and Clinical Immunology Branch, Padova University School of Medicine, Italy Venetian Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
42
|
Caligaris-Cappio F, Bertilaccio MT, Scielzo C. How the microenvironment wires the natural history of chronic lymphocytic leukemia. Semin Cancer Biol 2014; 24:43-8. [DOI: 10.1016/j.semcancer.2013.06.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/21/2013] [Accepted: 06/25/2013] [Indexed: 11/16/2022]
|
43
|
ten Hacken E, Burger JA. Molecular pathways: targeting the microenvironment in chronic lymphocytic leukemia--focus on the B-cell receptor. Clin Cancer Res 2014; 20:548-56. [PMID: 24323900 DOI: 10.1158/1078-0432.ccr-13-0226] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Interactions between malignant B lymphocytes and the tissue microenvironment play a major role in the pathogenesis of chronic lymphocytic leukemia (CLL) and other B-cell malignancies. The coexistence and coevolution of CLL cells with their tissue neighbors provided the basis for discovery of critical cellular and molecular drivers of the disease and identification of new therapeutic targets. Bone marrow stromal cells (BMSC), monocyte-derived nurselike cells (NLC), and T cells are key players in the CLL microenvironment, which activate and protect CLL cells within the tissues. CLL surface molecules, such as the B-cell antigen receptor (BCR), chemokine receptors, adhesion molecules, and TNF receptor superfamily members (e.g., CD40, BCMA, and BAFF-R) engage in cross-talk with respective tissue ligands. This cross-talk results in survival and expansion of the CLL clone, and protects CLL cells from conventional cytotoxic drugs. Inhibiting these pathways represents an alternative therapeutic strategy to more conventional chemoimmunotherapy. Here, we review central components of the CLL microenvironment, with a particular emphasis on BCR signaling, and we summarize the most relevant clinical advances with inhibitors that target the BCR-associated spleen tyrosine kinase/SYK (fostamatinib), Bruton's tyrosine kinase/BTK (ibrutinib), and PI3Kδ (idelalisib).
Collapse
Affiliation(s)
- Elisa ten Hacken
- Authors' Affiliation: Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | |
Collapse
|
44
|
Abstract
For many years there has been considerable disassociation between the understood biology of chronic lymphocytic leukemia (CLL) and the therapeutics used to treat this disease. With the introduction of the first targeted CD20 antibody rituximab and its addition to chemotherapy came the first observation that minimal residual disease-negative (MRD-negative) complete responses (CRs) could be obtained with dramatically improved progression-free survival and overall survival. This advance was soon to be surpassed by the introduction of therapeutics that target B-cell receptor (BCR) signaling. New data show that BCR-inhibiting agents are very active for the treatment of relapsed CLL, despite the lack of MRD-negative CR, with durability of response being considerably more impressive than previously observed with other agents not producing MRD-negative CRs. This perspective provides a view of where these agents may take us in the future as CLL therapy evolves with this exciting new class of drugs.
Collapse
|
45
|
Niemann CU, Wiestner A. B-cell receptor signaling as a driver of lymphoma development and evolution. Semin Cancer Biol 2013; 23:410-21. [PMID: 24060900 PMCID: PMC4208312 DOI: 10.1016/j.semcancer.2013.09.001] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 02/06/2023]
Abstract
The B-cell receptor (BCR) is essential for normal B-cell development and maturation. In an increasing number of B-cell malignancies, BCR signaling is implicated as a pivotal pathway in tumorigenesis. Mechanisms of BCR activation are quite diverse and range from chronic antigenic drive by microbial or viral antigens to autostimulation of B-cells by self-antigens to activating mutations in intracellular components of the BCR pathway. Hepatitis C virus infection can lead to the development of splenic marginal zone lymphoma, while Helicobacter pylori infection is associated with the development of mucosa-associated lymphoid tissue lymphomas. In some of these cases, successful treatment of the infection removes the inciting antigen and results in resolution of the lymphoma. Chronic lymphocytic leukemia has been recognized for decades as a malignancy of auto-reactive B-cells and its clinical course is in part determined by the differential response of the malignant cells to BCR activation. In a number of B-cell malignancies, activating mutations in signal transduction components of the BCR pathway have been identified; prominent examples are activated B-cell-like (ABC) diffuse large B-cell lymphomas (DLBCL) that carry mutations in CD79B and CARD11 and display chronic active BCR signaling resulting in constitutive activation of the NF-κB pathway. Despite considerable heterogeneity in biology and clinical course, many mature B-cell malignancies are highly sensitive to kinase inhibitors that disrupt BCR signaling. Thus, targeted therapy through inhibition of BCR signaling is emerging as a new treatment paradigm for many B-cell malignancies. Here, we review the role of the BCR in the pathogenesis of B-cell malignancies and summarize clinical results of the emerging class of kinase inhibitors that target this pathway.
Collapse
Affiliation(s)
- Carsten U Niemann
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
46
|
Knudsen PB, Hanna B, Ohl S, Sellner L, Zenz T, Döhner H, Stilgenbauer S, Larsen TO, Lichter P, Seiffert M. Chaetoglobosin A preferentially induces apoptosis in chronic lymphocytic leukemia cells by targeting the cytoskeleton. Leukemia 2013; 28:1289-98. [PMID: 24280868 DOI: 10.1038/leu.2013.360] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/08/2013] [Accepted: 11/20/2013] [Indexed: 12/19/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable malignancy of mature B cells. One of the major challenges in treatment of CLL is the achievement of a complete remission to prevent relapse of disease originating from cells within lymphoid tissues and subsequent chemoresistance. In search for novel drugs that target CLL cells in protective microenvironments, we performed a fungal extract screen using cocultures of primary CLL cells with bone marrow-derived stromal cells. A secondary metabolite produced by Penicillium aquamarinium was identified as Chaetoglobosin A (ChA), a member of the cytochalasan family that showed preferential induction of apoptosis in CLL cells, even under culture conditions that mimic lymphoid tissues. In vitro testing of 89 CLL cases revealed effective targeting of CLL cells by ChA, independent of bad prognosis characteristics, like 17p deletion or TP53 mutation. To provide insight into its mechanism of action, we showed that ChA targets filamentous actin in CLL cells and thereby induces cell-cycle arrest and inhibits membrane ruffling and cell migration. Our data further revealed that ChA prevents CLL cell activation and sensitizes them for treatment with PI3K and BTK inhibitors, suggesting this compound as a novel potential drug for CLL.
Collapse
Affiliation(s)
- P B Knudsen
- 1] Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany [2] Department of Systems Biology, Technical University of Denmark (DTU), Lyngby, Denmark
| | - B Hanna
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - S Ohl
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - L Sellner
- 1] Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany [2] Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - T Zenz
- 1] Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany [2] Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - H Döhner
- Internal Medicine III, University of Ulm, Ulm, Germany
| | | | - T O Larsen
- Department of Systems Biology, Technical University of Denmark (DTU), Lyngby, Denmark
| | - P Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Seiffert
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
47
|
Kater AP, Spiering M, Liu RD, Doreen Te Raa G, Slinger E, Tonino SH, Beckers MM, Daenen S, Doorduijn JK, Lankheet NAG, Luijks DM, Eldering E, van Oers MHJ. Dasatinib in combination with fludarabine in patients with refractory chronic lymphocytic leukemia: a multicenter phase 2 study. Leuk Res 2013; 38:34-41. [PMID: 24238639 DOI: 10.1016/j.leukres.2013.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/07/2013] [Accepted: 10/04/2013] [Indexed: 01/16/2023]
Abstract
Resistance to chemotherapy-induced apoptosis in CLL is associated with overexpression of antiapoptotic proteins induced by signals from the microenvironment. In vitro, dasatinib effectively inhibits expression of anti-apoptotic regulators and restores fludarabine sensitivity in activated CLL. The aim of this study was to evaluate efficacy of one cycle of dasatinib monotherapy (100mg/day, days 1-28) followed by combination of dasatinib with fludarabine (40mg/m²/day, days 1-3 every 28 day) for a total of 6 cycles in fludarabine-refractory CLL. The primary endpoint was overall response rate according to the IWCLL'08 criteria. 20 patients were enrolled: 18 completed at least one cycle of treatment of which 67% finished at least 2 cycles of combination treatment. 3 of these 18 patients reached a formal PR (16.7%). Majority of patients obtained some reduction in lymph node (LN) size. Most frequent toxicity was related to myelosuppression. NF-κB RNA expression levels of circulating CLL cells decreased whereas the levels of pro-apoptotic NOXA increased during treatment. In conclusion, dasatinib/fludarabine combination has modest clinical efficacy in fludarabine-refractory patients.
Collapse
Affiliation(s)
- Arnon P Kater
- Department of Hematology, Academic Medical Centre, Amsterdam, The Netherlands; LYMMCARE (Lymphoma and Myeloma Center Amsterdam), The Netherlands.
| | - Marjolein Spiering
- Department of Hematology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Roberto D Liu
- Department of Hematology, Academic Medical Centre, Amsterdam, The Netherlands
| | - G Doreen Te Raa
- Department of Hematology, Academic Medical Centre, Amsterdam, The Netherlands
| | - E Slinger
- Department of Hematology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Sanne H Tonino
- Department of Hematology, Academic Medical Centre, Amsterdam, The Netherlands; LYMMCARE (Lymphoma and Myeloma Center Amsterdam), The Netherlands
| | | | - Simon Daenen
- University Medical Centre Groningen, The Netherlands
| | | | - Nienke A G Lankheet
- Department of Pharmacy & Pharmacology, Slotervaart Hospital/The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Dieuwertje M Luijks
- Department of Hematology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Eric Eldering
- Laboratory of Experimental Medicine, Academic Medical Centre, Amsterdam, The Netherlands; LYMMCARE (Lymphoma and Myeloma Center Amsterdam), The Netherlands
| | - Marinus H J van Oers
- Department of Hematology, Academic Medical Centre, Amsterdam, The Netherlands; LYMMCARE (Lymphoma and Myeloma Center Amsterdam), The Netherlands
| |
Collapse
|
48
|
Lainey E, Wolfromm A, Sukkurwala AQ, Micol JB, Fenaux P, Galluzzi L, Kepp O, Kroemer G. EGFR inhibitors exacerbate differentiation and cell cycle arrest induced by retinoic acid and vitamin D3 in acute myeloid leukemia cells. Cell Cycle 2013; 12:2978-91. [PMID: 23974111 DOI: 10.4161/cc.26016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
By means of an unbiased, automated fluorescence microscopy-based screen, we identified the epidermal growth factor receptor (EGFR) inhibitors erlotinib and gefitinib as potent enhancers of the differentiation of HL-60 acute myeloid leukemia (AML) cells exposed to suboptimal concentrations of vitamin A (all-trans retinoic acid, ATRA) or vitamin D (1α,25-hydroxycholecalciferol, VD). Erlotinib and gefitinib alone did not promote differentiation, yet stimulated the acquisition of morphological and biochemical maturation markers (including the expression of CD11b and CD14 as well as increased NADPH oxidase activity) when combined with either ATRA or VD. Moreover, the combination of erlotinib and ATRA or VD synergistically induced all the processes that are normally linked to terminal hematopoietic differentiation, namely, a delayed proliferation arrest in the G0/G1 phase of the cell cycle, cellular senescence, and apoptosis. Erlotinib potently inhibited the (auto)phosphorylation of mitogen-activated protein kinase 14 (MAPK14, best known as p38(MAPK)) and SRC family kinases (SFKs). If combined with the administration of ATRA or VD, the inhibition of p38(MAPK) or SFKs with specific pharmacological agents mimicked the pro-differentiation activity of erlotinib. These data were obtained with 2 distinct AML cell lines (HL-60 and MOLM-13 cells) and could be confirmed on primary leukemic blasts isolated from the circulation of AML patients. Altogether, these findings point to a new regimen for the treatment of AML, in which naturally occurring pro-differentiation agents (ATRA or VD) may be combined with EGFR inhibitors.
Collapse
Affiliation(s)
- Elodie Lainey
- INSERM; U848; Villejuif, France; Gustave Roussy; Villejuif, France; Université Paris Sud/Paris XI; Le Kremlin Bicêtre, France; Hôpital Robert Debré; AP-HP; Paris, France
| | | | | | | | | | | | | | | |
Collapse
|