1
|
Swanson KA, Phelps HM, Grant MT, Lang EP, Warner BW, Vrecenak JD. Despite routing to GI and pulmonary tissues, donor cells fail to engraft after intra-amniotic or intravascular cell delivery in a healthy allogeneic mouse model. Transpl Immunol 2025; 89:102200. [PMID: 39961392 DOI: 10.1016/j.trim.2025.102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
In utero hematopoietic cell transplantation (IUHCT) exploits tolerogenic fetal immunologic development to facilitate engraftment of donor. Non-hematopoietic donor-derived cells have been described in both in-utero and post-natal models of hematopoietic cell transplantation. However, while epithelial routing has been reported, long-term engraftment following IUHCT has not been well studied. We utilized intra-amniotic (IA) or intravascular (IV) IUHCT to evaluate routing and engraftment within the pulmonary and gastrointestinal (GI) tract. High donor-cell viability is observed in the amniotic fluid 24 h after IA injection (mean 89.1 %). At 24 and 72 h, donor cells were present within the lumens of GI and pulmonary tissues and in the parenchyma of the liver, suggesting that donor cells route effectively to epithelial surfaces and hematogenous targets following IA injection. However, following IA delivery, long-term engraftment was not observed in peripheral blood, and there was no evidence of donor-derived cells in any target tissue including lung, bowel, or liver. Following IV injection, mean peripheral blood chimerism at terminal harvest was 23.86 % (SEM 12.44; Range 0.00-98.90). Following IV delivery, donor-derived cells were noted in the bowel, liver, and lung but not in the epithelium, suggesting these cells are circulating or tissue-resident leukocytes. Despite the routing of donor cells to multiple fetal sites, the IA injection was an extremely inefficient method for long-term engraftment in the hematopoietic niche, in organ parenchyma, or on epithelial surfaces. In contrast, despite IV IUHCT being able to consistently produce hematopoietic engraftment, epithelial engraftment was not observed, suggesting a limited role for IV IHUCT in epithelial disorders.
Collapse
Affiliation(s)
- Kerry A Swanson
- Division of Pediatric Surgery, Washington University in St. Louis School of Medicine, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, MO 63110, USA.
| | - Hannah M Phelps
- Division of Pediatric Surgery, Washington University in St. Louis School of Medicine, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, MO 63110, USA.
| | - Matthew T Grant
- Division of Pediatric Surgery, Washington University in St. Louis School of Medicine, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, MO 63110, USA.
| | - Eliza P Lang
- Division of Pediatric Surgery, Washington University in St. Louis School of Medicine, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, MO 63110, USA.
| | - Brad W Warner
- Division of Pediatric Surgery, Washington University in St. Louis School of Medicine, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, MO 63110, USA.
| | - Jesse D Vrecenak
- Division of Pediatric Surgery, Washington University in St. Louis School of Medicine, St. Louis Children's Hospital, One Children's Place, Suite 6110, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Riley JS, Berkowitz CL, Luks VL, Dave A, Cyril-Olutayo MC, Pogoriler J, Flake AW, Abdulmalik O, Peranteau WH. Immune modulation permits tolerance and engraftment in a murine model of late-gestation transplantation. Blood Adv 2024; 8:4523-4538. [PMID: 38941538 PMCID: PMC11395771 DOI: 10.1182/bloodadvances.2023012247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/08/2024] [Accepted: 06/15/2024] [Indexed: 06/30/2024] Open
Abstract
ABSTRACT In utero hematopoietic cell transplantation is an experimental nonmyeloablative therapy with potential applications in hematologic disorders, including sickle cell disease (SCD). Its clinical utility has been limited due to the early acquisition of T-cell immunity beginning at ∼14 weeks gestation, posing significant technical challenges and excluding treatment fetuses evaluated after the first trimester. Using murine neonatal transplantation at 20 days postcoitum (DPC) as a model for late-gestation transplantation (LGT) in humans, we investigated whether immune modulation with anti-CD3 monoclonal antibody (mAb) could achieve donor-specific tolerance and sustained allogeneic engraftment comparable with that of the early-gestation fetal recipient at 14 DPC. In allogeneic wild-type strain combinations, administration of anti-CD3 mAb with transplantation resulted in transient T-cell depletion followed by central tolerance induction confirmed by donor-specific clonal deletion and skin graft tolerance. Normal immune responses to third-party major histocompatibility complex and viral pathogens were preserved, and graft-versus-host disease did not occur. We further demonstrated the successful application of this approach in the Townes mouse model of SCD. These findings confirm the developing fetal T-cell response as a barrier to LGT and support transient T-cell depletion as a safe and effective immunomodulatory strategy to overcome it.
Collapse
Affiliation(s)
- John S. Riley
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Cara L. Berkowitz
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Valerie L. Luks
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Apeksha Dave
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Mojisola C. Cyril-Olutayo
- Department of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Drug Research and Production Unit, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jennifer Pogoriler
- Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Alan W. Flake
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Osheiza Abdulmalik
- Department of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - William H Peranteau
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
3
|
Dave A, Liu S, Riley JS, Bose S, Luks V, Berkowitz C, Menon P, Jung S, Li H, Kurre P, Peranteau WH. In utero hematopoietic cell transplantation leads to sustained engraftment in a mouse model of Fanconi anemia. Blood Adv 2024; 8:624-628. [PMID: 37906519 PMCID: PMC10838693 DOI: 10.1182/bloodadvances.2023010354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/18/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023] Open
Affiliation(s)
- Apeksha Dave
- The Center for Fetal Research, Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Suying Liu
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA
- Cell and Molecular Biology Graduate Training Program, University of Pennsylvania, Philadelphia, PA
| | - John S. Riley
- The Center for Fetal Research, Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Sourav Bose
- The Center for Fetal Research, Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Valerie Luks
- The Center for Fetal Research, Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Cara Berkowitz
- The Center for Fetal Research, Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Pallavi Menon
- The Center for Fetal Research, Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Seul Jung
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Haiying Li
- The Center for Fetal Research, Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - William H. Peranteau
- The Center for Fetal Research, Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
4
|
Riley JS, McClain LE, Stratigis JD, Coons BE, Bose SK, Dave A, White BM, Li H, Loukogeorgakis SP, Fachin CG, Dias AIBS, Flake AW, Peranteau WH. Fetal allotransplant recipients are resistant to graft-versus-host disease. Exp Hematol 2023; 118:31-39.e3. [PMID: 36535408 PMCID: PMC9898145 DOI: 10.1016/j.exphem.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
In utero hematopoietic cell transplantation (IUHCT) is an experimental treatment for congenital hemoglobinopathies, including Sickle cell disease and thalassemias. One of the principal advantages of IUHCT is the predisposition of the developing fetus toward immunologic tolerance. This allows for engraftment across immune barriers without immunosuppression and, potentially, decreased susceptibility to graft-versus-host disease (GVHD). We demonstrate fetal resistance to GVHD following T cell-replete allogeneic hematopoietic cell transplantation compared with the neonate. We show that this resistance is associated with elevated fetal serum interleukin-10 conducive to the induction of regulatory T cells (Tregs). Finally, we demonstrate that the adoptive transfer of Tregs from IUHCT recipients to neonates uniformly prevents GVHD, recapitulating the predisposition to tolerance observed after fetal allotransplantation. These findings demonstrate fetal resistance to GVHD following hematopoietic cell transplantation and elucidate Tregs as important contributors.
Collapse
Affiliation(s)
- John S Riley
- Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Lauren E McClain
- Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - John D Stratigis
- Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Barbara E Coons
- Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Sourav K Bose
- Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Apeksha Dave
- Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Brandon M White
- Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Haiying Li
- Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Camila G Fachin
- Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Andre I B S Dias
- Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Alan W Flake
- Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - William H Peranteau
- Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA.
| |
Collapse
|
5
|
Aslan A, Yuka SA. Stem Cell-Based Therapeutic Approaches in Genetic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:19-53. [PMID: 36735185 DOI: 10.1007/5584_2023_761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Stem cells, which can self-renew and differentiate into different cell types, have become the keystone of regenerative medicine due to these properties. With the achievement of superior clinical results in the therapeutic approaches of different diseases, the applications of these cells in the treatment of genetic diseases have also come to the fore. Foremost, conventional approaches of stem cells to genetic diseases are the first approaches in this manner, and they have brought safety issues due to immune reactions caused by allogeneic transplantation. To eliminate these safety issues and phenotypic abnormalities caused by genetic defects, firstly, basic genetic engineering practices such as vectors or RNA modulators were combined with stem cell-based therapeutic approaches. However, due to challenges such as immune reactions and inability to target cells effectively in these applications, advanced molecular methods have been adopted in ZFN, TALEN, and CRISPR/Cas genome editing nucleases, which allow modular designs in stem cell-based genetic diseases' therapeutic approaches. Current studies in genetic diseases are in the direction of creating permanent treatment regimens by genomic manipulation of stem cells with differentiation potential through genome editing tools. In this chapter, the stem cell-based therapeutic approaches of various vital genetic diseases were addressed wide range from conventional applications to genome editing tools.
Collapse
Affiliation(s)
- Ayça Aslan
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Selcen Arı Yuka
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey.
| |
Collapse
|
6
|
Shi C, Pan L, Hu Z. Experimental and clinical progress of in utero hematopoietic cell transplantation therapy for congenital disorders. Front Pharmacol 2022; 13:851375. [PMID: 36120324 PMCID: PMC9478511 DOI: 10.3389/fphar.2022.851375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
In utero hematopoietic cell transplantation (IUHCT) is considered a potentially efficient therapeutic approach with relatively few side effects, compared to adult hematopoietic cell transplantation, for various hematological genetic disorders. The principle of IUHCT has been extensively studied in rodent models and in some large animals with close evolutionary similarities to human beings. However, IUHCT has only been used to rebuild human T cell immunity in certain patients with inherent immunodeficiencies. This review will first summarize the animal models utilized for IUHCT investigations and describe the associated outcomes. Recent advances and potential barriers for successful IUHCT are discussed, followed by possible strategies to overcome these barriers experimentally. Lastly, we will outline the progress made towards utilizing IUHCT to treat inherent disorders for patients, list out associated limitations and propose feasible means to promote the efficacy of IUHCT clinically.
Collapse
Affiliation(s)
- Chunyu Shi
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lu Pan
- Department of Pediatric Immunology, Allergy and Rheumatology, The First Hospital of Jilin University, Changchun, China
| | - Zheng Hu
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Zheng Hu,
| |
Collapse
|
7
|
Fetal therapies and trials for lysosomal storage diseases: a survey of attitudes of parents and patients. Orphanet J Rare Dis 2022; 17:25. [PMID: 35093147 PMCID: PMC8800365 DOI: 10.1186/s13023-022-02178-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/16/2022] [Indexed: 01/28/2023] Open
Abstract
Background Lysosomal storage diseases (LSDs) are inherited metabolic disorders that may lead to severe multi-organ disease. Current ERTs are limited by anti-drug antibodies, the blood–brain barrier, and early disease onset and progression before ERT is started. We have opened a phase I clinical trial of enzyme replacement therapy (ERT) for fetuses with LSDs (NCT04532047). We evaluated the attitudes of parents and patients with LSDs towards fetal clinical trials and therapies. Methods A multidisciplinary team designed a survey which was distributed by five international patient advocacy groups. We collected patients’ demographic, diagnostic, and treatment information. Associations between respondent characteristics and attitudes towards fetal therapies/trials were analyzed using multivariate ordinal logistic regression. Results The survey was completed by 181 adults from 19 countries. The majority of respondents were mothers from the United States. The most common diseases were MPS1 (26%), MPS3 (19%), and infantile-onset Pompe (14%). Most patients (88%) were diagnosed after birth, at a median of 21 months. Altogether, 65% of participating patients and children of participants had received ERT, 27% a stem cell transplant, and 4% gene therapy. We found that half (49%) of respondents were unlikely to terminate a future affected pregnancy, 55% would enroll in a phase I clinical trial for fetal ERT, and 46% would enroll in a fetal gene therapy trial. Respondents who received postnatal ERT were significantly more likely enroll in a trial for fetal ERT or gene therapy (ERT OR 4.48, 95% CI 2.13–9.44, p < 0.0001; gene therapy OR 3.03, 95% CI 1.43–6.43, p = 0.0038). Respondents who used clinicaltrials.gov as a main source of information were more likely to choose to participate in a fetal trial (ERT OR 2.43, 95% CI 1.18–5.01, p = 0.016; gene therapy OR 2.86, 95% CI 1.27–6.46, p = 0.011). Conclusions Familiarity with postnatal ERT increased respondents’ likelihood of pursuing fetal therapies. Families who use clinicaltrials.gov may be more receptive to innovative fetal treatments. The patient community has a favorable attitude towards fetal therapy; over half of respondents would enroll in a phase I clinical trial to assess the safety and efficacy of fetal ERT.
Collapse
|
8
|
Horvei P, MacKenzie T, Kharbanda S. Advances in the management of α-thalassemia major: reasons to be optimistic. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:592-599. [PMID: 34889445 PMCID: PMC8791144 DOI: 10.1182/hematology.2021000295] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
α-Thalassemia major (ATM) is a severe disease resulting from deletions in all 4 copies of the α-globin gene. Although it is usually fatal before birth, the advent of in utero transfusions has enabled survival of a growing number of children. Postnatal therapy consists of chronic transfusions or stem cell transplantation, similar to patients with β-thalassemia major. In this review, we discuss the experience with postnatal stem cell transplantation in patients with ATM, as well as the ongoing phase 1 clinical trial of in utero stem cell transplantation for this condition.
Collapse
Affiliation(s)
- Paulina Horvei
- Division of Pediatric Allergy, Immunology and Bone Marrow Transplantation, UCSF Benioff Children's Hospital, University of California, San Francisco, CA
| | - Tippi MacKenzie
- Division of Pediatric Surgery and Fetal Treatment Center, UCSF Benioff Children's Hospital, University of California, San Francisco, CA
| | - Sandhya Kharbanda
- Division of Pediatric Allergy, Immunology and Bone Marrow Transplantation, UCSF Benioff Children's Hospital, University of California, San Francisco, CA
| |
Collapse
|
9
|
Abstract
Primary immunodeficiencies (PIDs) have become a prime target for gene therapy given the morbidity, mortality, and the single gene etiology. Given that outcomes are better the earlier gene therapy is implemented, it is possible that fetal gene therapy may be an important future direction for the treatment of PIDs. In this chapter, the current treatments available for several PIDs will be reviewed, as well as the history and current status of gene therapy for PIDs. The possibility of in utero gene therapy as a possibility will then be discussed.
Collapse
Affiliation(s)
- Anne H Mardy
- Department of Obstetrics, Gynecology, and Reproductive Services, University of California, San Francisco, California
| | | |
Collapse
|
10
|
Stem C, Rodman C, Ramamurthy RM, George S, Meares D, Farland A, Atala A, Doering CB, Spencer HT, Porada CD, Almeida-Porada G. Investigating Optimal Autologous Cellular Platforms for Prenatal or Perinatal Factor VIII Delivery to Treat Hemophilia A. Front Cell Dev Biol 2021; 9:678117. [PMID: 34447745 PMCID: PMC8383113 DOI: 10.3389/fcell.2021.678117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
Patients with the severe form of hemophilia A (HA) present with a severe phenotype, and can suffer from life-threatening, spontaneous hemorrhaging. While prophylactic FVIII infusions have revolutionized the clinical management of HA, this treatment is short-lived, expensive, and it is not available to many A patients worldwide. In the present study, we evaluated a panel of readily available cell types for their suitability as cellular vehicles to deliver long-lasting FVIII replacement following transduction with a retroviral vector encoding a B domain-deleted human F8 transgene. Given the immune hurdles that currently plague factor replacement therapy, we focused our investigation on cell types that we deemed to be most relevant to either prenatal or very early postnatal treatment and that could, ideally, be autologously derived. Our findings identify several promising candidates for use as cell-based FVIII delivery vehicles and lay the groundwork for future mechanistic studies to delineate bottlenecks to efficient production and secretion of FVIII following genetic-modification.
Collapse
Affiliation(s)
- Christopher Stem
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher Rodman
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ritu M. Ramamurthy
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sunil George
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Diane Meares
- Special Hematology Laboratory, Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Andrew Farland
- Special Hematology Laboratory, Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher B. Doering
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, United States
| | - H. Trent Spencer
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher D. Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
11
|
Bose SK, White BM, Kashyap MV, Dave A, De Bie FR, Li H, Singh K, Menon P, Wang T, Teerdhala S, Swaminathan V, Hartman HA, Jayachandran S, Chandrasekaran P, Musunuru K, Jain R, Frank DB, Zoltick P, Peranteau WH. In utero adenine base editing corrects multi-organ pathology in a lethal lysosomal storage disease. Nat Commun 2021; 12:4291. [PMID: 34257302 PMCID: PMC8277817 DOI: 10.1038/s41467-021-24443-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 06/09/2021] [Indexed: 01/19/2023] Open
Abstract
In utero base editing has the potential to correct disease-causing mutations before the onset of pathology. Mucopolysaccharidosis type I (MPS-IH, Hurler syndrome) is a lysosomal storage disease (LSD) affecting multiple organs, often leading to early postnatal cardiopulmonary demise. We assessed in utero adeno-associated virus serotype 9 (AAV9) delivery of an adenine base editor (ABE) targeting the Idua G→A (W392X) mutation in the MPS-IH mouse, corresponding to the common IDUA G→A (W402X) mutation in MPS-IH patients. Here we show efficient long-term W392X correction in hepatocytes and cardiomyocytes and low-level editing in the brain. In utero editing was associated with improved survival and amelioration of metabolic, musculoskeletal, and cardiac disease. This proof-of-concept study demonstrates the possibility of efficiently performing therapeutic base editing in multiple organs before birth via a clinically relevant delivery mechanism, highlighting the potential of this approach for MPS-IH and other genetic diseases.
Collapse
Affiliation(s)
- Sourav K Bose
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brandon M White
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Meghana V Kashyap
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Apeksha Dave
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Felix R De Bie
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Haiying Li
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kshitiz Singh
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Pallavi Menon
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tiankun Wang
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shiva Teerdhala
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Vishal Swaminathan
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Heather A Hartman
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sowmya Jayachandran
- Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Center for Pulmonary Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Prashant Chandrasekaran
- Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Center for Pulmonary Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kiran Musunuru
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Rajan Jain
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David B Frank
- Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Center for Pulmonary Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Philip Zoltick
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - William H Peranteau
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Kandasamy K, Tan LG, B Johana N, Tan YW, Foo W, Yeo JSL, Ravikumar V, Ginhoux F, Choolani M, Chan JKY, Mattar CNZ. Maternal microchimerism and cell-mediated immune-modulation enhance engraftment following semi-allogenic intrauterine transplantation. FASEB J 2021; 35:e21413. [PMID: 33570785 DOI: 10.1096/fj.202002185rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 11/11/2022]
Abstract
Successful intrauterine hematopoietic cell transplantation (IUT) for congenital hemoglobinopathies is hampered by maternal alloresponsiveness. We investigate these interactions in semi-allogenic murine IUT. E14 fetuses (B6 females × BALB/c males) were each treated with 5E+6 maternal (B6) or paternal (BALB/c) bone marrow cells and serially monitored for chimerism (>1% engraftment), trafficked maternal immune cells, and immune responsiveness to donor cells. A total of 41.0% of maternal IUT recipients (mIUT) were chimeras (mean donor chimerism 3.0 ± 1.3%) versus 75.0% of paternal IUT recipients (pIUT, 3.6 ± 1.1%). Chimeras showed higher maternal microchimerism of CD4, CD8, and CD19 than non-chimeras. These maternal cells showed minimal responsiveness to B6 or BALB/c stimulation. To interrogate tolerance, mIUT were injected postnatally with 5E+6 B6 cells/pup; pIUT received BALB/c cells. IUT-treated pups showed no changes in trafficked maternal or fetal immune cell levels compared to controls. Donor-specific IgM and IgG were expressed by 1%-3% of recipients. mIUT splenocytes showed greater proliferation of regulatory T cells (Treg) upon BALB/c stimulation, while B6 stimulation upregulated the pro-inflammatory cytokines more than BALB/c. pIUT splenocytes produced identical Treg and cytokine responses to BALB/c and B6 cells, with higher Treg activity and lower pro-inflammatory cytokine expression upon exposure to BALB/c. In contrast, naïve fetal splenocytes demonstrated greater alloresponsiveness to BALB/c compared to B6 cells. Thus pIUT, associated with increased maternal cell trafficking, modulates fetal Treg, and cytokine responsiveness to donor cells more efficiently than mIUT, resulting in improved engraftment. Paternal donor cells may be considered alternatively to maternal donor cells for intrauterine and postnatal transplantation to induce tolerance and maintain engraftment.
Collapse
Affiliation(s)
- Karthikeyan Kandasamy
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lay Geok Tan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore, Singapore
| | - Nuryanti B Johana
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Yi Wan Tan
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Wanling Foo
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Julie S L Yeo
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Vikashini Ravikumar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mahesh Choolani
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore, Singapore
| | - Jerry K Y Chan
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore, Singapore
| |
Collapse
|
13
|
Nguyen QH, Witt RG, Wang B, Eikani C, Shea J, Smith LK, Boyle G, Cadaoas J, Sper R, MacKenzie JD, Villeda S, MacKenzie TC. Tolerance induction and microglial engraftment after fetal therapy without conditioning in mice with Mucopolysaccharidosis type VII. Sci Transl Med 2021; 12:12/532/eaay8980. [PMID: 32102934 DOI: 10.1126/scitranslmed.aay8980] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
Mucopolysaccharidosis type VII (MPS7) is a lysosomal storage disorder (LSD) resulting from mutations in the β-glucuronidase gene, leading to multiorgan dysfunction and fetal demise. While postnatal enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation have resulted in some phenotypic improvements, prenatal treatment might take advantage of a unique developmental window to penetrate the blood-brain barrier or induce tolerance to the missing protein, addressing two important shortcomings of postnatal therapy for multiple LSDs. We performed in utero ERT (IUERT) at E14.5 in MPS7 mice and improved survival of affected mice to birth. IUERT penetrated brain microglia, whereas postnatal administration did not, and neurological testing (after IUERT plus postnatal administration) showed decreased microglial inflammation and improved grip strength in treated mice. IUERT prevented antienzyme antibody development even after multiple repeated postnatal challenges. To test a more durable treatment strategy, we performed in utero hematopoietic stem cell transplantation (IUHCT) using congenic CX3C chemokine receptor 1-green fluorescent protein (CX3CR1-GFP) mice as donors, such that donor-derived microglia are identified by GFP expression. In wild-type recipients, hematopoietic chimerism resulted in microglial engraftment throughout the brain without irradiation or conditioning; the transcriptomes of donor and host microglia were similar. IUHCT in MPS7 mice enabled cross-correction of liver Kupffer cells and improved phenotype in multiple tissues. Engrafted microglia were seen in chimeric mice, with decreased inflammation near donor microglia. These results suggest that fetal therapy with IUERT and/or IUHCT could overcome the shortcomings of current treatment strategies to improve phenotype in MPS7 and other LSDs.
Collapse
Affiliation(s)
- Quoc-Hung Nguyen
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Russell G Witt
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bowen Wang
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Carlo Eikani
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeremy Shea
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lucas K Smith
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | - Renan Sper
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John D MacKenzie
- Department of Radiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Saul Villeda
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tippi C MacKenzie
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA. .,Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.,Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
14
|
Regulatory T cells promote alloengraftment in a model of late-gestation in utero hematopoietic cell transplantation. Blood Adv 2021; 4:1102-1114. [PMID: 32203584 DOI: 10.1182/bloodadvances.2019001208] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/22/2020] [Indexed: 12/15/2022] Open
Abstract
In utero hematopoietic cell transplantation (IUHCT) has the potential to cure congenital hematologic disorders including sickle cell disease. However, the window of opportunity for IUHCT closes with the acquisition of T-cell immunity, beginning at approximately 14 weeks gestation, posing significant technical challenges and excluding from treatment fetuses evaluated after the first trimester. Here we report that regulatory T cells can promote alloengraftment and preserve allograft tolerance after the acquisition of T-cell immunity in a mouse model of late-gestation IUHCT. We show that allografts enriched with regulatory T cells harvested from either IUHCT-tolerant or naive mice engraft at 20 days post coitum (DPC) with equal frequency to unenriched allografts transplanted at 14 DPC. Long-term, multilineage donor cell chimerism was achieved in the absence of graft-versus-host disease or mortality. Decreased alloreactivity among recipient T cells was observed consistent with donor-specific tolerance. These findings suggest that donor graft enrichment with regulatory T cells could be used to successfully perform IUHCT later in gestation.
Collapse
|
15
|
Jeon H, Asano K, Wakimoto A, Kulathunga K, Tran MTN, Nakamura M, Yokomizo T, Hamada M, Takahashi S. Generation of reconstituted hemato-lymphoid murine embryos by placental transplantation into embryos lacking HSCs. Sci Rep 2021; 11:4374. [PMID: 33623082 PMCID: PMC7902833 DOI: 10.1038/s41598-021-83652-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/28/2021] [Indexed: 11/28/2022] Open
Abstract
In order to increase the contribution of donor HSC cells, irradiation and DNA alkylating agents have been commonly used as experimental methods to eliminate HSCs for adult mice. But a technique of HSC deletion for mouse embryo for increase contribution of donor cells has not been published. Here, we established for the first time a procedure for placental HSC transplantation into E11.5 Runx1-deficient mice mated with G1-HRD-Runx1 transgenic mice (Runx1-/-::Tg mice) that have no HSCs in the fetal liver. Following the transplantation of fetal liver cells from mice (allogeneic) or rats (xenogeneic), high donor cell chimerism was observed in Runx1-/-::Tg embryos. Furthermore, chimerism analysis and colony assay data showed that donor fetal liver hematopoietic cells contributed to both white blood cells and red blood cells. Moreover, secondary transplantation into adult recipient mice indicated that the HSCs in rescued Runx1-/-::Tg embryos had normal abilities. These results suggest that mice lacking fetal liver HSCs are a powerful tool for hematopoiesis reconstruction during the embryonic stage and can potentially be used in basic research on HSCs or xenograft models.
Collapse
Affiliation(s)
- Hyojung Jeon
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Keigo Asano
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Arata Wakimoto
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kaushalya Kulathunga
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Department of Physiology, Faculty of Medicine, Sabaragamuwa University of Sri Lanka, P.O. Box 01, Hidellana, Ratnapura, Sri Lanka
| | - Mai Thi Nhu Tran
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Megumi Nakamura
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tomomasa Yokomizo
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan. .,Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan. .,Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan. .,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
16
|
Cortabarria ASDV, Makhoul L, Strouboulis J, Lombardi G, Oteng-Ntim E, Shangaris P. In utero Therapy for the Treatment of Sickle Cell Disease: Taking Advantage of the Fetal Immune System. Front Cell Dev Biol 2021; 8:624477. [PMID: 33553164 PMCID: PMC7862553 DOI: 10.3389/fcell.2020.624477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/23/2020] [Indexed: 01/16/2023] Open
Abstract
Sickle Cell Disease (SCD) is an autosomal recessive disorder resulting from a β-globin gene missense mutation and is among the most prevalent severe monogenic disorders worldwide. Haematopoietic stem cell transplantation remains the only curative option for the disease, as most management options focus solely on symptom control. Progress in prenatal diagnosis and fetal therapeutic intervention raises the possibility of in utero treatment. SCD can be diagnosed prenatally in high-risk patients using chorionic villus sampling. Among the possible prenatal treatments, in utero stem cell transplantation (IUSCT) shows the most promise. IUSCT is a non-myeloablative, non-immunosuppressive alternative conferring various unique advantages and may also offer safer postnatal management. Fetal immunologic immaturity could allow engraftment of allogeneic cells before fetal immune system maturation, donor-specific tolerance and lifelong chimerism. In this review, we will discuss SCD, screening and current treatments. We will present the therapeutic rationale for IUSCT, examine the early experimental work and initial human experience, as well as consider primary barriers of clinically implementing IUSCT and the promising approaches to address them.
Collapse
Affiliation(s)
| | - Laura Makhoul
- GKT School of Medical Education, King's College London, London, United Kingdom
| | - John Strouboulis
- School of Cancer & Pharmaceutical Sciences, Kings College London, London, United Kingdom
| | - Giovanna Lombardi
- School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Eugene Oteng-Ntim
- School of Life Course Sciences, Kings College London, London, United Kingdom
| | - Panicos Shangaris
- School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
- School of Life Course Sciences, Kings College London, London, United Kingdom
| |
Collapse
|
17
|
Tai-MacArthur S, Lombardi G, Shangaris P. The Theoretical Basis of In Utero Hematopoietic Stem Cell Transplantation and Its Use in the Treatment of Blood Disorders. Stem Cells Dev 2021; 30:49-58. [PMID: 33280478 DOI: 10.1089/scd.2020.0181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Since its conception, prenatal therapy has been successful in correction of mainly anatomical defects, although the range of application has been limited. Research into minimally invasive fetal surgery techniques and prenatal molecular diagnostics has facilitated the development of in utero stem cell transplantation (IUT)-a method of delivering healthy stem cells to the early gestation fetus with the hope of engraftment, proliferation, and migration to the appropriate hematopoietic compartment. An area of application that shows promise is the treatment of hematopoietic disorders like hemoglobinopathies. The therapeutic rationale of IUT with hematopoietic stem cells (HSCs) is based on the proposed advantages the fetal environment offers based on its unique physiology. These advantages include the immature immune system facilitating the development of donor-specific tolerance, the natural migration of endogenous hematopoietic cells providing space for homing and engraftment of donor cells, and the fetal environment providing HSCs with the same opportunity to survive and proliferate regardless of their origin (donor or host). Maternal immune tolerance to the fetus and placenta also implies that the maternal environment could be accepting of donor cells. In theory, the fetus is a perfect recipient for stem cell transplant. Clinically, however, IUT is yet to see widespread success calling into question these assumptions of fetal physiology. This review aims to discuss and evaluate research surrounding these key assumptions and the clinical success of IUT in the treatment of thalassemia.
Collapse
Affiliation(s)
- Sarah Tai-MacArthur
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, United Kingdom
| | - Giovanna Lombardi
- Immunoregulation Laboratory, School of Immunology, Microbial Sciences, and Faculty of Life Sciences and Medicine, King's College London, United Kingdom
| | - Panicos Shangaris
- Immunoregulation Laboratory, School of Immunology, Microbial Sciences, and Faculty of Life Sciences and Medicine, King's College London, United Kingdom.,School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, United Kingdom
| |
Collapse
|
18
|
O'Connell AE, Guseh S, Lapteva L, Cummings CL, Wilkins-Haug L, Chan J, Peranteau WH, Almeida-Porada G, Kourembanas S. Gene and Stem Cell Therapies for Fetal Care: A Review. JAMA Pediatr 2020; 174:985-991. [PMID: 32597943 PMCID: PMC10620667 DOI: 10.1001/jamapediatrics.2020.1519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Importance Gene and stem cell therapies have become viable therapeutic options for many postnatal disorders. For select conditions, prenatal application would provide improved outcomes. The fetal state allows for several theoretical advantages over postnatal therapy, including immune immaturity and cellular niche accessibility. Observations Advances in prenatal diagnostic accuracy and surgical precision, as well as improvements in stem cell and gene therapy methods, have made prenatal gene and stem cell therapy realistic. Studies in mouse models and early human trials demonstrate the feasibility of these approaches. Additional efforts are under way to streamline fetal applications of stem cell and gene therapy while carefully considering best ethical practice and following established regulatory pathways. Conclusions and Relevance Fetal stem cell and gene therapy bring important therapeutic opportunities for select disorders that present in the fetal and neonatal periods. While this field is in its infancy, these therapies are starting to be available clinically, and clinicians should be aware of their benefits and challenges.
Collapse
Affiliation(s)
- Amy E O'Connell
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Stephanie Guseh
- Division of Maternal Fetal Medicine and Reproductive Genetics, Brigham and Women's Hospital, Boston, Massachusetts
| | - Larissa Lapteva
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Christy L Cummings
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Louise Wilkins-Haug
- Division of Maternal Fetal Medicine and Reproductive Genetics, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jerry Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore
- Duke-NUS Medical School, Academic Program in Obstetrics and Gynaecology, Singapore
| | - William H Peranteau
- Division of General, Thoracic and Fetal Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Winston Salem, North Carolina
| | - Stella Kourembanas
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
19
|
Kadyk LC, Okamura RM, Talib S. Enabling allogeneic therapies: CIRM-funded strategies for immune tolerance and immune evasion. Stem Cells Transl Med 2020; 9:959-964. [PMID: 32585084 PMCID: PMC7445020 DOI: 10.1002/sctm.20-0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/02/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022] Open
Abstract
A major goal for the field of regenerative medicine is to enable the safe and durable engraftment of allogeneic tissues and organs. In contrast to autologous therapies, allogeneic therapies can be produced for many patients, thus reducing costs and increasing availability. However, the need to overcome strong immune system barriers to engraftment poses a significant biological challenge to widespread adoption of allogeneic therapies. While the use of powerful immunosuppressant drugs has enabled the engraftment of lifesaving organ transplants, these drugs have serious side effects and often the organ is eventually rejected by the recipient immune system. Two conceptually different strategies have emerged to enable durable engraftment of allogeneic therapies in the absence of immune suppression. One strategy is to induce immune tolerance of the transplant, either by creating “mixed chimerism” in the hematopoietic system, or by retraining the immune system using modified thymic epithelial cells. The second strategy is to evade the immune system altogether, either by engineering the donor tissue to be “invisible” to the immune system, or by sequestering the donor tissue in an immune impermeable barrier. We give examples of research funded by the California Institute for Regenerative Medicine (CIRM) in each of these areas, ranging from early discovery‐stage work through clinical trials. The advancements that are being made in this area hold promise that many more patients will be able to benefit from regenerative medicine therapies in the future.
Collapse
Affiliation(s)
- Lisa C Kadyk
- California Institute for Regenerative Medicine, Oakland, California, USA
| | - Ross M Okamura
- California Institute for Regenerative Medicine, Oakland, California, USA
| | - Sohel Talib
- California Institute for Regenerative Medicine, Oakland, California, USA
| |
Collapse
|
20
|
Donor cell engineering with GSK3 inhibitor-loaded nanoparticles enhances engraftment after in utero transplantation. Blood 2020; 134:1983-1995. [PMID: 31570489 DOI: 10.1182/blood.2019001037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/23/2019] [Indexed: 01/04/2023] Open
Abstract
Host cell competition is a major barrier to engraftment after in utero hematopoietic cell transplantation (IUHCT). Here we describe a cell-engineering strategy using glycogen synthase kinase-3 (GSK3) inhibitor-loaded nanoparticles conjugated to the surface of donor hematopoietic cells to enhance their proliferation kinetics and ability to compete against their fetal host equivalents. With this approach, we achieved remarkable levels of stable, long-term hematopoietic engraftment for up to 24 weeks post-IUHCT. We also show that the salutary effects of the nanoparticle-released GSK3 inhibitor are specific to donor progenitor/stem cells and achieved by a pseudoautocrine mechanism. These results establish that IUHCT of hematopoietic cells decorated with GSK3 inhibitor-loaded nanoparticles can produce therapeutic levels of long-term engraftment and could therefore allow single-step prenatal treatment of congenital hematological disorders.
Collapse
|
21
|
Engraftment in utero: it's all in the delivery. Blood 2019; 134:1889-1890. [PMID: 31778544 DOI: 10.1182/blood.2019003246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Rodriguez M, Porada CD, Almeida-Porada G. Mechanistic Insights into Factor VIII Immune Tolerance Induction via Prenatal Cell Therapy in Hemophilia A. CURRENT STEM CELL REPORTS 2019; 5:145-161. [PMID: 32351874 DOI: 10.1007/s40778-019-00165-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Purpose of Review Prenatal stem cell and gene therapy approaches are amongst the few therapies that can promise the birth of a healthy infant with specific known genetic diseases. This review describes fetal immune cell signaling and its potential influence on donor cell engraftment, and summarizes mechanisms of central T cell tolerance to peripherally-acquired antigen in the context of prenatal therapies for Hemophilia A. Recent Findings During early gestation, different subsets of antigen presenting cells take up peripherally-acquired, non-inherited antigens and induce the deletion of antigen-reactive T-cell precursors in the thymus, demonstrating the potential for using prenatal cell and gene therapies to induce central tolerance to FVIII in the context of prenatal diagnosis/therapy of Hemophilia A. Summary Prenatal cell and gene therapies are promising approaches to treat several genetic disorders including Hemophilia A and B. Understanding the mechanisms of how FVIII-specific tolerance is achieved during ontogeny could help develop novel therapies for HA and better approaches to overcome FVIII inhibitors.
Collapse
Affiliation(s)
- Martin Rodriguez
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Graҫa Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
23
|
Depletion of murine fetal hematopoietic stem cells with c-Kit receptor and CD47 blockade improves neonatal engraftment. Blood Adv 2019; 2:3602-3607. [PMID: 30567724 DOI: 10.1182/bloodadvances.2018022020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/20/2018] [Indexed: 11/20/2022] Open
Abstract
Key Points
Fetal injection of antibodies against the c-Kit receptor and CD47 effectively depletes host HSCs in immunocompetent mice. In utero depletion of host HSCs increases long-term engraftment after neonatal hematopoietic cell transplantation.
Collapse
|
24
|
Shangaris P, Loukogeorgakis SP, Subramaniam S, Flouri C, Jackson LH, Wang W, Blundell MP, Liu S, Eaton S, Bakhamis N, Ramachandra DL, Maghsoudlou P, Urbani L, Waddington SN, Eddaoudi A, Archer J, Antoniou MN, Stuckey DJ, Schmidt M, Thrasher AJ, Ryan TM, De Coppi P, David AL. In Utero Gene Therapy (IUGT) Using GLOBE Lentiviral Vector Phenotypically Corrects the Heterozygous Humanised Mouse Model and Its Progress Can Be Monitored Using MRI Techniques. Sci Rep 2019; 9:11592. [PMID: 31406195 PMCID: PMC6690943 DOI: 10.1038/s41598-019-48078-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
In utero gene therapy (IUGT) to the fetal hematopoietic compartment could be used to treat congenital blood disorders such as β-thalassemia. A humanised mouse model of β-thalassemia was used, in which heterozygous animals are anaemic with splenomegaly and extramedullary hematopoiesis. Intrahepatic in utero injections of a β globin-expressing lentiviral vector (GLOBE), were performed in fetuses at E13.5 of gestation. We analysed animals at 12 and 32 weeks of age, for vector copy number in bone marrow, peripheral blood liver and spleen and we performed integration site analysis. Compared to noninjected heterozygous animals IUGT normalised blood haemoglobin levels and spleen weight. Integration site analysis showed polyclonality. The left ventricular ejection fraction measured using magnetic resonance imaging (MRI) in treated heterozygous animals was similar to that of normal non-β-thalassemic mice but significantly higher than untreated heterozygous thalassemia mice suggesting that IUGT ameliorated poor cardiac function. GLOBE LV-mediated IUGT normalised the haematological and anatomical phenotype in a heterozygous humanised model of β-thalassemia.
Collapse
Affiliation(s)
- Panicos Shangaris
- Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK.
- UCL Institute of Child Health, UCL, London, United Kingdom.
| | | | | | - Christina Flouri
- Department of Medical and Molecular Genetics, KCL, London, United Kingdom
| | | | - Wei Wang
- Department of Translational Oncology, National Centre for Tumour Diseases, Heidelberg, Germany
| | | | - Shanrun Liu
- Biochemistry and Molecular Genetics, UAB, Birmingham, Alabama, United States
| | - Simon Eaton
- UCL Institute of Child Health, UCL, London, United Kingdom
| | - Nahla Bakhamis
- Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | | | | | - Luca Urbani
- UCL Institute of Child Health, UCL, London, United Kingdom
| | - Simon N Waddington
- Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ayad Eddaoudi
- UCL Institute of Child Health, UCL, London, United Kingdom
| | - Joy Archer
- Central Diagnostic Services, Queen's Vet School Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Michael N Antoniou
- Department of Medical and Molecular Genetics, KCL, London, United Kingdom
| | - Daniel J Stuckey
- Centre for Advanced Biomedical Imaging, UCL, London, United Kingdom
| | - Manfred Schmidt
- Department of Translational Oncology, National Centre for Tumour Diseases, Heidelberg, Germany
| | | | - Thomas M Ryan
- Biochemistry and Molecular Genetics, UAB, Birmingham, Alabama, United States
| | - Paolo De Coppi
- UCL Institute of Child Health, UCL, London, United Kingdom
| | - Anna L David
- Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| |
Collapse
|
25
|
Ahn NJ, Stratigis JD, Coons BE, Flake AW, Nah-Cederquist HD, Peranteau WH. Intravenous and Intra-amniotic In Utero Transplantation in the Murine Model. J Vis Exp 2018. [PMID: 30371676 DOI: 10.3791/58047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In utero transplantation (IUT) is a unique and versatile mode of therapy that can be used to introduce stem cells, viral vectors, or any other substances early in the gestation. The rationale behind IUT for therapeutic purposes is based on the small size of the fetus, the fetal immunologic immaturity, the accessibility and proliferative nature of the fetal stem or progenitor cells, and the potential to treat a disease or the onset of symptoms prior to birth. Taking advantage of these normal developmental properties of the fetus, the delivery of hematopoietic stem cells (HSC) via an IUT has the potential to treat congenital hematologic disorders such as sickle cell disease, without the required myeloablative or immunosuppressive conditioning required for postnatal HSC transplants. Similarly, the accessibility of progenitor cells in multiple organs during development potentially allows for a more efficient targeting of stem/progenitor cells following an IUT of viral vectors for gene therapy or genome editing. Additionally, IUT can be used to study normal developmental processes including, but not limited to, the development of immunologic tolerance. The murine model provides a valuable and affordable means to understanding the potential and limitations of IUT prior to pre-clinical large animal studies and an eventual clinical application. Here, we describe a protocol for performing an IUT in the murine fetus through intravenous and intra-amniotic routes. This protocol has been used successfully to elucidate the necessary conditions and mechanisms behind in utero hematopoietic stem cell transplantation, tolerance induction, and in utero gene therapy.
Collapse
Affiliation(s)
- Nicholas J Ahn
- Division of General, Thoracic, and Fetal Surgery, Center for Fetal Research, Children's Hospital of Philadelphia
| | - John D Stratigis
- Division of General, Thoracic, and Fetal Surgery, Center for Fetal Research, Children's Hospital of Philadelphia
| | - Barbara E Coons
- Division of General, Thoracic, and Fetal Surgery, Center for Fetal Research, Children's Hospital of Philadelphia
| | - Alan W Flake
- Division of General, Thoracic, and Fetal Surgery, Center for Fetal Research, Children's Hospital of Philadelphia
| | - Hyun-Duck Nah-Cederquist
- Division of Plastic Reconstructive Surgery, Center for Fetal Research, Children's Hospital of Philadelphia
| | - William H Peranteau
- Division of General, Thoracic, and Fetal Surgery, Center for Fetal Research, Children's Hospital of Philadelphia;
| |
Collapse
|
26
|
Riley JS, McClain LE, Stratigis JD, Coons BE, Li H, Hartman HA, Peranteau WH. Pre-Existing Maternal Antibodies Cause Rapid Prenatal Rejection of Allotransplants in the Mouse Model of In Utero Hematopoietic Cell Transplantation. THE JOURNAL OF IMMUNOLOGY 2018; 201:1549-1557. [PMID: 30021770 DOI: 10.4049/jimmunol.1800183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/11/2018] [Indexed: 01/07/2023]
Abstract
In utero hematopoietic cell transplantation (IUHCT) is a nonmyeloablative nonimmunosuppressive alternative to postnatal hematopoietic stem cell transplantation for the treatment of congenital hemoglobinopathies. Anti-HLA donor-specific Abs (DSA) are associated with a high incidence of graft rejection following postnatal hematopoietic stem cell transplantation. We determine if DSA present in the mother can similarly cause graft rejection in the fetus following IUHCT. Ten million C57BL/6 (B6, H2kb) bone marrow cells were transplanted in utero into gestational day 14 BALB/c (H2kd) fetuses. The pregnant BALB/c dams carrying these fetuses either had been previously sensitized to B6 Ag or were injected on gestational days 13-15 with serum from B6-sensitized BALB/c females. Maternal-fetal Ab transmission, Ab opsonization of donor cells, chimerism, and frequency of macrochimeric engraftment (chimerism >1%) were assessed by flow cytometry. Maternal IgG was transmitted to the fetus and rapidly opsonized donor cells following IUHCT. Donor cell rejection was observed as early as 4 h after IUHCT in B6-sensitized dams and 24 h after IUHCT in dams injected with B6-sensitized serum. Efficient opsonization was strongly correlated with decreased chimerism. No IUHCT recipients born to B6-sensitized dams or dams injected with B6-sensitized serum demonstrated macrochimeric engraftment at birth compared with 100% of IUHCT recipients born to naive dams or dams injected with naive serum (p < 0.001). In summary, maternal donor-specific IgG causes rapid, complete graft rejection in the fetus following IUHCT. When a third-party donor must be used for clinical IUHCT, the maternal serum should be screened for DSA to optimize the chance for successful engraftment.
Collapse
Affiliation(s)
- John S Riley
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Lauren E McClain
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - John D Stratigis
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Barbara E Coons
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Haiying Li
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Heather A Hartman
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - William H Peranteau
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
27
|
Dighe NM, Tan KW, Tan LG, Shaw SSW, Buckley SMK, Sandikin D, Johana N, Tan YW, Biswas A, Choolani M, Waddington SN, Antoniou MN, Chan JKY, Mattar CNZ. A comparison of intrauterine hemopoietic cell transplantation and lentiviral gene transfer for the correction of severe β-thalassemia in a HbbTh3/+ murine model. Exp Hematol 2018; 62:45-55. [PMID: 29605545 PMCID: PMC5965454 DOI: 10.1016/j.exphem.2018.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 03/17/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
Abstract
Major hemoglobinopathies place tremendous strain on global resources. Intrauterine hemopoietic cell transplantation (IUHCT) and gene transfer (IUGT) can potentially reduce perinatal morbidities with greater efficacy than postnatal therapy alone. We performed both procedures in the thalassemic HbbTh3/+ mouse. Intraperitoneal delivery of co-isogenic cells at embryonic days13-14 produced dose-dependent chimerism. High-dose adult bone marrow (BM) cells maintained 0.2-3.1% chimerism over ~24 weeks and treated heterozygotes (HET) demonstrated higher chimerism than wild-type (WT) pups (1.6% vs. 0.7%). Fetalliver (FL) cells produced higher chimerism than BM when transplanted at thesame doses, maintaining 1.8-2.4% chimerism over ~32 weeks. We boosted transplanted mice postnatally with BM cells after busulfan conditioning. Engraftment was maintained at >1% only in chimeras. IUHCT-treated nonchimeras and non-IUHCT mice showed microchimerism or no chimerism. Improved engraftment was observed with a higher initial chimerism, in HET mice and with the addition of fludarabine. Chimeric HET mice expressed 2.2-15.1% engraftment with eventual decline at 24 weeks (vs. <1% in nonchimeras) and demonstrated improved hematological indices and smaller spleens compared with untreated HETmice. Intravenous delivery of GLOBE lentiviral-vector expressing human β-globin (HBB) resulted in a vector concentration of 0.001-0.6 copies/cell. Most hematological indices were higher in treated than untreated HET mice, including hemoglobin and mean corpuscular volume, but were still lower than in WT. Therefore, direct IUGT and IUHCT strategies can be used to achieve hematological improvement but require further dose optimization. IUHCT will be useful combined with postnatal transplantation to further enhance engraftment.
Collapse
Affiliation(s)
- Niraja M Dighe
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore
| | - Kang Wei Tan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore
| | - Lay Geok Tan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore
| | - Steven S W Shaw
- College of Medicine, Chang Gung University, 33302 Taoyuan, Taiwan, China; Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, WC1E 6AU London, United Kingdom
| | - Suzanne M K Buckley
- Gene Transfer Technology Group, Institute for Women's Health, University College London, WC1E 6AU London, United Kingdom
| | - Dedy Sandikin
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore
| | - Nuryanti Johana
- Department of Reproductive Medicine, KK Women's and Children's Hospital, 229899 Singapore, Singapore
| | - Yi-Wan Tan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, 229899 Singapore, Singapore
| | - Arijit Biswas
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore
| | - Mahesh Choolani
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, WC1E 6AU London, United Kingdom; MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences and Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, SE1 9RT London, United Kingdom
| | - Jerry K Y Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, 229899 Singapore, Singapore; Cancer and Stem Cell Program, Duke-NUS Graduate Medical School, 169857 Singapore, Singapore
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore.
| |
Collapse
|
28
|
Shangaris P, Loukogeorgakis SP, Blundell MP, Petra E, Shaw SW, Ramachandra DL, Maghsoudlou P, Urbani L, Thrasher AJ, De Coppi P, David AL. Long-Term Hematopoietic Engraftment of Congenic Amniotic Fluid Stem Cells After in Utero Intraperitoneal Transplantation to Immune Competent Mice. Stem Cells Dev 2018; 27:515-523. [PMID: 29482456 PMCID: PMC5910037 DOI: 10.1089/scd.2017.0116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 02/24/2018] [Indexed: 01/02/2023] Open
Abstract
Clinical success of in utero transplantation (IUT) using allogeneic hematopoietic stem cells (HSCs) has been limited to fetuses that lack an immune response to allogeneic cells due to severe immunological defects, and where transplanted genetically normal cells have a proliferative or survival advantage. Amniotic fluid (AF) is an autologous source of stem cells with hematopoietic potential that could be used to treat congenital blood disorders. We compared the ability of congenic and allogeneic mouse AF stem cells (AFSC) to engraft the hematopoietic system of time-mated C57BL/6J mice (E13.5). At 4 and 16 weeks of age, multilineage donor engraftment was higher in congenic versus allogeneic animals. In vitro mixed lymphocyte reaction confirmed an immune response in the allogeneic group with higher CD4 and CD8 cell counts and increased proliferation of stimulated lymphocytes. IUT with congenic cells resulted in 100% of donor animals having chimerism of around 8% and successful hematopoietic long-term engraftment in immune-competent mice when compared with IUT with allogeneic cells. AFSCs may be useful for autologous cell/gene therapy approaches in fetuses diagnosed with congenital hematopoietic disorders.
Collapse
Affiliation(s)
- Panicos Shangaris
- Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, London, United Kingdom
- Stem Cells and Regenerative Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Stavros P. Loukogeorgakis
- Stem Cells and Regenerative Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Michael P. Blundell
- Molecular and Cellular Immunology Section, Institute of Child Health, University College London, London, United Kingdom
| | - Eleni Petra
- Stem Cells and Regenerative Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Steven W. Shaw
- Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, London, United Kingdom
- Stem Cells and Regenerative Medicine, Institute of Child Health, University College London, London, United Kingdom
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taipei, Taiwan
| | - Durrgah L. Ramachandra
- Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, London, United Kingdom
- Stem Cells and Regenerative Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Panagiotis Maghsoudlou
- Stem Cells and Regenerative Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Luca Urbani
- Stem Cells and Regenerative Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Adrian J. Thrasher
- Molecular and Cellular Immunology Section, Institute of Child Health, University College London, London, United Kingdom
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Anna L. David
- Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London United Kingdom
| |
Collapse
|
29
|
Witt RG, Nguyen QHL, MacKenzie TC. In Utero Hematopoietic Cell Transplantation: Past Clinical Experience and Future Clinical Trials. CURRENT STEM CELL REPORTS 2018. [DOI: 10.1007/s40778-018-0119-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
30
|
Abstract
Advances in our understanding of stem cells, gene editing, prenatal imaging and fetal interventions have opened up new opportunities for the treatment of congenital diseases either through in-utero stem cell transplantation or in-utero gene therapy. Improvements in ultrasound-guided access to the fetal vasculature have also enhanced the safety and efficacy of cell delivery. The fetal environment offers accessible stem cell niches, localized cell populations with large proliferative potential, and an immune system that is able to acquire donor-specific tolerance. In-utero therapy seeks to take advantage of these factors and has the potential to cure diseases prior to the onset of symptoms, a strategy that offers substantial social and economic benefits. In this article, we examine previous studies in animal models as well as clinical attempts at in-utero therapy. We also discuss the barriers to successful in-utero therapy and future strategies for overcoming these obstacles.
Collapse
Affiliation(s)
- Russell Witt
- Division of Pediatric Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Tippi C MacKenzie
- Division of Pediatric Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - William H Peranteau
- Division of Pediatric General, Thoracic and Fetal Surgery, University of Pennsylvania Perelman School of Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Mokhtari S, Colletti EJ, Atala A, Zanjani ED, Porada CD, Almeida-Porada G. Boosting Hematopoietic Engraftment after in Utero Transplantation through Vascular Niche Manipulation. Stem Cell Reports 2017; 6:957-969. [PMID: 27304918 PMCID: PMC4912311 DOI: 10.1016/j.stemcr.2016.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 02/07/2023] Open
Abstract
In utero hematopoietic stem/progenitor cell transplantation (IUHSCT) has only been fully successful in the treatment of congenital immunodeficiency diseases. Using sheep as a large animal model of IUHSCT, we demonstrate that administration of CD146+CXCL12+VEGFR2+ or CD146+CXCL12+VEGFR2− cells prior to, or in combination with, hematopoietic stem/progenitor cells (HSC), results in robust CXCL12 production within the fetal marrow environment, and significantly increases the levels of hematopoietic engraftment. While in the fetal recipient, donor-derived HSC were found to reside within the trabecular bone, the increased expression of VEGFR2 in the microvasculature of CD146+CXCL12+VEGFR2+ transplanted animals enhanced levels of donor-derived hematopoietic cells in circulation. These studies provide important insights into IUHSCT biology, and demonstrate the feasibility of enhancing HSC engraftment to levels that would likely be therapeutic in many candidate diseases for IUHSCT. After IUHSCT, HSC engraft in the trabecular bone of the metaphysis CD146++(+/−) cells engraft in diaphysis and make hematopoiesis-supporting cytokines Donor cell-derived CXCL12 and VEGFR2 significantly increase HSC engraftment IUHSCT of CD146+CXCL12+VEGFR2+ cells prior to HSC could be curative in several diseases
Collapse
Affiliation(s)
- Saloomeh Mokhtari
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083, USA
| | - Evan J Colletti
- Experimental Station, University of Nevada Reno, Reno, NV 89503, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083, USA
| | - Esmail D Zanjani
- Experimental Station, University of Nevada Reno, Reno, NV 89503, USA
| | - Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083, USA
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083, USA.
| |
Collapse
|
32
|
Dziegiel MH, Hansen MH, Haedersdal S, Barrett AN, Rieneck K, Main KM, Hansen AT, Clausen FB. Blood Chimerism in Dizygotic Monochorionic Twins During 5 Years Observation. Am J Transplant 2017; 17:2728-2732. [PMID: 28422403 DOI: 10.1111/ajt.14318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/17/2017] [Accepted: 04/05/2017] [Indexed: 01/25/2023]
Abstract
Dizygotic monochorionic twin pregnancies can result in blood chimerism due to in utero twin-to-twin exchange of stem cells. In this case, we examined the proportion of allogeneic red blood cells by flow cytometry and the proportion of allogeneic nucleated cells by digital polymerase chain reaction at 7 months and again at 5 years. We found an increase in the proportion of allogeneic cells from 63% to 89% in one twin, and a similar increase in autologous cells in the other twin from 57% to 84%. A paradigm for stem cell therapy could be modeled on this case: induction of tolerance and chimerism by antenatal transfusion of donor stem cells. The procedure would hold the promise of transplantation and tolerance induction without myeloablative conditioning for inheritable benign hematological diseases such as sickle cell disease and thalassemia.
Collapse
Affiliation(s)
- M H Dziegiel
- Department of Clinical Immunology, Blood bank, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Institute of Clinical Medicine (IKM), Copenhagen University, Copenhagen, Denmark
| | - M H Hansen
- Department of Clinical Biochemistry, Nordsjaellands Hospital Hillerød, Copenhagen University Hospital, Hillerød, Denmark
| | - S Haedersdal
- Department of Clinical Immunology, Blood bank, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - A N Barrett
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - K Rieneck
- Department of Clinical Immunology, Blood bank, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - K M Main
- Institute of Clinical Medicine (IKM), Copenhagen University, Copenhagen, Denmark.,Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - A T Hansen
- Department of Clinical Immunology, Blood bank, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - F B Clausen
- Department of Clinical Immunology, Blood bank, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
33
|
Antiel RM, Halpern SD, Stevens EM, Vrecenak JD, Patterson CA, Tchume-Johnson T, Smith-Whitley K, Peranteau WH, Flake AW, Barakat LP. Acceptability of In Utero Hematopoietic Cell Transplantation for Sickle Cell Disease. Med Decis Making 2017; 37:914-921. [DOI: 10.1177/0272989x17707214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ryan M. Antiel
- The Center for Fetal Research, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA (RMA, JDV, WHP, AWF)
- Department of Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (SDH)
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA (EMS, TT, LPB)
- Department of Medical Ethics and Health Policy, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA (RMA, SDH)
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA (SDH)
| | - Scott D. Halpern
- The Center for Fetal Research, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA (RMA, JDV, WHP, AWF)
- Department of Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (SDH)
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA (EMS, TT, LPB)
- Department of Medical Ethics and Health Policy, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA (RMA, SDH)
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA (SDH)
| | - Evelyn M. Stevens
- The Center for Fetal Research, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA (RMA, JDV, WHP, AWF)
- Department of Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (SDH)
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA (EMS, TT, LPB)
- Department of Medical Ethics and Health Policy, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA (RMA, SDH)
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA (SDH)
| | - Jesse D. Vrecenak
- The Center for Fetal Research, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA (RMA, JDV, WHP, AWF)
- Department of Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (SDH)
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA (EMS, TT, LPB)
- Department of Medical Ethics and Health Policy, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA (RMA, SDH)
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA (SDH)
| | - Chavis A. Patterson
- The Center for Fetal Research, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA (RMA, JDV, WHP, AWF)
- Department of Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (SDH)
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA (EMS, TT, LPB)
- Department of Medical Ethics and Health Policy, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA (RMA, SDH)
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA (SDH)
| | - Trudy Tchume-Johnson
- The Center for Fetal Research, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA (RMA, JDV, WHP, AWF)
- Department of Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (SDH)
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA (EMS, TT, LPB)
- Department of Medical Ethics and Health Policy, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA (RMA, SDH)
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA (SDH)
| | - Kim Smith-Whitley
- The Center for Fetal Research, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA (RMA, JDV, WHP, AWF)
- Department of Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (SDH)
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA (EMS, TT, LPB)
- Department of Medical Ethics and Health Policy, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA (RMA, SDH)
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA (SDH)
| | - William H. Peranteau
- The Center for Fetal Research, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA (RMA, JDV, WHP, AWF)
- Department of Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (SDH)
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA (EMS, TT, LPB)
- Department of Medical Ethics and Health Policy, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA (RMA, SDH)
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA (SDH)
| | - Alan W. Flake
- The Center for Fetal Research, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA (RMA, JDV, WHP, AWF)
- Department of Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (SDH)
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA (EMS, TT, LPB)
- Department of Medical Ethics and Health Policy, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA (RMA, SDH)
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA (SDH)
| | - Lamia P. Barakat
- The Center for Fetal Research, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA (RMA, JDV, WHP, AWF)
- Department of Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (SDH)
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA (EMS, TT, LPB)
- Department of Medical Ethics and Health Policy, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA (RMA, SDH)
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA (SDH)
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Sickle cell disease (SCD) afflicts millions worldwide. The simplicity of its single nucleotide mutation belies the biological and psychosocial complexity of the disease. Despite only a single approved drug specifically for the treatment of SCD, new findings reviewed from 2015 provide the direction forward. RECENT FINDINGS The last year has provided a wealth of support for mechanisms affecting the red cell, hemolysis and vasculopathy, the innate immune system activation, blood cell and endothelial adhesiveness, central sensitization to pain, and chronic brain injury. The evidence supporting expanded use of hydroxyurea continues to mount. Many promising therapies are reaching clinical trial, including curative therapies, with more on the horizon. SUMMARY Evidence is compelling that the use of hydroxyurea must be expanded by clinicians to gain the full pleiotropic benefits of this approved drug. Clinicians must become aware that severe acute and chronic pain has a biological and neurologic basis, and the understanding of this basis is growing. Researchers are testing investigational therapies at an unprecedented pace in SCD, and partnership between patients, researchers, and the private sector provides the most rapid and productive way forward.
Collapse
|
35
|
Bone marrow chimerism as a strategy to produce tolerance in solid organ allotransplantation. Curr Opin Organ Transplant 2016; 21:595-602. [PMID: 27805947 DOI: 10.1097/mot.0000000000000366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW Clinical transplant tolerance has been most successfully achieved combining hematopoietic chimerism with kidney transplantation. This review outlines this strategy in animal models and human transplantation, and possible clinical challenges. RECENT FINDINGS Kidney transplant tolerance has been achieved through chimerism in several centers beginning with Massachusetts General Hospital's success with mixed chimerism in human leukocyte antigen (HLA)-mismatched patients and the Stanford group with HLA-matched patients, and the more recent success of the Northwestern protocol achieving full chimerism. This has challenged the original view that stable mixed chimerism is necessary for organ graft tolerance. However, among the HLA-mismatched kidney transplant-tolerant patients, loss of mixed chimerism does not lead to renal-graft rejection, and the development of host Foxp3+ regulatory T cells has been observed. Recent animal models suggest that graft tolerance through bone marrow chimerism occurs through both clonal deletion and regulatory immune cells. Further, Tregs have been shown to improve chimerism in animal models. SUMMARY Animal studies continue to suggest ways to improve our current clinical strategies. Advances in chimerism protocols suggest that tolerance may be clinically achievable with relative safety for HLA-mismatched kidney transplants.
Collapse
|
36
|
Abraham A, Jacobsohn DA, Bollard CM. Cellular therapy for sickle cell disease. Cytotherapy 2016; 18:1360-1369. [PMID: 27421743 DOI: 10.1016/j.jcyt.2016.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/25/2016] [Accepted: 06/16/2016] [Indexed: 02/02/2023]
Abstract
Sickle cell disease (SCD) is a monogenic red cell disorder affecting more than 300 000 annual births worldwide and leading to significant organ toxicity and premature mortality. Although chronic therapies such as hydroxyurea have improved outcomes, more durable therapeutic and curative options are still being investigated. Newer understanding of the disease has implicated invariant natural killer T cells as a critical immune profile that potentiates SCD. Hence, targeting this cell population may offer a new approach to disease management. Hematopoietic stem cell transplant is a curative option for patients with SCD, but the under-representation of minorities on the unrelated donor registry means that this is not a feasible option for more than 75% of patients. Work in this area has therefore focused on increasing the donor pool and decreasing transplant-related toxicities to make this a treatment option for the majority of patients with SCD. This review focuses on the currently available cell and gene therapies for patients with SCD and acknowledges that newer gene-editing approaches to improve gene therapy efficiency and safety are the next wave of potentially curative approaches.
Collapse
Affiliation(s)
- Allistair Abraham
- Division of Blood and Marrow Transplant, Children's National Health System and The George Washington University, Washington, DC, USA; Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System and The George Washington University, Washington, DC, USA.
| | - David A Jacobsohn
- Division of Blood and Marrow Transplant, Children's National Health System and The George Washington University, Washington, DC, USA
| | - Catherine M Bollard
- Division of Blood and Marrow Transplant, Children's National Health System and The George Washington University, Washington, DC, USA; Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System and The George Washington University, Washington, DC, USA
| |
Collapse
|
37
|
Almeida-Porada G, Atala A, Porada CD. In utero stem cell transplantation and gene therapy: rationale, history, and recent advances toward clinical application. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 5:16020. [PMID: 27069953 PMCID: PMC4813605 DOI: 10.1038/mtm.2016.20] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
Abstract
Recent advances in high-throughput molecular testing have made it possible to diagnose most genetic disorders relatively early in gestation with minimal risk to the fetus. These advances should soon allow widespread prenatal screening for the majority of human genetic diseases, opening the door to the possibility of treatment/correction prior to birth. In addition to the obvious psychological and financial benefits of curing a disease in utero, and thereby enabling the birth of a healthy infant, there are multiple biological advantages unique to fetal development, which provide compelling rationale for performing potentially curative treatments, such as stem cell transplantation or gene therapy, prior to birth. Herein, we briefly review the fields of in utero transplantation (IUTx) and in utero gene therapy and discuss the biological hurdles that have thus far restricted success of IUTx to patients with immunodeficiencies. We then highlight several recent experimental breakthroughs in immunology, hematopoietic/marrow ontogeny, and in utero cell delivery, which have collectively provided means of overcoming these barriers, thus setting the stage for clinical application of these highly promising therapies in the near future.
Collapse
Affiliation(s)
- Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine , Winston Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine , Winston Salem, North Carolina, USA
| | - Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine , Winston Salem, North Carolina, USA
| |
Collapse
|
38
|
Boelig MM, Kim AG, Stratigis JD, McClain LE, Li H, Flake AW, Peranteau WH. The Intravenous Route of Injection Optimizes Engraftment and Survival in the Murine Model of In Utero Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2016; 22:991-999. [PMID: 26797401 DOI: 10.1016/j.bbmt.2016.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/11/2016] [Indexed: 01/16/2023]
Abstract
In utero hematopoietic cell transplantation (IUHCT) has the potential to treat a number of congenital hematologic disorders. Clinical application is limited by low levels of donor engraftment. Techniques that optimize donor cell delivery to the fetal liver (FL), the hematopoietic organ at the time of IUHCT, have the potential to enhance engraftment and the clinical success of IUHCT. We compared the 3 clinically applicable routes of injection (intravenous [i.v.], intraperitoneal [i.p.], and intrahepatic [i.h.]) and assessed short- and long-term donor cell engraftment and fetal survival in the murine model of IUHCT. We hypothesized that the i.v. route would promote direct donor cell homing to the FL, resulting in increased engraftment and allowing for larger injectate volumes without increased fetal mortality. We demonstrate that the i.v. route results in (1) rapid diffuse donor cell population of the FL compared with delayed diffuse engraftment after the i.p. and i.h. routes; (2) higher FL and spleen engraftment at early prenatal time points; (3) enhanced stable long-term peripheral blood donor cell engraftment; and (4) improved survival at higher injectate volumes, allowing for higher donor cell doses and increased long-term engraftment. These findings support the use of an i.v. route for clinical protocols of IUHCT.
Collapse
Affiliation(s)
- Matthew M Boelig
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Aimee G Kim
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - John D Stratigis
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lauren E McClain
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Haiying Li
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Alan W Flake
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - William H Peranteau
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
| |
Collapse
|
39
|
|