1
|
Pasquier F, Pegliasco J, Martin JE, Marti S, Plo I. New approaches to standard of care in early-phase myeloproliferative neoplasms: can interferon-α alter the natural history of the disease? Haematologica 2025; 110:850-862. [PMID: 39445431 PMCID: PMC11959252 DOI: 10.3324/haematol.2023.283958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/15/2024] [Indexed: 10/25/2024] Open
Abstract
The classical BCR::ABL-negative myeloproliferative neoplasms (MPN) include polycythemia vera, essential thrombocythemia, and primary myelofibrosis. They are acquired clonal disorders of hematopoietic stem cells leading to hyperplasia of one or several myeloid lineages. MPN are caused by three main recurrent mutations, JAK2V617F and mutations in the calreticulin (CALR) and thrombopoietin receptor (MPL) genes. Here, we review the general diagnosis, the complications, and the management of MPN. Second, we explain the physiopathology of the natural disease development and its regulation, which contributes to MPN heterogeneity. Thirdly, we describe the new paradigm of MPN development highlighting the early origin of driver mutations, decades before the onset of symptoms, and the consequence of early detection of MPN cases in the general population for prompt diagnosis and better medical management. Finally, we present interferon-α therapy as a potential, early disease-modifying drug after reporting its good hematologic and molecular efficacies in polycythemia vera, essential thrombocythemia, and early myelofibrosis in clinical trials as well as its mechanism of action in pre-clinical studies. As a result, we may expect that, in the future, MPN patients will be diagnosed very early during the course of disease and that new selective therapies under development, such as interferon-α, JAK2V617F inhibitors and CALRmut monoclonal antibodies, will be able to intercept the mutated clones.
Collapse
Affiliation(s)
| | - Jean Pegliasco
- INSERM U1287, Gustave Roussy, Villejuif
- Gustave Roussy, Villejuif
- Université Paris-Cité, Paris, France
| | - Jean-Edouard Martin
- INSERM U1287, Gustave Roussy, Villejuif
- Gustave Roussy, Villejuif
- Université Paris-Cité, Paris, France
| | - Séverine Marti
- INSERM U1287, Gustave Roussy, Villejuif
- Gustave Roussy, Villejuif
- Université Paris-Cité, Paris, France
| | | |
Collapse
|
2
|
Ling VY, Heidel FH, Bywater MJ. Pathogenesis and management of high molecular risk myeloproliferative neoplasms. Haematologica 2025; 110:863-876. [PMID: 39633552 PMCID: PMC11959265 DOI: 10.3324/haematol.2023.283987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
Classical myeloproliferative neoplasms (MPN) are clonal stem cell disorders characterized by driver mutations that affect the constitutive activation of JAK-signaling. Mutations additional to an MPN-driver occur in a large number of patients and have been shown be associated with disease presentation and progression. In this review, we outline the current hypotheses regarding how clonal evolution in MPN is thought to occur and the functional mechanisms as to how concomitant somatic mutations (i.e., mutations in genes other than the 'driver' genes) contribute to disease progression. We discuss the definitions of high molecular risk MPN, provide an overview of how concomitant mutations influence the clinical management of MPN and suggest how the rapidly developing genetic risk stratification can be utilized to improve clinical outcomes.
Collapse
Affiliation(s)
| | | | - Megan J. Bywater
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| |
Collapse
|
3
|
Handa S, Schaniel C, Tripodi J, Ahire D, Mia MB, Klingborg S, Tremblay D, Marcellino BK, Hoffman R, Najfeld V. HMGA2 overexpression with specific chromosomal abnormalities predominate in CALR and ASXL1 mutated myelofibrosis. Leukemia 2025; 39:663-674. [PMID: 39715853 PMCID: PMC11879852 DOI: 10.1038/s41375-024-02496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024]
Abstract
Although multiple genetic events are thought to play a role in promoting progression of the myeloproliferative neoplasms (MPN), the individual events that are associated with the development of more aggressive disease phenotypes remain poorly defined. Here, we report that novel genomic deletions at chromosome 12q14.3, as detected by a high-resolution array comparative genomic hybridization plus single nucleotide polymorphisms platform, occur in 11% of MPN patients with myelofibrosis (MF) and MPN-accelerated/blast phase (AP/BP) but was not detected in patients with polycythemia vera or essential thrombocythemia. These 12q14.3 deletions resulted in the loss of most of the non-coding region of exon 5 and MIRLET7 binding sites in the 3'UTR of the high mobility group AT hook 2 (HMGA2), which negatively regulate HMGA2 expression. These acquired 12q14.3 deletions were predominately detected in MF patients with CALR and ASXL1 co-mutations and led to a greater degree of HMGA2 transcript overexpression, independent of the presence of an ASXL1 mutation. Patients with 12q structural abnormalities involving HMGA2 exhibited a more aggressive clinical course, with a higher frequency of MPN-AP/BP evolution. These findings indicate that HMGA2 overexpression associated with genomic deletion of its 3'UTR region is a newly recognized genetic event that contributes to MPN progression.
Collapse
Affiliation(s)
- Shivani Handa
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Christoph Schaniel
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph Tripodi
- Department of Pathology and Molecular Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daiva Ahire
- Department of Pathology and Molecular Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Md Babu Mia
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sophie Klingborg
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas Tremblay
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bridget K Marcellino
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronald Hoffman
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Vesna Najfeld
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pathology and Molecular Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Marchand V, Laplane L, Valensi L, Plo I, Aglave M, Silvin A, Pasquier F, Porteu F, Vainchenker W, Selimoglu-Buet D, Droin N, Raslova H, Marcel V, Diaz JJ, Fontenay M, Solary E. Monocytes generated by interleukin-6-treated human hematopoietic stem and progenitor cells secrete calprotectin that inhibits erythropoiesis. iScience 2025; 28:111522. [PMID: 39811665 PMCID: PMC11732210 DOI: 10.1016/j.isci.2024.111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/02/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Elevated circulating levels of calprotectin (CAL), the S100A8/A9 heterodimer, are biomarkers of severe systemic inflammation. Here, we investigate the effects of CAL on early human hematopoiesis. CAL demonstrates limited impact on gene expression in stem and progenitor cells, in contrast with interleukin-6 (IL6), which promotes the expression of the S100A8 and S100A9 genes in hematopoietic progenitors and the generation of monocytes that release CAL. The main target of CAL is an erythroid-megakaryocyte progenitor (EMP) subset. CAL prevents both erythropoietin-driven differentiation of healthy progenitors and JAK2-V617F-driven erythropoiesis. In the context of JAK2-V617F, CAL also promotes the expression of S100A8 and S100A9 genes in monocytes. The signature of CAL effects is detected in the bone marrow progenitors of patients with myeloid malignancy or severe infection. These results position CAL as a mediator of IL6 effects on triggering anemia during inflammation, an effect that is amplified in the context of JAK2-V617F-driven hematopoiesis.
Collapse
Affiliation(s)
- Valentine Marchand
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
| | - Lucie Laplane
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
- CNRS 8590, Université Paris 1 Panthéon-Sorbonne, Paris, France
| | - Louis Valensi
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
| | - Isabelle Plo
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
| | - Marine Aglave
- AMMICa, INSERM US 23, CNRS UMS 3655, Gustave Roussy Cancer Center, Villejuif, France
| | - Aymeric Silvin
- INSERM U1108, Gustave Roussy Cancer Center, Villejuif, France
| | - Florence Pasquier
- Department of Hematology, Gustave Roussy Cancer Center, Villejuif, France
| | - Françoise Porteu
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
| | - William Vainchenker
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
| | | | - Nathalie Droin
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
- AMMICa, INSERM US 23, CNRS UMS 3655, Gustave Roussy Cancer Center, Villejuif, France
| | - Hana Raslova
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
| | - Virginie Marcel
- Inserm U1052, CNRS UMR5286 Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Jean-Jacques Diaz
- Inserm U1052, CNRS UMR5286 Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Michaela Fontenay
- Université Paris Cité, Institut Cochin, CNRS UMR 8104, INSERM U1016, Paris, France
- Laboratory of Excellence for Red Blood Cells, GR-Ex, Paris, France
| | - Eric Solary
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| |
Collapse
|
5
|
Kandarpa M, Robinson D, Wu YM, Qin T, Pettit K, Li Q, Luker G, Sartor M, Chinnaiyan A, Talpaz M. Broad Next-Generation Integrated Sequencing of Myelofibrosis Identifies Disease-Specific and Age-Related Genomic Alterations. Clin Cancer Res 2024; 30:1972-1983. [PMID: 38386293 PMCID: PMC11061602 DOI: 10.1158/1078-0432.ccr-23-0372] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/18/2023] [Accepted: 02/20/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE Myeloproliferative neoplasms (MPN) are characterized by the overproduction of differentiated myeloid cells. Mutations in JAK2, CALR, and MPL are considered drivers of Bcr-Abl-ve MPN, including essential thrombocythemia (ET), polycythemia vera (PV), prefibrotic primary myelofibrosis (prePMF), and overt myelofibrosis (MF). However, how these driver mutations lead to phenotypically distinct and/or overlapping diseases is unclear. EXPERIMENTAL DESIGN To compare the genetic landscape of MF to ET/PV/PrePMF, we sequenced 1,711 genes for mutations along with whole transcriptome RNA sequencing of 137 patients with MPN. RESULTS In addition to driver mutations, 234 and 74 genes were found to be mutated in overt MF (N = 106) and ET/PV/PrePMF (N = 31), respectively. Overt MF had more mutations compared with ET/PV/prePMF (5 vs. 4 per subject, P = 0.006). Genes frequently mutated in MF included high-risk genes (ASXL1, SRSF2, EZH2, IDH1/2, and U2AF1) and Ras pathway genes. Mutations in NRAS, KRAS, SRSF2, EZH2, IDH2, and NF1 were exclusive to MF. Advancing age, higher DIPSS, and poor overall survival (OS) correlated with increased variants in MF. Ras mutations were associated with higher leukocytes and platelets and poor OS. The comparison of gene expression showed upregulation of proliferation and inflammatory pathways in MF. Notably, ADGRL4, DNASE1L3, PLEKHGB4, HSPG2, MAMDC2, and DPYSL3 were differentially expressed in hematopoietic stem and differentiated cells. CONCLUSIONS Our results illustrate that evolution of MF from ET/PV/PrePMF likely advances with age, accumulation of mutations, and activation of proliferative pathways. The genes and pathways identified by integrated genomics approach provide insight into disease transformation and progression and potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Malathi Kandarpa
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Dan Robinson
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Yi-Mi Wu
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Kristen Pettit
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Qing Li
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Gary Luker
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Maureen Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Arul Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Moshe Talpaz
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
6
|
Yang Y, Abbas S, Sayem MA, Dutta A, Mohi G. SRSF2 mutation reduces polycythemia and impairs hematopoietic progenitor functions in JAK2V617F-driven myeloproliferative neoplasm. Blood Cancer J 2023; 13:171. [PMID: 38012156 PMCID: PMC10682023 DOI: 10.1038/s41408-023-00947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
SRSF2 mutations are found in association with JAK2V617F in myeloproliferative neoplasms (MPN), most frequently in myelofibrosis (MF). However, the contribution of SRSF2 mutation in JAK2V617F-driven MPN remains elusive. To investigate the consequences of SRSF2P95H and JAK2V617F mutations in MPN, we generated Cre-inducible Srsf2P95H/+Jak2V617F/+ knock-in mice. We show that co-expression of Srsf2P95H mutant reduced red blood cell, neutrophil, and platelet counts, attenuated splenomegaly but did not induce bone marrow fibrosis in Jak2V617F/+ mice. Furthermore, co-expression of Srsf2P95H diminished the competitiveness of Jak2V617F mutant hematopoietic stem/progenitor cells. We found that Srsf2P95H mutant reduced the TGF-β levels but increased the expression of S100A8 and S100A9 in Jak2V617F/+ mice. Furthermore, enforced expression of S100A9 in Jak2V617F/+ mice bone marrow significantly reduced the red blood cell, hemoglobin, and hematocrit levels. Overall, these data suggest that concurrent expression of Srsf2P95H and Jak2V617F mutants reduces erythropoiesis but does not promote the development of bone marrow fibrosis in mice.
Collapse
Affiliation(s)
- Yue Yang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Salar Abbas
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Mohammad A Sayem
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Avik Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Golam Mohi
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
- University of Virginia Cancer Center, Charlottesville, VA, 22908, USA.
| |
Collapse
|
7
|
Reynolds SB, Pettit K, Kandarpa M, Talpaz M, Li Q. Exploring the Molecular Landscape of Myelofibrosis, with a Focus on Ras and Mitogen-Activated Protein (MAP) Kinase Signaling. Cancers (Basel) 2023; 15:4654. [PMID: 37760623 PMCID: PMC10527328 DOI: 10.3390/cancers15184654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Myelofibrosis (MF) is a clonal myeloproliferative neoplasm (MPN) characterized clinically by cytopenias, fatigue, and splenomegaly stemming from extramedullary hematopoiesis. MF commonly arises from mutations in JAK2, MPL, and CALR, which manifests as hyperactive Jak/Stat signaling. Triple-negative MF is diagnosed in the absence of JAK2, MPL, and CALR but when clinical, morphologic criteria are met and other mutation(s) is/are present, including ASXL1, EZH2, and SRSF2. While the clinical and classic molecular features of MF are well-established, emerging evidence indicates that additional mutations, specifically within the Ras/MAP Kinase signaling pathway, are present and may play important role in disease pathogenesis and treatment response. KRAS and NRAS mutations alone are reportedly present in up to 15 and 14% of patients with MF (respectively), and other mutations predicted to activate Ras signaling, such as CBL, NF1, BRAF, and PTPN11, collectively exist in as much as 21% of patients. Investigations into the prevalence of RAS and related pathway mutations in MF and the mechanisms by which they contribute to its pathogenesis are critical in better understanding this condition and ultimately in the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Samuel B. Reynolds
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
| | - Kristen Pettit
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
| | - Malathi Kandarpa
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Moshe Talpaz
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Qing Li
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
| |
Collapse
|
8
|
Dunbar AJ, Kim D, Lu M, Farina M, Bowman RL, Yang JL, Park Y, Karzai A, Xiao W, Zaroogian Z, O’Connor K, Mowla S, Gobbo F, Verachi P, Martelli F, Sarli G, Xia L, Elmansy N, Kleppe M, Chen Z, Xiao Y, McGovern E, Snyder J, Krishnan A, Hill C, Cordner K, Zouak A, Salama ME, Yohai J, Tucker E, Chen J, Zhou J, McConnell T, Migliaccio AR, Koche R, Rampal R, Fan R, Levine RL, Hoffman R. CXCL8/CXCR2 signaling mediates bone marrow fibrosis and is a therapeutic target in myelofibrosis. Blood 2023; 141:2508-2519. [PMID: 36800567 PMCID: PMC10273167 DOI: 10.1182/blood.2022015418] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 02/19/2023] Open
Abstract
Proinflammatory signaling is a hallmark feature of human cancer, including in myeloproliferative neoplasms (MPNs), most notably myelofibrosis (MF). Dysregulated inflammatory signaling contributes to fibrotic progression in MF; however, the individual cytokine mediators elicited by malignant MPN cells to promote collagen-producing fibrosis and disease evolution are yet to be fully elucidated. Previously, we identified a critical role for combined constitutive JAK/STAT and aberrant NF-κB proinflammatory signaling in MF development. Using single-cell transcriptional and cytokine-secretion studies of primary cells from patients with MF and the human MPLW515L (hMPLW515L) murine model of MF, we extend our previous work and delineate the role of CXCL8/CXCR2 signaling in MF pathogenesis and bone marrow fibrosis progression. Hematopoietic stem/progenitor cells from patients with MF are enriched for a CXCL8/CXCR2 gene signature and display enhanced proliferation and fitness in response to an exogenous CXCL8 ligand in vitro. Genetic deletion of Cxcr2 in the hMPLW515L-adoptive transfer model abrogates fibrosis and extends overall survival, and pharmacologic inhibition of the CXCR1/2 pathway improves hematologic parameters, attenuates bone marrow fibrosis, and synergizes with JAK inhibitor therapy. Our mechanistic insights provide a rationale for therapeutic targeting of the CXCL8/CXCR2 pathway among patients with MF.
Collapse
Affiliation(s)
- Andrew J. Dunbar
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Min Lu
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
- Division of Hematology/Oncology, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mirko Farina
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Blood Diseases and Bone Marrow Transplantation Unit, Cell Therapies and Hematology Research Program, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Robert L. Bowman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Julie L. Yang
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Young Park
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Abdul Karzai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wenbin Xiao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zach Zaroogian
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kavi O’Connor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Shoron Mowla
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Francesca Gobbo
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| | - Paola Verachi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Fabrizio Martelli
- Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| | - Lijuan Xia
- Division of Hematology/Oncology, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nada Elmansy
- Division of Hematology/Oncology, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maria Kleppe
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zhuo Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Yang Xiao
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Erin McGovern
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jenna Snyder
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aishwarya Krishnan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Corrine Hill
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Keith Cordner
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anouar Zouak
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mohamed E. Salama
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Pathology, Mayo Clinic School of Medicine, Rochester, MN
| | - Jayden Yohai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | - Anna R. Migliaccio
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
- Altius Institute for Biomedical Sciences, Seattle, WA
- Unit of Microscopic and Ultrastructural Anatomy, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Richard Koche
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Raajit Rampal
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ronald Hoffman
- Myeloproliferative Neoplasm-Research Consortium, Icahn School of Medicine at Mount Sinai, New York, NY
- Division of Hematology/Oncology, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
9
|
Lane SW. Shelter from the cytokine storm in myelofibrosis. Blood 2023; 141:2415-2416. [PMID: 37200061 DOI: 10.1182/blood.2023019779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023] Open
Affiliation(s)
- Steven W Lane
- QIMR Berghofer Medical Research Institute and Royal Brisbane and Women's Hospital
| |
Collapse
|
10
|
Wang YH, Chen YJ, Lai YH, Wang MC, Chen YY, Wu YY, Yang YR, Tsou HY, Li CP, Hsu CC, Huang CE, Chen CC. Mutation-Driven S100A8 Overexpression Confers Aberrant Phenotypes in Type 1 CALR-Mutated MPN. Int J Mol Sci 2023; 24:8747. [PMID: 37240094 PMCID: PMC10217897 DOI: 10.3390/ijms24108747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Numerous pathogenic CALR exon 9 mutations have been identified in myeloproliferative neoplasms (MPN), with type 1 (52bp deletion; CALRDEL) and type 2 (5bp insertion; CALRINS) being the most prevalent. Despite the universal pathobiology of MPN driven by various CALR mutants, it is unclear why different CALR mutations result in diverse clinical phenotypes. Through RNA sequencing followed by validation at the protein and mRNA levels, we found that S100A8 was specifically enriched in CALRDEL but not in CALRINS MPN-model cells. The expression of S100a8 could be regulated by STAT3 based on luciferase reporter assay complemented with inhibitor treatment. Pyrosequencing demonstrated relative hypomethylation in two CpG sites within the potential pSTAT3-targeting S100a8 promoter region in CALRDEL cells as compared to CALRINS cells, suggesting that distinct epigenetic alteration could factor into the divergent S100A8 levels in these cells. The functional analysis confirmed that S100A8 non-redundantly contributed to accelerated cellular proliferation and reduced apoptosis in CALRDEL cells. Clinical validation showed significantly enhanced S100A8 expression in CALRDEL-mutated MPN patients compared to CALRINS-mutated cases, and thrombocytosis was less prominent in those with S100A8 upregulation. This study provides indispensable insights into how different CALR mutations discrepantly drive the expression of specific genes that contributes to unique phenotypes in MPN.
Collapse
Affiliation(s)
- Ying-Hsuan Wang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Ying-Ju Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Yi-Hua Lai
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Ming-Chung Wang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Yi-Yang Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Yu-Ying Wu
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Yao-Ren Yang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Hsing-Yi Tsou
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Chian-Pei Li
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Chia-Chen Hsu
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Cih-En Huang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chih-Cheng Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
11
|
Luque Paz D, Bader MS, Nienhold R, Rai S, Almeida Fonseca T, Stetka J, Hao-Shen H, Mild-Schneider G, Passweg JR, Skoda RC. Impact of Clonal Architecture on Clinical Course and Prognosis in Patients With Myeloproliferative Neoplasms. Hemasphere 2023; 7:e885. [PMID: 37153874 PMCID: PMC10158927 DOI: 10.1097/hs9.0000000000000885] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/31/2023] [Indexed: 05/10/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are caused by a somatic gain-of-function mutation in 1 of the 3 disease driver genes JAK2, MPL, or CALR. About half of the MPNs patients also carry additional somatic mutations that modify the clinical course. The order of acquisition of these gene mutations has been proposed to influence the phenotype and evolution of the disease. We studied 50 JAK2-V617F-positive MPN patients who carried at least 1 additional somatic mutation and determined the clonal architecture of their hematopoiesis by sequencing DNA from single-cell-derived colonies. In 22 of these patients, the same blood samples were also studied for comparison by Tapestri single-cell DNA sequencing (scDNAseq). The clonal architectures derived by the 2 methods showed good overall concordance. scDNAseq showed higher sensitivity for mutations with low variant allele fraction, but had more difficulties distinguishing between heterozygous and homozygous mutations. By unsupervised analysis of clonal architecture data from all 50 MPN patients, we defined 4 distinct clusters. Cluster 4, characterized by more complex subclonal structure correlated with reduced overall survival, independent of the MPN subtype, presence of high molecular risk mutations, or the age at diagnosis. Cluster 1 was characterized by additional mutations residing in clones separated from the JAK2-V617F clone. The correlation with overall survival improved when mutation in such separated clones were not counted. Our results show that scDNAseq can reliably decipher the clonal architecture and can be used to refine the molecular prognostic stratification that until now was primarily based on the clinical and laboratory parameters.
Collapse
Affiliation(s)
- Damien Luque Paz
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Switzerland
- Univ Angers, Nantes Université, CHU Angers, Inserm, CNRS, CRCI2NA, Angers, France
| | | | - Ronny Nienhold
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Switzerland
| | - Shivam Rai
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Switzerland
| | - Tiago Almeida Fonseca
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Switzerland
| | - Jan Stetka
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Switzerland
| | - Hui Hao-Shen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Switzerland
| | - Gabriele Mild-Schneider
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Switzerland
| | | | - Radek C. Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Switzerland
| |
Collapse
|
12
|
Willekens C, Laplane L, Dagher T, Benlabiod C, Papadopoulos N, Lacout C, Rameau P, Catelain C, Alfaro A, Edmond V, Signolle N, Marchand V, Droin N, Hoogenboezem R, Schneider RK, Penson A, Abdel-Wahab O, Giraudier S, Pasquier F, Marty C, Plo I, Villeval JL, Constantinescu SN, Porteu F, Vainchenker W, Solary E. SRSF2-P95H decreases JAK/STAT signaling in hematopoietic cells and delays myelofibrosis development in mice. Leukemia 2023:10.1038/s41375-023-01878-0. [PMID: 37100881 DOI: 10.1038/s41375-023-01878-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 04/28/2023]
Abstract
Heterozygous mutation targeting proline 95 in Serine/Arginine-rich Splicing Factor 2 (SRSF2) is associated with V617F mutation in Janus Activated Kinase 2 (JAK2) in some myeloproliferative neoplasms (MPNs), most commonly primary myelofibrosis. To explore the interaction of Srsf2P95H with Jak2V617F, we generated Cre-inducible knock-in mice expressing these mutants under control of the stem cell leukemia (Scl) gene promoter. In transplantation experiments, Srsf2P95H unexpectedly delayed myelofibrosis induced by Jak2V617F and decreased TGFβ1 serum level. Srsf2P95H reduced the competitiveness of transplanted Jak2V617F hematopoietic stem cells while preventing their exhaustion. RNA sequencing of sorted megakaryocytes identified an increased number of splicing events when the two mutations were combined. Focusing on JAK/STAT pathway, Jak2 exon 14 skipping was promoted by Srsf2P95H, an event detected in patients with JAK2V617F and SRSF2P95 co-mutation. The skipping event generates a truncated inactive JAK2 protein. Accordingly, Srsf2P95H delays myelofibrosis induced by the thrombopoietin receptor agonist Romiplostim in Jak2 wild-type animals. These results unveil JAK2 exon 14 skipping promotion as a strategy to reduce JAK/STAT signaling in pathological conditions.
Collapse
Affiliation(s)
- Christophe Willekens
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Département d'hématologie, Gustave Roussy Cancer Campus, Villejuif, France
| | - Lucie Laplane
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Institut d'Histoire et Philosophie des Sciences et des Techniques, Université Paris I Panthéon-Sorbonne, Paris, France
| | - Tracy Dagher
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Camelia Benlabiod
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Institut d'Histoire et Philosophie des Sciences et des Techniques, Université Paris I Panthéon-Sorbonne, Paris, France
| | - Nicolas Papadopoulos
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium
- Université catholique de Louvain and de Duve Institute, Brussels, Belgium
| | | | | | | | | | - Valérie Edmond
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Valentine Marchand
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Nathalie Droin
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Remco Hoogenboezem
- Department of Hematology, Erasmus University, Rotterdam, The Netherlands
| | - Rebekka K Schneider
- Department of Hematology, Erasmus University, Rotterdam, The Netherlands
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
| | - Alex Penson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Florence Pasquier
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Département d'hématologie, Gustave Roussy Cancer Campus, Villejuif, France
| | - Caroline Marty
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Isabelle Plo
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Jean-Luc Villeval
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium
- Université catholique de Louvain and de Duve Institute, Brussels, Belgium
- WELBIO department, WEL Research Institute, Wavre, Belgium
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Françoise Porteu
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - William Vainchenker
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Eric Solary
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France.
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.
- Département d'hématologie, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
13
|
Yang FC, Agosto-Peña J. Epigenetic regulation by ASXL1 in myeloid malignancies. Int J Hematol 2023; 117:791-806. [PMID: 37062051 DOI: 10.1007/s12185-023-03586-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/22/2023] [Indexed: 04/17/2023]
Abstract
Myeloid malignancies are clonal hematopoietic disorders that are comprised of a spectrum of genetically heterogeneous disorders, including myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), chronic myelomonocytic leukemia (CMML), and acute myeloid leukemia (AML). Myeloid malignancies are characterized by excessive proliferation, abnormal self-renewal, and/or differentiation defects of hematopoietic stem cells (HSCs) and myeloid progenitor cells hematopoietic stem/progenitor cells (HSPCs). Myeloid malignancies can be caused by genetic and epigenetic alterations that provoke key cellular functions, such as self-renewal, proliferation, biased lineage commitment, and differentiation. Advances in next-generation sequencing led to the identification of multiple mutations in myeloid neoplasms, and many new gene mutations were identified as key factors in driving the pathogenesis of myeloid malignancies. The polycomb protein ASXL1 was identified to be frequently mutated in all forms of myeloid malignancies, with mutational frequencies of 20%, 43%, 10%, and 20% in MDS, CMML, MPN, and AML, respectively. Significantly, ASXL1 mutations are associated with a poor prognosis in all forms of myeloid malignancies. The fact that ASXL1 mutations are associated with poor prognosis in patients with CMML, MDS, and AML, points to the possibility that ASXL1 mutation is a key factor in the development of myeloid malignancies. This review summarizes the recent advances in understanding myeloid malignancies with a specific focus on ASXL1 mutations.
Collapse
Affiliation(s)
- Feng-Chun Yang
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Joel Agosto-Peña
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
14
|
Lysine-Specific Demethylase 1 (LSD1/KDM1A) Inhibition as a Target for Disease Modification in Myelofibrosis. Cells 2022; 11:cells11132107. [PMID: 35805191 PMCID: PMC9265913 DOI: 10.3390/cells11132107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 02/04/2023] Open
Abstract
Myelofibrosis (MF) is the most symptomatic form of myeloproliferative neoplasm and carries the worst outcome. Allogeneic hematopoietic stem cell transplantation is the only therapy with potential for cure at present, but is limited by significant mortality and morbidity. JAK inhibition is the mainstay of treatment for intermediate- and high-risk MF. Ruxolitinib is the most widely used JAK1/2 inhibitor and provides durable effects in controlling symptom burden and spleen volumes. Nevertheless, ruxolitinib may not adequately address the underlying disease biology. Its effects on mutant allele burden, bone marrow fibrosis, and the prevention of leukemic transformation are minimal. Multiple small molecules are being tested in multiple phase 2 and 3 studies as either monotherapy or in combination with JAK2 inhibitors. In this review, the role of LSD1/KDM1A inhibition as a potential disease-modification strategy in patients with myelofibrosis is described and discussed.
Collapse
|
15
|
Huang J, Huang X, Li Y, Li X, Wang J, Li F, Yan X, Wang H, Wang Y, Lin X, Tu J, He D, Ye W, Yang M, Jin J. Abivertinib inhibits megakaryocyte differentiation and platelet biogenesis. Front Med 2021; 16:416-428. [PMID: 34792736 DOI: 10.1007/s11684-021-0838-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/24/2020] [Indexed: 11/25/2022]
Abstract
Abivertinib, a third-generation tyrosine kinase inhibitor, is originally designed to target epidermal growth factor receptor (EGFR)-activating mutations. Previous studies have shown that abivertinib has promising antitumor activity and a well-tolerated safety profile in patients with non-small-cell lung cancer. However, abivertinib also exhibited high inhibitory activity against Bruton's tyrosine kinase and Janus kinase 3. Given that these kinases play some roles in the progression of megakaryopoiesis, we speculate that abivertinib can affect megakaryocyte (MK) differentiation and platelet biogenesis. We treated cord blood CD34+ hematopoietic stem cells, Meg-01 cells, and C57BL/6 mice with abivertinib and observed megakaryopoiesis to determine the biological effect of abivertinib on MK differentiation and platelet biogenesis. Our in vitro results showed that abivertinib impaired the CFU-MK formation, proliferation of CD34+ HSC-derived MK progenitor cells, and differentiation and functions of MKs and inhibited Meg-01-derived MK differentiation. These results suggested that megakaryopoiesis was inhibited by abivertinib. We also demonstrated in vivo that abivertinib decreased the number of MKs in bone marrow and platelet counts in mice, which suggested that thrombopoiesis was also inhibited. Thus, these preclinical data collectively suggested that abivertinib could inhibit MK differentiation and platelet biogenesis and might be an agent for thrombocythemia.
Collapse
Affiliation(s)
- Jiansong Huang
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Xin Huang
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yang Li
- Department of Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xia Li
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinghan Wang
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Fenglin Li
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiao Yan
- Department of Hematology, Qingdao Municipal Hospital, Qingdao, 266000, China
| | - Huanping Wang
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yungui Wang
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiangjie Lin
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jifang Tu
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Daqiang He
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Wenle Ye
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Min Yang
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jie Jin
- Department of Hematology, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Insufficiency of non-canonical PRC1 synergizes with JAK2V617F in the development of myelofibrosis. Leukemia 2021; 36:452-463. [PMID: 34497325 DOI: 10.1038/s41375-021-01402-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022]
Abstract
Insufficiency of polycomb repressive complex 2 (PRC2), which trimethylates histone H3 at lysine 27, is frequently found in primary myelofibrosis and promotes the development of JAK2V617F-induced myelofibrosis in mice by enhancing the production of dysplastic megakaryocytes. Polycomb group ring finger protein 1 (Pcgf1) is a component of PRC1.1, a non-canonical PRC1 that monoubiquitylates H2A at lysine 119 (H2AK119ub1). We herein investigated the impact of PRC1.1 insufficiency on myelofibrosis. The deletion of Pcgf1 in JAK2V617F mice strongly promoted the development of lethal myelofibrosis accompanied by a block in erythroid differentiation. Transcriptome and chromatin immunoprecipitation sequence analyses showed the de-repression of PRC1.1 target genes in Pcgf1-deficient JAK2V617F hematopoietic progenitors and revealed Hoxa cluster genes as direct targets. The deletion of Pcgf1 in JAK2V617F hematopoietic stem and progenitor cells (HSPCs), as well as the overexpression of Hoxa9, restored the attenuated proliferation of JAK2V617F progenitors. The overexpression of Hoxa9 also enhanced JAK2V617F-mediated myelofibrosis. The expression of PRC2 target genes identified in PRC2-insufficient JAK2V617F HSPCs was not largely altered in Pcgf1-deleted JAK2V617F HSPCs. The present results revealed a tumor suppressor function for PRC1.1 in myelofibrosis and suggest that PRC1.1 insufficiency has a different impact from that of PRC2 insufficiency on the pathogenesis of myelofibrosis.
Collapse
|
17
|
Co-mutation pattern, clonal hierarchy, and clone size concur to determine disease phenotype of SRSF2 P95-mutated neoplasms. Leukemia 2021; 35:2371-2381. [PMID: 33349666 DOI: 10.1038/s41375-020-01106-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 10/29/2020] [Accepted: 11/27/2020] [Indexed: 01/29/2023]
Abstract
Somatic mutations in splicing factor genes frequently occur in myeloid neoplasms. While SF3B1 mutations are associated with myelodysplastic syndromes (MDS) with ring sideroblasts, SRSF2P95 mutations are found in different disease categories, including MDS, myeloproliferative neoplasms (MPN), myelodysplastic/myeloproliferative neoplasms (MDS/MPN), and acute myeloid leukemia (AML). To identify molecular determinants of this phenotypic heterogeneity, we explored molecular and clinical features of a prospective cohort of 279 SRSF2P95-mutated cases selected from a population of 2663 patients with myeloid neoplasms. Median number of somatic mutations per subject was 3. Multivariate regression analysis showed associations between co-mutated genes and clinical phenotype, including JAK2 or MPL with myelofibrosis (OR = 26.9); TET2 with monocytosis (OR = 5.2); RAS-pathway genes with leukocytosis (OR = 5.1); and STAG2, RUNX1, or IDH1/2 with blast phenotype (MDS or AML) (OR = 3.4, 1.9, and 2.1, respectively). Within patients with SRSF2-JAK2 co-mutation, JAK2 dominance was invariably associated with clinical feature of MPN, whereas SRSF2 mutation was dominant in MDS/MPN. Within patients with SRSF2-TET2 co-mutation, clinical expressivity of monocytosis was positively associated with co-mutated clone size. This study provides evidence that co-mutation pattern, clone size, and hierarchy concur to determine clinical phenotype, tracing relevant genotype-phenotype associations across disease entities and giving insight on unaccountable clinical heterogeneity within current WHO classification categories.
Collapse
|
18
|
Chen X, Ding Z, Li T, Jiang W, Zhang J, Deng X. MicroR-26b Targets High Mobility Group, AT-hook 2 to Ameliorate Myocardial Infarction-induced Fibrosis by Suppression of Cardiac Fibroblasts Activation. Curr Neurovasc Res 2021; 17:204-213. [PMID: 32370714 DOI: 10.2174/1567202617666200506101258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Myocardial Fibrosis (MF) is an important physiological change after myocardial infarction (MI). MicroRNA-26b (MiR-26b) has a certain inhibitory effect on pulmonary fibrosis. However, the role of miR-26b in MI-induced MF rats and underlying molecular mechanisms remain unknown. METHODS Forty male Sprague Dawley (SD) rats weighing 200-250 g were divided into four groups (n=10): Sham group, MF group, MF + negative control (NC) agomir group and MF + miR-26b agomir group. Cardiac fibroblasts were isolated from cardiac tissue. Fibrosis levels were detected by MASSON staining, while the expression of related genes was detected by RT-qPCR, Western blotting and Immunohistochemistry, respectively. TargetScan and dual-luciferase reporter assay were utilized to predict the relationship between miR-26b and high mobility group, AT-hook 2 (HMGA2). RESULTS The study found the expression of miR-26b to be down-regulated in the myocardium of MF rats (P<0.01). miR-26b overexpression in vitro significantly reduced the survival rate of cardiac fibroblasts and inhibited the expression of the fibrillar-associated protein (α-SMA alphasmooth muscle actin (α-SMA) and collagen I) (P<0.01). TargetScan indicated that HMGA2 was one of the target genes of miR-26b; dual-luciferase reporter assay further confirmed the targeted regulatory relationship (P<0.01). Moreover, miR-26b overexpression significantly reduced the expression of HMGA2 (P<0.01). Notably, HMGA2 overexpression reversed the inhibitory effect of miR-26b overexpression on cardiac fibroblast viability and the expression of α-SMA and collagen I (P<0.01). Animal experiments further indicated that miR-26b overexpression inhibited MIinduced rat MF by inhibiting the expression of HMGA2 (P<0.05, P<0.01). CONCLUSION In short, these findings indicate that miR-26b targets HMGA2 to ameliorate MI-induced fibrosis by suppression of cardiac fibroblasts activation.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Cardiopulmonary Rehabilitation, Jiangsu Rongjun Hospital, Wuxi City, Jiangsu Province, 214000, China
| | - Zhaosheng Ding
- Department of Cardiopulmonary Rehabilitation, Jiangsu Rongjun Hospital, Wuxi City, Jiangsu Province, 214000, China
| | - Tong Li
- Department of Cardiopulmonary Rehabilitation, Jiangsu Rongjun Hospital, Wuxi City, Jiangsu Province, 214000, China
| | - Wei Jiang
- Department of Cardiopulmonary Rehabilitation, Jiangsu Rongjun Hospital, Wuxi City, Jiangsu Province, 214000, China
| | - Jiawei Zhang
- Department of Cardiopulmonary Rehabilitation, Jiangsu Rongjun Hospital, Wuxi City, Jiangsu Province, 214000, China
| | - Xuejun Deng
- Department of Pathology, The First Affiliated Hospital of University of South China, Hengyang City, Hunan Province, 421001, China
| |
Collapse
|
19
|
Williams L, Doucette K, Karp JE, Lai C. Genetics of donor cell leukemia in acute myelogenous leukemia and myelodysplastic syndrome. Bone Marrow Transplant 2021; 56:1535-1549. [PMID: 33686252 DOI: 10.1038/s41409-021-01214-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 01/31/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is an important therapeutic modality for patients with acute myelogenous leukemia (AML) with poor risk features. Nonetheless, roughly 30% of such patients have leukemia recurrence and up to 2% of these are donor-derived leukemias, in which malignancy develops in the donor's transplanted cells, despite extremely low rates of leukemia in the donors themselves. Notably, over 20% of these malignancies carry chromosome 7 abnormalities nearly all of which are monosomies. Recent advances in whole exome and genome sequencing have allowed for detection of candidate genes that likely contribute to the development of AML in donor cells (donor leukemia, DCL). These genes include CEBPA, GATA2, JAK2, RUNX1, DDX41, EZH2, IDH1/2, DNMT3A, ASXL1, XPD, XRCC3, and CHEK1. The potential roles of variants in these genes are evaluated based on familial clustering of MDS/AML and corresponding animal studies demonstrating their leukemogenic nature. This review describes the spectrum of genetic aberrations detected in DCL cases in the literature with regard to the character of the individual cases, existing family cohorts that carry individual genes, and functional studies that support etiologic roles in AML development. DCL presents a unique opportunity to examine genetic variants in the donors and recipients with regards to progression to malignancy.
Collapse
Affiliation(s)
- Lacey Williams
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Kimberley Doucette
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Judith E Karp
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Catherine Lai
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC, USA.
| |
Collapse
|
20
|
Dual role of EZH2 on megakaryocyte differentiation. Blood 2021; 138:1603-1614. [PMID: 34115825 DOI: 10.1182/blood.2019004638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/05/2021] [Indexed: 11/20/2022] Open
Abstract
EZH2, the enzymatic component of PRC2, has been identified as a key factor in hematopoiesis. EZH2 loss of function mutations have been found in myeloproliferative neoplasms, more particularly in myelofibrosis, but the precise function of EZH2 in megakaryopoiesis is not fully delineated. Here, we show that EZH2 inhibition by small molecules and shRNA induces MK commitment by accelerating lineage marker acquisition without change in proliferation. Later in differentiation, EZH2 inhibition blocks proliferation, polyploidization and decreases proplatelet formation. EZH2 inhibitors similarly reduce MK polyploidization and proplatelet formation in vitro and platelet level in vivo in a JAK2V617F background. In transcriptome profiling, the defect in proplatelet formation was associated with an aberrant actin cytoskeleton regulation pathway, whereas polyploidization was associated with an inhibition of expression of genes involved in DNA replication and repair, and an upregulation of CDK inhibitors, more particularly CDKN1A and CDKN2D. The knockdown of CDKN1A and at a lesser extend of CDKN2D could partially rescue the percentage of polyploid MKs. Moreover, H3K27me3 and EZH2 ChIP assays revealed that only CDKN1A is a direct EZH2 target while CDKN2D expression is not directly regulated by EZH2 suggesting that EZH2 controls MK polyploidization directly through CDKN1A and indirectly through CDKN2D.
Collapse
|
21
|
Deng X, Kong F, Li S, Jiang H, Dong L, Xu X, Zhang X, Yuan H, Xu Y, Chu Y, Peng H, Guan M. A KLF4/PiHL/EZH2/HMGA2 regulatory axis and its function in promoting oxaliplatin-resistance of colorectal cancer. Cell Death Dis 2021; 12:485. [PMID: 33986248 PMCID: PMC8119946 DOI: 10.1038/s41419-021-03753-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as a new class of regulatory molecules implicated in therapeutic resistance, yet the mechanisms underlying lncRNA-mediated oxaliplatin resistance in colorectal cancer (CRC) are poorly understood. In this study, lncRNA P53 inHibiting LncRNA (PiHL) was shown to be highly induced in oxaliplatin-resistant CRC cells and tumor tissues. In vitro and in vivo models clarified PiHL’s role in conferring resistance to oxaliplatin-induced apoptosis. PiHL antagonized chemosensitivity through binding with EZH2, repressing location of EZH2 to HMGA2 promoter, and downregulating methylation of histone H3 lysine 27 (H3K27me3) level in HMGA2 promoter, thus activating HMGA2 expression. Furthermore, HMGA2 upregulation induced by PiHL promotes PI3K/Akt phosphorylation, which resulted in increased oxaliplatin resistance. We also found that transcription factor KLF4 was downregulated in oxaliplatin-resistant cells, and KLF4 negatively regulated PiHL expression by binding to PiHL promoter. In vivo models further demonstrated that treatment of oxaliplatin-resistant CRC with locked nucleic acids targeting PiHL restored oxaliplatin response. Collectively, this study established lncRNA PiHL as a chemoresistance promoter in CRC, and targeting PiHL/EZH2/HMGA2/PI3K/Akt signaling axis represents a novel choice in the investigation of drug resistance.
Collapse
Affiliation(s)
- Xuan Deng
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Fanyang Kong
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, 222300, China
| | - Si Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Haoqin Jiang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Liu Dong
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Xiao Xu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Xinju Zhang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Hong Yuan
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Ying Xu
- Digestive Endoscopy Center, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200050, China
| | - Yimin Chu
- Digestive Endoscopy Center, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200050, China
| | - Haixia Peng
- Digestive Endoscopy Center, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200050, China.
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
22
|
Morsia E, Gangat N. Myelofibrosis: challenges for preclinical models and emerging therapeutic targets. Expert Opin Ther Targets 2021; 25:211-222. [PMID: 33844952 DOI: 10.1080/14728222.2021.1915992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Myelofibrosis (MF) is characterized by anemia, splenomegaly, constitutional symptoms and bone marrow fibrosis. MF has no curative treatment to date, except for a small subset of patients that are eligible for allogeneic hematopoietic stem cell transplant. The discovery in recent years of the MF mutational landscape and the role of bone marrow microenvironment in disease pathogenesis has led to further insights into disease biology and consequentially rationally derived therapies.Areas covered: We searched PubMed/Medline/American Society of Hematology (ASH) abstracts until November 2020 using the following terms: myelofibrosis, mouse models, pre-clinical studies and clinical trials. The development of targeted therapies is aimed to modify the history of the disease. Although JAK inhibitors showed encouraging results in terms of spleen and symptoms response, long term remissions and disease modifying ability is lacking. Beyond JAK inhibitors, a range of agents targeting proliferative, metabolic, apoptotic pathways, the microenvironment, epigenetic modification and immunomodulation are in various stages of investigations. We review pre-clinical data, preliminary clinical results of these agents, and finally offer insights on the management of MF patients.Expert opinion: MF patients refractory or with suboptimal response to JAK inhibitors, may be managed by addition of agents with differing mechanisms, such as bromodomain (BET), lysine demethylase 1 (LSD1), MDM2, or Bcl-Xl inhibitors which could prevent emergence of resistance. Immunotherapies as long-acting interferons, and calreticulin directed antibodies or peptide vaccination are eagerly awaited. Historically, therapeutic challenges in MF have arisen due to the fact that rationally derived therapies that are based on murine models have limited impact on fibrosis and underlying disease biology in human studies, the latter illustrates the complex multi-faceted disease pathogenesis of MF. Together, we not only suggest individualized therapy in MF that is guided by genomic signature but also its early implementation potentially in prefibrotic MF.
Collapse
Affiliation(s)
- Erika Morsia
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
23
|
Benlabiod C, Dagher T, Marty C, Villeval JL. Lessons from mouse models of MPN. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 366:125-185. [PMID: 35153003 DOI: 10.1016/bs.ircmb.2021.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the past decades, a variety of MPN mouse models have been developed to express in HSC the main mutations identified in patients: JAK2V617F, CALRdel52 or ins5 and MPLW515L. These models mimic quite faithfully human PV or ET with their natural evolutions into MF and their hemostasis complications, demonstrating the driver function of these mutations in MPN. Here, we review these models and show how they have improved our general understanding of MPN regarding (1) the mechanisms of fibrosis, thrombosis/hemorrhages and disease initiation, (2) the roles of additional mutations and signaling pathways in disease progression and (3) the preclinical development of novel therapies. We also address controversial results between these models and remind how these models may differ from human MPN onset and also how basically mice are not humans, encouraging caution when one draw lessons from mice to humans. Furthermore, the contribution of germline genetic predisposition, HSC and niche aging, metabolic, oxidative, replicative or genotoxic stress, inflammation, immune escape and additional mutations need to be considered in further investigations to encompass the full complexity of human MPN in mice.
Collapse
Affiliation(s)
- Camelia Benlabiod
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France
| | - Tracy Dagher
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France
| | - Caroline Marty
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France.
| | - Jean-Luc Villeval
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France.
| |
Collapse
|
24
|
Abstract
This article reviews the genetic data on epigenetic modifying mutations in myeloproliferative neoplasms and their clinical implications, preclinical studies exploring our current understanding of how mutations in epigenetic modifying proteins cooperate with myeloproliferative neoplasms drivers to promote disease progression, and recent advances in novel therapeutics supporting the role of targeting epigenetic pathways to treat fibrotic progression.
Collapse
Affiliation(s)
- Andrew Dunbar
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA; Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
| | - Young Park
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
| | - Ross Levine
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA; Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA.
| |
Collapse
|
25
|
Murine Modeling of Myeloproliferative Neoplasms. Hematol Oncol Clin North Am 2021; 35:253-265. [PMID: 33641867 DOI: 10.1016/j.hoc.2020.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myeloproliferative neoplasms, such as polycythemia vera, essential thrombocythemia, and primary myelofibrosis, are bone marrow disorders that result in the overproduction of mature clonal myeloid elements. Identification of recurrent genetic mutations has been described and aid in diagnosis and prognostic determination. Mouse models of these mutations have confirmed the biologic significance of these mutations in myeloproliferative neoplasm disease biology and provided greater insights on the pathways that are dysregulated with each mutation. The models are useful tools that have led to preclinical testing and provided data as validation for future myeloproliferative neoplasm clinical trials.
Collapse
|
26
|
The role of AGK in thrombocytopoiesis and possible therapeutic strategies. Blood 2021; 136:119-129. [PMID: 32202634 DOI: 10.1182/blood.2019003851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
Abnormal megakaryocyte development and platelet production lead to thrombocytopenia or thrombocythemia and increase the risk of hemorrhage or thrombosis. Acylglycerol kinase (AGK) is a mitochondrial membrane kinase that catalyzes the formation of phosphatidic acid and lysophosphatidic acid. Mutation of AGK has been described as the major cause of Sengers syndrome, and the patients with Sengers syndrome have been reported to exhibit thrombocytopenia. In this study, we found that megakaryocyte/platelet-specific AGK-deficient mice developed thrombocytopenia and splenomegaly, mainly caused by inefficient bone marrow thrombocytopoiesis and excessive extramedullary hematopoiesis, but not by apoptosis of circulating platelets. It has been reported that the G126E mutation arrests the kinase activity of AGK. The AGK G126E mutation did not affect peripheral platelet counts or megakaryocyte differentiation, suggesting that the involvement of AGK in megakaryocyte development and platelet biogenesis was not dependent on its kinase activity. The Mpl/Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (Stat3) pathway is the major signaling pathway regulating megakaryocyte development. Our study confirmed that AGK can bind to JAK2 in megakaryocytes/platelets. More interestingly, we found that the JAK2 V617F mutation dramatically enhanced the binding of AGK to JAK2 and greatly facilitated JAK2/Stat3 signaling in megakaryocytes/platelets in response to thrombopoietin. We also found that the JAK2 JAK homology 2 domain peptide YGVCF617CGDENI enhanced the binding of AGK to JAK2 and that cell-permeable peptides containing YGVCF617CGDENI sequences accelerated proplatelet formation. Therefore, our study reveals critical roles of AGK in megakaryocyte differentiation and platelet biogenesis and suggests that targeting the interaction between AGK and JAK2 may be a novel strategy for the treatment of thrombocytopenia or thrombocythemia.
Collapse
|
27
|
Stetka J, Skoda RC. Mouse models of myeloproliferative neoplasms for pre-clinical testing of novel therapeutic agents. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2021; 165:26-33. [PMID: 33542546 DOI: 10.5507/bp.2021.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/08/2021] [Indexed: 11/23/2022] Open
Abstract
Myeloproliferative neoplasms (MPN), are clonal hematopoietic stem cell (HSC) disorders driven by gain-of-function mutations in JAK2 (JAK2-V617F), CALR or MPL genes. MPN treatment options currently mainly consist of cytoreductive therapy with hydroxyurea and JAK2 inhibitors such as ruxolitinib and fedratinib. Pegylated interferon-alpha can induce complete molecular remission (CMR) in some MPN patients when applied at early stages of disease. The ultimate goal of modern MPN treatment is to develop novel therapies that specifically target mutant HSCs in MPN and consistently induce CMR. Basic research has identified a growing number of candidate drugs with promising effects in vitro. A first step on the way to developing these compounds into drugs approved for treatment of MPN patients often consists of examining the effects in vivo using pre-clinical mouse models of MPN. Here we review the current state of MPN mouse models and the experimental setup for their optimal use in drug testing. In addition to novel compounds, combinatorial therapeutic approaches are often considered for the treatment of MPN. Optimized and validated mouse models can provide an efficient way to rapidly assess and select the most promising combinations and thereby contribute to accelerating the development of novel therapies of MPN.
Collapse
Affiliation(s)
- Jan Stetka
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Radek C Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
28
|
Abstract
Mouse models of human myeloid malignancies support the detailed and focused investigation of selected driver mutations and represent powerful tools in the study of these diseases. Carefully developed murine models can closely recapitulate human myeloid malignancies in vivo, enabling the interrogation of a number of aspects of these diseases including their preclinical course, interactions with the microenvironment, effects of pharmacological agents, and the role of non-cell-autonomous factors, as well as the synergy between co-occurring mutations. Importantly, advances in gene-editing technologies, particularly CRISPR-Cas9, have opened new avenues for the development and study of genetically modified mice and also enable the direct modification of mouse and human hematopoietic cells. In this review we provide a concise overview of some of the important mouse models that have advanced our understanding of myeloid leukemogenesis with an emphasis on models relevant to clonal hematopoiesis, myelodysplastic syndromes, and acute myeloid leukemia with a normal karyotype.
Collapse
Affiliation(s)
- Faisal Basheer
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Department of Haematology, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - George Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Department of Haematology, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
29
|
Kaito S, Iwama A. Pathogenic Impacts of Dysregulated Polycomb Repressive Complex Function in Hematological Malignancies. Int J Mol Sci 2020; 22:ijms22010074. [PMID: 33374737 PMCID: PMC7793497 DOI: 10.3390/ijms22010074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Polycomb repressive complexes (PRCs) are epigenetic regulators that mediate repressive histone modifications. PRCs play a pivotal role in the maintenance of hematopoietic stem cells through repression of target genes involved in cell proliferation and differentiation. Next-generation sequencing technologies have revealed that various hematologic malignancies harbor mutations in PRC2 genes, such as EZH2, EED, and SUZ12, and PRC1.1 genes, such as BCOR and BCORL1. Except for the activating EZH2 mutations detected in lymphoma, most of these mutations compromise PRC function and are frequently associated with resistance to chemotherapeutic agents and poor prognosis. Recent studies have shown that mutations in PRC genes are druggable targets. Several PRC2 inhibitors, including EZH2-specific inhibitors and EZH1 and EZH2 dual inhibitors have shown therapeutic efficacy for tumors with and without activating EZH2 mutations. Moreover, EZH2 loss-of-function mutations appear to be attractive therapeutic targets for implementing the concept of synthetic lethality. Further understanding of the epigenetic dysregulation associated with PRCs in hematological malignancies should improve treatment outcomes.
Collapse
Affiliation(s)
| | - Atsushi Iwama
- Correspondence: ; Tel.: +81-3-6409-2181; Fax: +81-3-6409-2182
| |
Collapse
|
30
|
Sharma V, Wright KL, Epling-Burnette PK, Reuther GW. Metabolic Vulnerabilities and Epigenetic Dysregulation in Myeloproliferative Neoplasms. Front Immunol 2020; 11:604142. [PMID: 33329600 PMCID: PMC7734315 DOI: 10.3389/fimmu.2020.604142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/02/2020] [Indexed: 01/14/2023] Open
Abstract
The Janus kinase 2 (JAK2)-driven myeloproliferative neoplasms (MPNs) are associated with clonal myelopoiesis, elevated risk of death due to thrombotic complications, and transformation to acute myeloid leukemia (AML). JAK2 inhibitors improve the quality of life for MPN patients, but these approved therapeutics do not readily reduce the natural course of disease or antagonize the neoplastic clone. An understanding of the molecular and cellular changes requisite for MPN development and progression are needed to develop improved therapies. Recently, murine MPN models were demonstrated to exhibit metabolic vulnerabilities due to a high dependence on glucose. Neoplastic hematopoietic progenitor cells in these mice express elevated levels of glycolytic enzymes and exhibit enhanced levels of glycolysis and oxidative phosphorylation, and the disease phenotype of these MPN model mice is antagonized by glycolytic inhibition. While all MPN-driving mutations lead to aberrant JAK2 activation, these mutations often co-exist with mutations in genes that encode epigenetic regulators, including loss of function mutations known to enhance MPN progression. In this perspective we discuss how altered activity of epigenetic regulators (e.g., methylation and acetylation) in MPN-driving stem and progenitor cells may alter cellular metabolism and contribute to the MPN phenotype and progression of disease. Specific metabolic changes associated with epigenetic deregulation may identify patient populations that exhibit specific metabolic vulnerabilities that are absent in normal hematopoietic cells, and thus provide a potential basis for the development of more effective personalized therapeutic approaches.
Collapse
Affiliation(s)
- Vasundhara Sharma
- Department of Leukemia, Princess Margaret Cancer Center-University Health Network, Toronto, ON, Canada
| | - Kenneth L Wright
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, United States
| | | | - Gary W Reuther
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, United States
| |
Collapse
|
31
|
Heterogeneous bone-marrow stromal progenitors drive myelofibrosis via a druggable alarmin axis. Cell Stem Cell 2020; 28:637-652.e8. [PMID: 33301706 PMCID: PMC8024900 DOI: 10.1016/j.stem.2020.11.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 08/18/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022]
Abstract
Functional contributions of individual cellular components of the bone-marrow microenvironment to myelofibrosis (MF) in patients with myeloproliferative neoplasms (MPNs) are incompletely understood. We aimed to generate a comprehensive map of the stroma in MPNs/MFs on a single-cell level in murine models and patient samples. Our analysis revealed two distinct mesenchymal stromal cell (MSC) subsets as pro-fibrotic cells. MSCs were functionally reprogrammed in a stage-dependent manner with loss of their progenitor status and initiation of differentiation in the pre-fibrotic and acquisition of a pro-fibrotic and inflammatory phenotype in the fibrotic stage. The expression of the alarmin complex S100A8/S100A9 in MSC marked disease progression toward the fibrotic phase in murine models and in patient stroma and plasma. Tasquinimod, a small-molecule inhibiting S100A8/S100A9 signaling, significantly ameliorated the MPN phenotype and fibrosis in JAK2V617F-mutated murine models, highlighting that S100A8/S100A9 is an attractive therapeutic target in MPNs.
Collapse
|
32
|
Jacquelin S, Kramer F, Mullally A, Lane SW. Murine Models of Myelofibrosis. Cancers (Basel) 2020; 12:cancers12092381. [PMID: 32842500 PMCID: PMC7563264 DOI: 10.3390/cancers12092381] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/22/2023] Open
Abstract
Myelofibrosis (MF) is subtype of myeloproliferative neoplasm (MPN) characterized by a relatively poor prognosis in patients. Understanding the factors that drive MF pathogenesis is crucial to identifying novel therapeutic approaches with the potential to improve patient care. Driver mutations in three main genes (janus kinase 2 (JAK2), calreticulin (CALR), and myeloproliferative leukemia virus oncogene (MPL)) are recurrently mutated in MPN and are sufficient to engender MPN using animal models. Interestingly, animal studies have shown that the underlying molecular mutation and the acquisition of additional genetic lesions is associated with MF outcome and transition from early stage MPN such as essential thrombocythemia (ET) and polycythemia vera (PV) to secondary MF. In this issue, we review murine models that have contributed to a better characterization of MF pathobiology and identification of new therapeutic opportunities in MPN.
Collapse
Affiliation(s)
- Sebastien Jacquelin
- Cancer program QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- Correspondence: (S.J.); (S.W.L.)
| | - Frederike Kramer
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.K.); (A.M.)
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.K.); (A.M.)
| | - Steven W. Lane
- Cancer program QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- Cancer Care Services, The Royal Brisbane and Women’s Hospital, Brisbane 4029, Australia
- University of Queensland, St Lucia, QLD 4072, Australia
- Correspondence: (S.J.); (S.W.L.)
| |
Collapse
|
33
|
MPN: The Molecular Drivers of Disease Initiation, Progression and Transformation and their Effect on Treatment. Cells 2020; 9:cells9081901. [PMID: 32823933 PMCID: PMC7465511 DOI: 10.3390/cells9081901] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) constitute a group of disorders identified by an overproduction of cells derived from myeloid lineage. The majority of MPNs have an identifiable driver mutation responsible for cytokine-independent proliferative signalling. The acquisition of coexisting mutations in chromatin modifiers, spliceosome complex components, DNA methylation modifiers, tumour suppressors and transcriptional regulators have been identified as major pathways for disease progression and leukemic transformation. They also confer different sensitivities to therapeutic options. This review will explore the molecular basis of MPN pathogenesis and specifically examine the impact of coexisting mutations on disease biology and therapeutic options.
Collapse
|
34
|
Lee J, Godfrey AL, Nangalia J. Genomic heterogeneity in myeloproliferative neoplasms and applications to clinical practice. Blood Rev 2020; 42:100708. [PMID: 32571583 DOI: 10.1016/j.blre.2020.100708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/22/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022]
Abstract
The myeloproliferative neoplasms (MPN) polycythaemia vera, essential thrombocythaemia and primary myelofibrosis are chronic myeloid disorders associated most often with mutations in JAK2, MPL and CALR, and in some patients with additional acquired genomic lesions. Whilst the molecular mechanisms downstream of these mutations are now clearer, it is apparent that clinical phenotype in MPN is a product of complex interactions, acting between individual mutations, between disease subclones, and between the tumour and background host factors. In this review we first discuss MPN phenotypic driver mutations and the factors that interact with them to influence phenotype. We consider the importance of ongoing studies of clonal haematopoiesis, which may inform a better understanding of why MPN develop in specific individuals. We then consider how best to deploy genomic testing in a clinical environment and the challenges as well as opportunities that may arise from more routine, comprehensive genomic analysis of patients with MPN.
Collapse
Affiliation(s)
- Joe Lee
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK; Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK
| | - Anna L Godfrey
- Haematopathology and Oncology Diagnostics Service/ Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Hills Rd, Cambridge CB2 0QQ, UK
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK; Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK; Haematopathology and Oncology Diagnostics Service/ Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Hills Rd, Cambridge CB2 0QQ, UK.
| |
Collapse
|
35
|
Bartalucci N, Guglielmelli P, Vannucchi AM. Polycythemia vera: the current status of preclinical models and therapeutic targets. Expert Opin Ther Targets 2020; 24:615-628. [PMID: 32366208 DOI: 10.1080/14728222.2020.1762176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Polycythemia vera (PV) is the most common myeloproliferative neoplasm (MPN). PV is characterized by erythrocytosis, leukocytosis, thrombocytosis, increased hematocrit, and hemoglobin in the peripheral blood. Splenomegaly and myelofibrosis often occur in PV patients. Almost all PV patients harbor a mutation in the JAK2 gene, mainly represented by the JAK2V617F point mutation. AREAS COVERED This article examines the recent in vitro and in vivo available models of PV and moreover, it offers insights on emerging biomarkers and therapeutic targets. The evidence from mouse models, resembling a PV-like phenotype generated by different technical approaches, is discussed. The authors searched PubMed, books, and clinicaltrials.gov for original and review articles and drugs development status including the terms Myeloproliferative Neoplasms, Polycythemia Vera, erythrocytosis, hematocrit, splenomegaly, bone marrow fibrosis, JAK2V617F, Hematopoietic Stem Cells, MPN cytoreductive therapy, JAK2 inhibitor, histone deacetylase inhibitor, PV-like phenotype, JAK2V617F BMT, transgenic JAK2V617F mouse, JAK2 physiologic promoter. EXPERT OPINION Preclinical models of PV are valuable tools for enabling an understanding of the pathophysiology and the molecular mechanisms of the disease. These models provide new biological insights on the contribution of concomitant mutations and the efficacy of novel drugs in a 'more faithful' setting. This may facilitate an enhanced understanding of pathogenetic mechanisms and targeted therapy.
Collapse
Affiliation(s)
- Niccolò Bartalucci
- Department of Experimental and Clinical Medicine, Center Research and Innovation of Myeloproliferative Neoplasms - CRIMM, Azienda Ospedaliera Universitaria Careggi, University of Florence , Florence, Italy
| | - Paola Guglielmelli
- Department of Experimental and Clinical Medicine, Center Research and Innovation of Myeloproliferative Neoplasms - CRIMM, Azienda Ospedaliera Universitaria Careggi, University of Florence , Florence, Italy
| | - Alessandro M Vannucchi
- Department of Experimental and Clinical Medicine, Center Research and Innovation of Myeloproliferative Neoplasms - CRIMM, Azienda Ospedaliera Universitaria Careggi, University of Florence , Florence, Italy
| |
Collapse
|
36
|
Abstract
Myeloproliferative diseases, including myeloproliferative neoplasms (MPN) and myelodysplastic syndromes (MDS), are driven by genetic abnormalities and increased inflammatory signaling and are at high risk to transform into acute myeloid leukemia (AML). Myeloid-derived suppressor cells were reported to enhance leukemia immune escape by suppressing an effective anti-tumor immune response. MPNs are a potentially immunogenic disease as shown by their response to interferon-α treatment and allogeneic hematopoietic stem-cell transplantation (allo-HSCT). Novel immunotherapeutic approaches such as immune checkpoint inhibition, tumor vaccination, or cellular therapies using target-specific lymphocytes have so far not shown strong therapeutic efficacy. Potential reasons could be the pro-inflammatory and immunosuppressive microenvironment in the bone marrow of patients with MPN, driving tumor immune escape. In this review, we discuss the biology of MPNs with respect to the pro-inflammatory milieu in the bone marrow (BM) and potential immunotherapeutic approaches.
Collapse
|
37
|
Minervini A, Coccaro N, Anelli L, Zagaria A, Specchia G, Albano F. HMGA Proteins in Hematological Malignancies. Cancers (Basel) 2020; 12:E1456. [PMID: 32503270 PMCID: PMC7353061 DOI: 10.3390/cancers12061456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
The high mobility group AT-Hook (HMGA) proteins are a family of nonhistone chromatin remodeling proteins known as "architectural transcriptional factors". By binding the minor groove of AT-rich DNA sequences, they interact with the transcription apparatus, altering the chromatin modeling and regulating gene expression by either enhancing or suppressing the binding of the more usual transcriptional activators and repressors, although they do not themselves have any transcriptional activity. Their involvement in both benign and malignant neoplasias is well-known and supported by a large volume of studies. In this review, we focus on the role of the HMGA proteins in hematological malignancies, exploring the mechanisms through which they enhance neoplastic transformation and how this knowledge could be exploited to devise tailored therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy; (A.M.); (N.C.); (L.A.); (A.Z.); (G.S.)
| |
Collapse
|
38
|
Xia L, Zhu X, Zhang L, Xu Y, Chen G, Luo J. EZH2 enhances expression of CCL5 to promote recruitment of macrophages and invasion in lung cancer. Biotechnol Appl Biochem 2020; 67:1011-1019. [PMID: 31855281 PMCID: PMC7818479 DOI: 10.1002/bab.1875] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/11/2019] [Indexed: 12/24/2022]
Abstract
EZH2 (enhancer of zeste homolog 2) regulates epigenetic gene silencing and functions as critical regulators in various tumor progression. Macrophages infiltration promotes cancer development via stimulating tumor cell migration and invasion. However, the effect of EZH2 on macrophages infiltration, cell invasion, and migration of lung cancer remains to be investigated. In this study, we found that knockdown of EZH2 inhibited macrophages chemotaxis and decreased chemokine ligand 5 (CCL5). Wound‐healing and transwell assays results showed that migration and invasion of lung cancer cells was inhibited by EZH2 deletion. Moreover, EZH2 overexpression increased CCL5 expression. Loss‐of functional assay indicated that the promotion ability of EZH2 on macrophages chemotaxis was inhibited by CCL5 knockdown. Mechanistically, the promotion ability of EZH2 on cell migration and invasion of lung cancer was also inhibited by CCL5 knockdown. The in vivo subcutaneous xenotransplanted tumor model also revealed that silence of EZH2 suppressed lung cancer metastasis and macrophages infiltration via regulation of CCL5. In conclusion, our findings indicated that EZH2 promoted lung cancer metastasis and macrophages infiltration via upregulation of CCL5, which might be the underlying mechanism of EZH2‐induced lung cancer cell progression.
Collapse
Affiliation(s)
- Lilong Xia
- Department of Thoracic Surgery, Zhejiang Hospital, Xihu district, Hangzhou, Zhejiang, 310000, China
| | - Xinhai Zhu
- Department of Thoracic Surgery, Zhejiang Hospital, Xihu district, Hangzhou, Zhejiang, 310000, China
| | - Lei Zhang
- Department of Thoracic Surgery, Zhejiang Hospital, Xihu district, Hangzhou, Zhejiang, 310000, China
| | - Yanhui Xu
- Department of Thoracic Surgery, Zhejiang Hospital, Xihu district, Hangzhou, Zhejiang, 310000, China
| | - Guoping Chen
- Department of Thoracic Surgery, Zhejiang Hospital, Xihu district, Hangzhou, Zhejiang, 310000, China
| | - Jing Luo
- Department of Thoracic Surgery, Zhejiang Hospital, Xihu district, Hangzhou, Zhejiang, 310000, China
| |
Collapse
|
39
|
Gangat N, Tefferi A. Myelofibrosis biology and contemporary management. Br J Haematol 2020; 191:152-170. [PMID: 32196650 DOI: 10.1111/bjh.16576] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/25/2022]
Abstract
Myelofibrosis is an enigmatic myeloproliferative neoplasm, despite noteworthy strides in understanding its genetic underpinnings. Driver mutations involving JAK2, CALR or MPL in 90% of patients mediate constitutive JAK-STAT signaling which, in concert with epigenetic alterations (ASXL1, DNMT3A, SRSF2, EZH2, IDH1/2 mutations), play a fundamental role in disease pathogenesis. Aberrant immature megakaryocytes are a quintessential feature, exhibiting reduced GATA1 protein expression and secreting a plethora of pro-inflammatory cytokines (IL-1 ß, TGF-ß), growth factors (b-FGF, PDGF, VEGF) in addition to extra cellular matrix components (fibronectin, laminin, collagens). The ensuing disrupted interactions amongst the megakaryocytes, osteoblasts, endothelium, stromal cells and myofibroblasts within the bone marrow culminate in the development of fibrosis and osteosclerosis. Presently, prognostic assessment tools for primary myelofibrosis (PMF) are centered on genetics, with incorporation of cytogenetic and molecular information into the mutation-enhanced (MIPSS 70-plus version 2.0) and genetically-inspired (GIPSS) prognostic scoring systems. Both models illustrate substantial clinical heterogeneity in PMF and serve as the crux for risk-adapted therapeutic decisions. A major challenge remains the dearth of disease-modifying drugs, whereas allogeneic transplant offers the chance of long-term remission for some patients. Our review serves to synopsise current appreciation of the pathogenesis of myelofibrosis together with emerging management strategies.
Collapse
|
40
|
Marneth AE, Mullally A. The Molecular Genetics of Myeloproliferative Neoplasms. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a034876. [PMID: 31548225 DOI: 10.1101/cshperspect.a034876] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Activated JAK-STAT signaling is central to the pathogenesis of BCR-ABL-negative myeloproliferative neoplasms (MPNs) and occurs as a result of MPN phenotypic driver mutations in JAK2, CALR, or MPL The spectrum of concomitant somatic mutations in other genes has now largely been defined in MPNs. With the integration of targeted next-generation sequencing (NGS) panels into clinical practice, the clinical significance of concomitant mutations in MPNs has become clearer. In this review, we describe the consequences of concomitant mutations in the most frequently mutated classes of genes in MPNs: (1) DNA methylation pathways, (2) chromatin modification, (3) RNA splicing, (4) signaling pathways, (5) transcription factors, and (6) DNA damage response/stress signaling. The increased use of molecular genetics for early risk stratification of patients brings the possibility of earlier intervention to prevent disease progression in MPNs. However, additional studies are required to decipher underlying molecular mechanisms and effectively target them.
Collapse
Affiliation(s)
- Anna E Marneth
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute, Cambridge, Massachusetts 02142, USA.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
41
|
Jia R, Kralovics R. Progress in elucidation of molecular pathophysiology of myeloproliferative neoplasms and its application to therapeutic decisions. Int J Hematol 2020; 111:182-191. [PMID: 31741139 DOI: 10.1007/s12185-019-02778-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 01/14/2023]
Abstract
Myeloproliferative neoplasms (MPNs) are hematological diseases that are driven by somatic mutations in hematopoietic stem and progenitor cells. These mutations include JAK2, CALR and MPL mutations as the main disease drivers, mutations driving clonal expansion, and mutations that contribute to progression of chronic MPNs to myelodysplasia and acute leukemia. JAK-STAT pathway has played a central role in the disease pathogenesis of MPNs. Mutant JAK2, CALR or MPL constitutively activates JAK-STAT pathway independent of the cytokine regulation. Symptomatic management is the primary goal of MPN therapy in ET and low-risk PV patients. JAK2 inhibitors and interferon-α are the established therapies in MF and high-risk PV patients.
Collapse
Affiliation(s)
- Ruochen Jia
- Department of Laboratory Medicine, Medical University of Vienna, 18-20 Währinger Gürtel, 1090, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Robert Kralovics
- Department of Laboratory Medicine, Medical University of Vienna, 18-20 Währinger Gürtel, 1090, Vienna, Austria.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
42
|
Zhang P, Xu M, Yang FC. The Role of ASXL1/2 and Their Associated Proteins in Malignant Hematopoiesis. CURRENT STEM CELL REPORTS 2020. [DOI: 10.1007/s40778-020-00168-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Hapugaswatta H, Amarasena P, Premaratna R, Seneviratne KN, Jayathilaka N. Differential expression of microRNA, miR-150 and enhancer of zeste homolog 2 (EZH2) in peripheral blood cells as early prognostic markers of severe forms of dengue. J Biomed Sci 2020; 27:25. [PMID: 31954402 PMCID: PMC6969970 DOI: 10.1186/s12929-020-0620-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
Background Dengue presents a wide clinical spectrum. Most patients recover following a self-limiting non-severe clinical course. A small proportion of patients progress to severe disease, mostly characterized by plasma leakage with or without hemorrhage. Early symptoms of severe dengue (SD) are similar to those of non-severe dengue fever (DF). Severe symptoms manifest after 3–5 days of fever, which can be life threatening due to lack of proper medications and inability to distinguish severe cases during the early stages. Early prediction of SD in patients with no warning signs who may later develop severe infection is very important for proper disease management to alleviate related complications and mortality. microRNA are small non-coding RNA molecules that regulate post-transcriptional gene expression. Due to the remarkable stability and the role of microRNA in gene expression, altered expression of microRNA was evaluated to explore clinically relevant prognostic markers of severe dengue. Methods The relative expression of microRNA hsa-let-7e (let-7e), hsa-miR-30b-5p (miR-30b), hsa-miR-30e-3p (miR-30e), hsa-miR-33a (miR-33a), and hsa-miR-150-5p (miR-150) and several putative target genes in peripheral blood cells (PBC) collected from 20 DF and 20 SD positive patients within 4 days from fever onset was evaluated by quantitative reverse transcription PCR (qRT-PCR). Results miR-150 showed significant (P < 0.01) up regulation in PBC of SD patients compared to DF patients during the acute phase of infection. Expression of enhancer of zeste homolog 2 (EZH2) was significantly (P < 0.01) down regulated indicating that genes involved in epigenetic regulation are also differentially expressed in SD patients during the early stage of infection. Conclusions Differential expression of microRNA miR-150 and the putative target gene EZH2 may serve as reliable biomarkers of disease severity during early stages of dengue infection.
Collapse
Affiliation(s)
- Harsha Hapugaswatta
- Department of Chemistry, Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka
| | | | - Ranjan Premaratna
- North Colombo Teaching Hospital, Ragama, Sri Lanka.,Department of Medicine, Faculty of Medicine, University of Kelaniya, Kelaniya, Sri Lanka
| | - Kapila N Seneviratne
- Department of Chemistry, Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka
| | - Nimanthi Jayathilaka
- Department of Chemistry, Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka.
| |
Collapse
|
44
|
Jang MA, Choi CW. Recent insights regarding the molecular basis of myeloproliferative neoplasms. Korean J Intern Med 2020; 35:1-11. [PMID: 31778606 PMCID: PMC6960053 DOI: 10.3904/kjim.2019.317] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are a heterogeneous group of clonal disorders characterized by the overproduction of mature blood cells that have an increased risk of thrombosis and progression to acute myeloid leukemia. Next-generation sequencing studies have provided key insights regarding the molecular mechanisms of MPNs. MPN driver mutations in genes associated with the JAK-STAT pathway include JAK2 V617F, JAK2 exon 12 mutations and mutations in MPL, CALR, and CSF3R. Cooperating driver genes are also frequently detected and also mutated in other myeloid neoplasms; these driver genes are involved in epigenetic methylation, messenger RNA splicing, transcription regulation, and signal transduction. In addition, other genetic factors such as germline predisposition, order of mutation acquisition, and variant allele frequency also influence disease initiation and progression. This review summarizes the current understanding of the genetic basis of MPN, and demonstrates how molecular pathophysiology can improve both our understanding of MPN heterogeneity and clinical practice.
Collapse
Affiliation(s)
- Mi-Ae Jang
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Chul Won Choi
- Division of Oncology and Hematology, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
- Correspondence to Chul Won Choi, M.D. Division of Oncology and Hematology, Department of Internal Medicine, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul 08308, Korea Tel: +82-2-2626-3058 Fax: +82-2-862-6453 E-mail:
| |
Collapse
|
45
|
Shide K. The role of driver mutations in myeloproliferative neoplasms: insights from mouse models. Int J Hematol 2019; 111:206-216. [PMID: 31865539 DOI: 10.1007/s12185-019-02803-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 01/11/2023]
Abstract
High frequency of JAK2V617F or CALR exon 9 mutations is a main molecular feature of myeloproliferative neoplasms (MPNs). Analysis of mouse models driven by these mutations suggests that they are a direct cause of MPNs and that the expression levels of the mutated genes define the disease phenotype. The function of MPN-initiating cells has also been elucidated by these mouse models. Such mouse models also play an important role in modeling disease to investigate the effects and action mechanisms of therapeutic drugs, such as JAK2 inhibitors and interferon α, against MPNs. The mutation landscape of hematological tumors has already been clarified by next-generation sequencing technology, and the importance of functional analysis of mutant genes in vivo should increase further in the future.
Collapse
Affiliation(s)
- Kotaro Shide
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| |
Collapse
|
46
|
Hsu CC, Chen YJ, Huang CE, Wu YY, Wang MC, Pei SN, Liao CK, Lu CH, Chen PT, Tsou HY, Li CP, Chuang WH, Chuang CK, Yang CY, Lai YH, Lin YH, Chen CC. Molecular heterogeneity unravelled by single-cell transcriptomics in patients with essential thrombocythaemia. Br J Haematol 2019; 188:707-722. [PMID: 31610612 DOI: 10.1111/bjh.16225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022]
Abstract
Significant phenotypic heterogeneity exists in patients with all subtypes of myeloproliferative neoplasms (MPN), including essential thrombocythaemia (ET). Single-cell RNA sequencing (scRNA-Seq) holds the promise of unravelling the biology of MPN at an unprecedented level of resolution. Herein we employed this approach to dissect the transcriptomes in the CD34+ cells from the peripheral blood of seven previously untreated ET patients and one healthy adult. The mutational profiles in these patients were as follows: JAK2 V617F in two, CALR in three (one type I and two type II) and triple-negative (TN) in two. Our results reveal substantial heterogeneity within this enrolled cohort of patients. Activation of JAK/STAT signalling was recognized in discrepant progenitor lineages among different samples. Significantly disparate molecular profiling was identified in the comparison between ET patients and the control, between patients with different driver mutations (JAK2 V617F and CALR exon 9 indel), and even between patients harbouring the same driver. Intra-individual clonal diversity was also found in the CD34+ progenitor population of a patient, possibly indicating the presence of multiple clones in this case. Estimation of subpopulation size based on cellular immunophenotyping suggested differentiation bias in all analysed samples. Furthermore, combining the transcriptomic information with data from targeted sequencing enabled us to unravel key somatic mutations that are molecularly relevant. To conclude, we demonstrated that scRNA-Seq extended our knowledge of clonal diversity and inter-individual heterogeneity in patients with ET. The obtained information could potentially leapfrog our efforts in the elucidation of the pathogenesis of the disease.
Collapse
Affiliation(s)
- Chia-Chen Hsu
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ying-Ju Chen
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Cih-En Huang
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan.,College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yu-Ying Wu
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Ming-Chung Wang
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Sung-Nan Pei
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan.,College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chun-Kai Liao
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chang-Hsien Lu
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan.,College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Ping-Tsung Chen
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan.,College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Hsing-Yi Tsou
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chian-Pei Li
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Wei-Hsuan Chuang
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | | | - Cheng-Yu Yang
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-Hua Lai
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yi-Hsuan Lin
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chih-Cheng Chen
- Division of Haematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan.,College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| |
Collapse
|
47
|
Sano S, Wang Y, Yura Y, Sano M, Oshima K, Yang Y, Katanasaka Y, Min KD, Matsuura S, Ravid K, Mohi G, Walsh K. JAK2 V617F -Mediated Clonal Hematopoiesis Accelerates Pathological Remodeling in Murine Heart Failure. JACC Basic Transl Sci 2019; 4:684-697. [PMID: 31709318 PMCID: PMC6834960 DOI: 10.1016/j.jacbts.2019.05.013] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
Abstract
Janus kinase 2 (valine to phenylalanine at residue 617) (JAK2 V617F ) mutations lead to myeloproliferative neoplasms associated with elevated myeloid, erythroid, and megakaryocytic cells. Alternatively these same mutations can lead to the condition of clonal hematopoiesis with no impact on blood cell counts. Here, a model of myeloid-restricted JAK2 V617F expression from lineage-negative bone marrow cells was developed and evaluated. This model displayed greater cardiac inflammation and dysfunction following permanent left anterior descending artery ligation and transverse aortic constriction. These data suggest that JAK2 V617F mutations arising in myeloid progenitor cells may contribute to cardiovascular disease by promoting the proinflammatory properties of circulating myeloid cells.
Collapse
Key Words
- AIM2, absence in melanoma 2
- ANOVA, analysis of variance
- ARCH, age-related clonal hematopoiesis
- BMT, bone marrow transplant
- CCL2, C-C motif chemokine ligand 2
- CHIP, clonal hematopoiesis of indeterminate potential
- GFP, green fluorescent protein
- HSC, hematopoietic stem cell
- HSPC, hematopoietic stem and progenitor cell
- IFNGR1, interferon gamma receptor 1
- IL, interleukin
- JAK2, Janus kinase 2
- JAK2V617F, mutant Janus kinase 2 (valine to phenylalanine at residue 617)
- JAK2WT, wild-type Janus kinase 2
- LPS, lipopolysaccharide
- LT-HSC, long-term hematopoietic stem cell
- MI, myocardial infarction
- MPN, myeloproliferative neoplasm
- NET, neutrophil extracellular traps
- STAT, signal transducer and activator of transcription
- TAC, transverse aortic constriction surgery
- clonal hematopoiesis
- left ventricular hypertrophy
- myocardial infarction
Collapse
Affiliation(s)
- Soichi Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Ying Wang
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Yoshimitsu Yura
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Miho Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Kosei Oshima
- Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Yue Yang
- Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kyung-Duk Min
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Shinobu Matsuura
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Katya Ravid
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Golam Mohi
- Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
- Address for correspondence: Dr. Kenneth Walsh, University of Virginia, Robert M. Berne Cardiovascular Research Center, 415 Lane Road, PO Box 801394, Suite 1010, Charlottesville, Virginia 22908.
| |
Collapse
|
48
|
Schieber M, Crispino JD, Stein B. Myelofibrosis in 2019: moving beyond JAK2 inhibition. Blood Cancer J 2019; 9:74. [PMID: 31511492 PMCID: PMC6739355 DOI: 10.1038/s41408-019-0236-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/26/2019] [Accepted: 03/15/2019] [Indexed: 02/08/2023] Open
Abstract
Myelofibrosis (MF) is a myeloproliferative neoplasm characterized by ineffective clonal hematopoiesis, splenomegaly, bone marrow fibrosis, and the propensity for transformation to acute myeloid leukemia. The discovery of mutations in JAK2, CALR, and MPL have uncovered activated JAK-STAT signaling as a primary driver of MF, supporting a rationale for JAK inhibition. However, JAK inhibition alone is insufficient for long-term remission and offers modest, if any, disease-modifying effects. Given this, there is great interest in identifying mechanisms that cooperate with JAK-STAT signaling to predict disease progression and rationally guide the development of novel therapies. This review outlines the latest discoveries in the biology of MF, discusses current clinical management of patients with MF, and summarizes the ongoing clinical trials that hope to change the landscape of MF treatment.
Collapse
Affiliation(s)
- Michael Schieber
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - John D Crispino
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Brady Stein
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
49
|
Abstract
In this issue of Cancer Discovery, Gu and colleagues developed a mouse model of myeloproliferative neoplasm driven by Nras G12D and Ezh2-/- , which cooperated to induce malignant transformation and metabolic reprogramming of leukemic stem cells at least in part through loss of normal epigenetic regulation of gene expression. Furthermore, their findings point to Ezh1 and branched chain amino acid metabolism as biological dependencies and potential therapeutic targets in myeloid neoplasms.See related article by Gu et al., p. 1228.
Collapse
Affiliation(s)
- Meng Li
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, New York
| | - Ari M Melnick
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
50
|
|