1
|
Hu B, Gong H, Nie L, Zhang J, Li Y, Liu D, Zhang H, Zhang H, Han L, Yang C, Li M, Xu W, Nakamura Y, Shi L, Ye M, Hillyer CD, Mohandas N, Liang L, Sheng Y, Liu J. Lysine succinylation precisely controls normal erythropoiesis. Haematologica 2025; 110:397-413. [PMID: 39415677 PMCID: PMC11788629 DOI: 10.3324/haematol.2024.285752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Lysine succinylation (Ksu) has recently emerged as a protein modification that regulates diverse functions in various biological processes. However, the systemic, precise role of lysine succinylation in erythropoiesis remains to be fully elucidated. In this study, we noted a prominent increase of succinyl-CoA and lysine succinylation during human erythroid differentiation. To explore the functional significance of succinylation, we inhibited succinylation by either knocking down key succinyltransferases or overexpressing desuccinylases. Succinylation inhibition led to suppressed cell proliferation, increased apoptosis, and disrupted erythroid differentiation. In vivo overexpression of the desuccinylase SIRT5 delayed erythroid differentiation. Furthermore, integrative proteome and succinylome analysis identified 939 succinylated proteins with 3,562 Ksu sites, distributed across various cellular compartments and involved in multiple cellular processes. Significantly, inconsistencies were observed between protein expression levels and succinylation levels, indicating that the succinylation of certain proteins may function independently of expression. Mechanistically, we implicated KAT2A-mediated succinylation of histone H3 K79, leading to chromatin remodeling and, subsequently, regulation of erythropoiesis. Specifically, we identified CYCS as a key regulator of erythropoiesis, a function that depends on its succinylation sites K28/K40. Taken together, our comprehensive investigation of the succinylation landscape during erythropoiesis provides valuable insights into its regulatory role and offers potential implications for erythroid-related diseases.
Collapse
Affiliation(s)
- Bin Hu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Hunan
| | - Han Gong
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Hunan
| | - Ling Nie
- Department of Hematology, Xiangya Hospital, Central South University, Hunan
| | - Ji Zhang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hunan
| | - Yanan Li
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Hunan
| | - Dandan Liu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Hunan
| | - Huifang Zhang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Hunan
| | - Haihang Zhang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Hunan
| | - Lu Han
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Hunan
| | - Chaoying Yang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Hunan
| | - Maohua Li
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Hunan
| | - Wenwen Xu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Hunan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Hunan
| | | | - Narla Mohandas
- Research Laboratory of Red Cell Physiology, New York Blood Center, New York
| | - Long Liang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Hunan.
| | - Yue Sheng
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Hunan.
| | - Jing Liu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Hunan.
| |
Collapse
|
2
|
Zhao P, Feng L, Jiang W, Wu P, Liu Y, Ren H, Jin X, Zhang L, Mi H, Zhou X. Unveiling the emerging role of curcumin to alleviate ochratoxin A-induced muscle toxicity in grass carp (Ctenopharyngodon idella): in vitro and in vivo studies. J Anim Sci Biotechnol 2024; 15:72. [PMID: 38734645 PMCID: PMC11088780 DOI: 10.1186/s40104-024-01023-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/11/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Ochratoxin A (OTA), a globally abundant and extremely hazardous pollutant, is a significant source of contamination in aquafeeds and is responsible for severe food pollution. The developmental toxicity of OTA and the potential relieving strategy of natural products remain unclear. This study screened the substance curcumin (Cur), which had the best effect in alleviating OTA inhibition of myoblast proliferation, from 96 natural products and investigated its effect and mechanism in reducing OTA myotoxicity in vivo and in vitro. METHODS A total of 720 healthy juvenile grass carp, with an initial average body weight of 11.06 ± 0.05 g, were randomly assigned into 4 groups: the control group (without OTA and Cur), 1.2 mg/kg OTA group, 400 mg/kg Cur group, and 1.2 mg/kg OTA + 400 mg/kg Cur group. Each treatment consisted of 3 replicates (180 fish) for 60 d. RESULTS Firstly, we cultured, purified, and identified myoblasts using the tissue block culture method. Through preliminary screening and re-screening of 96 substances, we examined cell proliferation-related indicators such as cell viability and ultimately found that Cur had the best effect. Secondly, Cur could alleviate OTA-inhibited myoblast differentiation and myofibrillar development-related proteins (MyoG and MYHC) in vivo and in vitro and improve the growth performance of grass carp. Then, Cur could also promote the expression of OTA-inhibited protein synthesis-related proteins (S6K1 and TOR), which was related to the activation of the AKT/TOR signaling pathway. Finally, Cur could downregulate the expression of OTA-enhanced protein degradation-related genes (murf1, foxo3a, and ub), which was related to the inhibition of the FoxO3a signaling pathway. CONCLUSIONS In summary, our data demonstrated the effectiveness of Cur in alleviating OTA myotoxicity in vivo and in vitro. This study confirms the rapidity, feasibility, and effectiveness of establishing a natural product screening method targeting myoblasts to alleviate fungal toxin toxicity.
Collapse
Affiliation(s)
- Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Hongmei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Xiaowan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Lu Zhang
- Tongwei Co., Ltd., Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, 610041, Sichuan, China
| | - Haifeng Mi
- Tongwei Co., Ltd., Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, 610041, Sichuan, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
3
|
Csergeová L, Krbušek D, Janoštiak R. CIP/KIP and INK4 families as hostages of oncogenic signaling. Cell Div 2024; 19:11. [PMID: 38561743 PMCID: PMC10985988 DOI: 10.1186/s13008-024-00115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
CIP/KIP and INK4 families of Cyclin-dependent kinase inhibitors (CKIs) are well-established cell cycle regulatory proteins whose canonical function is binding to Cyclin-CDK complexes and altering their function. Initial experiments showed that these proteins negatively regulate cell cycle progression and thus are tumor suppressors in the context of molecular oncology. However, expanded research into the functions of these proteins showed that most of them have non-canonical functions, both cell cycle-dependent and independent, and can even act as tumor enhancers depending on their posttranslational modifications, subcellular localization, and cell state context. This review aims to provide an overview of canonical as well as non-canonical functions of CIP/KIP and INK4 families of CKIs, discuss the potential avenues to promote their tumor suppressor functions instead of tumor enhancing ones, and how they could be utilized to design improved treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Lucia Csergeová
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | - David Krbušek
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | | |
Collapse
|
4
|
Zhao P, Zhang L, Feng L, Jiang WD, Wu P, Liu Y, Ren HM, Jin XW, Zhou XQ. Novel Perspective on Mechanism in Muscle Growth Inhibited by Ochratoxin A Associated with Ferroptosis: Model of Juvenile Grass Carp ( Ctenopharyngodon idella) In Vivo and In Vitro Trials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4977-4990. [PMID: 38386875 DOI: 10.1021/acs.jafc.3c08080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Ochratoxin A (OTA) is a common mycotoxin in food and feed that seriously harms human and animal health. This study investigated the effect of OTA on the muscle growth of juvenile grass carp (Ctenopharyngodon idella) and its possible mechanism in vitro. Our results have the following innovative findings: (1) Dietary OTA increased the expression of increasing phase I metabolic enzymes and absorbing transporters while reducing the expression of efflux transporters, thereby increasing their residue in muscles; (2) OTA inhibited the expressions of cell cycle and myogenic regulatory factors (MyoD, MyoG, and MyHC) and induced ferroptosis by decreasing the mRNA and protein expressions of FTH, TFR1, GPX4, and Nrf2 both in vivo and in vitro; and (3) the addition of DFO improved OTA-induced ferroptosis of grass carp primary myoblasts and promoted cell proliferation, while the addition of AKT improved OTA-inhibited myoblast differentiation and fusion, thus inhibiting muscle growth. Overall, this study provides a potential research target to further mitigate the myotoxicity of OTA.
Collapse
Affiliation(s)
- Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lu Zhang
- Key Laboratory of Nutrition and Healthy Culture of Aquatic, Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Tongwei Co., Ltd., Chengdu, Sichuan 610041, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan 611130, China
| |
Collapse
|
5
|
Tang P, Wang H. Regulation of erythropoiesis: emerging concepts and therapeutic implications. Hematology 2023; 28:2250645. [PMID: 37639548 DOI: 10.1080/16078454.2023.2250645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
The process of erythropoiesis is complex and involves the transfer of cells from the yolk sac to the fetal hepar and, ultimately, to the bone marrow during embryonic development. Within the bone marrow, erythroid progenitor cells undergo several stages to generate reticulocytes that enter the bloodstream. Erythropoiesis is regulated by various factors, with erythropoietin (EPO) synthesized by the kidney being the promoting factor and hepcidin synthesized by the hepar inhibiting iron mobilization. Transcription factors, such as GATA and KLF, also play a crucial role in erythropoiesis. Disruption of any of these factors can lead to abnormal erythropoiesis, resulting in red cell excess, red cell deficiency, or abnormal morphological function. This review provides a general description of erythropoiesis, as well as its regulation, highlighting the significance of understanding the process for the diagnosis and treatment of various hematological disorders.
Collapse
Affiliation(s)
- Pu Tang
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | - Huaquan Wang
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
6
|
Han Y, Wang S, Wang Y, Huang Y, Gao C, Guo X, Chen L, Zhao H, An X. Comprehensive Characterization and Global Transcriptome Analysis of Human Fetal Liver Terminal Erythropoiesis. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:1117-1132. [PMID: 37657739 PMCID: PMC11082260 DOI: 10.1016/j.gpb.2023.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/19/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
The fetal liver (FL) is the key erythropoietic organ during fetal development, but knowledge on human FL erythropoiesis is very limited. In this study, we sorted primary erythroblasts from FL cells and performed RNA sequencing (RNA-seq) analyses. We found that temporal gene expression patterns reflected changes in function during primary human FL terminal erythropoiesis. Notably, the expression of genes enriched in proteolysis and autophagy was up-regulated in orthochromatic erythroblasts (OrthoEs), suggesting the involvement of these pathways in enucleation. We also performed RNA-seq of in vitro cultured erythroblasts derived from FL CD34+ cells. Comparison of transcriptomes between the primary and cultured erythroblasts revealed significant differences, indicating impacts of the culture system on gene expression. Notably, the expression of lipid metabolism-related genes was increased in cultured erythroblasts. We further immortalized erythroid cell lines from FL and cord blood (CB) CD34+ cells (FL-iEry and CB-iEry, respectively). FL-iEry and CB-iEry were immortalized at the proerythroblast stage and can be induced to differentiate into OrthoEs, but their enucleation ability was very low. Comparison of the transcriptomes between OrthoEs with and without enucleation capability revealed the down-regulation of pathways involved in chromatin organization and mitophagy in OrthoEs without enucleation capacity, indicating that defects in chromatin organization and mitophagy contribute to the inability of OrthoEs to enucleate. Additionally, the expression of HBE1, HBZ, and HBG2 was up-regulated in FL-iEry compared with CB-iEry, and such up-regulation was accompanied by down-regulated expression of BCL11A and up-regulated expression of LIN28B and IGF2BP1. Our study provides new insights into human FL erythropoiesis and rich resources for future studies.
Collapse
Affiliation(s)
- Yongshuai Han
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| | - Shihui Wang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA; Institute of Hematology, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yaomei Wang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA; Department of Hematology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Yumin Huang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA; Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, China
| | - Chengjie Gao
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| | - Xinhua Guo
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| | - Lixiang Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Huizhi Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA.
| |
Collapse
|
7
|
Yamamoto T, Tsuge T, Araki M, Maeda M. Cyclic AMP (cAMP)-dependent proteolysis of GATA6 by proteasome: Zinc-finger domain of GATA6 has signals for nuclear export and proteolysis, both of which are responsive to cAMP. Drug Discov Ther 2023; 17:1-9. [PMID: 36740253 DOI: 10.5582/ddt.2022.01107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transcription factor GATA6 stably expressed in Chinese hamster ovary (CHO)-K1 cells is exported from the nucleus to the cytoplasm and degraded there by proteasome upon treatment with dibutylyl-cyclic AMP (dbcAMP), which is a membrane-permeable cyclic AMP (cAMP) analogue. The cAMP-dependent proteolysis of GATA6 was characterized by dissection of the GATA6 protein into a zinc-finger domain (Zf) and the surrounding region (ΔZf). These segments were separately expressed in CHO-K1 cells stably, and followed by treatment with dbcAMP. The nuclear localized Zf was degraded by proteasome similarly to the full-length GATA6. Site-directed mutants of nuclear localizing signal (NLS) (345RKRKPK350 → AAAAPK and AAAAPA) and closely related GATA4 showed the same behavior. Although nuclear-localized ΔZf was degraded by proteasome, the cytoplasmic-located ΔZf was resistant to proteolysis in contrast to the NLS mutants. We also searched for a potential NLS and nuclear export signal (NES) with computational prediction programs and compared the results with ours. All these results suggest that the amino acid sequence(s) of the Zf of GATA6 is responsive to cAMP-dependent nuclear export and proteolysis.
Collapse
Affiliation(s)
- Tomohisa Yamamoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Takeshi Tsuge
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | | | - Masatomo Maeda
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
8
|
Tátrai P, Gergely F. Centrosome function is critical during terminal erythroid differentiation. EMBO J 2022; 41:e108739. [PMID: 35678476 PMCID: PMC9289712 DOI: 10.15252/embj.2021108739] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/03/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022] Open
Abstract
Red blood cells are produced by terminal erythroid differentiation, which involves the dramatic morphological transformation of erythroblasts into enucleated reticulocytes. Microtubules are important for enucleation, but it is not known if the centrosome, a key microtubule-organizing center, is required as well. Mice lacking the conserved centrosome component, CDK5RAP2, are likely to have defective erythroid differentiation because they develop macrocytic anemia. Here, we show that fetal liver-derived, CDK5RAP2-deficient erythroid progenitors generate fewer and larger reticulocytes, hence recapitulating features of macrocytic anemia. In erythroblasts, but not in embryonic fibroblasts, loss of CDK5RAP2 or pharmacological depletion of centrosomes leads to highly aberrant spindle morphologies. Consistent with such cells exiting mitosis without chromosome segregation, tetraploidy is frequent in late-stage erythroblasts, thereby giving rise to fewer but larger reticulocytes than normal. Our results define a critical role for CDK5RAP2 and centrosomes in spindle formation specifically during blood production. We propose that disruption of centrosome and spindle function could contribute to the emergence of macrocytic anemias, for instance, due to nutritional deficiency or exposure to chemotherapy.
Collapse
Affiliation(s)
- Péter Tátrai
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
- Present address:
Solvo BiotechnologyBudapestHungary
| | - Fanni Gergely
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
- Department of BiochemistryUniversity of OxfordOxfordUK
| |
Collapse
|
9
|
Mathangasinghe Y, Fauvet B, Jane SM, Goloubinoff P, Nillegoda NB. The Hsp70 chaperone system: distinct roles in erythrocyte formation and maintenance. Haematologica 2021; 106:1519-1534. [PMID: 33832207 PMCID: PMC8168490 DOI: 10.3324/haematol.2019.233056] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Indexed: 01/14/2023] Open
Abstract
Erythropoiesis is a tightly regulated cell differentiation process in which specialized oxygen- and carbon dioxide-carrying red blood cells are generated in vertebrates. Extensive reorganization and depletion of the erythroblast proteome leading to the deterioration of general cellular protein quality control pathways and rapid hemoglobin biogenesis rates could generate misfolded/aggregated proteins and trigger proteotoxic stresses during erythropoiesis. Such cytotoxic conditions could prevent proper cell differentiation resulting in premature apoptosis of erythroblasts (ineffective erythropoiesis). The heat shock protein 70 (Hsp70) molecular chaperone system supports a plethora of functions that help maintain cellular protein homeostasis (proteostasis) and promote red blood cell differentiation and survival. Recent findings show that abnormalities in the expression, localization and function of the members of this chaperone system are linked to ineffective erythropoiesis in multiple hematological diseases in humans. In this review, we present latest advances in our understanding of the distinct functions of this chaperone system in differentiating erythroblasts and terminally differentiated mature erythrocytes. We present new insights into the protein repair-only function(s) of the Hsp70 system, perhaps to minimize protein degradation in mature erythrocytes to warrant their optimal function and survival in the vasculature under healthy conditions. The work also discusses the modulatory roles of this chaperone system in a wide range of hematological diseases and the therapeutic gain of targeting Hsp70.
Collapse
Affiliation(s)
| | - Bruno Fauvet
- Department of Plant Molecular Biology, Lausanne University, Lausanne
| | - Stephen M Jane
- Central Clinical School, Monash University, Prahran, Victoria, Australia; Department of Hematology, Alfred Hospital, Monash University, Prahran, Victoria
| | | | - Nadinath B Nillegoda
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria.
| |
Collapse
|
10
|
Impairment of human terminal erythroid differentiation by histone deacetylase 5 deficiency. Blood 2021; 138:1615-1627. [PMID: 34036344 DOI: 10.1182/blood.2020007401] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 04/22/2021] [Indexed: 11/20/2022] Open
Abstract
Histone deacetylases (HDACs) are a group of enzymes catalyzing the removal of acetyl groups from histone and non-histone proteins. HDACs have been shown to play diverse functions in a wide range of biological processes. However, their roles in mammalian erythropoiesis remain to be fully defined. We show here that of the eleven classic HDAC family members, six of them (HDAC 1,2,3 and HDAC 5,6,7) are expressed in human erythroid cells with HDAC5 most significantly up regulated during terminal erythroid differentiation. Knockdown of HDAC5 by either shRNA or siRNA in human CD34+ cells followed by erythroid cell culture led to increased apoptosis, decreased chromatin condensation, and impaired enucleation of erythroblasts. Biochemical analyses revealed that HDAC5 deficiency resulted in activation of p53 in association with increased acetylation of p53. Furthermore, while acetylation of histone 4 (H4) is decreased during normal terminal erythroid differentiation, HDAC5 deficiency led to increased acetylation of H4 (K12) in late stage erythroblasts. This increased acetylation was accompanied by decreased chromatin condensation, implying a role for H4 (K12) deacetylation in chromatin condensation. ATAC-seq and RNA-seq analyses revealed that HDAC5 knockdown leads to increased chromatin accessibility genome wide and global changes in gene expression. Moreover, pharmacological inhibition of HDAC5 by the inhibitor LMK235 also led to increased H4 acetylation, impaired chromatin condensation and enucleation. Taken together, our findings have uncovered previously unrecognized roles and molecular mechanisms of action for HDAC5 in human erythropoiesis. These results may provide insights into understanding the anemia associated with HDAC inhibitor treatment.
Collapse
|
11
|
Grzywa TM, Justyniarska M, Nowis D, Golab J. Tumor Immune Evasion Induced by Dysregulation of Erythroid Progenitor Cells Development. Cancers (Basel) 2021; 13:870. [PMID: 33669537 PMCID: PMC7922079 DOI: 10.3390/cancers13040870] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer cells harness normal cells to facilitate tumor growth and metastasis. Within this complex network of interactions, the establishment and maintenance of immune evasion mechanisms are crucial for cancer progression. The escape from the immune surveillance results from multiple independent mechanisms. Recent studies revealed that besides well-described myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs) or regulatory T-cells (Tregs), erythroid progenitor cells (EPCs) play an important role in the regulation of immune response and tumor progression. EPCs are immature erythroid cells that differentiate into oxygen-transporting red blood cells. They expand in the extramedullary sites, including the spleen, as well as infiltrate tumors. EPCs in cancer produce reactive oxygen species (ROS), transforming growth factor β (TGF-β), interleukin-10 (IL-10) and express programmed death-ligand 1 (PD-L1) and potently suppress T-cells. Thus, EPCs regulate antitumor, antiviral, and antimicrobial immunity, leading to immune suppression. Moreover, EPCs promote tumor growth by the secretion of growth factors, including artemin. The expansion of EPCs in cancer is an effect of the dysregulation of erythropoiesis, leading to the differentiation arrest and enrichment of early-stage EPCs. Therefore, anemia treatment, targeting ineffective erythropoiesis, and the promotion of EPC differentiation are promising strategies to reduce cancer-induced immunosuppression and the tumor-promoting effects of EPCs.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (T.M.G.); (M.J.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Magdalena Justyniarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (T.M.G.); (M.J.)
| | - Dominika Nowis
- Laboratory of Experimental Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (T.M.G.); (M.J.)
| |
Collapse
|
12
|
Han X, Kuang Y, Chen H, Liu T, Zhang J, Liu J. p19INK4d: More than Just a Cyclin-Dependent Kinase Inhibitor. Curr Drug Targets 2021; 21:96-102. [PMID: 31400265 DOI: 10.2174/1389450120666190809161901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/28/2022]
Abstract
Cyclin-dependent kinase inhibitors (CDKIs) are important cell cycle regulators. The CDKI family is composed of the INK4 family and the CIP/KIP family. p19INK4d belongs to the INK4 gene family and is involved in a series of normal physiological activities and the pathogenesis of diseases. Many factors play regulatory roles in the p19INK4d gene expression at the transcriptional and posttranscriptional levels. p19INK4d not only regulates the cell cycle but also plays regulatory roles in apoptosis, DNA damage repair, cell differentiation of hematopoietic cells, and cellular senescence. In this review, the regulatory network of the p19INK4d gene expression and its biological functions are summarized, which provides a basis for further study of p19INK4d as a drug target for disease treatment.
Collapse
Affiliation(s)
- Xu Han
- Molecular Biology Research Center and the Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yijin Kuang
- Molecular Biology Research Center and the Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Huiyong Chen
- Molecular Biology Research Center and the Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ting Liu
- Department of Rheumatology, the First Affiliated Hospital of South China University, Hengyang, Hunan, China
| | - Ji Zhang
- Department of Rheumatology, the First Affiliated Hospital of South China University, Hengyang, Hunan, China
| | - Jing Liu
- Molecular Biology Research Center and the Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Kuang Y, Han X, Cao P, Xiong D, Peng Y, Liu Z, Xu Z, Liang L, Roy M, Liu J, Nie L, Zhang J. p19 INK4d inhibits proliferation and enhances imatinib efficacy through BCR-ABL signaling pathway in chronic myeloid leukemia. Blood Cells Mol Dis 2020; 85:102477. [PMID: 32711219 DOI: 10.1016/j.bcmd.2020.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 11/28/2022]
Abstract
Chronic myeloid leukemia (CML) is a kind of myeloproliferative disorder caused by a constitutively active BCR-ABL tyrosine kinase. Tyrosine kinase inhibitors (TKIs), imatinib and its derivatives, have achieved great progress in the treatment of CML. However, many CML patients do not respond to TKIs alone. p19INK4d, a cyclin-dependent kinase inhibitor, plays important roles in proliferation, DNA damage repair, apoptosis and cell differentiation, but its role in CML is unknown. Herein, we found that the expression of p19INK4d in CML patients was significantly lower than that in healthy controls. p19INK4d overexpression inhibits cell proliferation through cell cycle arrest, and cooperates with imatinib to inhibit CML more effectively in vitro and in vivo. Mechanistically, p19INK4d decreased the expression of BCR-ABL and its downstream molecules p-Mek1/2, moreover, the expression of Gli-1, c-myc, MUC1, Shh and TC48 also reduced significantly. Collectively, p19INK4d inhibits proliferation and enhances imatinib efficacy in the treatment of CML. These findings maybe have implications for developing potential targets to increase imatinib sensitivity for CML.
Collapse
Affiliation(s)
- Yijin Kuang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xu Han
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Pengfei Cao
- Department of Hematology, Xiangya Hospital, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410008, China
| | - Dehui Xiong
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Yuanliang Peng
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Zhaoping Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of South China University, Hengyang 421000, China
| | - Zhenru Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of South China University, Hengyang 421000, China
| | - Long Liang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Mridul Roy
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; Erythropoiesis Research Center, Central South University, Changsha 410078, China
| | - Ling Nie
- Department of Hematology, Xiangya Hospital, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410008, China.
| | - Ji Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of South China University, Hengyang 421000, China.
| |
Collapse
|
14
|
Dong XM, Zhao K, Zheng WW, Xu CW, Zhang MJ, Yin RH, Gao R, Tang LJ, Liu JF, Chen H, Zhan YQ, Yu M, Ge CH, Gao HY, Li X, Luo T, Ning HM, Yang XM, Li CY. EDAG mediates Hsp70 nuclear localization in erythroblasts and rescues dyserythropoiesis in myelodysplastic syndrome. FASEB J 2020; 34:8416-8427. [PMID: 32350948 DOI: 10.1096/fj.201902946r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Abstract
During human erythroid maturation, Hsp70 translocates into the nucleus and protects GATA-1 from caspase-3 cleavage. Failure of Hsp70 to localize to the nucleus was found in Myelodysplastic syndrome (MDS) erythroblasts and can induce dyserythropoiesis, with arrest of maturation and death of erythroblasts. However, the mechanism of the nuclear trafficking of Hsp70 in erythroblasts remains unknown. Here, we found the hematopoietic transcriptional regulator, EDAG, to be a novel binding partner of Hsp70 that forms a protein complex with Hsp70 and GATA-1 during human normal erythroid differentiation. EDAG overexpression blocked the cytoplasmic translocation of Hsp70 induced by EPO deprivation, inhibited GATA-1 degradation, thereby promoting erythroid maturation in an Hsp70-dependent manner. Furthermore, in myelodysplastic syndrome (MDS) patients with dyserythropoiesis, EDAG is dramatically down-regulated, and forced expression of EDAG has been found to restore the localization of Hsp70 in the nucleus and elevate the protein level of GATA-1 to a significant extent. In addition, EDAG rescued the dyserythropoiesis of MDS patients by increasing erythroid differentiation and decreasing cell apoptosis. This study demonstrates the molecular mechanism of Hsp70 nuclear sustaining during erythroid maturation and establishes that EDAG might be a suitable therapeutic target for dyserythropoiesis in MDS patients.
Collapse
Affiliation(s)
- Xiao-Ming Dong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Ke Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Wei-Wei Zheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Cheng-Wang Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Mei-Jiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Rong-Hua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Rui Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Liu-Jun Tang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Jin-Fang Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Yi-Qun Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Chang-Hui Ge
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hui-Ying Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Xiu Li
- School of Postgraduate, Anhui Medical University, Hefei, China
| | - Teng Luo
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Hong-Mei Ning
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-Ming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,School of Postgraduate, Anhui Medical University, Hefei, China
| | - Chang-Yan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China.,School of Postgraduate, Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Kuhikar R, Khan N, Philip J, Melinkeri S, Kale V, Limaye L. Transforming growth factor β1 accelerates and enhances in vitro red blood cell formation from hematopoietic stem cells by stimulating mitophagy. Stem Cell Res Ther 2020; 11:71. [PMID: 32075694 PMCID: PMC7029523 DOI: 10.1186/s13287-020-01603-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/31/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
Background Generation of red blood cells (RBCs) from hematopoietic stem cells (HSCs) in vitro takes about 21 days, making it unaffordable for clinical applications. Acceleration of the in vitro erythropoiesis process by using small molecules could eventually make the large-scale production of these cells commercially viable. Transforming Growth Factor β1 (TGF-β1) has been shown to have a dose-dependent activity on the HSCs: at high concentration it inhibits, whereas at low concentration it stimulates the HSCs growth. At high concentration, it also inhibits erythropoiesis but accelerates terminal erythroid differentiation of cell lines and erythroid progenitors. Here we examined whether the use of low concentration of TGF-β1 would be beneficial for increasing RBC production by stimulating HSC growth and also supporting erythroid differentiation. Such a strategy could make RBC production in vitro more efficient and cost-effective for clinical applications. Methods HSCs isolated from Apheresis samples were differentiated into mature RBCs by the sequential addition of specific combinations of growth factors for 21 days. In the control set, only EPO (3 IU/ml) was added whereas, in the test set, TGF-β1 at a concentration of 10 pg/ml was added along with EPO (3 IU/ml) from day 0. Results We found that a low concentration of TGF-β1 has no inhibitory effect on the proliferation of the early stages of erythropoiesis. Additionally, it significantly accelerates terminal stages of erythroid differentiation by promoting BNIP3L/NIX-mediated mitophagy. Conclusions Incorporation of TGF-β1 at 10 pg/ml concentration in the differentiation medium accelerates the in vitro erythropoiesis process by 3 days. This finding could have potential applications in transfusion medicine. Electronic supplementary material The online version of this article (10.1186/s13287-020-01603-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rutuja Kuhikar
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Nikhat Khan
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, Maharashtra, 411007, India
| | | | - Sameer Melinkeri
- Blood and Marrow Transplant Unit, Deenanath Mangeshkar Hospital, Erandawne, Pune, 411004, India
| | - Vaijayanti Kale
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, Maharashtra, 411007, India.,Symbiosis Centre for Stem Cell research, School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, 412115, India
| | - Lalita Limaye
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, Maharashtra, 411007, India.
| |
Collapse
|
16
|
Gutiérrez L, Caballero N, Fernández-Calleja L, Karkoulia E, Strouboulis J. Regulation of GATA1 levels in erythropoiesis. IUBMB Life 2019; 72:89-105. [PMID: 31769197 DOI: 10.1002/iub.2192] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
GATA1 is considered as the "master" transcription factor in erythropoiesis. It regulates at the transcriptional level all aspects of erythroid maturation and function, as revealed by gene knockout studies in mice and by genome-wide occupancies in erythroid cells. The GATA1 protein contains two zinc finger domains and an N-terminal transactivation domain. GATA1 translation results in the production of the full-length protein and of a shorter variant (GATA1s) lacking the N-terminal transactivation domain, which is functionally deficient in supporting erythropoiesis. GATA1 protein abundance is highly regulated in erythroid cells at different levels, including transcription, mRNA translation, posttranslational modifications, and protein degradation, in a differentiation-stage-specific manner. Maintaining high GATA1 protein levels is essential in the early stages of erythroid maturation, whereas downregulating GATA1 protein levels is a necessary step in terminal erythroid differentiation. The importance of maintaining proper GATA1 protein homeostasis in erythropoiesis is demonstrated by the fact that both GATA1 loss and its overexpression result in lethal anemia. Importantly, alterations in any of those GATA1 regulatory checkpoints have been recognized as an important cause of hematological disorders such as dyserythropoiesis (with or without thrombocytopenia), β-thalassemia, Diamond-Blackfan anemia, myelodysplasia, or leukemia. In this review, we provide an overview of the multilevel regulation of GATA1 protein homeostasis in erythropoiesis and of its deregulation in hematological disease.
Collapse
Affiliation(s)
- Laura Gutiérrez
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Department of Medicine, Universidad de Oviedo, Oviedo, Spain
| | - Noemí Caballero
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Luis Fernández-Calleja
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Elena Karkoulia
- Institute of Molecular Biology and Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Crete, Greece
| | - John Strouboulis
- Cancer Comprehensive Center, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
17
|
Zhang J, Zhao H, Wu K, Peng Y, Han X, Zhang H, Liang L, Chen H, Hu J, Qu X, Zhang S, Chen L, Liu J. Knockdown of spliceosome U2AF1 significantly inhibits the development of human erythroid cells. J Cell Mol Med 2019; 23:5076-5086. [PMID: 31144421 PMCID: PMC6652819 DOI: 10.1111/jcmm.14370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/14/2019] [Accepted: 04/21/2019] [Indexed: 11/30/2022] Open
Abstract
U2AF1 (U2AF35) is the small subunit of the U2 auxiliary factor (U2AF) that constitutes the U2 snRNP (small nuclear ribonucleoproteins) of the spliceosome. Here, we examined the function of U2AF1 in human erythropoiesis. First, we examined the expression of U2AF1 during in vitro human erythropoiesis and showed that U2AF1 was highly expressed in the erythroid progenitor burst-forming-unit erythroid (BFU-E) cell stage. A colony assay revealed that U2AF1 knockdown cells failed to form BFU-E and colony-forming-unit erythroid (CFU-E) colonies. Our results further showed that knockdown of U2AF1 significantly inhibited cell growth and induced apoptosis in erythropoiesis. Additionally, knockdown of U2AF1 also delayed terminal erythroid differentiation. To explore the molecular basis of the impaired function of erythroid development, RNA-seq was performed and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results showed that several biological pathways, including the p53 signalling pathway, MAPK signalling pathway and haematopoietic cell lineage, were involved, with the p53 signalling pathway showing the greatest involvement. Western blot analysis revealed an increase in the protein levels of downstream targets of p53 following U2AF1 knockdown. The data further showed that depletion of U2AF1 altered alternatively spliced apoptosis-associated gene transcripts in CFU-E cells. Our findings elucidate the role of U2AF1 in human erythropoiesis and reveal the underlying mechanisms.
Collapse
Affiliation(s)
- Jieying Zhang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Huizhi Zhao
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Kunlu Wu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yuanliang Peng
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Xu Han
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Huan Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Long Liang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Huiyong Chen
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jingping Hu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Xiaoli Qu
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Shijie Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Lixiang Chen
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
18
|
Huang F, Liang X, Min X, Zhang Y, Wang G, Peng Z, Peng F, Li M, Chen L, Chen Y. Simultaneous Inhibition of EGFR and HER2 via Afatinib Augments the Radiosensitivity of Nasopharyngeal Carcinoma Cells. J Cancer 2019; 10:2063-2073. [PMID: 31205567 PMCID: PMC6548161 DOI: 10.7150/jca.29327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 04/13/2019] [Indexed: 12/31/2022] Open
Abstract
Ionizing radiation (IR) is the central component of the therapeutic scheme for nasopharyngeal carcinoma (NPC) at present. Previous studies show that inhibition of epidermal growth factor receptor (EGFR) enhances the radiosensitivity of NPC; however the effects of EGFR-targeted agents are limited. In this study, we observed that simultaneously inhibition of EGFR and HER2 by afatinib could augment the radiosensitivity of NPC cells; this approach has an advantage over erlotinib-mediated inhibition of EGFR alone. The afatinib-induced augmentation of NPC cell radiosensitivity was associated with increases in apoptosis and accumulation of DNA damage that were induced by radiation. In addition, the crosstalk between radiation-induced activities and EGFR-, and HER2-related downstream pathways may contribute to the enhancement of radiosensitivity. Our findings indicate the potential of repositioning afatinib or other ERBB-family-targeted agents for improving radiation response in NPC cells.
Collapse
Affiliation(s)
- Fangling Huang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China.,Department of Hyperbaric Oxygen, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xujun Liang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaoli Min
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ye Zhang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Guoqiang Wang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengrong Peng
- Department of Hyperbaric Oxygen, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Fang Peng
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Maoyu Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lin Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yongheng Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
19
|
Liang L, Peng Y, Zhang J, Zhang Y, Roy M, Han X, Xiao X, Sun S, Liu H, Nie L, Kuang Y, Zhu Z, Deng J, Xia Y, Sankaran VG, Hillyer CD, Mohandas N, Ye M, An X, Liu J. Deubiquitylase USP7 regulates human terminal erythroid differentiation by stabilizing GATA1. Haematologica 2019; 104:2178-2187. [PMID: 30872372 PMCID: PMC6821630 DOI: 10.3324/haematol.2018.206227] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 03/13/2019] [Indexed: 01/01/2023] Open
Abstract
Ubiquitination is an enzymatic post-translational modification that affects protein fate. The ubiquitin-proteasome system (UPS) was first discovered in reticulocytes where it plays important roles in reticulocyte maturation. Recent studies have revealed that ubiquitination is a dynamic and reversible process and that deubiquitylases are capable of removing ubiquitin from their protein substrates. Given the fact that the UPS is highly active in reticulocytes, it is speculated that deubiquitylases may play important roles in erythropoiesis. Yet, the role of deubiquitylases in erythropoiesis remains largely unexplored. In the present study, we found that the expression of deubiquitylase USP7 is significantly increased during human terminal erythroid differentiation. We further showed that interfering with USP7 function, either by short hairpin RNA-mediated knockdown or USP7-specific inhibitors, impaired human terminal erythroid differentiation due to decreased GATA1 level and that restoration of GATA1 levels rescued the differentiation defect. Mechanistically, USP7 deficiency led to a decreased GATA1 protein level that could be reversed by proteasome inhibitors. Furthermore, USP7 interacts directly with GATA1 and catalyzes the removal of K48-linked poly ubiquitylation chains conjugated onto GATA1, thereby stabilizing GATA1 protein. Collectively, our findings have identified an important role of a deubiquitylase in human terminal erythroid differentiation by stabilizing GATA1, the master regulator of erythropoiesis.
Collapse
Affiliation(s)
- Long Liang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yuanliang Peng
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jieying Zhang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Laboratory of Membrane Biology, New York Blood Center, New York, NY, USA
| | - Yibin Zhang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Mridul Roy
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Xu Han
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Xiaojuan Xiao
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Shuming Sun
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Hong Liu
- Xiangya Hospital, Central South University, Changsha, China
| | - Ling Nie
- Xiangya Hospital, Central South University, Changsha, China
| | - Yijin Kuang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Zesen Zhu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jinghui Deng
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vijay G Sankaran
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY, USA
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY, USA .,School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China .,Erythropoiesis Research Center, Central South University, Changsha, China
| |
Collapse
|
20
|
Sun S, Peng Y, Liu J. Research advances in erythrocyte regeneration sources and methods in vitro. CELL REGENERATION 2018; 7:45-49. [PMID: 30671230 PMCID: PMC6326244 DOI: 10.1016/j.cr.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/22/2018] [Accepted: 10/26/2018] [Indexed: 01/04/2023]
Abstract
Erythrocytes (red blood cells, RBCs) facilitate gas exchange in the lungs and transport oxygen to the tissues. The human body must maintain erythrocyte regeneration to support metabolically active cells and tissues. In many hematological diseases, erythrocyte regeneration is impaired. Researchers have studied erythrocyte regeneration for many years both in vivo and in vitro. In this review, we summarize the sources and main culture methods for generating mature and functional red blood cells in vitro. Hematopoietic stem cells (HSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are classic sources for erythrocyte regeneration. In addition, alternative sources such as immortalized adult human erythroid cell lines and transformed fibroblasts have also been generated and have produced functional red blood cells. The culture systems for erythrocytes differ among laboratories. Researchers hope that improvements in culture techniques may contribute to improved RBC outcomes for blood transfusions, drug delivery and the treatment of hematological diseases.
Collapse
Affiliation(s)
- Shuming Sun
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.,Erythropoiesis Research Center, Central South University, Changsha 410078, China
| | - Yuanliang Peng
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.,Erythropoiesis Research Center, Central South University, Changsha 410078, China
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.,Erythropoiesis Research Center, Central South University, Changsha 410078, China
| |
Collapse
|
21
|
Ling T, Crispino JD, Zingariello M, Martelli F, Migliaccio AR. GATA1 insufficiencies in primary myelofibrosis and other hematopoietic disorders: consequences for therapy. Expert Rev Hematol 2018; 11:169-184. [PMID: 29400094 PMCID: PMC6108178 DOI: 10.1080/17474086.2018.1436965] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION GATA1, the founding member of a family of transcription factors, plays important roles in the development of hematopoietic cells of several lineages. Although loss of GATA1 has been known to impair hematopoiesis in animal models for nearly 25 years, the link between GATA1 defects and human blood diseases has only recently been realized. Areas covered: Here the current understanding of the functions of GATA1 in normal hematopoiesis and how it is altered in disease is reviewed. GATA1 is indispensable mainly for erythroid and megakaryocyte differentiation. In erythroid cells, GATA1 regulates early stages of differentiation, and its deficiency results in apoptosis. In megakaryocytes, GATA1 controls terminal maturation and its deficiency induces proliferation. GATA1 alterations are often found in diseases involving these two lineages, such as congenital erythroid and/or megakaryocyte deficiencies, including Diamond Blackfan Anemia (DBA), and acquired neoplasms, such as acute megakaryocytic leukemia (AMKL) and the myeloproliferative neoplasms (MPNs). Expert commentary: Since the first discovery of GATA1 mutations in AMKL, the number of diseases that are associated with impaired GATA1 function has increased to include DBA and MPNs. With respect to the latter, we are only just now appreciating the link between enhanced JAK/STAT signaling, GATA1 deficiency and disease pathogenesis.
Collapse
Affiliation(s)
- Te Ling
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - John D. Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | | | - Fabrizio Martelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Roma, Italy
| | - Anna Rita Migliaccio
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Transcriptional regulators provide the molecular and biochemical basis for the cell specific properties and characteristics that follow from their central role in establishing tissue-restricted expression. Precise and sequential control of terminal cell divisions, nuclear condensation, and enucleation are defining characteristics within erythropoietic differentiation. This review is focused on KLF1, a central global regulator of this process. RECENT FINDINGS Studies in the past year have brought a number of proteins that are targets of KLF1 regulation into focus with respect to their roles in terminal erythroid differentiation. Many of these are involved in fine control of the cell cycle at both early (E2F2, Cyclin A2) and later (p18, p27, p19) stages of differentiation, or are directly involved in enucleation (p18, p27). Dramatic biophysical changes controlled at the nuclear lamin by caspase 3 enable histone release and nuclear condensation, whereas dematin association with structural proteins alters the timing of enucleation. Conditional ablation of mDia2 has established its role in late stage cell cycle and enucleation. SUMMARY Transcription factors such as KLF1, along with epigenetic modifiers, play crucial roles in establishing the proper onset and progression of terminal differentiation events. Studies from the past year show a remarkable multifaceted convergence on cell cycle control, and establish that the orthochromatic erythroblast stage is a critical nodal point for many of the effects on enucleation. These studies are relevant to understanding the underlying causes of anemia and hematologic disease where defective enucleation predicts a poor clinical outcome.
Collapse
|
23
|
Han X, Liu J. Cell cycle-independent roles of p19 INK4d in human terminal erythropoiesis. CHINESE JOURNAL OF CANCER 2017; 36:22. [PMID: 28228163 PMCID: PMC5322582 DOI: 10.1186/s40880-017-0189-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/22/2017] [Indexed: 11/18/2022]
Affiliation(s)
- Xu Han
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, 410078, Hunan, P. R. China
| | - Jing Liu
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, 410078, Hunan, P. R. China.
| |
Collapse
|