1
|
Perner F, Gadrey JY, Armstrong SA, Kühn MWM. Targeting the Menin-KMT2A interaction in leukemia: Lessons learned and future directions. Int J Cancer 2025. [PMID: 39887730 DOI: 10.1002/ijc.35332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 02/01/2025]
Abstract
Chromosomal rearrangements involving the Mixed Lineage Leukemia gene (MLL1, KMT2A) are defining a genetically distinct subset in about 10% of human acute leukemias. Translocations involving the KMT2A-locus at chromosome 11q23 are resulting in the formation of a chimeric oncogene, where the N-terminal part of KMT2A is fused to a variety of translocation partners. The most frequently found fusion partners of KMT2A in acute leukemia are the C-terminal parts of AFF1, MLLT3, MLLT1 and MLLT10. Unfortunately, the presence of an KMT2A-rearrangements is associated with adverse outcomes in leukemia patients. Moreover, non-rearranged KMT2A-complexes have been demonstrated to be crucial for disease development and maintenance in NPM1-mutated and NUP98-rearranged leukemia, expanding the spectrum of genetic disease subtypes that are dependent on KMT2A. Recent advances in the development of targeted therapy strategies to disrupt the function of KMT2A-complexes in leukemia have led to the establishment of Menin-KMT2A interaction inhibitors that effectively eradicate leukemia in preclinical model systems and show favorable tolerability and significant efficacy in early-phase clinical trials. Indeed, one Menin inhibitor, Revumenib, was recently approved for the treatment of patients with relapsed or refractory KMT2A-rearranged acute leukemia. However, single agent therapy can lead to resistance. In this Review article we summarize our current understanding about the biology of pathogenic KMT2A-complex function in cancer, specifically leukemia, and give a systematic overview of lessons learned from recent clinical and preclinical studies using Menin inhibitors.
Collapse
Affiliation(s)
- Florian Perner
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany
- DGHO, Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie e.V. working group, Clinical and Translational Epigenetics, Berlin, Germany
| | - Jayant Y Gadrey
- Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael W M Kühn
- DGHO, Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie e.V. working group, Clinical and Translational Epigenetics, Berlin, Germany
- Department of Hematology and Medical Oncology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
2
|
Nakamura A, Masuya M, Shinmei M, Tawara I, Nosaka T, Ono R. Bahcc1 is critical for the aberrant epigenetic program in a mouse model of MLL-ENL-mediated leukemia. Blood Adv 2024; 8:2193-2206. [PMID: 38452334 PMCID: PMC11061229 DOI: 10.1182/bloodadvances.2023011320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/16/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024] Open
Abstract
ABSTRACT In leukemogenesis, genotoxic stress in hematopoietic stem and progenitor cells (HSPCs) drives individual context-dependent programs of malignant transformation. In light of the various differentiation stages of HSPCs based on a recently revised definition using CD150/CD48, our analyses showed that a subpopulation of long-term repopulating HSCs was most susceptible to MLL-ENL-mediated transformation. An analysis of the molecular mechanism identified Bromo-adjacent homology domain and coiled-coil containing 1 (Bahcc1), which encodes a reader molecule of trimethylated histone H3 lysine 27 (H3K27me3), as a candidate gene involved in distinct susceptibility to leukemic transformation. Interestingly, Bahcc1 was previously reported to be highly expressed in acute myeloid leukemia (AML) with an unfavorable prognosis, including some cases of MLL-rearranged AML. We found that MLL-ENL upregulated Bahcc1 through binding to its promoter, and that Bahcc1 was involved in MLL-ENL-mediated immortalization at least partly through repression of H3K27me3-marked Cdkn1c. Analyses using bone marrow transplantation in mice showed that depletion of Bahcc1 suppressed the leukemogenic activity of MLL-ENL. In a public database, high BAHCC1 expression was found to be associated with a poor prognosis in pediatric AML, in which BAHCC1 expression was significantly lower in MLL-AF9-AML than in other MLL-fusion-AML. These findings shed light on the distinct immortalization potential of HSPCs and suggest a novel MLL-fusion-Bahcc1 axis, which may lead to development of molecular targeted therapy against MLL-fusion-mediated leukemia.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Disease Models, Animal
- Epigenesis, Genetic
- Gene Expression Regulation, Leukemic
- Hematopoietic Stem Cells/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
Collapse
Affiliation(s)
- Akihide Nakamura
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, Japan
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masahiro Masuya
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Makoto Shinmei
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Tetsuya Nosaka
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Ryoichi Ono
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
3
|
Jassinskaja M, Ghosh S, Watral J, Davoudi M, Claesson Stern M, Daher U, Eldeeb M, Zhang Q, Bryder D, Hansson J. A complex interplay of intra- and extracellular factors regulates the outcome of fetal- and adult-derived MLL-rearranged leukemia. Leukemia 2024; 38:1115-1130. [PMID: 38555405 PMCID: PMC11073998 DOI: 10.1038/s41375-024-02235-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
Infant and adult MLL1/KMT2A-rearranged (MLLr) leukemia represents a disease with a dismal prognosis. Here, we present a functional and proteomic characterization of in utero-initiated and adult-onset MLLr leukemia. We reveal that fetal MLL::ENL-expressing lymphomyeloid multipotent progenitors (LMPPs) are intrinsically programmed towards a lymphoid fate but give rise to myeloid leukemia in vivo, highlighting a complex interplay of intra- and extracellular factors in determining disease subtype. We characterize early proteomic events of MLL::ENL-mediated transformation in fetal and adult blood progenitors and reveal that whereas adult pre-leukemic cells are mainly characterized by retained myeloid features and downregulation of ribosomal and metabolic proteins, expression of MLL::ENL in fetal LMPPs leads to enrichment of translation-associated and histone deacetylases signaling proteins, and decreased expression of inflammation and myeloid differentiation proteins. Integrating the proteome of pre-leukemic cells with their secretome and the proteomic composition of the extracellular environment of normal progenitors highlights differential regulation of Igf2 bioavailability, as well as of VLA-4 dimer and its ligandome, upon initiation of fetal- and adult-origin leukemia, with implications for human MLLr leukemia cells' ability to communicate with their environment through granule proteins. Our study has uncovered opportunities for targeting ontogeny-specific proteomic vulnerabilities in in utero-initiated and adult-onset MLLr leukemia.
Collapse
Affiliation(s)
- Maria Jassinskaja
- Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
- York Biomedical Research Institute, Department of Biology, University of York, YO10 5DD, York, UK
| | - Sudip Ghosh
- Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Joanna Watral
- Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Mina Davoudi
- Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Melina Claesson Stern
- Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Ugarit Daher
- Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Mohamed Eldeeb
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
| | - Qinyu Zhang
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
| | - David Bryder
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
| | - Jenny Hansson
- Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden.
| |
Collapse
|
4
|
Ducassou S, Abou Chahla W, Duployez N, Halfon-Domenech C, Brethon B, Poirée M, Adam de Beaumais T, Lemaître L, Sirvent N, Petit A. [SFCE harmonization workshops: Neonatal acute myeloid leukemia]. Bull Cancer 2024; 111:513-524. [PMID: 38503585 DOI: 10.1016/j.bulcan.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 03/21/2024]
Abstract
Neonatal acute myeloid leukemias (AML) occurred within the first 28 days of life and constitute only a small proportion of all AL. They are distinguished from leukemias of older children by their clinical presentation, which frequently includes cutaneous localizations ("blueberry muffin rash syndrome") and a leukocytosis above 50 ×109/L. This proliferation may be transient, causing a transient leukemoid reaction in a background of constitutional trisomy 21 ("Transient Abnormal Myelopoieseis" or TAM) or Infantile Myeloproliferative Disease in the absence of constitutional trisomy 21 ("Infantile Myeloproliferative Disease" or IMD). In cases of true neonatal AML, the prognosis of patients is poor. Overall survival is around 35 % in the largest historical series. This poor prognosis is mainly due to the period of onset of this pathology making the use of chemotherapy more limited and involving many considerations, both ethical and therapeutic. The objective of this work is to review this rare pathology by addressing the clinical, biological, therapeutic and ethical particularities of patients with true neonatal AML or transient leukemoid reactions occurring in a constitutional trisomy 21 (true TAM) or somatic background (IMD).
Collapse
Affiliation(s)
- Stéphane Ducassou
- Service d'hématologie et d'oncologie pédiatrique, CHU de Bordeaux, Bordeaux, France
| | | | | | - Carine Halfon-Domenech
- Service d'hématologie pédiatrique, institut d'hématologie et d'oncologie pédiatrique, hospices civils de Lyon, université Lyon 1, Lyon, France
| | - Benoît Brethon
- Service d'hématologie pédiatrique, hôpital Robert-Debré, AP-HP, Paris, France
| | - Marilyne Poirée
- Service d'hématologie et d'oncologie pédiatrique, CHU de Nice, Nice, France
| | | | - Laurent Lemaître
- Service d'hématologie et oncologie pédiatrique, CHU de Montpellier, Montpellier, France
| | - Nicolas Sirvent
- Service d'hématologie et oncologie pédiatrique, CHU de Montpellier, Montpellier, France
| | - Arnaud Petit
- Service d'hématologie et oncologie pédiatrique, hôpital Armand-Trousseau, AP-HP, Sorbonne université, Paris, France
| |
Collapse
|
5
|
Yuan S, Gao M, Wang Y, Lan Y, Li M, Du Y, Li Y, Ju W, Huang Y, Yuan K, Zeng L. PHF6 loss reduces leukemia stem cell activity in an acute myeloid leukemia mouse model. Cancer Cell Int 2024; 24:66. [PMID: 38336746 PMCID: PMC10858464 DOI: 10.1186/s12935-024-03265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is a malignant hematologic disease caused by gene mutations and genomic rearrangements in hematologic progenitors. The PHF6 (PHD finger protein 6) gene is highly conserved and located on the X chromosome in humans and mice. We found that PHF6 was highly expressed in AML cells with MLL rearrangement and was related to the shortened survival time of AML patients. In our study, we knocked out the Phf6 gene at different disease stages in the AML mice model. Moreover, we knocked down PHF6 by shRNA in two AML cell lines and examined the cell growth, apoptosis, and cell cycle. We found that PHF6 deletion significantly inhibited the proliferation of leukemic cells and prolonged the survival time of AML mice. Interestingly, the deletion of PHF6 at a later stage of the disease displayed a better anti-leukemia effect. The expressions of genes related to cell differentiation were increased, while genes that inhibit cell differentiation were decreased with PHF6 knockout. It is very important to analyze the maintenance role of PHF6 in AML, which is different from its tumor-suppressing function in T-cell acute lymphoblastic leukemia (T-ALL). Our study showed that inhibiting PHF6 expression may be a potential therapeutic strategy targeting AML patients.
Collapse
Affiliation(s)
- Shengnan Yuan
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mingming Gao
- Blood Diseases Institute, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yizhou Wang
- Blood Diseases Institute, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Yanjie Lan
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Mengrou Li
- Blood Diseases Institute, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuwei Du
- Blood Diseases Institute, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Blood Diseases Institute, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yujin Huang
- Blood Diseases Institute, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ke Yuan
- Blood Diseases Institute, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lingyu Zeng
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Blood Diseases Institute, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu, 221004, China.
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China.
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
6
|
Wang H, Sun H, Liang B, Zhang F, Yang F, Cui B, Ding L, Wang X, Wang R, Cai J, Tang Y, Rao J, Hu W, Zhao S, Wu W, Chen X, Wu K, Lai J, Xie Y, Li B, Tang J, Shen S, Liu Y. Chromatin accessibility landscape of relapsed pediatric B-lineage acute lymphoblastic leukemia. Nat Commun 2023; 14:6792. [PMID: 37880218 PMCID: PMC10600232 DOI: 10.1038/s41467-023-42565-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
For around half of the pediatric B-lineage acute lymphoblastic leukemia (B-ALL) patients, the molecular mechanism of relapse remains unclear. To fill this gap in knowledge, here we characterize the chromatin accessibility landscape in pediatric relapsed B-ALL. We observe rewired accessible chromatin regions (ACRs) associated with transcription dysregulation in leukemia cells as compared with normal B-cell progenitors. We show that over a quarter of the ACRs in B-ALL are in quiescent regions with high heterogeneity among B-ALLs. We identify subtype-specific and allele-imbalanced chromatin accessibility by integrating multi-omics data. By characterizing the differential ACRs between diagnosis and relapse in B-ALL, we identify alterations in chromatin accessibility during drug treatment. Further analysis of ACRs associated with relapse free survival leads to the identification of a subgroup of B-ALL which show early relapse. These data provide an advanced and integrative portrait of the importance of chromatin accessibility alterations in tumorigenesis and drug responses.
Collapse
Affiliation(s)
- Han Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huiying Sun
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bilin Liang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Zhang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Yang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Cui
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lixia Ding
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Wang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ronghua Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaoyang Cai
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanjing Tang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianan Rao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenting Hu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuang Zhao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenyan Wu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxiao Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kefei Wu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junchen Lai
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yangyang Xie
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Benshang Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingyan Tang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuhong Shen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Fuzhou, China.
| | - Yu Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Fuzhou, China.
| |
Collapse
|
7
|
Crump NT, Smith AL, Godfrey L, Dopico-Fernandez AM, Denny N, Harman JR, Hamley JC, Jackson NE, Chahrour C, Riva S, Rice S, Kim J, Basrur V, Fermin D, Elenitoba-Johnson K, Roeder RG, Allis CD, Roberts I, Roy A, Geng H, Davies JOJ, Milne TA. MLL-AF4 cooperates with PAF1 and FACT to drive high-density enhancer interactions in leukemia. Nat Commun 2023; 14:5208. [PMID: 37626123 PMCID: PMC10457349 DOI: 10.1038/s41467-023-40981-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Aberrant enhancer activation is a key mechanism driving oncogene expression in many cancers. While much is known about the regulation of larger chromosome domains in eukaryotes, the details of enhancer-promoter interactions remain poorly understood. Recent work suggests co-activators like BRD4 and Mediator have little impact on enhancer-promoter interactions. In leukemias controlled by the MLL-AF4 fusion protein, we use the ultra-high resolution technique Micro-Capture-C (MCC) to show that MLL-AF4 binding promotes broad, high-density regions of enhancer-promoter interactions at a subset of key targets. These enhancers are enriched for transcription elongation factors like PAF1C and FACT, and the loss of these factors abolishes enhancer-promoter contact. This work not only provides an additional model for how MLL-AF4 is able to drive high levels of transcription at key genes in leukemia but also suggests a more general model linking enhancer-promoter crosstalk and transcription elongation.
Collapse
Affiliation(s)
- Nicholas T Crump
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
- Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, W12 0NN, UK.
| | - Alastair L Smith
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Laura Godfrey
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Ana M Dopico-Fernandez
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Nicholas Denny
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Joe R Harman
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Joseph C Hamley
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Nicole E Jackson
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Catherine Chahrour
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Simone Riva
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Siobhan Rice
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Damian Fermin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kojo Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, 10065, USA
| | - Irene Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK
| | - Anindita Roy
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK
| | - Huimin Geng
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - James O J Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
8
|
Salokas K, Dashi G, Varjosalo M. Decoding Oncofusions: Unveiling Mechanisms, Clinical Impact, and Prospects for Personalized Cancer Therapies. Cancers (Basel) 2023; 15:3678. [PMID: 37509339 PMCID: PMC10377698 DOI: 10.3390/cancers15143678] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer-associated gene fusions, also known as oncofusions, have emerged as influential drivers of oncogenesis across a diverse range of cancer types. These genetic events occur via chromosomal translocations, deletions, and inversions, leading to the fusion of previously separate genes. Due to the drastic nature of these mutations, they often result in profound alterations of cellular behavior. The identification of oncofusions has revolutionized cancer research, with advancements in sequencing technologies facilitating the discovery of novel fusion events at an accelerated pace. Oncofusions exert their effects through the manipulation of critical cellular signaling pathways that regulate processes such as proliferation, differentiation, and survival. Extensive investigations have been conducted to understand the roles of oncofusions in solid tumors, leukemias, and lymphomas. Large-scale initiatives, including the Cancer Genome Atlas, have played a pivotal role in unraveling the landscape of oncofusions by characterizing a vast number of cancer samples across different tumor types. While validating the functional relevance of oncofusions remains a challenge, even non-driver mutations can hold significance in cancer treatment. Oncofusions have demonstrated potential value in the context of immunotherapy through the production of neoantigens. Their clinical importance has been observed in both treatment and diagnostic settings, with specific fusion events serving as therapeutic targets or diagnostic markers. However, despite the progress made, there is still considerable untapped potential within the field of oncofusions. Further research and validation efforts are necessary to understand their effects on a functional basis and to exploit the new targeted treatment avenues offered by oncofusions. Through further functional and clinical studies, oncofusions will enable the advancement of precision medicine and the drive towards more effective and specific treatments for cancer patients.
Collapse
Affiliation(s)
- Kari Salokas
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Giovanna Dashi
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| |
Collapse
|
9
|
Xu J, Zhong A, Zhang S, Chen M, Zhang L, Hang X, Zheng J, Wu B, Deng X, Pan X, Wang Z, Qi L, Shi K, Li S, Wang Y, Wang M, Chen X, Zhang Q, Liu P, Gale RP, Chen C, Liu Y, Niu T. KMT2D Deficiency Promotes Myeloid Leukemias which Is Vulnerable to Ribosome Biogenesis Inhibition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206098. [PMID: 37142882 PMCID: PMC10323629 DOI: 10.1002/advs.202206098] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/17/2023] [Indexed: 05/06/2023]
Abstract
KMT2C and KMT2D are the most frequently mutated epigenetic genes in human cancers. While KMT2C is identified as a tumor suppressor in acute myeloid leukemia (AML), the role of KMT2D remains unclear in this disease, though its loss promotes B cell lymphoma and various solid cancers. Here, it is reported that KMT2D is downregulated or mutated in AML and its deficiency, through shRNA knockdown or CRISPR/Cas9 editing, accelerates leukemogenesis in mice. Hematopoietic stem and progenitor cells and AML cells with Kmt2d loss have significantly enhanced ribosome biogenesis and consistently, enlarged nucleolus, increased rRNA and protein synthesis rates. Mechanistically, it is found that KMT2D deficiency leads to the activation of the mTOR pathway in both mouse and human AML cells. Kmt2d directly regulates the expression of Ddit4, a negative regulator of the mTOR pathway. Consistent with the abnormal ribosome biogenesis, it is shown that CX-5461, an inhibitor of RNA polymerase I, significantly restrains the growth of AML with Kmt2d loss in vivo and extends the survival of leukemic mice. These studies validate KMT2D as a de facto tumor suppressor in AML and reveal an unprecedented vulnerability to ribosome biogenesis inhibition.
Collapse
Grants
- 82130007 National Natural Science Foundation of China
- 2022M722272 China Postdoctoral Science Foundation
- 2018RZ0140 Sichuan Science and Technology Program
- 2022SCUH0037 "From 0 to 1" Innovation Project of Sichuan University
- 19HXFH030 Incubation Program for Clinical Trials, West China Hospital, Sichuan University
- ZYJC21007 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYJC21009 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYGD22012 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- National Institute of Health Research Biomedical Research Centre
- 2023HXBH019 Post-Doctor Research Project, West China Hospital, Sichuan University
- 2023SCU12073 Post-Doctor Research Project of Sichuan University
- National Natural Science Foundation of China
- China Postdoctoral Science Foundation
Collapse
Affiliation(s)
- Jing Xu
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Ailing Zhong
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Shan Zhang
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Mei Chen
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Lanxin Zhang
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Xiaohang Hang
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Jianan Zheng
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Baohong Wu
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Xintong Deng
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Xiangyu Pan
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Zhongwang Wang
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Lu Qi
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Kaidou Shi
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Shujun Li
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Yiyun Wang
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Manli Wang
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Xuelan Chen
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Qi Zhang
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Pengpeng Liu
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Robert Peter Gale
- Centre for HematologyImperial College of ScienceTechnology and MedicineLondonSW7 2BXUK
- Department of Hematologic OncologySun Yat‐sen Cancer CenterGuangzhou510060China
| | - Chong Chen
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Yu Liu
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Ting Niu
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
10
|
Baghel VS, Shinde S, Sinha V, Dixit V, Tiwari AK, Saxena S, Vishvakarma NK, Shukla D, Bhatt P. Inhibitors targeting epigenetic modifications in cancer. TRANSCRIPTION AND TRANSLATION IN HEALTH AND DISEASE 2023:287-324. [DOI: 10.1016/b978-0-323-99521-4.00007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Windisch R, Kreissig S, Wichmann C. Defined Human Leukemic CD34+ Liquid Cultures to Study HDAC/Transcriptional Repressor Complexes. Methods Mol Biol 2023; 2589:27-49. [PMID: 36255616 DOI: 10.1007/978-1-0716-2788-4_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Defined human primary cell model systems with growth dependence on oncogenes are highly requested to investigate tumor pathogenesis and to validate pharmacological inhibitors that specifically target oncoproteins and their executing protein complex partners. In acute myeloid leukemia (AML), transcription factors such as RUNX1 and MLL1, which are important for normal blood cell development, frequently harbor mutations including chromosomal translocations with other coding genes, resulting in tumor-promoting gain-of-function fusion proteins. These oncoproteins completely modify transcriptional programs, thereby inducing malignant cell phenotypes. A common theme of the chimeric gene products is their physical interaction with a variety of chromatin-modifying effector molecules, including histone acetyltransferases (HATs) and histone deacetylases (HDACs). These aberrant multiprotein machineries disturb gene expression and promote malignant cell growth. In this chapter, we briefly summarize the current understanding regarding AML-associated oncogene-driven human CD34+ blood progenitor cell expansion in ex vivo liquid cultures. We provide a step-by-step protocol to establish oncogene-induced human CD34+ blood progenitor cell cultures suitable to analyze the impact of transcriptional repressor/HDAC activity in these human AML cell models.
Collapse
Affiliation(s)
- Roland Windisch
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Sophie Kreissig
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
12
|
Okuda H, Miyamoto R, Takahashi S, Kawamura T, Ichikawa J, Harada I, Tamura T, Yokoyama A. RNA-binding proteins of KHDRBS and IGF2BP families control the oncogenic activity of MLL-AF4. Nat Commun 2022; 13:6688. [PMID: 36335100 PMCID: PMC9637093 DOI: 10.1038/s41467-022-34558-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/27/2022] [Indexed: 11/08/2022] Open
Abstract
Chromosomal translocation generates the MLL-AF4 fusion gene, which causes acute leukemia of multiple lineages. MLL-AF4 is a strong oncogenic driver that induces leukemia without additional mutations and is the most common cause of pediatric leukemia. However, establishment of a murine disease model via retroviral transduction has been difficult owning to a lack of understanding of its regulatory mechanisms. Here, we show that MLL-AF4 protein is post-transcriptionally regulated by RNA-binding proteins, including those of KHDRBS and IGF2BP families. MLL-AF4 translation is inhibited by ribosomal stalling, which occurs at regulatory sites containing AU-rich sequences recognized by KHDRBSs. Synonymous mutations disrupting the association of KHDRBSs result in proper translation of MLL-AF4 and leukemic transformation. Consequently, the synonymous MLL-AF4 mutant induces leukemia in vivo. Our results reveal that post-transcriptional regulation critically controls the oncogenic activity of MLL-AF4; these findings might be valuable in developing novel therapies via modulation of the activity of RNA-binding proteins.
Collapse
Affiliation(s)
- Hiroshi Okuda
- grid.272242.30000 0001 2168 5385Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata Japan ,grid.268441.d0000 0001 1033 6139Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa Japan
| | - Ryo Miyamoto
- grid.272242.30000 0001 2168 5385Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata Japan
| | - Satoshi Takahashi
- grid.272242.30000 0001 2168 5385Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata Japan ,grid.258799.80000 0004 0372 2033Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto Japan
| | - Takeshi Kawamura
- grid.26999.3d0000 0001 2151 536XResearch Center for Advanced Science and Technology (RCAST), The University of Tokyo, Bunkyo, Tokyo Japan
| | - Juri Ichikawa
- grid.268441.d0000 0001 1033 6139Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa Japan
| | - Ibuki Harada
- grid.268441.d0000 0001 1033 6139Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa Japan
| | - Tomohiko Tamura
- grid.268441.d0000 0001 1033 6139Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa Japan ,grid.268441.d0000 0001 1033 6139Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa Japan
| | - Akihiko Yokoyama
- grid.272242.30000 0001 2168 5385Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata Japan ,grid.272242.30000 0001 2168 5385National Cancer Center Research Institute, Chuo, Tokyo Japan
| |
Collapse
|
13
|
Sun G, Dong D, Dong Z, Zhang Q, Fang H, Wang C, Zhang S, Wu S, Dong Y, Wan Y. Drug repositioning: A bibliometric analysis. Front Pharmacol 2022; 13:974849. [PMID: 36225586 PMCID: PMC9549161 DOI: 10.3389/fphar.2022.974849] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/12/2022] [Indexed: 11/14/2022] Open
Abstract
Drug repurposing has become an effective approach to drug discovery, as it offers a new way to explore drugs. Based on the Science Citation Index Expanded (SCI-E) and Social Sciences Citation Index (SSCI) databases of the Web of Science core collection, this study presents a bibliometric analysis of drug repurposing publications from 2010 to 2020. Data were cleaned, mined, and visualized using Derwent Data Analyzer (DDA) software. An overview of the history and development trend of the number of publications, major journals, major countries, major institutions, author keywords, major contributors, and major research fields is provided. There were 2,978 publications included in the study. The findings show that the United States leads in this area of research, followed by China, the United Kingdom, and India. The Chinese Academy of Science published the most research studies, and NIH ranked first on the h-index. The Icahn School of Medicine at Mt Sinai leads in the average number of citations per study. Sci Rep, Drug Discov. Today, and Brief. Bioinform. are the three most productive journals evaluated from three separate perspectives, and pharmacology and pharmacy are unquestionably the most commonly used subject categories. Cheng, FX; Mucke, HAM; and Butte, AJ are the top 20 most prolific and influential authors. Keyword analysis shows that in recent years, most research has focused on drug discovery/drug development, COVID-19/SARS-CoV-2/coronavirus, molecular docking, virtual screening, cancer, and other research areas. The hotspots have changed in recent years, with COVID-19/SARS-CoV-2/coronavirus being the most popular topic for current drug repurposing research.
Collapse
Affiliation(s)
- Guojun Sun
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Dashun Dong
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Zuojun Dong
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Qian Zhang
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Hui Fang
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| | - Chaojun Wang
- Hangzhou Aeronautical Sanatorium for Special Service of Chinese Air Force, Hangzhou, China
| | - Shaoya Zhang
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Shuaijun Wu
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yichen Dong
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yuehua Wan
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
14
|
Huang W, Sun G, Wang Q, Long Z. The research progress of targeted therapy in acute myeloid leukemia based on bibliometric analysis. Front Oncol 2022; 12:957370. [PMID: 36119476 PMCID: PMC9481238 DOI: 10.3389/fonc.2022.957370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Wanxue Huang
- Department of Hematology, Fudan University Affiliated Pudong Medical Center, Shanghai, China
| | - Gongrui Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Qi Wang
- Department of Hematology, Fudan University Affiliated Pudong Medical Center, Shanghai, China
| | - Zhiguo Long
- Department of Hematology, Fudan University Affiliated Pudong Medical Center, Shanghai, China
- *Correspondence: Zhiguo Long,
| |
Collapse
|
15
|
Mopin A, Leprêtre F, Sebda S, Villenet C, Ben Khoud M, Figeac M, Quesnel B, Brinster C. Detection of residual and chemoresistant leukemic cells in an immune-competent mouse model of acute myeloid leukemia: Potential for unravelling their interactions with immunity. PLoS One 2022; 17:e0267508. [PMID: 35486629 PMCID: PMC9053800 DOI: 10.1371/journal.pone.0267508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by blocked differentiation and extensive proliferation of hematopoietic progenitors/precursors. Relapse is often observed after chemotherapy due to the presence of residual leukemic cells, which is also called minimal residual disease (MRD). Subclonal heterogeneity at diagnosis was found to be responsible for MRD after treatment. Patient xenograft mouse models are valuable tools for studying MRD after chemotherapy; however, the contribution of the immune system in these models is usually missing. To evaluate its role in leukemic persistence, we generated an immune-competent AML mouse model of persistence after chemotherapy treatment. We used well-characterized (phenotypically and genetically) subclones of the murine C1498 cell line stably expressing the ZsGreen reporter gene and the WT1 protein, a valuable antigen. Accordingly, these subclones were also selected due to their in vitro aracytidine (Ara-c) sensitivity. A combination of 3 subclones (expressing or not expressing WT1) was found to lead to prolonged mouse survival after Ara-c treatment (as long as 150 days). The presence of residual leukemic cells in the blood and BM of surviving mice indicated their persistence. Thus, a new mouse model that may offer insights into immune contributions to leukemic persistence was developed.
Collapse
Affiliation(s)
- Alexia Mopin
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
- Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France
| | - Frédéric Leprêtre
- Univ. Lille, UAR2014 - US 41 - Plateformes Lilloises en Biologie & Santé- Plateau de génomique fonctionnelle, Centre de biologie Pathologie Génétique - CHU Lille, Lille, France
| | - Shéhérazade Sebda
- Univ. Lille, UAR2014 - US 41 - Plateformes Lilloises en Biologie & Santé- Plateau de génomique fonctionnelle, Centre de biologie Pathologie Génétique - CHU Lille, Lille, France
| | - Céline Villenet
- Univ. Lille, UAR2014 - US 41 - Plateformes Lilloises en Biologie & Santé- Plateau de génomique fonctionnelle, Centre de biologie Pathologie Génétique - CHU Lille, Lille, France
| | - Meriem Ben Khoud
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
- Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France
| | - Martin Figeac
- Univ. Lille, UAR2014 - US 41 - Plateformes Lilloises en Biologie & Santé- Plateau de génomique fonctionnelle, Centre de biologie Pathologie Génétique - CHU Lille, Lille, France
| | - Bruno Quesnel
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
- Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France
| | - Carine Brinster
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 – CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
- Institut pour la Recherche sur le Cancer de Lille (IRCL), Lille, France
- * E-mail:
| |
Collapse
|
16
|
Dissecting the Genetic and Non-Genetic Heterogeneity of Acute Myeloid Leukemia Using Next-Generation Sequencing and In Vivo Models. Cancers (Basel) 2022; 14:cancers14092182. [PMID: 35565315 PMCID: PMC9103951 DOI: 10.3390/cancers14092182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is an extremely aggressive form of blood cancer with high rates of treatment failure. AML arises from the stepwise acquisition of genetic aberrations and is a highly heterogeneous disorder. Recent research has shown that individual AML samples often contain several clones that are defined by a distinct combination of genetic lesions, epigenetic patterns and cell surface marker expression profiles. A better understanding of the clonal dynamics of AML is required to develop novel treatment strategies against this disease. In this review, we discuss the recent developments that have further deepened our understanding of clonal evolution and heterogeneity in AML. Abstract Acute myeloid leukemia (AML) is an extremely aggressive and heterogeneous disorder that results from the transformation of hematopoietic stem cells. Although our understanding of the molecular pathology of AML has greatly improved in the last few decades, the overall and relapse free survival rates among AML patients remain quite poor. This is largely due to evolution of the disease and selection of the fittest, treatment-resistant leukemic clones. There is increasing evidence that most AMLs possess a highly complex clonal architecture and individual leukemias are comprised of genetically, phenotypically and epigenetically distinct clones, which are continually evolving. Advances in sequencing technologies as well as studies using murine AML models have provided further insights into the heterogeneity of leukemias. We will review recent advances in the field of genetic and non-genetic heterogeneity in AML.
Collapse
|
17
|
Yuan O, Ugale A, de Marchi T, Anthonydhason V, Konturek-Ciesla A, Wan H, Eldeeb M, Drabe C, Jassinskaja M, Hansson J, Hidalgo I, Velasco-Hernandez T, Cammenga J, Magee JA, Niméus E, Bryder D. A somatic mutation in moesin drives progression into acute myeloid leukemia. SCIENCE ADVANCES 2022; 8:eabm9987. [PMID: 35442741 PMCID: PMC9020775 DOI: 10.1126/sciadv.abm9987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Acute myeloid leukemia (AML) arises when leukemia-initiating cells, defined by a primary genetic lesion, acquire subsequent molecular changes whose cumulative effects bypass tumor suppression. The changes that underlie AML pathogenesis not only provide insights into the biology of transformation but also reveal novel therapeutic opportunities. However, backtracking these events in transformed human AML samples is challenging, if at all possible. Here, we approached this question using a murine in vivo model with an MLL-ENL fusion protein as a primary molecular event. Upon clonal transformation, we identified and extensively verified a recurrent codon-changing mutation (Arg295Cys) in the ERM protein moesin that markedly accelerated leukemogenesis. Human cancer-associated moesin mutations at the conserved arginine-295 residue similarly enhanced MLL-ENL-driven leukemogenesis. Mechanistically, the mutation interrupted the stability of moesin and conferred a neomorphic activity to the protein, which converged on enhanced extracellular signal-regulated kinase activity. Thereby, our studies demonstrate a critical role of ERM proteins in AML, with implications also for human cancer.
Collapse
Affiliation(s)
- Ouyang Yuan
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Amol Ugale
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology of the University of Vienna, Max F. Perutz Laboratories, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Tommaso de Marchi
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, 223 62, Lund, Sweden
| | - Vimala Anthonydhason
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Medicinaregatan 1F, 413 90, Gothenburg, Sweden
| | - Anna Konturek-Ciesla
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Haixia Wan
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Mohamed Eldeeb
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Caroline Drabe
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Maria Jassinskaja
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
- York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Jenny Hansson
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Isabel Hidalgo
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | | | - Jörg Cammenga
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Jeffrey A. Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emma Niméus
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, 223 62, Lund, Sweden
- Department of Surgery, Skåne University Hospital, Entrégatan 7, 222 42 Lund, Sweden
| | - David Bryder
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
18
|
Jassinskaja M, Hansson J. The Opportunity of Proteomics to Advance the Understanding of Intra- and Extracellular Regulation of Malignant Hematopoiesis. Front Cell Dev Biol 2022; 10:824098. [PMID: 35350382 PMCID: PMC8957922 DOI: 10.3389/fcell.2022.824098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Fetal and adult hematopoiesis are regulated by largely distinct sets of cell-intrinsic gene regulatory networks as well as extracellular cues in their respective microenvironment. These ontogeny-specific programs drive hematopoietic stem and progenitor cells (HSPCs) in fetus and adult to divergent susceptibility to initiation and progression of hematological malignancies, such as leukemia. Elucidating how leukemogenic hits disturb the intra- and extracellular programs in HSPCs along ontogeny will provide a better understanding of the causes for age-associated differences in malignant hematopoiesis and facilitate the improvement of strategies for prevention and treatment of pediatric and adult acute leukemia. Here, we review current knowledge of the intrinsic and extrinsic programs regulating normal and malignant hematopoiesis, with a particular focus on the differences between infant and adult acute leukemia. We discuss the recent advances in mass spectrometry-based proteomics and its opportunity for resolving the interplay of cell-intrinsic and niche-associated factors in regulating malignant hematopoiesis.
Collapse
Affiliation(s)
- Maria Jassinskaja
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden.,York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Jenny Hansson
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| |
Collapse
|
19
|
Xin Q, Chen Z, Wei W, Wu Y. Animal models of acute lymphoblastic leukemia: Recapitulating the human disease to evaluate drug efficacy and discover therapeutic targets. Biochem Pharmacol 2022; 198:114970. [PMID: 35183530 DOI: 10.1016/j.bcp.2022.114970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 01/02/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is a malignant hematologic tumor with highly aggressive characteristics, which is prone to relapse, has a poor prognosis and few clinically effective drugs. It is meaningful to gain a better understanding of its pathogenesis in order to discover and evaluate potential therapeutic drugs and new treatment targets. The goal of developing novel targeted drugs and treatment methods is to increase complete remission, reduce toxicity and morbidity, and that is also the most important prerequisite for modern leukemia treatment. However, the process of new drugs from research and development to clinical application is long and difficult. Many promising drugs were rejected by the USFoodandDrugAdministration(FDA) due to serious adverse drug reactions (ADR) in clinical phase I trials. Animal models provide us with an excellent tool to understand the complex pathological mechanisms of human diseases, to evaluate the potential of new targeted drugs and therapeutic approaches to treat ALL in vivo and, more importantly, to assess the potential ADR they may have on healthy organs. In this article we review ALL animal models' progression, their roles in revealing the pathogenesis of ALL and drug development. Additionally, we mainly focus on the mouse models, especially xenotransplantation and transgenic models that more closely reproduce the human phenotype. In conclusion, we summarize the advantages and limitations of each model, thereby facilitating further understanding the etiology of ALL, and eventually contributing to the effective management of the disease.
Collapse
Affiliation(s)
- Qianling Xin
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Zhaoying Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| | - Yujing Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| |
Collapse
|
20
|
Functional genomic approaches in acute myeloid leukemia: Insights into disease models and the therapeutic potential of reprogramming. Cancer Lett 2022; 533:215579. [DOI: 10.1016/j.canlet.2022.215579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/17/2022] [Accepted: 01/29/2022] [Indexed: 11/19/2022]
|
21
|
El-Masry OS, Alhawaj HA, Fagere MO, Owaidah AY, Alamri A, Alsamman K. Oral Intragastric DMBA Administration Induces Acute Lymphocytic Leukemia and Other Tumors in Male Wistar Rats. J Exp Pharmacol 2022; 14:87-96. [PMID: 35241938 PMCID: PMC8887968 DOI: 10.2147/jep.s349047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/11/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Omar S El-Masry
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Hussain Abdullah Alhawaj
- Animal House Facility, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Muaz O Fagere
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Amani Y Owaidah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Aisha Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Khaldoon Alsamman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
- Correspondence: Khaldoon Alsamman, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia, Email
| |
Collapse
|
22
|
Malouf C, Antunes ETB, O'Dwyer M, Jakobczyk H, Sahm F, Landua SL, Anderson RA, Soufi A, Halsey C, Ottersbach K. miR-130b and miR-128a are essential lineage-specific codrivers of t(4;11) MLL-AF4 acute leukemia. Blood 2021; 138:2066-2092. [PMID: 34111240 DOI: 10.1182/blood.2020006610] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/28/2021] [Indexed: 11/20/2022] Open
Abstract
t(4;11) MLL-AF4 acute leukemia is one of the most aggressive malignancies in the infant and pediatric population, yet we have little information on the molecular mechanisms responsible for disease progression. This impairs the development of therapeutic regimens that can address the aggressive phenotype and lineage plasticity of MLL-AF4-driven leukemogenesis. This study highlights novel mechanisms of disease development by focusing on 2 microRNAs (miRNAs) upregulated in leukemic blasts from primary patient samples: miR-130b and miR-128a. We show that miR-130b and miR-128a are downstream targets of MLL-AF4 and can individually drive the transition from a pre-leukemic stage to an acute leukemia in an entirely murine Mll-AF4 in vivo model. They are also required to maintain the disease phenotype. Interestingly, miR-130b overexpression led to a mixed/B-cell precursor (BCP)/myeloid leukemia, propagated by the lymphoid-primed multipotent progenitor (LMPP) population, whereas miR-128a overexpression resulted in a pro-B acute lymphoblastic leukemia (ALL), maintained by a highly expanded Il7r+c-Kit+ blast population. Molecular and phenotypic changes induced by these two miRNAs fully recapitulate the human disease, including central nervous system infiltration and activation of an MLL-AF4 expression signature. Furthermore, we identified 2 downstream targets of these miRNAs, NR2F6 and SGMS1, which in extensive validation studies are confirmed as novel tumor suppressors of MLL-AF4+ leukemia. Our integrative approach thus provides a platform for the identification of essential co-drivers of MLL-rearranged leukemias, in which the preleukemia to leukemia transition and lineage plasticity can be dissected and new therapeutic approaches can be tested.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Richard A Anderson
- Medical Research Council (MRC) Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and
| | | | - Christina Halsey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | |
Collapse
|
23
|
Loss of MBD2 attenuates MLL-AF9-driven leukemogenesis by suppressing the leukemic cell cycle via CDKN1C. Oncogenesis 2021; 10:79. [PMID: 34789717 PMCID: PMC8599466 DOI: 10.1038/s41389-021-00366-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/19/2021] [Accepted: 10/25/2021] [Indexed: 11/09/2022] Open
Abstract
Acute myeloid leukemia (AML) is a deadly cancer characterized by an expanded self-renewal capacity that is associated with the accumulation of immature myeloid cells. Emerging evidence shows that methyl-CpG-binding domain protein 2 (MBD2), a DNA methylation reader, often participates in the transcriptional silencing of hypermethylated genes in cancer cells. Nevertheless, the role of MBD2 in AML remains unclear. Herein, by using an MLL-AF9 murine model and a human AML cell line, we observed that loss of MBD2 could delay the initiation and progression of leukemia. MBD2 depletion significantly reduced the leukemia burden by decreasing the proportion of leukemic stem cells (LSCs) and inhibiting leukemia cell proliferation in serial transplantation experiments, thereby allowing leukemic blasts to transition to a more mature state reflecting normal myelopoiesis. Both gene expression analyses and bioinformatic studies revealed that MBD2 negatively modulated genes related to myeloid differentiation, and was necessary to sustain the MLL-AF9 oncogene-induced gene program. We further demonstrated that MBD2 could promote LSC cell cycle progression through epigenetic regulation of CDKN1C transcription probably by binding to its promoter region. Taken together, our data suggest that MBD2 promotes AML development and could be a therapeutic target for myeloid malignancies.
Collapse
|
24
|
Zárybnický T, Heikkinen A, Kangas SM, Karikoski M, Martínez-Nieto GA, Salo MH, Uusimaa J, Vuolteenaho R, Hinttala R, Sipilä P, Kuure S. Modeling Rare Human Disorders in Mice: The Finnish Disease Heritage. Cells 2021; 10:cells10113158. [PMID: 34831381 PMCID: PMC8621025 DOI: 10.3390/cells10113158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/31/2022] Open
Abstract
The modification of genes in animal models has evidently and comprehensively improved our knowledge on proteins and signaling pathways in human physiology and pathology. In this review, we discuss almost 40 monogenic rare diseases that are enriched in the Finnish population and defined as the Finnish disease heritage (FDH). We will highlight how gene-modified mouse models have greatly facilitated the understanding of the pathological manifestations of these diseases and how some of the diseases still lack proper models. We urge the establishment of subsequent international consortiums to cooperatively plan and carry out future human disease modeling strategies. Detailed information on disease mechanisms brings along broader understanding of the molecular pathways they act along both parallel and transverse to the proteins affected in rare diseases, therefore also aiding understanding of common disease pathologies.
Collapse
Affiliation(s)
- Tomáš Zárybnický
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland;
| | - Anne Heikkinen
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland
| | - Salla M. Kangas
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
- PEDEGO Research Unit, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland;
- Medical Research Center, Oulu University Hospital, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
| | - Marika Karikoski
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (M.K.); (G.A.M.-N.)
| | - Guillermo Antonio Martínez-Nieto
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (M.K.); (G.A.M.-N.)
- Turku Center for Disease Modelling (TCDM), Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Miia H. Salo
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
- PEDEGO Research Unit, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland;
- Medical Research Center, Oulu University Hospital, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
| | - Johanna Uusimaa
- PEDEGO Research Unit, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland;
- Medical Research Center, Oulu University Hospital, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
- Clinic for Children and Adolescents, Division of Pediatric Neurology, Oulu University Hospital, P.O. Box 20, 90029 Oulu, Finland
| | - Reetta Vuolteenaho
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
| | - Reetta Hinttala
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
- PEDEGO Research Unit, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland;
- Medical Research Center, Oulu University Hospital, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
- Correspondence: (R.H.); (P.S.); (S.K.)
| | - Petra Sipilä
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (M.K.); (G.A.M.-N.)
- Turku Center for Disease Modelling (TCDM), Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- Correspondence: (R.H.); (P.S.); (S.K.)
| | - Satu Kuure
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland;
- GM-Unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
- Correspondence: (R.H.); (P.S.); (S.K.)
| |
Collapse
|
25
|
Molina B, Chavez J, Grainger S. Zebrafish models of acute leukemias: Current models and future directions. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2021; 10:e400. [PMID: 33340278 PMCID: PMC8213871 DOI: 10.1002/wdev.400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022]
Abstract
Acute myeloid leukemias (AML) and acute lymphoid leukemias (ALL) are heterogenous diseases encompassing a wide array of genetic mutations with both loss and gain of function phenotypes. Ultimately, these both result in the clonal overgrowth of blast cells in the bone marrow, peripheral blood, and other tissues. As a consequence of this, normal hematopoietic stem cell function is severely hampered. Technologies allowing for the early detection of genetic alterations and understanding of these varied molecular pathologies have helped to advance our treatment regimens toward personalized targeted therapies. In spite of this, both AML and ALL continue to be a major cause of morbidity and mortality worldwide, in part because molecular therapies for the plethora of genetic abnormalities have not been developed. This underscores the current need for better model systems for therapy development. This article reviews the current zebrafish models of AML and ALL and discusses how novel gene editing tools can be implemented to generate better models of acute leukemias. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease Technologies > Perturbing Genes and Generating Modified Animals.
Collapse
Affiliation(s)
- Brandon Molina
- Biology Department, San Diego State University, San Diego, California, USA
| | - Jasmine Chavez
- Biology Department, San Diego State University, San Diego, California, USA
| | - Stephanie Grainger
- Biology Department, San Diego State University, San Diego, California, USA
| |
Collapse
|
26
|
Duguid A, Mattiucci D, Ottersbach K. Infant leukaemia - faithful models, cell of origin and the niche. Dis Model Mech 2021; 14:dmm049189. [PMID: 34713888 PMCID: PMC8560498 DOI: 10.1242/dmm.049189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
For patients and their families, the diagnosis of infant leukaemia is devastating. This disease has not seen the improvements in outcomes experienced with other paediatric leukaemias and it is becoming ever more apparent that infant leukaemia is a distinct biological entity. Insights into some of the distinguishing features of infant leukaemia, such as a single mutation - the MLL-gene rearrangement, the biology of disease aggressiveness and lineage plasticity, and the high incidence of central nervous system involvement, are likely to be gained from understanding the interactions between leukaemic cells and their environment or niche. The origins of infant leukaemia lie in the embryonic haematopoietic system, which is characterised by shifting locations and dynamic changes in the microenvironment. Understanding this foetal or embryonic context is integral to understanding infant leukaemia development. Owing to its rarity and prenatal origins, developing accurate modelling systems for further investigation of infant leukaemia is essential. In this Review, we discuss how available in vitro, ex vivo and in vivo infant leukaemia models contribute to our current understanding of the leukaemia niche in embryonic development, established disease and specialised non-haematopoietic niches. The mechanistic insights provided by accurate models will help identify viable novel therapeutic options.
Collapse
Affiliation(s)
| | | | - Katrin Ottersbach
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
27
|
Issa GC, Zarka J, Sasaki K, Qiao W, Pak D, Ning J, Short NJ, Haddad F, Tang Z, Patel KP, Cuglievan B, Daver N, DiNardo CD, Jabbour E, Kadia T, Borthakur G, Garcia-Manero G, Konopleva M, Andreeff M, Kantarjian HM, Ravandi F. Predictors of outcomes in adults with acute myeloid leukemia and KMT2A rearrangements. Blood Cancer J 2021; 11:162. [PMID: 34588432 PMCID: PMC8481264 DOI: 10.1038/s41408-021-00557-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) with rearrangement of the lysine methyltransferase 2a gene (KMT2Ar) has adverse outcomes. However, reports on the prognostic impact of various translocations causing KMT2Ar are conflicting. Less is known about associated mutations and their prognostic impact. In a retrospective analysis, we identified 172 adult patients with KMT2Ar AML and compared them to 522 age-matched patients with diploid AML. KMT2Ar AML had fewer mutations, most commonly affecting RAS and FLT3 without significant impact on prognosis, except for patients with ≥2 mutations with lower overall survival (OS). KMT2Ar AML had worse outcomes compared with diploid AML when newly diagnosed and at relapse, especially following second salvage (median OS of 2.4 vs 4.8 months, P < 0.0001). Therapy-related KMT2Ar AML (t-AML) had worse outcomes compared with de novo KMT2Ar AML (median OS of 0.7 years vs 1.4 years, P < 0.0001). Allogeneic hematopoietic stem cell transplant (allo-HSCT) in first remission was associated with improved OS (5-year, 52 vs 14% for no allo-HSCT, P < 0.0001). In a multivariate analysis, translocation subtypes causing KMT2Ar did not predict survival, unlike age and allo-HSCT. In conclusion, KMT2Ar was associated with adverse outcomes regardless of translocation subtype. Therefore, AML risk stratification guidelines should include all KMT2Ar as adverse.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Female
- Gene Rearrangement
- Hematopoietic Stem Cell Transplantation
- Histone-Lysine N-Methyltransferase/genetics
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/epidemiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Male
- Middle Aged
- Mutation
- Myeloid-Lymphoid Leukemia Protein/genetics
- Prognosis
- Retrospective Studies
- Survival Analysis
- Transplantation, Homologous
- Young Adult
Collapse
Affiliation(s)
- Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA.
| | - Jabra Zarka
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
- Division of General Internal Medicine, University of Pittsburgh School of Medicine, PA, Pittsburgh, USA
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Wei Qiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Daewoo Pak
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
- Division of Data Science, Yonsei University, Wonju, South Korea
| | - Jing Ning
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Fadi Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Zhenya Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Keyur P Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Branko Cuglievan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Tapan Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | | | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, TX, Houston, USA.
| |
Collapse
|
28
|
Therapeutic implications of menin inhibition in acute leukemias. Leukemia 2021; 35:2482-2495. [PMID: 34131281 DOI: 10.1038/s41375-021-01309-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 01/31/2023]
Abstract
Menin inhibitors are novel targeted agents currently in clinical development for the treatment of genetically defined subsets of acute leukemia. Menin has a tumor suppressor function in endocrine glands. Germline mutations in the gene encoding menin cause the multiple endocrine neoplasia type 1 (MEN1) syndrome, a hereditary condition associated with tumors of the endocrine glands. However, menin is also critical for leukemogenesis in subsets driven by rearrangement of the Lysine Methyltransferase 2A (KMT2A) gene, previously known as mixed-lineage leukemia (MLL), which encodes an epigenetic modifier. These seemingly opposing functions of menin can be explained by its various roles in gene regulation. Therefore, leukemias with rearrangement of KMT2A are predicted to respond to menin inhibition with early clinical data validating this proof-of-concept. These leukemias affect infants, children and adults, and lead to adverse outcomes with current standard therapies. Recent studies have identified novel targets in acute leukemia that are susceptible to menin inhibition, such as mutated Nucleophosmin 1 (NPM1), the most common genetic alteration in adult acute myeloid leukemia (AML). In addition to these alterations, other leukemia subsets with similar transcriptional dependency could be targeted through menin inhibition. This led to rationally designed clinical studies, investigating small-molecule oral menin inhibitors in relapsed acute leukemias with promising early results. Herein, we discuss the physiologic and malignant biology of menin, the mechanisms of leukemia in these susceptible subsets, and future therapeutic strategies using these inhibitors in acute leukemia.
Collapse
|
29
|
Noura M, Morita K, Kiyose H, Okuno Y, Matsuo H, Koyama A, Nishinaka-Arai Y, Kamikubo Y, Adachi S. Albendazole induces the terminal differentiation of acute myeloid leukaemia cells to monocytes by stimulating the Krüppel-like factor 4-dihydropyrimidinase-like 2A (KLF4-DPYSL2A) axis. Br J Haematol 2021; 194:598-603. [PMID: 34227104 DOI: 10.1111/bjh.17557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/23/2021] [Indexed: 11/27/2022]
Abstract
Differentiation therapy is a less toxic but still a very effective treatment for a subset of acute myeloid leukaemia (AML) cases. With the goal to identify novel compounds that can effectively and safely induce the terminal differentiation of non-acute promyelocytic leukaemia (APL) AML cells, we performed a chemical screening and identified albendazole (ABZ), a widely used anti-helminthic drug, as a promising lead compound that can differentiate non-APL AML cells by stimulating the Krüppel-like factor 4-dihydropyrimidinase-like 2A (KLF4-DPYSL2A) differentiation axis to the monocytes. Our in vitro and in vivo findings demonstrate that ABZ is an attractive candidate drug as a novel differentiation chemotherapy for patients with non-APL AML.
Collapse
Affiliation(s)
- Mina Noura
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Morita
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hiroki Kiyose
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukiko Okuno
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidemasa Matsuo
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Asami Koyama
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoko Nishinaka-Arai
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yasuhiko Kamikubo
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
30
|
Harman JR, Thorne R, Jamilly M, Tapia M, Crump NT, Rice S, Beveridge R, Morrissey E, de Bruijn MFTR, Roberts I, Roy A, Fulga TA, Milne TA. A KMT2A-AFF1 gene regulatory network highlights the role of core transcription factors and reveals the regulatory logic of key downstream target genes. Genome Res 2021; 31:1159-1173. [PMID: 34088716 PMCID: PMC8256865 DOI: 10.1101/gr.268490.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 06/02/2021] [Indexed: 12/13/2022]
Abstract
Regulatory interactions mediated by transcription factors (TFs) make up complex networks that control cellular behavior. Fully understanding these gene regulatory networks (GRNs) offers greater insight into the consequences of disease-causing perturbations than can be achieved by studying single TF binding events in isolation. Chromosomal translocations of the lysine methyltransferase 2A (KMT2A) gene produce KMT2A fusion proteins such as KMT2A-AFF1 (previously MLL-AF4), causing poor prognosis acute lymphoblastic leukemias (ALLs) that sometimes relapse as acute myeloid leukemias (AMLs). KMT2A-AFF1 drives leukemogenesis through direct binding and inducing the aberrant overexpression of key genes, such as the anti-apoptotic factor BCL2 and the proto-oncogene MYC However, studying direct binding alone does not incorporate possible network-generated regulatory outputs, including the indirect induction of gene repression. To better understand the KMT2A-AFF1-driven regulatory landscape, we integrated ChIP-seq, patient RNA-seq, and CRISPR essentiality screens to generate a model GRN. This GRN identified several key transcription factors such as RUNX1 that regulate target genes downstream of KMT2A-AFF1 using feed-forward loop (FFL) and cascade motifs. A core set of nodes are present in both ALL and AML, and CRISPR screening revealed several factors that help mediate response to the drug venetoclax. Using our GRN, we then identified a KMT2A-AFF1:RUNX1 cascade that represses CASP9, as well as KMT2A-AFF1-driven FFLs that regulate BCL2 and MYC through combinatorial TF activity. This illustrates how our GRN can be used to better connect KMT2A-AFF1 behavior to downstream pathways that contribute to leukemogenesis, and potentially predict shifts in gene expression that mediate drug response.
Collapse
Affiliation(s)
- Joe R Harman
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Ross Thorne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Max Jamilly
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Marta Tapia
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Nicholas T Crump
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Siobhan Rice
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Department of Paediatrics, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Ryan Beveridge
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
- Virus Screening Facility, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Edward Morrissey
- Center for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Marella F T R de Bruijn
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Irene Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Department of Paediatrics, University of Oxford, Oxford, OX3 9DS, United Kingdom
- NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Anindita Roy
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Department of Paediatrics, University of Oxford, Oxford, OX3 9DS, United Kingdom
- NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Tudor A Fulga
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, United Kingdom
- NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford, OX3 9DS, United Kingdom
| |
Collapse
|
31
|
Tejedor JR, Bueno C, Vinyoles M, Petazzi P, Agraz-Doblas A, Cobo I, Torres-Ruiz R, Bayón GF, Pérez RF, López-Tamargo S, Gutierrez-Agüera F, Santamarina-Ojeda P, Ramírez-Orellana M, Bardini M, Cazzaniga G, Ballerini P, Schneider P, Stam RW, Varela I, Fraga MF, Fernández AF, Menéndez P. Integrative methylome-transcriptome analysis unravels cancer cell vulnerabilities in infant MLL-rearranged B cell acute lymphoblastic leukemia. J Clin Invest 2021; 131:138833. [PMID: 33983906 DOI: 10.1172/jci138833] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/11/2021] [Indexed: 01/04/2023] Open
Abstract
B cell acute lymphoblastic leukemia (B-ALL) is the most common childhood cancer. As predicted by its prenatal origin, infant B-ALL (iB-ALL) shows an exceptionally silent DNA mutational landscape, suggesting that alternative epigenetic mechanisms may substantially contribute to its leukemogenesis. Here, we have integrated genome-wide DNA methylome and transcriptome data from 69 patients with de novo MLL-rearranged leukemia (MLLr) and non-MLLr iB-ALL leukemia uniformly treated according to the Interfant-99/06 protocol. iB-ALL methylome signatures display a plethora of common and specific alterations associated with chromatin states related to enhancer and transcriptional control in normal hematopoietic cells. DNA methylation, gene expression, and gene coexpression network analyses segregated MLLr away from non-MLLr iB-ALL and identified a coordinated and enriched expression of the AP-1 complex members FOS and JUN and RUNX factors in MLLr iB-ALL, consistent with the significant enrichment of hypomethylated CpGs in these genes. Integrative methylome-transcriptome analysis identified consistent cancer cell vulnerabilities, revealed a robust iB-ALL-specific gene expression-correlating dmCpG signature, and confirmed an epigenetic control of AP-1 and RUNX members in reshaping the molecular network of MLLr iB-ALL. Finally, pharmacological inhibition or functional ablation of AP-1 dramatically impaired MLLr-leukemic growth in vitro and in vivo using MLLr-iB-ALL patient-derived xenografts, providing rationale for new therapeutic avenues in MLLr-iB-ALL.
Collapse
Affiliation(s)
- Juan Ramón Tejedor
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain.,Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Asturias, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) and.,RICORS-TERAV Network, ISCIII, Madrid, Spain
| | - Meritxell Vinyoles
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) and
| | - Paolo Petazzi
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) and
| | - Antonio Agraz-Doblas
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Isabel Cobo
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain.,Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Raúl Torres-Ruiz
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,RICORS-TERAV Network, ISCIII, Madrid, Spain.,Molecular Cytogenetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Gustavo F Bayón
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain
| | - Raúl F Pérez
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain.,Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Asturias, Spain
| | - Sara López-Tamargo
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain
| | - Francisco Gutierrez-Agüera
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,RICORS-TERAV Network, ISCIII, Madrid, Spain
| | - Pablo Santamarina-Ojeda
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain
| | - Manuel Ramírez-Orellana
- RICORS-TERAV Network, ISCIII, Madrid, Spain.,Hematology Diagnostic Laboratory, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Michela Bardini
- Centro Ricerca Tettamanti, Department of Paediatrics, University of Milano Bicocca, Fondazione MBBM, Monza, Italy
| | - Giovanni Cazzaniga
- Centro Ricerca Tettamanti, Department of Paediatrics, University of Milano Bicocca, Fondazione MBBM, Monza, Italy
| | - Paola Ballerini
- Pediatric Hematology, Armand Trousseau Hospital, Paris, France
| | - Pauline Schneider
- Princess Maxima Center for Paediatric Oncology, Utrecht, Netherlands
| | - Ronald W Stam
- Princess Maxima Center for Paediatric Oncology, Utrecht, Netherlands
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Mario F Fraga
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain.,Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Asturias, Spain
| | - Agustín F Fernández
- Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Asturias, Spain.,Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Asturias, Spain
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) and.,RICORS-TERAV Network, ISCIII, Madrid, Spain.,Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
32
|
Ozyerli‐Goknar E, Nizamuddin S, Timmers HTM. A Box of Chemistry to Inhibit the MEN1 Tumor Suppressor Gene Promoting Leukemia. ChemMedChem 2021; 16:1391-1402. [PMID: 33534953 PMCID: PMC8252030 DOI: 10.1002/cmdc.202000972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 12/30/2022]
Abstract
Targeting protein-protein interactions (PPIs) with small-molecule inhibitors has become a hotbed of modern drug development. In this review, we describe a new class of PPI inhibitors that block menin from binding to MLL proteins. Menin is encoded by the MEN1 tumor suppressor, but acts as an essential cofactor for MLL/KMT2A-rearranged leukemias. The most promising menin-MLL inhibitors belong to the thienopyrimidine class and have recently entered phase I/II clinical trials for treating acute leukemias characterized by MLL/KMT2A translocations or NPM1 mutations. As single agents, thienopyrimidine compounds eradicate leukemia in a xenograft models of primary leukemic cells belonging to the MLL-rearranged or NPM1-mutant subtypes. These compounds are well tolerated with few or no side effects, which is remarkable given the tumor-suppressor function of menin. The menin-MLL inhibitors highlight how leukemia patients could benefit from a targeted epigenetic therapy with novel PPI inhibitors obtained by directed chemical evolution.
Collapse
Affiliation(s)
- Ezgi Ozyerli‐Goknar
- German Cancer Consortium (DKTK) partner site Freiburg German Cancer Research Center (DKFZ) Medical Center-University of Freiburg, Department of UrologyBreisacherstrasse 6679016FreiburgGermany
| | - Sheikh Nizamuddin
- German Cancer Consortium (DKTK) partner site Freiburg German Cancer Research Center (DKFZ) Medical Center-University of Freiburg, Department of UrologyBreisacherstrasse 6679016FreiburgGermany
| | - H. T. Marc Timmers
- German Cancer Consortium (DKTK) partner site Freiburg German Cancer Research Center (DKFZ) Medical Center-University of Freiburg, Department of UrologyBreisacherstrasse 6679016FreiburgGermany
| |
Collapse
|
33
|
Jackson TR, Ling RE, Roy A. The Origin of B-cells: Human Fetal B Cell Development and Implications for the Pathogenesis of Childhood Acute Lymphoblastic Leukemia. Front Immunol 2021; 12:637975. [PMID: 33679795 PMCID: PMC7928347 DOI: 10.3389/fimmu.2021.637975] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 12/27/2022] Open
Abstract
Human B-lymphopoiesis is a dynamic life-long process that starts in utero by around six post-conception weeks. A detailed understanding of human fetal B-lymphopoiesis and how it changes in postnatal life is vital for building a complete picture of normal B-lymphoid development through ontogeny, and its relevance in disease. B-cell acute lymphoblastic leukemia (B-ALL) is one of the most common cancers in children, with many of the leukemia-initiating events originating in utero. It is likely that the biology of B-ALL, including leukemia initiation, maintenance and progression depends on the developmental stage and type of B-lymphoid cell in which it originates. This is particularly important for early life leukemias, where specific characteristics of fetal B-cells might be key to determining how the disease behaves, including response to treatment. These cellular, molecular and/or epigenetic features are likely to change with age in a cell intrinsic and/or microenvironment directed manner. Most of our understanding of fetal B-lymphopoiesis has been based on murine data, but many recent studies have focussed on characterizing human fetal B-cell development, including functional and molecular assays at a single cell level. In this mini-review we will give a short overview of the recent advances in the understanding of human fetal B-lymphopoiesis, including its relevance to infant/childhood leukemia, and highlight future questions in the field.
Collapse
Affiliation(s)
- Thomas R Jackson
- Department of Paediatrics and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Rebecca E Ling
- Department of Paediatrics and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Anindita Roy
- Department of Paediatrics and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
34
|
Abstract
PURPOSE OF THE REVIEW Infant leukemia is a rare, distinct subgroup of pediatric acute leukemias diagnosed in children under 1 year of age and characterized by unique, aggressive biology. Here, we review its clinical presentation, underlying molecular biology, current treatment strategies, and novel therapeutic approaches. RECENT FINDINGS Infant leukemias are associated with high-risk molecular features and high rates of chemotherapy resistance. International collaborative clinical trials have led to better understanding of the underlying molecular biology, refined risk-based stratification, and investigated the use of hematopoietic stem cell transplantation. However, intensification of chemotherapy has failed to improve outcomes, and current regimens are associated with significant treatment-related and long-term toxicities. Infants with leukemia remain a challenging group to treat. We must continue collaborative efforts to move beyond traditional cytotoxic chemotherapy, incorporate molecularly targeted strategies and immunotherapy, and increase access to clinical trials to improve outcomes for this high-risk group of patients.
Collapse
|
35
|
Abstract
Mouse models of human myeloid malignancies support the detailed and focused investigation of selected driver mutations and represent powerful tools in the study of these diseases. Carefully developed murine models can closely recapitulate human myeloid malignancies in vivo, enabling the interrogation of a number of aspects of these diseases including their preclinical course, interactions with the microenvironment, effects of pharmacological agents, and the role of non-cell-autonomous factors, as well as the synergy between co-occurring mutations. Importantly, advances in gene-editing technologies, particularly CRISPR-Cas9, have opened new avenues for the development and study of genetically modified mice and also enable the direct modification of mouse and human hematopoietic cells. In this review we provide a concise overview of some of the important mouse models that have advanced our understanding of myeloid leukemogenesis with an emphasis on models relevant to clonal hematopoiesis, myelodysplastic syndromes, and acute myeloid leukemia with a normal karyotype.
Collapse
Affiliation(s)
- Faisal Basheer
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Department of Haematology, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - George Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Department of Haematology, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
36
|
Wang H, Cui B, Sun H, Zhang F, Rao J, Wang R, Zhao S, Shen S, Liu Y. Aberrant GATA2 Activation in Pediatric B-Cell Acute Lymphoblastic Leukemia. Front Pediatr 2021; 9:795529. [PMID: 35087776 PMCID: PMC8787225 DOI: 10.3389/fped.2021.795529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
GATA2 is a transcription factor that is critical for the generation and survival of hematopoietic stem cells (HSCs). It also plays an important role in the regulation of myeloid differentiation. Accordingly, GATA2 expression is restricted to HSCs and hematopoietic progenitors as well as early erythroid cells and megakaryocytic cells. Here we identified aberrant GATA2 expression in B-cell acute lymphoblastic leukemia (B-ALL) by analyzing transcriptome sequencing data obtained from St. Jude Cloud. Differentially expressed genes upon GATA2 activation showed significantly myeloid-like transcription signature. Further analysis identified several tumor-associated genes as targets of GATA2 activation including BAG3 and EPOR. In addition, the correlation between KMT2A-USP2 fusion and GATA2 activation not only indicates a potential trans-activating mechanism of GATA2 but also suggests that GATA2 is a target of KMT2A-USP2. Furthermore, by integrating whole-genome and transcriptome sequencing data, we showed that GATA2 is also cis activated. A somatic focal deletion located in the GATA2 neighborhood that disrupts the boundaries of topologically associating domains was identified in one B-ALL patient with GATA2 activation. These evidences support the hypothesis that GATA2 could be involved in leukemogenesis of B-ALL and can be transcriptionally activated through multiple mechanisms. The findings of aberrant activation of GATA2 and its molecular function extend our understanding of transcriptional factor dysregulation in B-ALL.
Collapse
Affiliation(s)
- Han Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Cui
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huiying Sun
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Zhang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianan Rao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ronghua Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuang Zhao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuhong Shen
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
37
|
Milan T, Celton M, Lagacé K, Roques É, Safa-Tahar-Henni S, Bresson E, Bergeron A, Hebert J, Meshinchi S, Cellot S, Barabé F, Wilhelm BT. Epigenetic changes in human model KMT2A leukemias highlight early events during leukemogenesis. Haematologica 2020; 107:86-99. [PMID: 33375773 PMCID: PMC8719083 DOI: 10.3324/haematol.2020.271619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Indexed: 11/26/2022] Open
Abstract
Chromosomal translocations involving the KMT2A gene are among the most common genetic alterations found in pediatric acute myeloid leukemias although the molecular mechanisms that initiate the disease remain incompletely defined. To elucidate these initiating events we used a human model system of acute myeloid leukemia driven by the KMT2A-MLLT3 (KM3) fusion. More specifically, we investigated changes in DNA methylation, histone modifications, and chromatin accessibility at each stage of our model system and correlated these with expression changes. We observed the development of a pronounced hypomethyl - ation phenotype in the early stages of leukemic transformation after KM3 addition along with loss of expression of stem-cell-associated genes and skewed expression of other genes, such as S100A8/9, implicated in leukemogenesis. In addition, early increases in the expression of the lysine demethylase KDM4B was functionally linked to these expression changes as well as other key transcription factors. Remarkably, our ATAC-sequencing data showed that there were relatively few leukemia-specific changes and that the vast majority corresponded to open chromatin regions and transcription factor clusters previously observed in other cell types. Integration of the gene expression and epigenetic changes revealed that the adenylate cyclase gene ADCY9 is an essential gene in KM3-acute myeloid leukemia, and suggested the potential for autocrine signaling through the chemokine receptor CCR1 and CCL23 ligand. Collectively, our results suggest that KM3 induces subtle changes in the epigenome while co-opting the normal transcriptional machinery to drive leukemogenesis.
Collapse
Affiliation(s)
- Thomas Milan
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC
| | - Magalie Celton
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC
| | - Karine Lagacé
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC
| | - Élodie Roques
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC
| | - Safia Safa-Tahar-Henni
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC
| | - Eva Bresson
- Centre de recherche en infectiologie du CHUL, Centre de recherche du CHU de Québec - Université Laval, Québec City, QC, Canada; CHU de Québec - Université Laval - Hôpital Enfant-Jésus; Québec City, QC, Canada; Department of Medicine, Université Laval, Quebec City, QC
| | - Anne Bergeron
- Centre de recherche en infectiologie du CHUL, Centre de recherche du CHU de Québec - Université Laval, Québec City, QC, Canada; CHU de Québec - Université Laval - Hôpital Enfant-Jésus; Québec City, QC, Canada; Department of Medicine, Université Laval, Quebec City, QC
| | - Josée Hebert
- Division of Hematology-Oncology and Leukemia Cell Bank of Quebec, Maisonneuve-Rosemont Hospital, Montréal, QC, Canada; Department of Medicine, Université de Montréal, Montréal, QC
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sonia Cellot
- Department of pediatrics, division of Hematology, Ste-Justine Hospital, Montréal, QC
| | - Frédéric Barabé
- Centre de recherche en infectiologie du CHUL, Centre de recherche du CHU de Québec - Université Laval, Québec City, QC, Canada; CHU de Québec - Université Laval - Hôpital Enfant-Jésus; Québec City, QC, Canada; Department of Medicine, Université Laval, Quebec City, QC
| | - Brian T Wilhelm
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada; Department of Medicine, Université de Montréal, Montréal, QC.
| |
Collapse
|
38
|
Kurihara M, Takarada K, Inoue YH. Enhancement of leukemia-like phenotypes in Drosophila mxc mutant larvae due to activation of the RAS-MAP kinase cascade possibly via down-regulation of DE-cadherin. Genes Cells 2020; 25:757-769. [PMID: 33012036 DOI: 10.1111/gtc.12811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023]
Abstract
Loss of mxc gene function in mature hemocytes of Drosophila mxcmbn1 mutant results in malignant hyperplasia in larval hematopoietic tissues termed lymph glands (LGs) owing to over-proliferation of immature cells. This is a useful model for genetic analyses of leukemia progression. To identify other mutations that deteriorate the hyperplasia, we aimed to investigate whether hyper-activation of common signaling cascade enabled to enhance the phenotypes. Ectopic expression of the constitutively active forms of MAPK signaling factors in the mutant increased the hyperplasia and the number of circulating hemocytes, resulting in the production of LG fragments. The LG phenotype was related to the reduced DE-cadherin level in the mutants. Depletion of Drosophila MCRIP, involved in MAPK-induced silencing of cadherin gene expression, exhibited a similar enhancement of the mxcmbn1 phenotypes. Furthermore, expression of MMP1 proteinase that cleaves the extracellular matrix proteins increased in the mutant larvae harboring MAPK cascade activation. Depletion of Mmp1 and that of pnt (required for Mmp1 expression) suppressed the LG hyperplasia. Hence, we speculated that reduction in DE-cadherin level by either down-regulation of MCRIP or up-regulation of MMP1 was involved in the progression of the tumor phenotype. Our findings can contribute to understanding the mechanism underlying human leukemia progression.
Collapse
Affiliation(s)
- Masanori Kurihara
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Kazuki Takarada
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| | - Yoshihiro H Inoue
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan
| |
Collapse
|
39
|
Park H, Maruhashi K, Yamaguchi R, Imoto S, Miyano S. Global gene network exploration based on explainable artificial intelligence approach. PLoS One 2020; 15:e0241508. [PMID: 33156825 PMCID: PMC7647077 DOI: 10.1371/journal.pone.0241508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022] Open
Abstract
In recent years, personalized gene regulatory networks have received significant attention, and interpretation of the multilayer networks has been a critical issue for a comprehensive understanding of gene regulatory systems. Although several statistical and machine learning approaches have been developed and applied to reveal sample-specific regulatory pathways, integrative understanding of the massive multilayer networks remains a challenge. To resolve this problem, we propose a novel artificial intelligence (AI) strategy for comprehensive gene regulatory network analysis. In our strategy, personalized gene networks corresponding specific clinical characteristic are constructed and the constructed network is considered as a second-order tensor. Then, an explainable AI method based on deep learning is applied to decompose the multilayer networks, thus we can reveal all-encompassing gene regulatory systems characterized by clinical features of patients. To evaluate the proposed methodology, we apply our method to the multilayer gene networks under varying conditions of an epithelial–mesenchymal transition (EMT) process. From the comprehensive analysis of multilayer networks, we identified novel markers, and the biological mechanisms of the identified genes and their reciprocal mechanisms are verified through the literature. Although any biological knowledge about the identified genes was not incorporated in our analysis, our data-driven approach based on AI approach provides biologically reliable results. Furthermore, the results provide crucial evidences to reveal biological mechanism related to various diseases, e.g., keratinocyte proliferation. The use of explainable AI method based on the tensor decomposition enables us to reveal global and novel mechanisms of gene regulatory system from the massive multiple networks, which cannot be demonstrated by existing methods. We expect that the proposed method provides a new insight into network biology and it will be a useful tool to integrative gene network analysis related complex architectures of diseases.
Collapse
Affiliation(s)
- Heewon Park
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| | | | - Rui Yamaguchi
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Aichi, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiya Imoto
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
40
|
Forte D, García-Fernández M, Sánchez-Aguilera A, Stavropoulou V, Fielding C, Martín-Pérez D, López JA, Costa ASH, Tronci L, Nikitopoulou E, Barber M, Gallipoli P, Marando L, Fernández de Castillejo CL, Tzankov A, Dietmann S, Cavo M, Catani L, Curti A, Vázquez J, Frezza C, Huntly BJ, Schwaller J, Méndez-Ferrer S. Bone Marrow Mesenchymal Stem Cells Support Acute Myeloid Leukemia Bioenergetics and Enhance Antioxidant Defense and Escape from Chemotherapy. Cell Metab 2020; 32:829-843.e9. [PMID: 32966766 PMCID: PMC7658808 DOI: 10.1016/j.cmet.2020.09.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/12/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022]
Abstract
Like normal hematopoietic stem cells, leukemic stem cells depend on their bone marrow (BM) microenvironment for survival, but the underlying mechanisms remain largely unknown. We have studied the contribution of nestin+ BM mesenchymal stem cells (BMSCs) to MLL-AF9-driven acute myeloid leukemia (AML) development and chemoresistance in vivo. Unlike bulk stroma, nestin+ BMSC numbers are not reduced in AML, but their function changes to support AML cells, at the expense of non-mutated hematopoietic stem cells (HSCs). Nestin+ cell depletion delays leukemogenesis in primary AML mice and selectively decreases AML, but not normal, cells in chimeric mice. Nestin+ BMSCs support survival and chemotherapy relapse of AML through increased oxidative phosphorylation, tricarboxylic acid (TCA) cycle activity, and glutathione (GSH)-mediated antioxidant defense. Therefore, AML cells co-opt energy sources and antioxidant defense mechanisms from BMSCs to survive chemotherapy.
Collapse
Affiliation(s)
- Dorian Forte
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; National Health Service Blood and Transplant, CB2 0PT Cambridge, UK; Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi, 40138 Bologna, Italy
| | - María García-Fernández
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; National Health Service Blood and Transplant, CB2 0PT Cambridge, UK
| | | | - Vaia Stavropoulou
- University Children's Hospital and Department of Biomedicine (DBM), University of Basel, 4031 Basel, Switzerland
| | - Claire Fielding
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; National Health Service Blood and Transplant, CB2 0PT Cambridge, UK
| | - Daniel Martín-Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Juan Antonio López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, CB2 0XZ Cambridge, UK
| | - Laura Tronci
- MRC Cancer Unit, University of Cambridge, CB2 0XZ Cambridge, UK
| | | | - Michael Barber
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK
| | - Paolo Gallipoli
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; Department of Haematology, University of Cambridge, CB2 0AW Cambridge, UK
| | - Ludovica Marando
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; Department of Haematology, University of Cambridge, CB2 0AW Cambridge, UK
| | | | - Alexandar Tzankov
- Institute of Pathology, University Hospital Basel, 4031 Basel, Switzerland
| | - Sabine Dietmann
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK
| | - Michele Cavo
- Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi, 40138 Bologna, Italy; Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, 40138 Bologna, Italy
| | - Lucia Catani
- Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi, 40138 Bologna, Italy; Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, 40138 Bologna, Italy
| | - Antonio Curti
- Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, 40138 Bologna, Italy
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - Brian J Huntly
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; Department of Haematology, University of Cambridge, CB2 0AW Cambridge, UK
| | - Juerg Schwaller
- University Children's Hospital and Department of Biomedicine (DBM), University of Basel, 4031 Basel, Switzerland.
| | - Simón Méndez-Ferrer
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| |
Collapse
|
41
|
MLL-TFE3: a novel and aggressive KMT2A fusion identified in infant leukemia. Blood Adv 2020; 4:4918-4923. [PMID: 33035331 DOI: 10.1182/bloodadvances.2020002708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/30/2020] [Indexed: 12/24/2022] Open
Abstract
Key Points
A novel KMT2A-rearrangement, MLL-TFE3, was identified in an infant leukemia patient. MLL-TFE3 expression produces aggressive leukemia in a mouse model.
Collapse
|
42
|
High-fat diet intensifies MLL-AF9-induced acute myeloid leukemia through activation of the FLT3 signaling in mouse primitive hematopoietic cells. Sci Rep 2020; 10:16187. [PMID: 32999332 PMCID: PMC7528010 DOI: 10.1038/s41598-020-73020-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/20/2020] [Indexed: 01/07/2023] Open
Abstract
Using a MLL-AF9 knock-in mouse model, we discovered that consumption of a high-fat diet (HFD) accelerates the risk of developing acute myeloid leukemia (AML). This regimen increases the clusterization of FLT3 within lipid rafts on the cell surface of primitive hematopoietic cells, which overactivates this receptor as well as the downstream JAK/STAT signaling known to enhance the transformation of MLL-AF9 knock-in cells. Treatment of mice on a HFD with Quizartinib, a potent inhibitor of FLT3 phosphorylation, inhibits the JAK3/STAT3, signaling and finally antagonizes the accelerated development of AML that occurred following the HFD regimen. We can therefore conclude that, on a mouse model of AML, a HFD enforces the FLT3 signaling pathway on primitive hematopoietic cells and, in turn, improves the oncogenic transformation of MLL-AF9 knock-in cells and the leukemia initiation.
Collapse
|
43
|
High-efficiency CRISPR induction of t(9;11) chromosomal translocations and acute leukemias in human blood stem cells. Blood Adv 2020; 3:2825-2835. [PMID: 31582391 DOI: 10.1182/bloodadvances.2019000450] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/30/2019] [Indexed: 02/08/2023] Open
Abstract
Chromosomal rearrangements involving the mixed lineage leukemia (MLL) gene, also known as KMT2A, are often observed in human leukemias and are generally associated with a poor prognosis. To model these leukemias, we applied clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing to induce MLL chromosomal rearrangements in human hematopoietic stem and progenitor cells purified from umbilical cord blood. Electroporation of ribonucleoprotein complexes containing chemically modified synthetic single guide RNAs and purified Cas9 protein induced translocations between chromosomes 9 and 11 [t(9;11)] at an efficiency >1%. Transplantation of gene-edited cells into immune-compromised mice rapidly induced acute leukemias of different lineages and often with multiclonal origins dictated by the duration of in vitro culture prior to transplantation. Breakpoint junction sequences served as biomarkers to monitor clonal selection and progression in culture and in vivo. High-dimensional cell surface and intracellular protein analysis by mass cytometry (CyTOF) revealed that gene-edited leukemias recapitulated disease-specific protein expression observed in human patients and showed that MLL-rearranged (MLLr) mixed phenotype acute leukemias (MPALs) were more similar to acute myeloid leukemias (AMLs) than to acute lymphoblastic leukemias (ALLs). Therefore, highly efficient generation of MLL chromosomal translocations in primary human blood stem cells using CRISPR/Cas9 reliably models human acute MLLr leukemia and provides an experimental platform for basic and translational studies of leukemia biology and therapeutics.
Collapse
|
44
|
Matsukawa T, Aplan PD. Clinical and molecular consequences of fusion genes in myeloid malignancies. Stem Cells 2020; 38:1366-1374. [PMID: 32745287 DOI: 10.1002/stem.3263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 11/07/2022]
Abstract
Leukemias are heterogeneous diseases characterized by aberrant hematopoietic stem and progenitor cells (HSPCs). Oncogenic fusion genes and proteins, produced via gross chromosomal rearrangements, such as chromosomal translocation, insertion, and inversion, play important roles in hematologic malignancies. These oncoproteins alter fundamental cellular properties, such as self-renewal, differentiation, and proliferation, and confer leukemogenic potential to HSPCs. In addition to providing fundamental insights into the process of leukemic transformation, these fusion genes provide targets for treatment and monitoring of myeloid leukemias. Furthermore, new technologies such as next-generation sequencing have allowed additional insights into the nature of leukemic fusion genes. In this review, we discuss the history, biologic effect, and clinical impact of fusion genes in the field of myeloid leukemias.
Collapse
Affiliation(s)
- Toshihiro Matsukawa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
45
|
Exploitable metabolic dependencies in MLL-ENL-induced leukemia. Blood Adv 2020; 4:3626-3638. [PMID: 32766858 DOI: 10.1182/bloodadvances.2020001710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/02/2020] [Indexed: 02/03/2023] Open
Abstract
Mixed-lineage leukemia (MLL) fusions are transcriptional activators that induce leukemia, with a dismal prognosis that mandates further elucidation of their transformation mechanism. In this study, knockdown of the direct MLL-ENL target gene polypyrimidine tract binding protein-1 (PTBP1) was rate limiting for cell proliferation and caused a metabolic phenotype associated with reduced glucose consumption and lactate production. This effect was accompanied by a reduction of splice isoform-2 of pyruvate kinase M (PKM2). Because PKM2 restricts glycolytic outflow to provide anabolic intermediates, we tested the consequences of glucose, energy, and Ser/Gly starvation for cell physiology. Administration of deoxyglucose, energetic decoupling with rotenone, and inhibition of Ser biosynthesis by CBR5884 had a significantly stronger influence on self-renewal and survival of transformed cells than on normal controls. In particular, inhibition of Ser synthesis, which branches off glycolysis caused accumulation of reactive oxygen species, DNA damage, and apoptosis, predominantly in leukemic cells. Depletion of exogenous Ser/Gly affected proliferation and self-renewal of murine and human leukemia samples, even though they are classified as nonessential amino acids. Response to Ser/Gly starvation correlated with glucose transport, but did not involve activation of the AMPK energy homeostasis system. Finally, survival times in transplantation experiments were significantly extended by feeding recipients a Ser/Gly-free diet. These results suggest selective starvation as an option for supportive leukemia treatment.
Collapse
|
46
|
Antunes ETB, Ottersbach K. The MLL/SET family and haematopoiesis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194579. [PMID: 32389825 PMCID: PMC7294230 DOI: 10.1016/j.bbagrm.2020.194579] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/08/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
Abstract
As demonstrated through early work in Drosophila, members of the MLL/SET family play essential roles during embryonic development through their participation in large protein complexes that are central to epigenetic regulation of gene expression. One of its members, MLL1, has additionally received a lot of attention as it is a potent oncogenic driver in different types of leukaemia when aberrantly fused to a large variety of partners as a result of chromosomal translocations. Its exclusive association with cancers of the haematopoietic system has prompted a large number of investigations into the role of MLL/SET proteins in haematopoiesis, a summary of which was attempted in this review. Interestingly, MLL-rearranged leukaemias are particularly prominent in infant and paediatric leukaemia, which commonly initiate in utero. This, together with the known function of MLL/SET proteins in embryonic development, has focussed research efforts in recent years on understanding the role of this protein family in developmental haematopoiesis and how this may be subverted by MLL oncofusions in infant leukaemia. A detailed understanding of these prenatal events is essential for the development of new treatments that improve the survival specifically of this very young patient group.
Collapse
Affiliation(s)
- Eric T B Antunes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Katrin Ottersbach
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
47
|
Zhang Y, Guo Y, Gough SM, Zhang J, Vann KR, Li K, Cai L, Shi X, Aplan PD, Wang GG, Kutateladze TG. Mechanistic insights into chromatin targeting by leukemic NUP98-PHF23 fusion. Nat Commun 2020; 11:3339. [PMID: 32620764 PMCID: PMC7335091 DOI: 10.1038/s41467-020-17098-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
Chromosomal NUP98-PHF23 translocation is associated with an aggressive form of acute myeloid leukemia (AML) and poor survival rate. Here, we report the molecular mechanisms by which NUP98-PHF23 recognizes the histone mark H3K4me3 and is inhibited by small molecule compounds, including disulfiram that directly targets the PHD finger of PHF23 (PHF23PHD). Our data support a critical role for the PHD fingers of NUP98-PHF23, and related NUP98-KDM5A and NUP98-BPTF fusions in driving leukemogenesis, and demonstrate that blocking this interaction in NUP98-PHF23 expressing AML cells leads to cell death through necrotic and late apoptosis pathways. An overlap of NUP98-KDM5A oncoprotein binding sites and H3K4me3-positive loci at the Hoxa/b gene clusters and Meis1 in ChIP-seq, together with NMR analysis of the H3K4me3-binding sites of the PHD fingers from PHF23, KDM5A and BPTF, suggests a common PHD finger-dependent mechanism that promotes leukemogenesis by this type of NUP98 fusions. Our findings highlight the direct correlation between the abilities of NUP98-PHD finger fusion chimeras to associate with H3K4me3-enriched chromatin and leukemic transformation.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Yiran Guo
- Department of Biochemistry and Biophysics, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Sheryl M Gough
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Jinyong Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Kendra R Vann
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Kuai Li
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Ling Cai
- Department of Biochemistry and Biophysics, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Xiaobing Shi
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Peter D Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Gang Greg Wang
- Department of Biochemistry and Biophysics, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
48
|
Clonal dominance is an adverse prognostic factor in acute myeloid leukemia treated with intensive chemotherapy. Leukemia 2020; 35:712-723. [PMID: 32581253 DOI: 10.1038/s41375-020-0932-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023]
Abstract
Intra-tumor heterogeneity portends poor outcome in many cancers. In AML, a higher number of drivers worsens prognosis. The Shannon Index is a robust metric of clonal heterogeneity that accounts for the number of clones, but also their relative abundance. We show that a Shannon Index can be estimated from bulk sequencing, which is correlated (ρ = 0.76) with clonal diversity from single-colony genotyping. In a discovery cohort of 292 patients with sequencing of 43 genes, a higher number of drivers (HR = 1.18, P = 0.028) and a lower Shannon Index (HR = 0.68, P = 0.048), the latter reflecting clonal dominance, are independently associated with worse OS independently of European LeukemiaNet 2017 risk. These findings are validated in an independent cohort of 1184 patients with 111-gene sequencing (number of drivers HR = 1.16, P = 1 × 10-5, Shannon Index HR = 0.81, P = 0.007). By re-interrogating paired diagnosis/relapse exomes from 50 cytogenetically normal AMLs, we find clonal dominance at diagnosis to be correlated with the gain of a significantly higher number of mutations at relapse (P = 6 × 10-6), hence with clonal sweeping. Our results suggest that clonal dominance at diagnosis is associated with the presence of a leukemic phenotype allowing rapid expansion of new clones and driving relapse after chemotherapy.
Collapse
|
49
|
Kranz A, Anastassiadis K. The role of SETD1A and SETD1B in development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194578. [PMID: 32389824 DOI: 10.1016/j.bbagrm.2020.194578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/16/2020] [Accepted: 05/03/2020] [Indexed: 12/13/2022]
Abstract
The Trithorax-related Set1 H3K4 methyltransferases are conserved from yeast to human. In yeast loss of Set1 causes pleiotropic effects but is compatible with life. In contrast, both mammalian Set1 orthologs: SETD1A and SETD1B are essential for embryonic development, however they have distinct functions. SETD1A is required shortly after epiblast formation whereas SETD1B becomes indispensible during early organogenesis. In adult mice both SETD1A and SETD1B regulate hematopoiesis differently: SETD1A is required for the establishment of definitive hematopoiesis whereas SETD1B is important for the maintenance of long-term hematopoietic stem cells. Both are implicated in different diseases with accumulating evidence for the association of SETD1A variants in neurological disorders and SETD1B variants with cancer. Why the two paralogs cannot or only partially compensate for the loss of each other is part of the puzzle that we try to sort out in this review.
Collapse
Affiliation(s)
- Andrea Kranz
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Konstantinos Anastassiadis
- Stem Cell Engineering, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany.
| |
Collapse
|
50
|
MLL-rearranged infant leukaemia: A 'thorn in the side' of a remarkable success story. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194564. [PMID: 32376390 DOI: 10.1016/j.bbagrm.2020.194564] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
Advances in treatment of childhood leukaemia has led to vastly improved survival rates, however some subtypes such as those characterised by MLL gene rearrangement (MLL-r), especially in infants, continue to have high relapse rates and poor survival. Natural history and molecular studies indicate that infant acute lymphoblastic leukaemia (ALL) originates in utero, is distinct from childhood ALL, and most cases are caused by MLL-r resulting in an oncogenic MLL fusion protein. Unlike childhood ALL, only a very small number of additional mutations are present in infant ALL, indicating that MLL-r alone may be sufficient to give rise to this rapid onset, aggressive leukaemia in an appropriate fetal cell context. Despite modifications in treatment approaches, the outcome of MLL-r infant ALL has remained dismal and a clear understanding of the underlying biology of the disease is required in order to develop appropriate disease models and more effective therapeutic strategies.
Collapse
|