1
|
Georgakopoulou A, Wang H, Kim J, Li C, Lieber A. In vivo HSC transduction in humanized mice mediated by novel capsid-modified HDAd vectors. Mol Ther Methods Clin Dev 2025; 33:101448. [PMID: 40231246 PMCID: PMC11995070 DOI: 10.1016/j.omtm.2025.101448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/11/2025] [Indexed: 04/16/2025]
Abstract
We developed an in vivo hematopoietic stem cell (HSC) gene therapy approach consisting of HSC mobilization and intravenous injection of helper dependent adenovirus (HDAd) vectors. While we have demonstrated safety and efficacy of the in vivo approach in CD46-transgenic mice and rhesus macaques, studies in mice with a humanized hematopoietic system could facilitate its potential clinical translation for the treatment of hemoglobinopathies and HIV. Using mild myelo-conditioning in NSGW41 mice and cryopreserved human CD34+ cells from healthy donors we achieved ∼10% human chimerism in peripheral blood. Engrafted primitive human CD45+/CD34+/CD90+-HSCs efficiently mobilized by different approaches involving AMD3100 in combination with granulocyte colony-stimulating factor G-CSF, truncated Groβ (tGroβ), or WU106/tGroβ. At the peak of mobilization, integrating HDAd-GFP vectors were injected intravenously followed by O6BG/BCNU in vivo selection. Long-term stable GFP expression was shown for HDAd5/35 and the new vector platforms HDAd6/3 and HDAd5/35_lam, a fiber/penton-modified vector. Two months post transduction, GFP marking in the periphery were 22.38% (8.17%), 41.12% (10.62%), and 32.15% (4.49%) for HDAd5/35, HDAd6/3, and HDAd5/35_lam, respectively. GFP levels in bone marrow were 33.53% (8.96%), 53.51% (6.95%), and 33.29% (5.21%) and in spleen 32.6% (9.25%), 33.75% (5.47%), and 20.79% (6.15%). Our study describes a new animal model for in vivo HSC transduction with HDAds, with implications for studies with other vectors.
Collapse
Affiliation(s)
- Aphrodite Georgakopoulou
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | - Hongjie Wang
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | - Jiho Kim
- PAI Life Sciences, Seattle, WA 98102, USA
| | - Chang Li
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| | - André Lieber
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, WA 98195, USA
| |
Collapse
|
2
|
Bao X, Gao Y, Chen X, Wang Z, Feng X, Wang L, Du J, Ye Y, Chen F, Du L, Yin A, Xu X. A one-base therapeutic insertion in the HBG2 distal promoter reactivates γ-globin expression. Exp Hematol Oncol 2025; 14:47. [PMID: 40156013 PMCID: PMC11951516 DOI: 10.1186/s40164-025-00626-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 02/25/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND The reactivation of developmental silenced γ-globin genes (HBG1/2) has shown promise as a therapeutic strategy for improving symptoms of β-hemoglobinopathies. Currently, the focus of therapeutic targets is primarily on the major fetal hemoglobin suppressors, such as BCL11A and ZBTB7A and of their binding sites on the proximal HBG promoter. However, the role of the distal HBG promoter in regulating gene expression remains to be explored. METHODS We used CRISPR/Cas9 system to edit the distal HBG promoter. In vitro and in vivo assays, as well as engrafted NCG-Kit-V831M mice, were used for functional validation and mechanistic studies. RESULTS We discovered an insertion of nucleotide A (insA) between - 1368 and - 1369 bp upstream of the TSS in HBG2 resulting in remarkable increase in γ-globin expression in HUDEP-2 cells. We also observed elevated γ-globin expression in human CD34+ erythroid progenitor cells from healthy individuals and those with β-thalassemia when introducing insA mutation. Similarly, engrafted NCG-Kit-V831M mice showed increased γ-globin expression. Importantly, neither did insA have any off-target effects nor did it affect the maturation of erythroid cells. Furthermore, we found that the insA mutation created a binding site for the transcription activator FOXO3, which was activated by AMPK. Additionally, introducing insA specifically demethylated the - 162 CpG site on HBG promoter by reducing the enrichment of DNA methyltransferase 3 A (DNMT3A). At the same time, it activated histone modifications and RNA polymerase II (Pol II) in both distal and proximal HBG promoter and might inhibit the binding of BCL11A and ZBTB7A on -115 and - 200 sites on the HBG promoter respectively. In addition, combination of insA and the - 115 or -200 editing targets resulted in an amplify effect in reactivating γ-globin genes expression. CONCLUSIONS Overall, we presented the preclinical data to support the role of insA on regulating γ-globin expression using CD34+ HSPC cells derived from healthy donors or patients with β-thalassemia, and subsequently engrafted mice. Our study suggests that introducing insA mutation leads to significantly boosted fetal globin levels and uncovers new safe therapeutic target or strategy for β-hemoglobinopathies.
Collapse
Affiliation(s)
- Xiuqin Bao
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China.
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China.
- Thalassemia Diagnosis Center, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China.
| | - Yuanyi Gao
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiaoyi Chen
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Guangzhou Medical University, Guangzhuo, Guangdong, China
| | - Zhongju Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiaoqin Feng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Liren Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jing Du
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuhua Ye
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Feijing Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Li Du
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China
- Thalassemia Diagnosis Center, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China
| | - Aihua Yin
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China.
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China.
- Thalassemia Diagnosis Center, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China.
| | - Xiangmin Xu
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
3
|
Ball J, Bradley A, Le A, Tisdale JF, Uchida N. Current and future treatments for sickle cell disease: From hematopoietic stem cell transplantation to in vivo gene therapy. Mol Ther 2025:S1525-0016(25)00190-X. [PMID: 40083162 DOI: 10.1016/j.ymthe.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025] Open
Abstract
Sickle cell disease (SCD) is a single-gene disorder caused by a point mutation of the β-globin gene, resulting in hemolytic anemia, acute pain, multiorgan damage, and early mortality. Hydroxyurea is a first-line drug therapy that switches sickle-globin to non-pathogenic γ-globin; however, it requires lifelong oral administration. Allogeneic hematopoietic stem cell (HSC) transplantation allows for a one-time cure for SCD, albeit with histocompatibility limitations. Therefore, autologous HSC gene therapy was developed to cure SCD in a single treatment, without HSC donors. Current HSC gene therapy is based on the ex vivo culture of patients' HSCs with lentiviral gene addition and gene editing, followed by autologous transplantation back to the patient. However, the complexity of the treatment process and high costs hinder the universal application of ex vivo gene therapy. Therefore, the development of in vivo HSC gene therapy, where gene therapy tools are directly administered to patients, is desirable to provide a more accessible, cost-effective solution that can cure SCD worldwide. In this review, we discuss current treatments, including drug therapies, HSC transplantation, and ex vivo gene therapy; the development of gene therapy tools; and progress toward curative in vivo gene therapy in SCD.
Collapse
Affiliation(s)
- Julia Ball
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Avery Bradley
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Anh Le
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - John F Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Naoya Uchida
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Zhang H, Zeng J, Zhang F, Liu J, Liang L. Role of B-Cell Lymphoma/Leukemia 11A in Normal and Malignant Hematopoiesis. BIOLOGY 2025; 14:26. [PMID: 39857257 PMCID: PMC11759832 DOI: 10.3390/biology14010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025]
Abstract
B-cell lymphoma/leukemia 11A (BCL11A) is a crucial transcriptional regulator, widely recognized for its role in controlling fetal hemoglobin and its potential as a gene therapy target for inherited hemoglobinopathies. Beyond this, recent studies have also highlighted its key role in the maturation and function of immune cells and erythrocytes, mediated through the regulation of various molecules during hematopoietic development. The dysregulation of BCL11A disrupts downstream molecular pathways, contributing to the development of several hematological malignancies, particularly leukemias. This review provides a comprehensive overview of the role of BCL11A in normal and malignant hematopoiesis, details the hematological disorders associated with its dysregulation and explores the current therapeutic strategies targeting this transcription factor.
Collapse
Affiliation(s)
- Haihang Zhang
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (H.Z.); (F.Z.)
| | - Junhao Zeng
- Xiangya School of Medicine, Central South University, Changsha 410013, China;
| | - Fangling Zhang
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (H.Z.); (F.Z.)
| | - Jing Liu
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (H.Z.); (F.Z.)
| | - Long Liang
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (H.Z.); (F.Z.)
| |
Collapse
|
5
|
Feng Q, Li Q, Zhou H, Wang Z, Lin C, Jiang Z, Liu T, Wang D. CRISPR technology in human diseases. MedComm (Beijing) 2024; 5:e672. [PMID: 39081515 PMCID: PMC11286548 DOI: 10.1002/mco2.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Gene editing is a growing gene engineering technique that allows accurate editing of a broad spectrum of gene-regulated diseases to achieve curative treatment and also has the potential to be used as an adjunct to the conventional treatment of diseases. Gene editing technology, mainly based on clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated protein systems, which is capable of generating genetic modifications in somatic cells, provides a promising new strategy for gene therapy for a wide range of human diseases. Currently, gene editing technology shows great application prospects in a variety of human diseases, not only in therapeutic potential but also in the construction of animal models of human diseases. This paper describes the application of gene editing technology in hematological diseases, solid tumors, immune disorders, ophthalmological diseases, and metabolic diseases; focuses on the therapeutic strategies of gene editing technology in sickle cell disease; provides an overview of the role of gene editing technology in the construction of animal models of human diseases; and discusses the limitations of gene editing technology in the treatment of diseases, which is intended to provide an important reference for the applications of gene editing technology in the human disease.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Qirong Li
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Hengzong Zhou
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Zhan Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Chao Lin
- School of Grain Science and TechnologyJilin Business and Technology CollegeChangchunChina
| | - Ziping Jiang
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Tianjia Liu
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Dongxu Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
6
|
Prasad K, Devaraju N, George A, Ravi NS, Paul J, Mahalingam G, Rajendiran V, Panigrahi L, Venkatesan V, Lakhotiya K, Periyasami Y, Pai AA, Nakamura Y, Kurita R, Balasubramanian P, Thangavel S, Velayudhan SR, Newby GA, Marepally S, Srivastava A, Mohankumar KM. Precise correction of a spectrum of β-thalassemia mutations in coding and non-coding regions by base editors. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102205. [PMID: 38817682 PMCID: PMC11137594 DOI: 10.1016/j.omtn.2024.102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 04/26/2024] [Indexed: 06/01/2024]
Abstract
β-thalassemia/HbE results from mutations in the β-globin locus that impede the production of functional adult hemoglobin. Base editors (BEs) could facilitate the correction of the point mutations with minimal or no indel creation, but its efficiency and bystander editing for the correction of β-thalassemia mutations in coding and non-coding regions remains unexplored. Here, we screened BE variants in HUDEP-2 cells for their ability to correct a spectrum of β-thalassemia mutations that were integrated into the genome as fragments of HBB. The identified targets were introduced into their endogenous genomic location using BEs and Cas9/homology-directed repair (HDR) to create cellular models with β-thalassemia/HbE. These β-thalassemia/HbE models were then used to assess the efficiency of correction in the native locus and functional β-globin restoration. Most bystander edits produced near target sites did not interfere with adult hemoglobin expression and are not predicted to be pathogenic. Further, the effectiveness of BE was validated for the correction of the pathogenic HbE variant in severe β0/βE-thalassaemia patient cells. Overall, our study establishes a novel platform to screen and select optimal BE tools for therapeutic genome editing by demonstrating the precise, efficient, and scarless correction of pathogenic point mutations spanning multiple regions of HBB including the promoter, intron, and exons.
Collapse
Affiliation(s)
- Kirti Prasad
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| | - Nivedhitha Devaraju
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| | - Anila George
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
| | - Nithin Sam Ravi
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
| | - Joshua Paul
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| | - Gokulnath Mahalingam
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
| | - Vignesh Rajendiran
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
| | - Lokesh Panigrahi
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| | - Vigneshwaran Venkatesan
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| | - Kartik Lakhotiya
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston MA 02111, USA
| | - Yogapriya Periyasami
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
| | - Aswin Anand Pai
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
- Department of Haematology, Christian Medical College & Hospital, Vellore 632 004, India
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 3050074, Japan
| | - Ryo Kurita
- Research and Development Department, Central Blood Institute Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Poonkuzhali Balasubramanian
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 011, India
- Department of Haematology, Christian Medical College & Hospital, Vellore 632 004, India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
| | - Shaji R. Velayudhan
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Department of Haematology, Christian Medical College & Hospital, Vellore 632 004, India
| | - Gregory A. Newby
- Departments of Genetic Medicine and Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Srujan Marepally
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
| | - Alok Srivastava
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Department of Haematology, Christian Medical College & Hospital, Vellore 632 004, India
| | - Kumarasamypet M. Mohankumar
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu 632002, India
- Manipal Academy of Higher Education, Karnataka 576104, India
| |
Collapse
|
7
|
Liu Y, Cai M, Chen Y, Wu G, Li S, Chen Z. Validation for the function of protein C in mouse models. PeerJ 2024; 12:e17261. [PMID: 38680896 PMCID: PMC11055512 DOI: 10.7717/peerj.17261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Objectives Protein C (PC) is an anticoagulant that is encoded by the PROC gene. Validation for the function of PC was carried out in mouse models. Methods In this study, autosomal recessive PC deficiency (PCD) was selected as the target, and the specific mutation site was chromosome 2 2q13-q14, PROC c.1198G>A (p.Gly400Ser) which targets G399S (GGT to AGC) in mouse models. To investigate the role of hereditary PC in mice models, we used CRISPR/Cas9 gene editing technology to create a mouse model with a genetic PCD mutation. Results The two F0 generation positive mice produced using the CRISPR/Cas9 gene editing technique were chimeras, and the mice in F1 and F2 generations were heterozygous. There was no phenotype of spontaneous bleeding or thrombosis in the heterozygous mice, but some of them were blind. Blood routine results showed no significant difference between the heterozygous mice and wild-type mice (P > 0.05). Prothrombin time (PT), activated partial thromboplastin time (APTT), and thrombin time (TT) were prolonged in the heterozygous mice, while the level of fibrinogen content (FIB) decreased, suggesting secondary consumptive coagulation disease. The protein C activity of heterozygous mice was significantly lower than that of wild-type mice (P < 0.001), but there was no significant difference in protein C antigen levels (P > 0.05). H&E staining showed steatosis and hydrodegeneration in the liver of heterozygous mice. Necrosis and exfoliated epithelial cells could be observed in renal tubule lumen, forming cell or granular tubules. Hemosiderin deposition was found in the spleen along with splenic hemorrhage. Immunohistochemistry demonstrated significant fibrin deposition in the liver, spleen, and kidney of heterozygous mice. Conclusion In this study, heterozygotes of the mouse model with a PC mutation were obtained. The function of PC was then validated in a mouse model through genotype, phenotype, and PC function analysis.
Collapse
Affiliation(s)
- Ya Liu
- Zhanjiang Institute of Clinical Medicine, Central People’s Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Maoping Cai
- Zhanjiang Institute of Clinical Medicine, Central People’s Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yan Chen
- Zhanjiang Institute of Clinical Medicine, Central People’s Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Guocai Wu
- Department of Hematology, Central People’s Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Songyu Li
- Zhanjiang Institute of Clinical Medicine, Central People’s Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhanghui Chen
- Zhanjiang Institute of Clinical Medicine, Central People’s Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
8
|
Zeng S, Lei S, Qu C, Wang Y, Teng S, Huang P. CRISPR/Cas-based gene editing in therapeutic strategies for beta-thalassemia. Hum Genet 2023; 142:1677-1703. [PMID: 37878144 DOI: 10.1007/s00439-023-02610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Beta-thalassemia (β-thalassemia) is an autosomal recessive disorder caused by point mutations, insertions, and deletions in the HBB gene cluster, resulting in the underproduction of β-globin chains. The most severe type may demonstrate complications including massive hepatosplenomegaly, bone deformities, and severe growth retardation in children. Treatments for β-thalassemia include blood transfusion, splenectomy, and allogeneic hematopoietic stem cell transplantation (HSCT). However, long-term blood transfusions require regular iron removal therapy. For allogeneic HSCT, human lymphocyte antigen (HLA)-matched donors are rarely available, and acute graft-versus-host disease (GVHD) may occur after the transplantation. Thus, these conventional treatments are facing significant challenges. In recent years, with the advent and advancement of CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) gene editing technology, precise genome editing has achieved encouraging successes in basic and clinical studies for treating various genetic disorders, including β-thalassemia. Target gene-edited autogeneic HSCT helps patients avoid graft rejection and GVHD, making it a promising curative therapy for transfusion-dependent β-thalassemia (TDT). In this review, we introduce the development and mechanisms of CRISPR/Cas9. Recent advances on feasible strategies of CRISPR/Cas9 targeting three globin genes (HBB, HBG, and HBA) and targeting cell selections for β-thalassemia therapy are highlighted. Current CRISPR-based clinical trials in the treatment of β-thalassemia are summarized, which are focused on γ-globin reactivation and fetal hemoglobin reproduction in hematopoietic stem cells. Lastly, the applications of other promising CRISPR-based technologies, such as base editing and prime editing, in treating β-thalassemia and the limitations of the CRISPR/Cas system in therapeutic applications are discussed.
Collapse
Affiliation(s)
- Shujun Zeng
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, People's Republic of China
| | - Shuangyin Lei
- The Second Norman Bethune Clinical College of Jilin University, Changchun, Jilin, People's Republic of China
| | - Chao Qu
- The First Norman Bethune Clinical College of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yue Wang
- The Second Norman Bethune Clinical College of Jilin University, Changchun, Jilin, People's Republic of China
| | - Shuzhi Teng
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, People's Republic of China.
| | - Ping Huang
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
9
|
Ceglie G, Lecis M, Canciani G, Algeri M, Frati G. Genome editing for sickle cell disease: still time to correct? Front Pediatr 2023; 11:1249275. [PMID: 38027257 PMCID: PMC10652763 DOI: 10.3389/fped.2023.1249275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Sickle cell disease (SCD) is an inherited blood disorder, due to a single point mutation in the β-globin gene (HBB) leading to multisystemic manifestations and it affects millions of people worldwide. The monogenic nature of the disease and the availability of autologous hematopoietic stem cells (HSCs) make this disorder an ideal candidate for gene modification strategies. Notably, significant advances in the field of gene therapy and genome editing that took place in the last decade enabled the possibility to develop several strategies for the treatment of SCD. These curative approaches were firstly based on the correction of disease-causing mutations holding the promise for a specific, effective and safe option for patients. Specifically, gene-editing approaches exploiting the homology directed repair pathway were investigated, but soon their limited efficacy in quiescent HSC has curbed their wider development. On the other hand, a number of studies on globin gene regulation, led to the development of several genome editing strategies based on the reactivation of the fetal γ-globin gene (HBG) by nuclease-mediated targeting of HBG-repressor elements. Although the efficiency of these strategies seems to be confirmed in preclinical and clinical studies, very little is known about the long-term consequences of these modifications. Moreover, the potential genotoxicity of these nuclease-based strategies must be taken into account, especially when associated with high targeting rates. The recent introduction of nuclease-free genome editing technologies brought along the potential for safer strategies for SCD gene correction, which may also harbor significant advantages over HBG-reactivating ones. In this Review, we discuss the recent advances in genome editing strategies for the correction of SCD-causing mutations trying to recapitulate the promising strategies currently available and their relative strengths and weaknesses.
Collapse
Affiliation(s)
- Giulia Ceglie
- Cell and Gene Therapy for Hematological Disorders Unit, Department of Oncology-Hematology, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Marco Lecis
- Cell and Gene Therapy for Hematological Disorders Unit, Department of Oncology-Hematology, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Pediatric Unit, Modena University Hospital, Modena, Italy
| | - Gabriele Canciani
- Cell and Gene Therapy for Hematological Disorders Unit, Department of Oncology-Hematology, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Residency School of Pediatrics, University of Rome Tor Vergata, Rome, Italy
| | - Mattia Algeri
- Cell and Gene Therapy for Hematological Disorders Unit, Department of Oncology-Hematology, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Giacomo Frati
- Cell and Gene Therapy for Hematological Disorders Unit, Department of Oncology-Hematology, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| |
Collapse
|
10
|
Paschoudi K, Yannaki E, Psatha N. Precision Editing as a Therapeutic Approach for β-Hemoglobinopathies. Int J Mol Sci 2023; 24:9527. [PMID: 37298481 PMCID: PMC10253463 DOI: 10.3390/ijms24119527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Beta-hemoglobinopathies are the most common genetic disorders worldwide, caused by a wide spectrum of mutations in the β-globin locus, and associated with morbidity and early mortality in case of patient non-adherence to supportive treatment. Allogeneic transplantation of hematopoietic stem cells (allo-HSCT) used to be the only curative option, although the indispensable need for an HLA-matched donor markedly restricted its universal application. The evolution of gene therapy approaches made possible the ex vivo delivery of a therapeutic β- or γ- globin gene into patient-derived hematopoietic stem cells followed by the transplantation of corrected cells into myeloablated patients, having led to high rates of transfusion independence (thalassemia) or complete resolution of painful crises (sickle cell disease-SCD). Hereditary persistence of fetal hemoglobin (HPFH), a syndrome characterized by increased γ-globin levels, when co-inherited with β-thalassemia or SCD, converts hemoglobinopathies to a benign condition with mild clinical phenotype. The rapid development of precise genome editing tools (ZFN, TALENs, CRISPR/Cas9) over the last decade has allowed the targeted introduction of mutations, resulting in disease-modifying outcomes. In this context, genome editing tools have successfully been used for the introduction of HPFH-like mutations both in HBG1/HBG2 promoters or/and in the erythroid enhancer of BCL11A to increase HbF expression as an alternative curative approach for β-hemoglobinopathies. The current investigation of new HbF modulators, such as ZBTB7A, KLF-1, SOX6, and ZNF410, further expands the range of possible genome editing targets. Importantly, genome editing approaches have recently reached clinical translation in trials investigating HbF reactivation in both SCD and thalassemic patients. Showing promising outcomes, these approaches are yet to be confirmed in long-term follow-up studies.
Collapse
Affiliation(s)
- Kiriaki Paschoudi
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Gene and Cell Therapy Center, Hematology Clinic, George Papanikolaou Hospital, Exokhi, 57010 Thessaloniki, Greece;
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Clinic, George Papanikolaou Hospital, Exokhi, 57010 Thessaloniki, Greece;
- Department of Hematology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Nikoletta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
11
|
Ma L, Yang S, Peng Q, Zhang J, Zhang J. CRISPR/Cas9-based gene-editing technology for sickle cell disease. Gene 2023; 874:147480. [PMID: 37182559 DOI: 10.1016/j.gene.2023.147480] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Sickle cell disease (SCD) is the most common monogenic hematologic disorder and is essentially congenital hemolytic anemia caused by an inherited point mutation in the β-globin on chromosome 11. Although the genetic basis of SCD was revealed as early as 1957, treatment options for SCD have been very limited to date. Hematopoietic stem cell transplantation (HSCT) was thought to hold promise as a cure for SCD, but the available donors were still only 15% useful. Gene therapy has advanced rapidly into the 21st century with the promise of a cure for SCD, and gene editing strategies based on the cluster-based regularly interspaced short palindromic repeat sequence (CRISPR)/Cas9 system have revolutionized the field of gene therapy by precisely targeting genes. In this paper, we review the pathogenesis and therapeutic approaches of SCD, briefly summarize the delivery strategies of CRISPR/Cas9, and finally discuss in depth the current status, application barriers, and solution directions of CRISPR/Cas9 in SCD. Through the review in this paper, we hope to provide some references for gene therapy in SCD.
Collapse
Affiliation(s)
- Liangliang Ma
- Department of Hematology, Meishan City People's Hospital, Meishan City, Sichuan Province 620000, China
| | - Shanglun Yang
- Department of Hematology, Meishan City People's Hospital, Meishan City, Sichuan Province 620000, China
| | - Qianya Peng
- Department of Hematology, Meishan City People's Hospital, Meishan City, Sichuan Province 620000, China
| | - Jingping Zhang
- Department of Hematology, Meishan City People's Hospital, Meishan City, Sichuan Province 620000, China
| | - Jing Zhang
- Department of Hematology, Meishan City People's Hospital, Meishan City, Sichuan Province 620000, China.
| |
Collapse
|
12
|
Li C, Georgakopoulou A, Newby GA, Chen PJ, Everette KA, Paschoudi K, Vlachaki E, Gil S, Anderson AK, Koob T, Huang L, Wang H, Kiem HP, Liu DR, Yannaki E, Lieber A. In vivo HSC prime editing rescues sickle cell disease in a mouse model. Blood 2023; 141:2085-2099. [PMID: 36800642 PMCID: PMC10163316 DOI: 10.1182/blood.2022018252] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/19/2023] Open
Abstract
Sickle cell disease (SCD) is a monogenic disease caused by a nucleotide mutation in the β-globin gene. Current gene therapy studies are mainly focused on lentiviral vector-mediated gene addition or CRISPR/Cas9-mediated fetal globin reactivation, leaving the root cause unfixed. We developed a vectorized prime editing system that can directly repair the SCD mutation in hematopoietic stem cells (HSCs) in vivo in a SCD mouse model (CD46/Townes mice). Our approach involved a single intravenous injection of a nonintegrating, prime editor-expressing viral vector into mobilized CD46/Townes mice and low-dose drug selection in vivo. This procedure resulted in the correction of ∼40% of βS alleles in HSCs. On average, 43% of sickle hemoglobin was replaced by adult hemoglobin, thereby greatly mitigating the SCD phenotypes. Transplantation in secondary recipients demonstrated that long-term repopulating HSCs were edited. Highly efficient target site editing was achieved with minimal generation of insertions and deletions and no detectable off-target editing. Because of its simplicity and portability, our in vivo prime editing approach has the potential for application in resource-poor countries where SCD is prevalent.
Collapse
Affiliation(s)
- Chang Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Aphrodite Georgakopoulou
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | - Peter J. Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | - Kelcee A. Everette
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | - Kiriaki Paschoudi
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efthymia Vlachaki
- Hematological Laboratory, Second Department of Internal Medicine, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Sucheol Gil
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Anna K. Anderson
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Theodore Koob
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Lishan Huang
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Hongjie Wang
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Hans-Peter Kiem
- Stem and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
- Department of Pathology, University of Washington, Seattle, WA
| |
Collapse
|
13
|
Li C, Anderson AK, Wang H, Gil S, Kim J, Huang L, Germond A, Baldessari A, Nelson V, Bar KJ, Peterson CW, Bui J, Kiem HP, Lieber A. Stable HIV decoy receptor expression after in vivo HSC transduction in mice and NHPs: Safety and efficacy in protection from SHIV. Mol Ther 2023; 31:1059-1073. [PMID: 36760126 PMCID: PMC10124088 DOI: 10.1016/j.ymthe.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/15/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
We aim to develop an in vivo hematopoietic stem cell (HSC) gene therapy approach for persistent control/protection of HIV-1 infection based on the stable expression of a secreted decoy protein for HIV receptors CD4 and CCR5 (eCD4-Ig) from blood cells. HSCs in mice and a rhesus macaque were mobilized from the bone marrow and transduced by an intravenous injection of HSC-tropic, integrating HDAd5/35++ vectors expressing rhesus eCD4-Ig. In vivo HSC transduction/selection resulted in stable serum eCD4-Ig levels of ∼100 μg/mL (mice) and >20 μg/mL (rhesus) with half maximal inhibitory concentrations (IC50s) of 1 μg/mL measured by an HIV neutralization assay. After simian-human-immunodeficiency virus D (SHIV.D) challenge of rhesus macaques injected with HDAd-eCD4-Ig or a control HDAd5/35++ vector, peak plasma viral load levels were ∼50-fold lower in the eCD4-Ig-expressing animal. Furthermore, the viral load was lower in tissues with the highest eCD4-Ig expression, specifically the spleen and lymph nodes. SHIV.D challenge triggered a selective expansion of transduced CD4+CCR5+ cells, thereby increasing serum eCD4-Ig levels. The latter, however, broke immune tolerance and triggered anti-eCD4-Ig antibody responses, which could have contributed to the inability to eliminate SHIV.D. Our data will guide us in the improvement of the in vivo approach. Clearly, our conclusions need to be validated in larger animal cohorts.
Collapse
Affiliation(s)
- Chang Li
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA.
| | - Anna Kate Anderson
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Hongjie Wang
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Sucheol Gil
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Jiho Kim
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Lishan Huang
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Audrey Germond
- Washington National Primate Research Center, Division of Regenerative Medicine and Gene Therapy, Seattle, WA 98195, USA
| | - Audrey Baldessari
- Washington National Primate Research Center, Division of Regenerative Medicine and Gene Therapy, Seattle, WA 98195, USA
| | - Veronica Nelson
- Stem and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Katharine J Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher W Peterson
- Stem and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Washington National Primate Research Center, Division of Regenerative Medicine and Gene Therapy, Seattle, WA 98195, USA
| | - John Bui
- Stem and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Medicine, Division of Allergy and Infection Diseases, University of Washington, Seattle, WA 98195, USA
| | - Hans-Peter Kiem
- Stem and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Washington National Primate Research Center, Division of Regenerative Medicine and Gene Therapy, Seattle, WA 98195, USA; Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA 98195, USA
| | - André Lieber
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA; Washington National Primate Research Center, Division of Regenerative Medicine and Gene Therapy, Seattle, WA 98195, USA.
| |
Collapse
|
14
|
Bhoopalan SV, Yen JS, Levine RM, Sharma A. Editing human hematopoietic stem cells: advances and challenges. Cytotherapy 2023; 25:261-269. [PMID: 36123234 DOI: 10.1016/j.jcyt.2022.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023]
Abstract
Genome editing of hematopoietic stem and progenitor cells is being developed for the treatment of several inherited disorders of the hematopoietic system. The adaptation of CRISPR-Cas9-based technologies to make precise changes to the genome, and developments in altering the specificity and efficiency, and improving the delivery of nucleases to target cells have led to several breakthroughs. Many clinical trials are ongoing, and several pre-clinical models have been reported that would allow these genetic therapies to one day offer a potential cure to patients with diseases where limited options currently exist. However, there remain several challenges with respect to establishing safety, expanding accessibility and improving the manufacturing processes of these therapeutic products. This review focuses on some of the recent advances in the field of genome editing of hematopoietic stem and progenitor cells and illustrates the ongoing challenges.
Collapse
Affiliation(s)
- Senthil Velan Bhoopalan
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jonathan S Yen
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rachel M Levine
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
15
|
CRISPR Gene Therapy: A Promising One-Time Therapeutic Approach for Transfusion-Dependent β-Thalassemia—CRISPR-Cas9 Gene Editing for β-Thalassemia. THALASSEMIA REPORTS 2023. [DOI: 10.3390/thalassrep13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
β-Thalassemia is an inherited hematological disorder that results from genetic changes in the β-globin gene, leading to the reduced or absent synthesis of β-globin. For several decades, the only curative treatment option for β-thalassemia has been allogeneic hematopoietic cell transplantation (allo-HCT). Nonetheless, rapid progress in genome modification technologies holds great potential for treating this disease and will soon change the current standard of care for β-thalassemia. For instance, the emergence of the CRISPR/Cas9 genome editing platform has opened the door for precision gene editing and can serve as an effective molecular treatment for a multitude of genetic diseases. Investigational studies were carried out to treat β-thalassemia patients utilizing CRISPR-based CTX001 therapy targeting the fetal hemoglobin silencer BCL11A to restore γ-globin expression in place of deficient β-globin. The results of recently carried out clinical trials provide hope of CTX001 being a promising one-time therapeutic option to treat β-hemoglobinopathies. This review provides an insight into the key scientific steps that led to the development and application of novel CRISPR/Cas9–based gene therapies as a promising therapeutic platform for transfusion-dependent β-thalassemia (TDT). Despite the resulting ethical, moral, and social challenges, CRISPR provides an excellent treatment option against hemoglobin-associated genetic diseases.
Collapse
|
16
|
Zarghamian P, Klermund J, Cathomen T. Clinical genome editing to treat sickle cell disease-A brief update. Front Med (Lausanne) 2023; 9:1065377. [PMID: 36698803 PMCID: PMC9868311 DOI: 10.3389/fmed.2022.1065377] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023] Open
Abstract
Sickle cell disease (SCD) is one of the most common hemoglobinopathies. Due to its high prevalence, with about 20 million affected individuals worldwide, the development of novel effective treatments is highly warranted. While transplantation of allogeneic hematopoietic stem cells (HSC) is the standard curative treatment approach, a variety of gene transfer and genome editing strategies have demonstrated their potential to provide a prospective cure for SCD patients. Several stratagems employing CRISPR-Cas nucleases or base editors aim at reactivation of γ-globin expression to replace the faulty β-globin chain. The fetal hemoglobin (HbF), consisting of two α-globin and two γ-globin chains, can compensate for defective adult hemoglobin (HbA) and reverse the sickling of hemoglobin-S (HbS). Both disruption of cis-regulatory elements that are involved in inhibiting γ-globin expression, such as BCL11A or LRF binding sites in the γ-globin gene promoters (HBG1/2), or the lineage-specific disruption of BCL11A to reduce its expression in human erythroblasts, have been demonstrated to reestablish HbF expression. Alternatively, the point mutation in the HBB gene has been corrected using homology-directed repair (HDR)-based methodologies. In general, genome editing has shown promising results not only in preclinical animal models but also in clinical trials, both in terms of efficacy and safety. This review provides a brief update on the recent clinical advances in the genome editing space to offer cure for SCD patients, discusses open questions with regard to off-target effects induced by the employed genome editors, and gives an outlook of forthcoming developments.
Collapse
Affiliation(s)
- Parinaz Zarghamian
- Institute for Transfusion Medicine and Gene Therapy, Medical Center — University of Freiburg, Freiburg, Germany,Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany,Ph.D. Program, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Julia Klermund
- Institute for Transfusion Medicine and Gene Therapy, Medical Center — University of Freiburg, Freiburg, Germany,Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center — University of Freiburg, Freiburg, Germany,Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany,*Correspondence: Toni Cathomen,
| |
Collapse
|
17
|
Mohammadian Gol T, Ureña-Bailén G, Hou Y, Sinn R, Antony JS, Handgretinger R, Mezger M. CRISPR medicine for blood disorders: Progress and challenges in delivery. Front Genome Ed 2023; 4:1037290. [PMID: 36687779 PMCID: PMC9853164 DOI: 10.3389/fgeed.2022.1037290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
Blood disorders are a group of diseases including hematological neoplasms, clotting disorders and orphan immune deficiency diseases that affects human health. Current improvements in genome editing based therapeutics demonstrated preclinical and clinical proof to treat different blood disorders. Genome editing components such as Cas nucleases, guide RNAs and base editors are supplied in the form of either a plasmid, an mRNA, or a ribonucleoprotein complex. The most common delivery vehicles for such components include viral vectors (e.g., AAVs and RV), non-viral vectors (e.g., LNPs and polymers) and physical delivery methods (e.g., electroporation and microinjection). Each of the delivery vehicles specified above has its own advantages and disadvantages and the development of a safe transferring method for ex vivo and in vivo application of genome editing components is still a big challenge. Moreover, the delivery of genome editing payload to the target blood cells possess key challenges to provide a possible cure for patients with inherited monogenic blood diseases and hematological neoplastic tumors. Here, we critically review and summarize the progress and challenges related to the delivery of genome editing elements to relevant blood cells in an ex vivo or in vivo setting. In addition, we have attempted to provide a future clinical perspective of genome editing to treat blood disorders with possible clinical grade improvements in delivery methods.
Collapse
Affiliation(s)
- Tahereh Mohammadian Gol
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Guillermo Ureña-Bailén
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Yujuan Hou
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Ralph Sinn
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Justin S. Antony
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Rupert Handgretinger
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany,Abu Dhabi Stem Cells Center, Abu Dhabi, United Arab Emirates
| | - Markus Mezger
- Department of Hematology and Oncology, University Children’s Hospital, University of Tübingen, Tübingen, Germany,*Correspondence: Markus Mezger,
| |
Collapse
|
18
|
In Vivo Hematopoietic Stem Cell Genome Editing: Perspectives and Limitations. Genes (Basel) 2022; 13:genes13122222. [PMID: 36553489 PMCID: PMC9778055 DOI: 10.3390/genes13122222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The tremendous evolution of genome-editing tools in the last two decades has provided innovative and effective approaches for gene therapy of congenital and acquired diseases. Zinc-finger nucleases (ZFNs), transcription activator- like effector nucleases (TALENs) and CRISPR-Cas9 have been already applied by ex vivo hematopoietic stem cell (HSC) gene therapy in genetic diseases (i.e., Hemoglobinopathies, Fanconi anemia and hereditary Immunodeficiencies) as well as infectious diseases (i.e., HIV), and the recent development of CRISPR-Cas9-based systems using base and prime editors as well as epigenome editors has provided safer tools for gene therapy. The ex vivo approach for gene addition or editing of HSCs, however, is complex, invasive, technically challenging, costly and not free of toxicity. In vivo gene addition or editing promise to transform gene therapy from a highly sophisticated strategy to a "user-friendly' approach to eventually become a broadly available, highly accessible and potentially affordable treatment modality. In the present review article, based on the lessons gained by more than 3 decades of ex vivo HSC gene therapy, we discuss the concept, the tools, the progress made and the challenges to clinical translation of in vivo HSC gene editing.
Collapse
|
19
|
Li C, Georgakopoulou A, Newby GA, Everette KA, Nizamis E, Paschoudi K, Vlachaki E, Gil S, Anderson AK, Koob T, Huang L, Wang H, Kiem HP, Liu DR, Yannaki E, Lieber A. In vivo base editing by a single i.v. vector injection for treatment of hemoglobinopathies. JCI Insight 2022; 7:e162939. [PMID: 36006707 PMCID: PMC9675455 DOI: 10.1172/jci.insight.162939] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Individuals with β-thalassemia or sickle cell disease and hereditary persistence of fetal hemoglobin (HPFH) possessing 30% fetal hemoglobin (HbF) appear to be symptom free. Here, we used a nonintegrating HDAd5/35++ vector expressing a highly efficient and accurate version of an adenine base editor (ABE8e) to install, in vivo, a -113 A>G HPFH mutation in the γ-globin promoters in healthy CD46/β-YAC mice carrying the human β-globin locus. Our in vivo hematopoietic stem cell (HSC) editing/selection strategy involves only s.c. and i.v. injections and does not require myeloablation and HSC transplantation. In vivo HSC base editing in CD46/β-YAC mice resulted in > 60% -113 A>G conversion, with 30% γ-globin of β-globin expressed in 70% of erythrocytes. Importantly, no off-target editing at sites predicted by CIRCLE-Seq or in silico was detected. Furthermore, no critical alterations in the transcriptome of in vivo edited mice were found by RNA-Seq. In vitro, in HSCs from β-thalassemia and patients with sickle cell disease, transduction with the base editor vector mediated efficient -113 A>G conversion and reactivation of γ-globin expression with subsequent phenotypic correction of erythroid cells. Because our in vivo base editing strategy is safe and technically simple, it has the potential for clinical application in developing countries where hemoglobinopathies are prevalent.
Collapse
Affiliation(s)
- Chang Li
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - Aphrodite Georgakopoulou
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Chemistry and Chemical Biology and
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Kelcee A. Everette
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Chemistry and Chemical Biology and
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Evangelos Nizamis
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | - Kiriaki Paschoudi
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efthymia Vlachaki
- Hematological Laboratory, Second Department of Internal Medicine, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Sucheol Gil
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - Anna K. Anderson
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - Theodore Koob
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - Lishan Huang
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - Hongjie Wang
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - Hans-Peter Kiem
- Stem and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Chemistry and Chemical Biology and
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece
| | - André Lieber
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, USA
- Department of Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
20
|
Araújo NM, Rubio IGS, Toneto NPA, Morale MG, Tamura RE. The use of adenoviral vectors in gene therapy and vaccine approaches. Genet Mol Biol 2022; 45:e20220079. [PMID: 36206378 PMCID: PMC9543183 DOI: 10.1590/1678-4685-gmb-2022-0079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022] Open
Abstract
Adenovirus was first identified in the 1950s and since then this pathogenic group
of viruses has been explored and transformed into a genetic transfer vehicle.
Modification or deletion of few genes are necessary to transform it into a
conditionally or non-replicative vector, creating a versatile tool capable of
transducing different tissues and inducing high levels of transgene expression.
In the early years of vector development, the application in monogenic diseases
faced several hurdles, including short-term gene expression and even a fatality.
On the other hand, an adenoviral delivery strategy for treatment of cancer was
the first approved gene therapy product. There is an increasing interest in
expressing transgenes with therapeutic potential targeting the cancer hallmarks,
inhibiting metastasis, inducing cancer cell death or modulating the immune
system to attack the tumor cells. Replicative adenovirus as vaccines may be even
older and date to a few years of its discovery, application of non-replicative
adenovirus for vaccination against different microorganisms has been
investigated, but only recently, it demonstrated its full potential being one of
the leading vaccination tools for COVID-19. This is not a new vector nor a new
technology, but the result of decades of careful and intense work in this
field.
Collapse
Affiliation(s)
- Natália Meneses Araújo
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil.
| | - Ileana Gabriela Sanchez Rubio
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | | | - Mirian Galliote Morale
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | - Rodrigo Esaki Tamura
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil.
| |
Collapse
|
21
|
Quagliano A, Acevedo D, Hardigan P, Prasad S. Using Clustered Regularly Interspaced Short Palindromic Repeats gene editing to induce permanent expression of fetal hemoglobin in β-thalassemia and sickle cell disease: A comparative meta-analysis. Front Med (Lausanne) 2022; 9:943631. [PMID: 36250099 PMCID: PMC9556862 DOI: 10.3389/fmed.2022.943631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
β-hemoglobinopathies like sickle cell disease (SCD) and β-thalassemia are characterized by differing mutations in the hemoglobin subunit beta gene (HBB). These disorders vary in phenotypic presentation and severity, with more severe manifestations leading to transfusion dependence along with associated complications such as infection and iron overload. β-hemoglobinopathies symptoms rapidly worsen after birth as the levels of fetal hemoglobin (HbF) begin to decline. To reverse this decline, current treatment plans typically involve the use of pharmacological agents such as hydroxyurea to raise expression levels of HbF. However, these treatments only result in transient effects and must be consistently administered. Gene editing technologies such as CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats- CRISPR associated protein) offer the opportunity to create novel treatments which can raise HbF expression with potential permanent effects. Two gene targets, B-cell lymphoma/leukemia 11A gene (BCL11A) and the promoter regions of gamma globin genes (HBG1/2), have been identified to significantly increase HbF protein expression. In order to differentiate the effectiveness of BCL11A and HBG1/2 editing, a meta-analysis was performed by first identifying 119 studies for inclusion based on the search terms terms “β-Thalassemia,” “beta-thal” “sickle cell disease,” “SCD,” and “CRISPR.” Following application of exclusion and inclusion criteria, we performed analysis on 8 peer-reviewed published studies from 2018 to 2021 were included in the study. Forest plots were generated using R (version 4.1.2). Primary comparative analysis shows HBG1/2 had a significantly (p < 0.01)greater impact on induction of HbF expression compared to BCL11A. This analysis leads us to conclude that HBG1/2 merits further investigation as a possible gene editing target for treatment of SCD and β-thalassemia.
Collapse
Affiliation(s)
- Anthony Quagliano
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Daniel Acevedo
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Patrik Hardigan
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Samiksha Prasad
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| |
Collapse
|
22
|
Wang H, Germond A, Li C, Gil S, Kim J, Kiem HP, Lieber A. In vivo HSC transduction in rhesus macaques with an HDAd5/3+ vector targeting desmoglein 2 and transiently overexpressing cxcr4. Blood Adv 2022; 6:4360-4372. [PMID: 35679480 PMCID: PMC9636333 DOI: 10.1182/bloodadvances.2022007975] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/01/2022] [Indexed: 11/20/2022] Open
Abstract
We developed a new in vivo hematopoietic stem cell (HSC) gene therapy approach that involves only IV injections and does not require myeloablation/conditioning and HSC transplantation. In this approach, HSCs are mobilized from the bone marrow into the peripheral bloodstream and transduced with IV injected helper-dependent adenovirus (HDAd) vectors. A fraction of transduced HSCs returns to the bone marrow and persists there long term. Here, we report desmoglein 2 (DSG2) as a new receptor that can be used for in vivo HSC transduction. HDAd5/3+ vectors were developed that use DSG2 as a high-affinity attachment receptor, and in vivo HSC transduction and safety after IV injection of an HDAd5/3+ vector expressing green fluorescent protein (GFP) in granulocyte colony-stimulating factor/AMD3100 (plerixafor)-mobilized rhesus macaques were studied. Unlike previously used CD46-targeting HDAd5/35++ vectors, HDAd5/3+ virions were not sequestered by rhesus erythrocytes and therefore mediated ∼10-fold higher GFP marking rates in primitive HSCs (CD34+/CD45RA-/CD90+ cells) in the bone marrow at day 7 after vector injection. To further increase the return of in vivo transduced, mobilized HSCs to the bone marrow, we transiently expressed cxcr4 in mobilized HSCs from the HDAd5/3+ vector. In vivo transduction with an HDAd5/3+GFP/cxcr4 vector at a low dose of 0.4 × 1012 viral particles/kg resulted in up to 7% of GFP-positive CD34+/CD45RA-/CD90+ cells in the bone marrow. This transduction rate is a solid basis for in vivo base or prime editing in combination with natural or drug-induced expansion of edited HSCs. Furthermore, our study provides new insights into HSC biology and trafficking after mobilization in nonhuman primates.
Collapse
Affiliation(s)
- Hongjie Wang
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Audrey Germond
- Washington National Primate Research Center, Seattle, WA
| | - Chang Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Sucheol Gil
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Jiho Kim
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
- PAI Life Sciences, Seattle, WA
| | - Hans-Peter Kiem
- Stem and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA
- Division of Medical Oncology, Department of Medicine
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| |
Collapse
|
23
|
Woodard KJ, Doerfler PA, Mayberry KD, Sharma A, Levine R, Yen J, Valentine V, Palmer LE, Valentine M, Weiss MJ. Limitations of mouse models for sickle cell disease conferred by their human globin transgene configurations. Dis Model Mech 2022; 15:275817. [PMID: 35793591 PMCID: PMC9277148 DOI: 10.1242/dmm.049463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022] Open
Abstract
We characterized the human β-like globin transgenes in two mouse models of sickle cell disease (SCD) and tested a genome-editing strategy to induce red blood cell fetal hemoglobin (HbF; α2γ2). Berkeley SCD mice contain four to 22 randomly arranged, fragmented copies of three human transgenes (HBA1, HBG2-HBG1-HBD-HBBS and a mini-locus control region) integrated into a single site of mouse chromosome 1. Cas9 disruption of the BCL11A repressor binding motif in the γ-globin gene (HBG1 and HBG2; HBG) promoters of Berkeley mouse hematopoietic stem cells (HSCs) caused extensive death from multiple double-strand DNA breaks. Long-range sequencing of Townes SCD mice verified that the endogenous Hbb genes were replaced by single-copy segments of human HBG1 and HBBS including proximal but not some distal gene-regulatory elements. Townes mouse HSCs were viable after Cas9 disruption of the HBG1 BCL11A binding motif but failed to induce HbF to therapeutic levels, contrasting with human HSCs. Our findings provide practical information on the genomic structures of two common mouse SCD models, illustrate their limitations for analyzing therapies to induce HbF and confirm the importance of distal DNA elements in human globin regulation. This article has an associated First Person interview with the first author of the paper. Editor's choice: This study describes the genomic structures of two common sickle cell disease mouse models, illustrates their limitations for analyzing some genetic therapies and confirms the importance of distal DNA elements in human globin gene regulation.
Collapse
Affiliation(s)
- Kaitly J Woodard
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.,Integrated Biomedical Sciences Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Phillip A Doerfler
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kalin D Mayberry
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rachel Levine
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jonathan Yen
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Virginia Valentine
- Cytogenetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lance E Palmer
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Marc Valentine
- Cytogenetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
24
|
Ma SP, Gao XX, Zhou GQ, Zhang HK, Yang JM, Wang WJ, Song XM, Chen HY, Lu DR. Reactivation of γ-globin expression using a minicircle DNA system to treat β-thalassemia. Gene 2022; 820:146289. [PMID: 35143940 DOI: 10.1016/j.gene.2022.146289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 12/26/2022]
Abstract
Reactivation of fetal hemoglobin by editing the B-cell lymphoma/leukemia 11A (BCL11A) erythroid enhancer is an effective gene therapy for β-thalassemia. Using the CRISPR/Cas9 system, fetal γ-globin expression can be robustly reactivated to mitigate the clinical course of β-thalassemia. In our study, we found that the transfection efficiencies of CD34+ hematopoietic stem/progenitor cells (HSPCs) were significantly and negatively correlated with the length of plasmids and greatly affected by the linearization of plasmids. Furthermore, the transgene expression of minicircles (MC) without plasmid backbone sequences was better both in vitro and in vivo compared with conventional plasmids. Thus, MC DNA was used to deliver the cassette of Staphylococcus aureus Cas9 (SaCas9) into HSPCs, and a single-guide RNA targeting the erythroid enhancer region of BCL11A was selected. After electroporation with MC DNA, an evident efficiency of gene editing and reactivation of γ-globin expression in erythroblasts derived from unsorted HSPCs was acquired. No significant off-target effects were found by deep sequencing. Furthermore, fragments derived from lentiviral vectors, but not MC DNA, were highly enriched in promoter, exon, intron, distal-intergenic, and cancer-associated genes, indicating that MC DNA provided a relatively safe and efficient vector for delivering transgenes. The developed MC DNA vector provided a potential approach for the delivery of SaCas9 cassette and the reactivation of γ-globin expression for ameliorating syndromes of β-thalassemia.
Collapse
Affiliation(s)
- Shuang-Ping Ma
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang 453003, China
| | - Xu-Xia Gao
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Guo-Qiang Zhou
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hao-Kun Zhang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jing-Min Yang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wen-Juan Wang
- Department of Hematology, the first affiliated hospital of Soochow University, Suzhou, China
| | - Xian-Min Song
- Department of Hematology, Shanghai General Hospital (affiliated to Shanghai Jiao Tong University), Shanghai, China.
| | - Hong-Yan Chen
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China.
| | - Da-Ru Lu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Xu Z, Wang Q, Zhong H, Jiang Y, Shi X, Yuan B, Yu N, Zhang S, Yuan X, Guo S, Yang Y. Carrier strategies boost the application of CRISPR/Cas system in gene therapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20210081. [PMID: 37323878 PMCID: PMC10190933 DOI: 10.1002/exp.20210081] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023]
Abstract
Emerging clustered regularly interspaced short palindromic repeat/associated protein (CRISPR/Cas) genome editing technology shows great potential in gene therapy. However, proteins and nucleic acids suffer from enzymatic degradation in the physiological environment and low permeability into cells. Exploiting carriers to protect the CRISPR system from degradation, enhance its targeting of specific tissues and cells, and reduce its immunogenicity is essential to stimulate its clinical applications. Here, the authors review the state-of-the-art CRISPR delivery systems and their applications, and describe strategies to improve the safety and efficacy of CRISPR mediated genome editing, categorized by three types of cargo formats, that is, Cas: single-guide RNA ribonucleoprotein, Cas mRNA and single-guide RNA, and Cas plasmid expressing CRISPR/Cas systems. The authors hope this review will help develop safe and efficient nanomaterial-based carriers for CRISPR tools.
Collapse
Affiliation(s)
- Zunkai Xu
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical Biology and Institute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjinChina
| | - Qingnan Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation CenterChengduChina
| | - Haiping Zhong
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical Biology and Institute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjinChina
| | - Yaoyao Jiang
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical Biology and Institute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjinChina
| | - Xiaoguang Shi
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical Biology and Institute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjinChina
| | - Bo Yuan
- School of MedicineNankai UniversityTianjinChina
- Tianjin Key Laboratory of Ophthalmology and Visual ScienceTianjin Eye InstituteTianjin Eye HospitalTianjinChina
| | - Na Yu
- Translational Medicine CenterKey Laboratory of Molecular Target & Clinical PharmacologySchool of Pharmaceutical Sciences and The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of EducationDalian Minzu UniversityDalianChina
| | - Xiaoyong Yuan
- Tianjin Key Laboratory of Ophthalmology and Visual ScienceTianjin Eye InstituteTianjin Eye HospitalTianjinChina
- Clinical College of OphthalmologyTianjin Medical UniversityTianjinChina
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical Biology and Institute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjinChina
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation CenterChengduChina
| |
Collapse
|
26
|
Safe and efficient in vivo hematopoietic stem cell transduction in nonhuman primates using HDAd5/35++ vectors. MOLECULAR THERAPY - METHODS & CLINICAL DEVELOPMENT 2022; 24:127-141. [PMID: 35036470 PMCID: PMC8741415 DOI: 10.1016/j.omtm.2021.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/04/2021] [Indexed: 12/11/2022]
Abstract
We tested a new in vivo hematopoietic stem cell (HSC) transduction/selection approach in rhesus macaques using HSC-tropic, integrating, helper-dependent adenovirus vectors (HDAd5/35++) designed for the expression of human γ-globin in red blood cells (RBCs) to treat hemoglobinopathies. We show that HDAd5/35++ vectors preferentially transduce HSCs in vivo after intravenous injection into granulocyte colony-stimulating factor (G-CSF)/AMD3100-mobilized animals and that transduced cells return to the bone marrow and spleen. The approach was well tolerated, and the activation of proinflammatory cytokines that are usually associated with intravenous adenovirus vector injection was successfully blunted by pre-treatment with dexamethasone in combination with interleukin (IL)-1 and IL-6 receptor blockers. Using our MGMTP140K-based in vivo selection approach, γ-globin+ RBCs increased in all animals with levels up to 90%. After selection, the percentage of γ-globin+ RBCs declined, most likely due to an immune response against human transgene products. Our biodistribution data indicate that γ-globin+ RBCs in the periphery were mostly derived from mobilized HSCs that homed to the spleen. Integration site analysis revealed a polyclonal pattern and no genotoxicity related to transgene integrations. This is the first proof-of-concept study in nonhuman primates to show that in vivo HSC gene therapy could be feasible in humans without the need for high-dose chemotherapy conditioning and HSC transplantation.
Collapse
|
27
|
Ravi NS, Wienert B, Wyman SK, Bell HW, George A, Mahalingam G, Vu JT, Prasad K, Bandlamudi BP, Devaraju N, Rajendiran V, Syedbasha N, Pai AA, Nakamura Y, Kurita R, Narayanasamy M, Balasubramanian P, Thangavel S, Marepally S, Velayudhan SR, Srivastava A, DeWitt MA, Crossley M, Corn JE, Mohankumar KM. Identification of novel HPFH-like mutations by CRISPR base editing that elevate the expression of fetal hemoglobin. eLife 2022; 11:e65421. [PMID: 35147495 PMCID: PMC8865852 DOI: 10.7554/elife.65421] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/11/2022] [Indexed: 11/29/2022] Open
Abstract
Naturally occurring point mutations in the HBG promoter switch hemoglobin synthesis from defective adult beta-globin to fetal gamma-globin in sickle cell patients with hereditary persistence of fetal hemoglobin (HPFH) and ameliorate the clinical severity. Inspired by this natural phenomenon, we tiled the highly homologous HBG proximal promoters using adenine and cytosine base editors that avoid the generation of large deletions and identified novel regulatory regions including a cluster at the -123 region. Base editing at -123 and -124 bp of HBG promoter induced fetal hemoglobin (HbF) to a higher level than disruption of well-known BCL11A binding site in erythroblasts derived from human CD34+ hematopoietic stem and progenitor cells (HSPC). We further demonstrated in vitro that the introduction of -123T > C and -124T > C HPFH-like mutations drives gamma-globin expression by creating a de novo binding site for KLF1. Overall, our findings shed light on so far unknown regulatory elements within the HBG promoter and identified additional targets for therapeutic upregulation of fetal hemoglobin.
Collapse
Affiliation(s)
- Nithin Sam Ravi
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
- Sree Chitra Tirunal Institute for Medical Sciences and TechnologyThiruvananthapuramIndia
| | - Beeke Wienert
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Institute of Data Science and Biotechnology, Gladstone InstitutesSan FranciscoUnited States
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydneyAustralia
| | - Stacia K Wyman
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
| | - Henry William Bell
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydneyAustralia
| | - Anila George
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
- Sree Chitra Tirunal Institute for Medical Sciences and TechnologyThiruvananthapuramIndia
| | - Gokulnath Mahalingam
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
| | - Jonathan T Vu
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
| | - Kirti Prasad
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
- Manipal Academy of Higher EducationKarnatakaIndia
| | - Bhanu Prasad Bandlamudi
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
| | - Nivedhitha Devaraju
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
- Manipal Academy of Higher EducationKarnatakaIndia
| | - Vignesh Rajendiran
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
- Sree Chitra Tirunal Institute for Medical Sciences and TechnologyThiruvananthapuramIndia
| | - Nazar Syedbasha
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
| | - Aswin Anand Pai
- Sree Chitra Tirunal Institute for Medical Sciences and TechnologyThiruvananthapuramIndia
- Department of Haematology, Christian Medical College & HospitalVelloreIndia
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource CenterIbarakiJapan
| | - Ryo Kurita
- Research and Development Department, Central Blood Institute Blood Service Headquarters, Japanese Red Cross Society, JapanTokyoJapan
| | - Muthuraman Narayanasamy
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
- Department of Biochemistry, Christian Medical CollegeVelloreIndia
| | - Poonkuzhali Balasubramanian
- Sree Chitra Tirunal Institute for Medical Sciences and TechnologyThiruvananthapuramIndia
- Department of Haematology, Christian Medical College & HospitalVelloreIndia
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
| | - Srujan Marepally
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
| | - Shaji R Velayudhan
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
- Sree Chitra Tirunal Institute for Medical Sciences and TechnologyThiruvananthapuramIndia
- Department of Haematology, Christian Medical College & HospitalVelloreIndia
| | - Alok Srivastava
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
- Sree Chitra Tirunal Institute for Medical Sciences and TechnologyThiruvananthapuramIndia
- Department of Haematology, Christian Medical College & HospitalVelloreIndia
| | - Mark A DeWitt
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los AngelesLos AngelesUnited States
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydneyAustralia
| | - Jacob E Corn
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Institute of Molecular Health Sciences, Department of BiologyZurichSwitzerland
| | - Kumarasamypet M Mohankumar
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College CampusVelloreIndia
- Sree Chitra Tirunal Institute for Medical Sciences and TechnologyThiruvananthapuramIndia
| |
Collapse
|
28
|
Ramadier S, Chalumeau A, Felix T, Othman N, Aknoun S, Casini A, Maule G, Masson C, De Cian A, Frati G, Brusson M, Concordet JP, Cavazzana M, Cereseto A, El Nemer W, Amendola M, Wattellier B, Meneghini V, Miccio A. Combination of lentiviral and genome editing technologies for the treatment of sickle cell disease. Mol Ther 2022; 30:145-163. [PMID: 34418541 PMCID: PMC8753569 DOI: 10.1016/j.ymthe.2021.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 01/07/2023] Open
Abstract
Sickle cell disease (SCD) is caused by a mutation in the β-globin gene leading to polymerization of the sickle hemoglobin (HbS) and deformation of red blood cells. Autologous transplantation of hematopoietic stem/progenitor cells (HSPCs) genetically modified using lentiviral vectors (LVs) to express an anti-sickling β-globin leads to some clinical benefit in SCD patients, but it requires high-level transgene expression (i.e., high vector copy number [VCN]) to counteract HbS polymerization. Here, we developed therapeutic approaches combining LV-based gene addition and CRISPR-Cas9 strategies aimed to either knock down the sickle β-globin and increase the incorporation of an anti-sickling globin (AS3) in hemoglobin tetramers, or to induce the expression of anti-sickling fetal γ-globins. HSPCs from SCD patients were transduced with LVs expressing AS3 and a guide RNA either targeting the endogenous β-globin gene or regions involved in fetal hemoglobin silencing. Transfection of transduced cells with Cas9 protein resulted in high editing efficiency, elevated levels of anti-sickling hemoglobins, and rescue of the SCD phenotype at a significantly lower VCN compared to the conventional LV-based approach. This versatile platform can improve the efficacy of current gene addition approaches by combining different therapeutic strategies, thus reducing the vector amount required to achieve a therapeutic VCN and the associated genotoxicity risk.
Collapse
Affiliation(s)
- Sophie Ramadier
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR1163, 75015 Paris, France; Université de Paris, 75015 Paris, France; Phasics, Bâtiment Explorer, Espace Technologique, Route de l'Orme des Merisiers, 91190 St. Aubin, France
| | - Anne Chalumeau
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR1163, 75015 Paris, France; Université de Paris, 75015 Paris, France
| | - Tristan Felix
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR1163, 75015 Paris, France; Université de Paris, 75015 Paris, France
| | - Nadia Othman
- Phasics, Bâtiment Explorer, Espace Technologique, Route de l'Orme des Merisiers, 91190 St. Aubin, France
| | - Sherazade Aknoun
- Phasics, Bâtiment Explorer, Espace Technologique, Route de l'Orme des Merisiers, 91190 St. Aubin, France
| | | | - Giulia Maule
- CIBIO, University of Trento, 38100 Trento, Italy
| | - Cecile Masson
- Paris-Descartes Bioinformatics Platform, Imagine Institute, 75015 Paris, France
| | - Anne De Cian
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, 75015 Paris, France
| | - Giacomo Frati
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR1163, 75015 Paris, France; Université de Paris, 75015 Paris, France
| | - Megane Brusson
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR1163, 75015 Paris, France; Université de Paris, 75015 Paris, France
| | - Jean-Paul Concordet
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, 75015 Paris, France
| | - Marina Cavazzana
- Université de Paris, 75015 Paris, France; Imagine Institute, 75015 Paris, France; Biotherapy Department and Clinical Investigation Center, Assistance Publique Hôpitaux de Paris, INSERM, 75015 Paris, France
| | | | - Wassim El Nemer
- Etablissement Français du Sang PACA-Corse, Marseille, France; Aix Marseille Université, EFS, CNRS, ADES, "Biologie des Groupes Sanguins," 13000 Marseille, France; Laboratoire d'Excellence GR-Ex, Paris, France
| | | | - Benoit Wattellier
- Phasics, Bâtiment Explorer, Espace Technologique, Route de l'Orme des Merisiers, 91190 St. Aubin, France
| | - Vasco Meneghini
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR1163, 75015 Paris, France; Université de Paris, 75015 Paris, France.
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR1163, 75015 Paris, France; Université de Paris, 75015 Paris, France.
| |
Collapse
|
29
|
Demirci S, Leonard A, Essawi K, Tisdale JF. CRISPR-Cas9 to induce fetal hemoglobin for the treatment of sickle cell disease. Mol Ther Methods Clin Dev 2021; 23:276-285. [PMID: 34729375 PMCID: PMC8526756 DOI: 10.1016/j.omtm.2021.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Genome editing is potentially a curative technique available to all individuals with β-hemoglobinopathies, including sickle cell disease (SCD). Fetal hemoglobin (HbF) inhibits sickle hemoglobin (HbS) polymerization, and it is well described that naturally occurring hereditary persistence of HbF (HPFH) alleviates disease symptoms; therefore, reawakening of developmentally silenced HbF in adult red blood cells (RBCs) has long been of interest as a therapeutic strategy. Recent advances in genome editing platforms, particularly with the use of CRISPR-Cas9, have paved the way for efficient HbF induction through the creation of artificial HPFH mutations, editing of transcriptional HbF silencers, and modulating epigenetic intermediates that govern HbF expression. Clinical trials investigating BCL11A enhancer editing in patients with β-hemoglobinopathies have demonstrated promising results, although follow-up is short and the number of patients treated to date is low. While practical, economic, and clinical challenges of genome editing are well recognized by the scientific community, potential solutions to overcome these hurdles are in development. Here, we review the recent progress and obstacles yet to be overcome for the most effective and feasible HbF reactivation practice using CRISPR-Cas9 genome editing as a curative strategy for patients with SCD.
Collapse
Affiliation(s)
- Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Alexis Leonard
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Khaled Essawi
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| |
Collapse
|
30
|
Psatha N, Georgakopoulou A, Li C, Nandakumar V, Georgolopoulos G, Acosta R, Paschoudi K, Nelson J, Chee D, Athanasiadou A, Kouvatsi A, Funnell APW, Lieber A, Yannaki E, Papayannopoulou T. Enhanced HbF reactivation by multiplex mutagenesis of thalassemic CD34+ cells in vitro and in vivo. Blood 2021; 138:1540-1553. [PMID: 34086867 PMCID: PMC8554647 DOI: 10.1182/blood.2020010020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/27/2021] [Indexed: 11/20/2022] Open
Abstract
Thalassemia or sickle cell patients with hereditary persistence of fetal hemoglobin (HbF) have an ameliorated clinical phenotype and, in some cases, can achieve transfusion independence. Inactivation via genome editing of γ-globin developmental suppressors, such as BCL11A or LRF/ZBTB7A, or of their binding sites, have been shown to significantly increase expression of endogenous HbF. To broaden the therapeutic window beyond a single-editing approach, we have explored combinations of cis- and trans-editing targets to enhance HbF reactivation. Multiplex mutagenesis in adult CD34+ cells was well tolerated and did not lead to any detectable defect in the cells' proliferation and differentiation, either in vitro or in vivo. The combination of 1 trans and 1 cis mutation resulted in high editing retention in vivo, coupled with almost pancellular HbF expression in NBSGW mice. The greater in vivo performance of this combination was also recapitulated using a novel helper-dependent adenoviral-CRISPR vector (HD-Ad-dualCRISPR) in CD34+ cells from β-thalassemia patients transplanted to NBSGW mice. A pronounced increase in HbF expression was observed in human red blood cells in mice with established predominant β0/β0-thalassemic hemopoiesis after in vivo injection of the HD-Ad-dualCRISPR vector. Collectively, our data suggest that the combination of cis and trans fetal globin reactivation mutations has the potential to significantly increase HbF both totally and on a per cell basis over single editing and could thus provide significant clinical benefit to patients with severe β-globin phenotype.
Collapse
Affiliation(s)
| | - Aphrodite Georgakopoulou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Gene and Cell Therapy Center, Hematology Department-Hematopoietic Cell Transplantation Unit, George Papanikolaou Hospital, Thessaloniki, Greece; and
| | - Chang Li
- Division of Medical Genetics and
| | | | | | - Reyes Acosta
- Altius Institute for Biomedical Sciences, Seattle, WA
| | - Kiriaki Paschoudi
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Gene and Cell Therapy Center, Hematology Department-Hematopoietic Cell Transplantation Unit, George Papanikolaou Hospital, Thessaloniki, Greece; and
| | - Jemma Nelson
- Altius Institute for Biomedical Sciences, Seattle, WA
| | - Daniel Chee
- Altius Institute for Biomedical Sciences, Seattle, WA
| | - Anastasia Athanasiadou
- Gene and Cell Therapy Center, Hematology Department-Hematopoietic Cell Transplantation Unit, George Papanikolaou Hospital, Thessaloniki, Greece; and
| | - Anastasia Kouvatsi
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department-Hematopoietic Cell Transplantation Unit, George Papanikolaou Hospital, Thessaloniki, Greece; and
- Division of Hematology, University of Washington, Seattle, WA
| | | |
Collapse
|
31
|
Yannaki E, Psatha N, Papadopoulou A, Athanasopoulos T, Gravanis A, Roubelakis MG, Tsirigotis P, Anagnostopoulos A, Anagnou NP, Vassilopoulos G. Success Stories and Challenges Ahead in Hematopoietic Stem Cell Gene Therapy: Hemoglobinopathies as Disease Models. Hum Gene Ther 2021; 32:1120-1137. [PMID: 34662232 DOI: 10.1089/hum.2021.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene therapy is a relatively novel field that amounts to around four decades of continuous growth with its good and bad moments. Currently, the field has entered the clinical arena with the ambition to fulfil its promises for a permanent fix of incurable genetic disorders. Hemoglobinopathies as target diseases and hematopoietic stem cells (HSCs) as target cells of genetic interventions had a major share in the research effort toward efficiently implementing gene therapy. Dissection of HSC biology and improvements in gene transfer and gene expression technologies evolved in an almost synchronous manner to a point where the two fields seem to be functionally intercalated. In this review, we focus specifically on the development of gene therapy for hemoglobin disorders and look at both gene addition and gene correction strategies that may dominate the field of HSC-directed gene therapy in the near future and transform the therapeutic landscape for genetic diseases.
Collapse
Affiliation(s)
- Evangelia Yannaki
- Hematology Department-HCT Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Nikoletta Psatha
- Altius Institute for Biomedical Sciences, Seattle, Washington, USA
| | - Anastasia Papadopoulou
- Hematology Department-HCT Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Takis Athanasopoulos
- Cell and Gene Therapy (CGT), Medicinal Science and Technology (MST), GlaxoSmithKline (GSK), Medicines Research Centre, Stevenage, United Kingdom
| | - Achilleas Gravanis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, Greece
| | - Maria G Roubelakis
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece and Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Panagiotis Tsirigotis
- 2nd Department of Internal Medicine, ATTIKO General University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Achilles Anagnostopoulos
- Hematology Department-HCT Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | | | - George Vassilopoulos
- BRFAA, Cell and Gene Therapy Lab, Athens, Greece.,Department of Hematology, UHL, University of Thessaly Medical School, Athens, Greece
| |
Collapse
|
32
|
Koniali L, Lederer CW, Kleanthous M. Therapy Development by Genome Editing of Hematopoietic Stem Cells. Cells 2021; 10:1492. [PMID: 34198536 PMCID: PMC8231983 DOI: 10.3390/cells10061492] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Accessibility of hematopoietic stem cells (HSCs) for the manipulation and repopulation of the blood and immune systems has placed them at the forefront of cell and gene therapy development. Recent advances in genome-editing tools, in particular for clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) and CRISPR/Cas-derived editing systems, have transformed the gene therapy landscape. Their versatility and the ability to edit genomic sequences and facilitate gene disruption, correction or insertion, have broadened the spectrum of potential gene therapy targets and accelerated the development of potential curative therapies for many rare diseases treatable by transplantation or modification of HSCs. Ongoing developments seek to address efficiency and precision of HSC modification, tolerability of treatment and the distribution and affordability of corresponding therapies. Here, we give an overview of recent progress in the field of HSC genome editing as treatment for inherited disorders and summarize the most significant findings from corresponding preclinical and clinical studies. With emphasis on HSC-based therapies, we also discuss technical hurdles that need to be overcome en route to clinical translation of genome editing and indicate advances that may facilitate routine application beyond the most common disorders.
Collapse
Affiliation(s)
- Lola Koniali
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (L.K.); (M.K.)
| | - Carsten W. Lederer
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (L.K.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (L.K.); (M.K.)
- Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
33
|
Correction of β-thalassemia by CRISPR/Cas9 editing of the α-globin locus in human hematopoietic stem cells. Blood Adv 2021; 5:1137-1153. [PMID: 33635334 DOI: 10.1182/bloodadvances.2020001996] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022] Open
Abstract
β-thalassemias (β-thal) are a group of blood disorders caused by mutations in the β-globin gene (HBB) cluster. β-globin associates with α-globin to form adult hemoglobin (HbA, α2β2), the main oxygen-carrier in erythrocytes. When β-globin chains are absent or limiting, free α-globins precipitate and damage cell membranes, causing hemolysis and ineffective erythropoiesis. Clinical data show that severity of β-thal correlates with the number of inherited α-globin genes (HBA1 and HBA2), with α-globin gene deletions having a beneficial effect for patients. Here, we describe a novel strategy to treat β-thal based on genome editing of the α-globin locus in human hematopoietic stem/progenitor cells (HSPCs). Using CRISPR/Cas9, we combined 2 therapeutic approaches: (1) α-globin downregulation, by deleting the HBA2 gene to recreate an α-thalassemia trait, and (2) β-globin expression, by targeted integration of a β-globin transgene downstream the HBA2 promoter. First, we optimized the CRISPR/Cas9 strategy and corrected the pathological phenotype in a cellular model of β-thalassemia (human erythroid progenitor cell [HUDEP-2] β0). Then, we edited healthy donor HSPCs and demonstrated that they maintained long-term repopulation capacity and multipotency in xenotransplanted mice. To assess the clinical potential of this approach, we next edited β-thal HSPCs and achieved correction of α/β globin imbalance in HSPC-derived erythroblasts. As a safer option for clinical translation, we performed editing in HSPCs using Cas9 nickase showing precise editing with no InDels. Overall, we described an innovative CRISPR/Cas9 approach to improve α/β globin imbalance in thalassemic HSPCs, paving the way for novel therapeutic strategies for β-thal.
Collapse
|
34
|
Garg H, Tatiossian KJ, Peppel K, Kato GJ, Herzog E. Gene therapy as the new frontier for Sickle Cell Disease. Curr Med Chem 2021; 29:453-466. [PMID: 34047257 DOI: 10.2174/0929867328666210527092456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/28/2021] [Accepted: 04/11/2021] [Indexed: 11/22/2022]
Abstract
Sickle Cell Disease (SCD) is one of the most common monogenic disorders caused by a point mutation in the β-globin gene. This mutation results in polymerization of hemoglobin (Hb) under reduced oxygenation conditions, causing rigid sickle-shaped RBCs and hemolytic anemia. This clearly defined fundamental molecular mechanism makes SCD a prototypical target for precision therapy. Both the mutant β-globin protein and its downstream pathophysiology are pharmacological targets of intensive research. SCD also is a disease well-suited for biological interventions like gene therapy. Recent advances in hematopoietic stem cell (HSC) transplantation and gene therapy platforms, like Lentiviral vectors and gene editing strategies, expand the potentially curative options for patients with SCD. This review discusses the recent advances in precision therapy for SCD and the preclinical and clinical advances in autologous HSC gene therapy for SCD.
Collapse
Affiliation(s)
- Himanshu Garg
- CSL Behring, 1020 1St Ave, King of Prussia, PA 19406, United States
| | | | - Karsten Peppel
- CSL Behring, 1020 1St Ave, King of Prussia, PA 19406, United States
| | - Gregory J Kato
- CSL Behring, 1020 1St Ave, King of Prussia, PA 19406, United States
| | - Eva Herzog
- CSL Behring, 1020 1St Ave, King of Prussia, PA 19406, United States
| |
Collapse
|
35
|
Pavan AR, Dos Santos JL. Advances in Sickle Cell Disease Treatments. Curr Med Chem 2021; 28:2008-2032. [PMID: 32520675 DOI: 10.2174/0929867327666200610175400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/23/2020] [Accepted: 05/07/2020] [Indexed: 11/22/2022]
Abstract
Sickle Cell Disease (SCD) is an inherited disorder of red blood cells that is caused by a single mutation in the β -globin gene. The disease, which afflicts millions of patients worldwide mainly in low income countries, is characterized by high morbidity, mortality and low life expectancy. The new pharmacological and non-pharmacological strategies for SCD is urgent in order to promote treatments able to reduce patient's suffering and improve their quality of life. Since the FDA approval of HU in 1998, there have been few advances in discovering new drugs; however, in the last three years voxelotor, crizanlizumab, and glutamine have been approved as new therapeutic alternatives. In addition, new promising compounds have been described to treat the main SCD symptoms. Herein, focusing on drug discovery, we discuss new strategies to treat SCD that have been carried out in the last ten years to discover new, safe, and effective treatments. Moreover, non-pharmacological approaches, including red blood cell exchange, gene therapy and hematopoietic stem cell transplantation will be presented.
Collapse
Affiliation(s)
- Aline Renata Pavan
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Jean Leandro Dos Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
36
|
Brusson M, Miccio A. Genome editing approaches to β-hemoglobinopathies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:153-183. [PMID: 34175041 DOI: 10.1016/bs.pmbts.2021.01.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
β-hemoglobinopathies are the most common monogenic disorders worldwide and are caused by mutations in the β-globin locus altering the production of adult hemoglobin (HbA). Transplantation of autologous hematopoietic stem cells (HSCs) corrected by lentiviral vector-mediated addition of a functional β-like globin raised new hopes to treat sickle cell disease and β-thalassemia patients; however, the low expression of the therapeutic gene per vector copy is often not sufficient to fully correct the patients with a severe clinical phenotype. Recent advances in the genome editing field brought new possibilities to cure β-hemoglobinopathies by allowing the direct modification of specific endogenous loci. Double-strand breaks (DSBs)-inducing nucleases (i.e., ZFNs, TALENs and CRISPR-Cas9) or DSB-free tools (i.e., base and prime editing) have been used to directly correct the disease-causing mutations, restoring HbA expression, or to reactivate the expression of the fetal hemoglobin (HbF), which is known to alleviate clinical symptoms of β-hemoglobinopathy patients. Here, we describe the different genome editing tools, their application to develop therapeutic approaches to β-hemoglobinopathies and ongoing clinical trials using genome editing strategies.
Collapse
Affiliation(s)
- Mégane Brusson
- Université de Paris, Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR 1163, Paris, France.
| | - Annarita Miccio
- Université de Paris, Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR 1163, Paris, France.
| |
Collapse
|
37
|
Li C, Georgakopoulou A, Mishra A, Gil S, Hawkins RD, Yannaki E, Lieber A. In vivo HSPC gene therapy with base editors allows for efficient reactivation of fetal γ-globin in β-YAC mice. Blood Adv 2021; 5:1122-1135. [PMID: 33620431 PMCID: PMC7903237 DOI: 10.1182/bloodadvances.2020003702] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Base editors are capable of installing precise genomic alterations without creating double-strand DNA breaks. In this study, we targeted critical motifs regulating γ-globin reactivation with base editors delivered via HDAd5/35++ vectors. Through optimized design, we successfully produced a panel of cytidine and adenine base editor (ABE) vectors targeting the erythroid BCL11A enhancer or recreating naturally occurring hereditary persistence of fetal hemoglobin (HPFH) mutations in the HBG1/2 promoter. All 5 tested vectors efficiently installed target base conversion and led to γ-globin reactivation in human erythroid progenitor cells. We observed ~23% γ-globin protein production over β-globin, when using an ABE vector (HDAd-ABE-sgHBG-2) specific to the -113A>G HPFH mutation. In a β-YAC mouse model, in vivo hematopoietic progenitor/stem cell (HSPC) transduction with HDAd-ABE-sgHBG-2 followed by in vivo selection resulted in >40% γ-globin+ erythrocytes in the peripheral blood. This result corresponded to 21% γ-globin production over human β-globin. The average -113A>G conversion in total bone marrow cells was 20%. No alterations in hematological parameters, erythropoiesis, and bone marrow cellular composition were observed after treatment. No detectable editing was found at top-scoring, off-target genomic sites. Bone marrow lineage-negative cells from primary mice were capable of reconstituting secondary transplant-recipient mice with stable γ-globin expression. Importantly, the advantage of base editing over CRISPR/Cas9 was reflected by the markedly lower rates of intergenic HBG1/2 deletion and the absence of detectable toxicity in human CD34+ cells. Our observations suggest that HDAd-vectorized base editors represent a promising strategy for precise in vivo genome engineering for the treatment of β-hemoglobinopathies.
Collapse
Affiliation(s)
- Chang Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Aphrodite Georgakopoulou
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece; and
| | - Arpit Mishra
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Sucheol Gil
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - R David Hawkins
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki, Greece; and
- Department of Pathology, University of Washington, Seattle, WA
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
- Department of Pathology, University of Washington, Seattle, WA
| |
Collapse
|
38
|
Li C, Wang H, Georgakopoulou A, Gil S, Yannaki E, Lieber A. In Vivo HSC Gene Therapy Using a Bi-modular HDAd5/35++ Vector Cures Sickle Cell Disease in a Mouse Model. Mol Ther 2021; 29:822-837. [PMID: 32949495 PMCID: PMC7854285 DOI: 10.1016/j.ymthe.2020.09.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 12/26/2022] Open
Abstract
We have recently reported that, after in vivo hematopoietic stem cell/progenitor (HSPC) transduction with HDAd5/35++ vectors, SB100x transposase-mediated γ-globin gene addition achieved 10%-15% γ-globin of adult mouse globin, resulting in significant but incomplete phenotypic correction in a thalassemia intermedia mouse model. Furthermore, genome editing of a γ-globin repressor binding site within the γ-globin promoter by CRISPR-Cas9 results in efficient reactivation of endogenous γ-globin. Here, we aimed to combine these two mechanisms to obtain curative levels of γ-globin after in vivo HSPC transduction. We generated a HDAd5/35++ adenovirus vector (HDAd-combo) containing both modules and tested it in vitro and after in vivo HSPC transduction in healthy CD46/β-YAC mice and in a sickle cell disease mouse model (CD46/Townes). Compared to HDAd vectors containing either the γ-globin addition or the CRISPR-Cas9 reactivation units alone, in vivo HSC transduction of CD46/Townes mice with the HDAd-combo resulted in significantly higher γ-globin in red blood cells, reaching 30% of that of adult human α and βS chains and a complete phenotypic correction of sickle cell disease.
Collapse
Affiliation(s)
- Chang Li
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Hongjie Wang
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Aphrodite Georgakopoulou
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA; Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki 57010, Greece
| | - Sucheol Gil
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department, George Papanicolaou Hospital, Thessaloniki 57010, Greece
| | - André Lieber
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA; Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
39
|
Abstract
Sickle cell disease (SCD) is the most common monogenic blood disorder marked by severe pain, end-organ damage, and early mortality. Treatment options for SCD remain very limited. There are only four FDA approved drugs to reduce acute complications. The only curative therapy for SCD is hematopoietic stem cell transplantation, typically from a matched, related donor. Ex vivo engineering of autologous hematopoietic stem and progenitor cells followed by transplantation of genetically modified cells potentially provides a permanent cure applicable to all patients regardless of the availability of suitable donors and graft-vs-host disease. In this review, we focus on the use of CRISPR/Cas9 gene-editing for curing SCD, including the curative correction of SCD mutation in β-globin (HBB) and the induction of fetal hemoglobin to reverse sickling. We summarize the major achievements and challenges, aiming to provide a clearer perspective on the potential of gene-editing based approaches in curing SCD.
Collapse
Affiliation(s)
- So Hyun Park
- Department of Bioengineering, Rice University, 6500 Main St, Houston, TX, 77030, USA.
| | - Gang Bao
- Department of Bioengineering, Rice University, 6500 Main St, Houston, TX, 77030, USA.
| |
Collapse
|
40
|
Frati G, Miccio A. Genome Editing for β-Hemoglobinopathies: Advances and Challenges. J Clin Med 2021; 10:482. [PMID: 33525591 PMCID: PMC7865242 DOI: 10.3390/jcm10030482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
β-hemoglobinopathies are the most common genetic disorders worldwide and are caused by mutations affecting the production or the structure of adult hemoglobin. Patients affected by these diseases suffer from anemia, impaired oxygen delivery to tissues, and multi-organ damage. In the absence of a compatible donor for allogeneic bone marrow transplantation, the lifelong therapeutic options are symptomatic care, red blood cell transfusions and pharmacological treatments. The last decades of research established lentiviral-mediated gene therapy as an efficacious therapeutic strategy. However, this approach is highly expensive and associated with a variable outcome depending on the effectiveness of the viral vector and the quality of the cell product. In the last years, genome editing emerged as a valuable tool for the development of curative strategies for β-hemoglobinopathies. Moreover, due to the wide range of its applications, genome editing has been extensively used to study regulatory mechanisms underlying globin gene regulation allowing the identification of novel genetic and pharmacological targets. In this work, we review the current advances and challenges of genome editing approaches to β-hemoglobinopathies. Special focus has been directed towards strategies aimed at correcting the defective β-globin gene or at inducing fetal hemoglobin (HbF), which are in an advanced state of clinical development.
Collapse
Affiliation(s)
- Giacomo Frati
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, Université de Paris, INSERM UMR 1163, F-75015 Paris, France
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, Université de Paris, INSERM UMR 1163, F-75015 Paris, France
| |
Collapse
|
41
|
Antoniou P, Miccio A, Brusson M. Base and Prime Editing Technologies for Blood Disorders. Front Genome Ed 2021; 3:618406. [PMID: 34713251 PMCID: PMC8525391 DOI: 10.3389/fgeed.2021.618406] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Nuclease-based genome editing strategies hold great promise for the treatment of blood disorders. However, a major drawback of these approaches is the generation of potentially harmful double strand breaks (DSBs). Base editing is a CRISPR-Cas9-based genome editing technology that allows the introduction of point mutations in the DNA without generating DSBs. Two major classes of base editors have been developed: cytidine base editors or CBEs allowing C>T conversions and adenine base editors or ABEs allowing A>G conversions. The scope of base editing tools has been extensively broadened, allowing higher efficiency, specificity, accessibility to previously inaccessible genetic loci and multiplexing, while maintaining a low rate of Insertions and Deletions (InDels). Base editing is a promising therapeutic strategy for genetic diseases caused by point mutations, such as many blood disorders and might be more effective than approaches based on homology-directed repair, which is moderately efficient in hematopoietic stem cells, the target cell population of many gene therapy approaches. In this review, we describe the development and evolution of the base editing system and its potential to correct blood disorders. We also discuss challenges of base editing approaches-including the delivery of base editors and the off-target events-and the advantages and disadvantages of base editing compared to classical genome editing strategies. Finally, we summarize the recent technologies that have further expanded the potential to correct genetic mutations, such as the novel base editing system allowing base transversions and the more versatile prime editing strategy.
Collapse
Affiliation(s)
| | - Annarita Miccio
- Université de Paris, Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR 1163, Paris, France
| | - Mégane Brusson
- Université de Paris, Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, INSERM UMR 1163, Paris, France
| |
Collapse
|
42
|
Samuelson C, Radtke S, Cui M, Perez A, Kiem HP, Humbert O. AMD3100 redosing fails to repeatedly mobilize hematopoietic stem cells in the nonhuman primate and humanized mouse. Exp Hematol 2020; 93:52-60.e1. [PMID: 33276046 DOI: 10.1016/j.exphem.2020.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/04/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023]
Abstract
AMD3100 (plerixafor) is a vital component of many clinical and preclinical transplant protocols, facilitating harvest of hematopoietic stem and progenitor cells through mobilization into the peripheral blood circulation. Repeat mobilization with AMD3100 is also necessary for many patients with suboptimal first stem cell collection or those requiring repeat transplantation. In this study we investigated the mobilization efficacy of repeated AMD3100 dosages in the nonhuman primate and humanized mouse models. In nonhuman primates, we observed effective mobilization after the first AMD3100 administration but a significantly poorer response in CD34+ and hematopoietic stem cell-enriched CD90+ cells with subsequent doses of the drug. A similar loss of efficacy with repeated administration was noted in immunodeficient mice engrafted with human CD34+ cells, in whom the total human white cell population, and particularly human hematopoietic stem and progenitor cells, mobilized significantly less effectively following a second AMD3100 administration when compared with the first dose. Together, our results are expected to inform future mobilization protocols for the purposes of peripheral blood hematopoietic stem cell extraction or for applications in which hematopoietic stem cells must be made accessible for in vivo-delivered gene targeting agents.
Collapse
Affiliation(s)
- Clare Samuelson
- Stem Cell and Gene Therapy Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA.
| | - Stefan Radtke
- Stem Cell and Gene Therapy Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Margaret Cui
- Stem Cell and Gene Therapy Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Anai Perez
- Stem Cell and Gene Therapy Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; Department of Medicine, University of Washington, Seattle, WA
| | - Olivier Humbert
- Stem Cell and Gene Therapy Program, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
43
|
Boucher P, Cui X, Curiel DT. Adenoviral vectors for in vivo delivery of CRISPR-Cas gene editors. J Control Release 2020; 327:788-800. [PMID: 32891680 PMCID: PMC8091654 DOI: 10.1016/j.jconrel.2020.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022]
Abstract
Harnessing the bacterial clustered regularly interspaced short palindromic repeats (CRISPR) system for genome editing in eukaryotes has revolutionized basic biomedical research and translational sciences. The ability to create targeted alterations of the genome through this easy to design system has presented unprecedented opportunities to treat inherited disorders and other diseases such as cancer through gene therapy. A major hurdle is the lack of an efficient and safe in vivo delivery system, limiting most of the current gene therapy efforts to ex vivo editing of extracted cells. Here we discuss the unique features of adenoviral vectors that enable tissue specific and efficient delivery of the CRISPR-Cas machinery for in vivo genome editing.
Collapse
Affiliation(s)
- Paul Boucher
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Xiaoxia Cui
- Genome Engineering & iPSC Center, Department of Genetics, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - David T Curiel
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA; Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
44
|
High-level protein production in erythroid cells derived from in vivo transduced hematopoietic stem cells. Blood Adv 2020; 3:2883-2894. [PMID: 31585952 PMCID: PMC6784527 DOI: 10.1182/bloodadvances.2019000706] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/18/2019] [Indexed: 12/12/2022] Open
Abstract
We developed an in vivo hematopoietic stem cell (HSC) transduction approach that involves HSC mobilization from the bone marrow into the peripheral bloodstream and the IV injection of an integrating, helper-dependent adenovirus (HDAd5/35++) vector system. HDAd5/35++ vectors target human CD46, a receptor that is abundantly expressed on primitive HSCs. Transgene integration is achieved by a hyperactive Sleeping Beauty transposase (SB100x) and transgene marking in peripheral blood cells can be increased by in vivo selection. Here we directed transgene expression to HSC-derived erythroid cells using β-globin regulatory elements. We hypothesized that the abundance and systemic distribution of erythroid cells can be harnessed for high-level production of therapeutic proteins. We first demonstrated that our approach allowed for sustained, erythroid-lineage specific GFP expression and accumulation of GFP protein in erythrocytes. Furthermore, after in vivo HSC transduction/selection in hCD46-transgenic mice, we demonstrated stable supraphysiological plasma concentrations of a bioengineered human factor VIII, termed ET3. High-level ET3 production in erythroid cells did not affect erythropoiesis. A phenotypic correction of bleeding was observed after in vivo HSC transduction of hCD46+/+/F8-/- hemophilia A mice despite high plasma anti-ET3 antibody titers. This suggests that ET3 levels were high enough to provide sufficient noninhibited ET3 systemically and/or locally (in blood clots) to control bleeding. In addition to its relevance for hemophilia A gene therapy, our approach has implications for the therapy of other inherited or acquired diseases that require high levels of therapeutic proteins in the blood circulation.
Collapse
|
45
|
|
46
|
Ramezankhani R, Minaei N, Haddadi M, Torabi S, Hesaraki M, Mirzaei H, Vosough M, Verfaillie CM. Gene editing technology for improving life quality: A dream coming true? Clin Genet 2020; 99:67-83. [PMID: 32506418 DOI: 10.1111/cge.13794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
The fact that monogenic diseases are related to mutations in one specific gene, make gene correction one of the promising strategies in the future to treat genetic diseases or alleviate their symptoms. From this perspective, and along with recent advances in technology, genome editing tools have gained momentum and developed fast. In fact, clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9), transcription activator-like effector nucleases (TALENs), and zinc-finger nucleases (ZFNs) are regarded as novel technologies which are able to correct a number of genetic aberrations in vitro and in vivo. The number of ongoing clinical trials employing these tools has been increased showing the encouraging outcomes of these tools. However, there are still some major challenges with respect to the safety profile and directed delivery of them. In this paper, we provided updated information regarding the history, nature, methods of delivery, and application of the above-mentioned gene editing tools along with the meganucleases (an older similar tool) based on published in vitro and in vivo studies and introduced clinical trials which employed these technologies.
Collapse
Affiliation(s)
- Roya Ramezankhani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.,Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.,Department of Development and Regeneration, KU Leuven Stem Cell Institute, Leuven, Belgium
| | - Neda Minaei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.,Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Mahnaz Haddadi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Shukoofeh Torabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.,Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Mahdi Hesaraki
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.,Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
47
|
Humbert O, Radtke S, Samuelson C, Carrillo RR, Perez AM, Reddy SS, Lux C, Pattabhi S, Schefter LE, Negre O, Lee CM, Bao G, Adair JE, Peterson CW, Rawlings DJ, Scharenberg AM, Kiem HP. Therapeutically relevant engraftment of a CRISPR-Cas9-edited HSC-enriched population with HbF reactivation in nonhuman primates. Sci Transl Med 2020; 11:11/503/eaaw3768. [PMID: 31366580 DOI: 10.1126/scitranslmed.aaw3768] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/19/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022]
Abstract
Reactivation of fetal hemoglobin (HbF) is being pursued as a treatment strategy for hemoglobinopathies. Here, we evaluated the therapeutic potential of hematopoietic stem and progenitor cells (HSPCs) edited with the CRISPR-Cas9 nuclease platform to recapitulate naturally occurring mutations identified in individuals who express increased amounts of HbF, a condition known as hereditary persistence of HbF. CRISPR-Cas9 treatment and transplantation of HSPCs purified on the basis of surface expression of the CD34 receptor in a nonhuman primate (NHP) autologous transplantation model resulted in up to 30% engraftment of gene-edited cells for >1 year. Edited cells effectively and stably reactivated HbF, as evidenced by up to 18% HbF-expressing erythrocytes in peripheral blood. Similar results were obtained by editing highly enriched stem cells, defined by the markers CD34+CD90+CD45RA-, allowing for a 10-fold reduction in the number of transplanted target cells, thus considerably reducing the need for editing reagents. The frequency of engrafted, gene-edited cells persisting in vivo using this approach may be sufficient to ameliorate the phenotype for a number of genetic diseases.
Collapse
Affiliation(s)
- Olivier Humbert
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Stefan Radtke
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Clare Samuelson
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ray R Carrillo
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Anai M Perez
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sowmya S Reddy
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Christopher Lux
- Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Sowmya Pattabhi
- Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Lauren E Schefter
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Ciaran M Lee
- Department of Bioengineering, Rice University, Houston, TX 77251, USA.,Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77251, USA
| | - Jennifer E Adair
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Christopher W Peterson
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - David J Rawlings
- Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pediatrics, University of Washington, Seattle, WA 98195, USA.,Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Andrew M Scharenberg
- Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pediatrics, University of Washington, Seattle, WA 98195, USA.,Department of Immunology, University of Washington, Seattle, WA 98195, USA.,Casebia Therapeutics, Cambridge, MA 02139, USA
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. .,Department of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
48
|
Abstract
There is no shortage of enthusiasm for the clinical potential of CRISPR-based genome editing: many life-changing cures appear to be just around the corner. However, as mature genetic therapies reach the market, it seems that million-dollar price tags are the new normal. Several factors contribute to the extreme pricing of next-generation medicines, including the need to recoup development costs, the undeniable value of these powerful therapies, and the inherent technical challenges of manufacture and delivery. CRISPR technology has been hailed as a great leveler and a democratizing force in biomedicine. But for this principle to hold true in clinical contexts, therapeutic genome editing must avoid several pitfalls that could substantially limit access to its transformative potential, especially in the developing world.
Collapse
Affiliation(s)
- Ross C Wilson
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California
- California Institute for Quantitative Biosciences, California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California
| | - Dana Carroll
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
49
|
Ricobaraza A, Gonzalez-Aparicio M, Mora-Jimenez L, Lumbreras S, Hernandez-Alcoceba R. High-Capacity Adenoviral Vectors: Expanding the Scope of Gene Therapy. Int J Mol Sci 2020; 21:E3643. [PMID: 32455640 PMCID: PMC7279171 DOI: 10.3390/ijms21103643] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
The adaptation of adenoviruses as gene delivery tools has resulted in the development of high-capacity adenoviral vectors (HC-AdVs), also known, helper-dependent or "gutless". Compared with earlier generations (E1/E3-deleted vectors), HC-AdVs retain relevant features such as genetic stability, remarkable efficacy of in vivo transduction, and production at high titers. More importantly, the lack of viral coding sequences in the genomes of HC-AdVs extends the cloning capacity up to 37 Kb, and allows long-term episomal persistence of transgenes in non-dividing cells. These properties open a wide repertoire of therapeutic opportunities in the fields of gene supplementation and gene correction, which have been explored at the preclinical level over the past two decades. During this time, production methods have been optimized to obtain the yield, purity, and reliability required for clinical implementation. Better understanding of inflammatory responses and the implementation of methods to control them have increased the safety of these vectors. We will review the most significant achievements that are turning an interesting research tool into a sound vector platform, which could contribute to overcome current limitations in the gene therapy field.
Collapse
Affiliation(s)
| | | | | | | | - Ruben Hernandez-Alcoceba
- Gene Therapy Program. University of Navarra-CIMA. Navarra Institute of Health Research, 31008 Pamplona, Spain; (A.R.); (M.G.-A.); (L.M.-J.); (S.L.)
| |
Collapse
|
50
|
Lee J, Bayarsaikhan D, Bayarsaikhan G, Kim JS, Schwarzbach E, Lee B. Recent advances in genome editing of stem cells for drug discovery and therapeutic application. Pharmacol Ther 2020; 209:107501. [DOI: 10.1016/j.pharmthera.2020.107501] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
|