1
|
Merigliano C, Ryu T, Cibulka J, Rawal CC, See CD, Mitra A, Reynolds TW, Butova NL, Caridi CP, Li X, Wang J, Deng C, Chenoweth DM, Sung P, Capelson M, Krejčí L, Chiolo I. Off-pore Nup98 condensates mobilize heterochromatic breaks and exclude Rad51. Mol Cell 2025; 85:2355-2373.e11. [PMID: 40480227 DOI: 10.1016/j.molcel.2025.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 03/17/2025] [Accepted: 05/08/2025] [Indexed: 06/22/2025]
Abstract
Phase separation forms membraneless compartments, including heterochromatin "domains" and repair foci. Pericentromeric heterochromatin mostly comprises repeated sequences prone to aberrant recombination. In Drosophila cells, "safe" homologous recombination (HR) repair of these sequences requires their relocalization to the nuclear periphery before Rad51 recruitment and strand invasion. How this mobilization initiates is unknown, and the contribution of phase separation is unclear. Here, we show that Nup98 nucleoporin is recruited to repair sites before relocalization by Sec13 or Nup88, and downstream of the Smc5/6 complex and heterochromatin protein 1 (HP1). Remarkably, Nup98 condensates are immiscible with HP1 condensates, and they are required and sufficient to mobilize repair sites and exclude Rad51, thus preventing aberrant recombination while promoting HR repair. Disrupting this pathway results in heterochromatin repair defects and widespread chromosome rearrangements, revealing an "off-pore" role for nucleoporins and phase separation in nuclear dynamics and genome integrity in a multicellular eukaryote.
Collapse
Affiliation(s)
- Chiara Merigliano
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA 90089, USA
| | - Taehyun Ryu
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA 90089, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jakub Cibulka
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A7, Brno 62500, Czech Republic
| | - Chetan C Rawal
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA 90089, USA
| | - Colby D See
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA 90089, USA
| | - Anik Mitra
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA 90089, USA
| | - Trevor W Reynolds
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA 90089, USA
| | - Nadejda L Butova
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA 90089, USA
| | - Christopher P Caridi
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiao Li
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jeff Wang
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Changfeng Deng
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Maya Capelson
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Lumír Krejčí
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5/A7, Brno 62500, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5/A4, 62500 Brno, Czech Republic
| | - Irene Chiolo
- Department of Biological Sciences, Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
2
|
Yi JS, Cuglievan B. Acute Leukemia in the Crosshairs: First-in-Class Menin Inhibitor Approval for Adults and Children. Pediatr Blood Cancer 2025; 72:e31657. [PMID: 40103277 DOI: 10.1002/pbc.31657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Affiliation(s)
- Joanna S Yi
- Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas, USA
| | - Branko Cuglievan
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
3
|
Gao L, Zhang F, Wen L, Wang Z, Ruan C, Chen S. Novel NUP98:TNRC18 fusion transcript in acute myeloid leukemia: a case report and literature review. BLOOD SCIENCE 2025; 7:e00232. [PMID: 40264981 PMCID: PMC12011566 DOI: 10.1097/bs9.0000000000000232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/20/2025] [Indexed: 04/24/2025] Open
Affiliation(s)
- Lijuan Gao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Fenghong Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lijun Wen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zheng Wang
- Suzhou Jsuniwell Medical Laboratory, Suzhou, China
| | - Changgeng Ruan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
4
|
Sajjan S, Oertling EE, Fuda F, Gagan J, Koduru P, Garcia R, Kwon A, Lin E, Cantu M, Wilson K, Weinberg OK, Chen M, Jaso JM, Slone TL, Truscott J, Thiebaud JA, Chung S, Madanat YF, Chen W. Clinicopathologic and Molecular Characterization of NUP98-Rearranged Acute Leukemias. Int J Lab Hematol 2025; 47:445-453. [PMID: 39836982 DOI: 10.1111/ijlh.14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025]
Abstract
INTRODUCTION NUP98 rearrangements are rare in acute leukemias and portend a poor prognosis. METHODS This study explored clinicopathologic and molecular features of five patients with NUP98 rearranged (NUP98-r) acute leukemias, including three females and two males with a median age of 34 years. RESULTS NUP98 fusion partners were associated with distinctive leukemia characteristics and biology. Three patients had NUP98::NSD1-r acute myeloid leukemia (AML, all cytogenetically cryptic and with concomitant FLT3-ITD) and unfavorable prognoses (in two patients), one patient had NUP98::HOXA9-r AML with morphologic and immunophenotypic features resembling acute promyelocytic leukemia, and lastly, one patient had previously underreported NUP98::MLLT1-r B/T mixed phenotype acute leukemia. After a median follow-up of 24.7 months, median overall survival was 30 months and three of five patients (60%) remained in complete remission at the last follow-up. CONCLUSION Our study expands the clinical and molecular spectrum of NUP98-r acute leukemias and recommends FISH testing for NUP98 rearrangement on those leukemia cases without recurrent gene rearrangements and/or normal karyotype followed by molecular confirmation to improve timely diagnosis and clinical management.
Collapse
Affiliation(s)
- Sujata Sajjan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Estelle E Oertling
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Franklin Fuda
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jeffrey Gagan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Prasad Koduru
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rolando Garcia
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Adelaide Kwon
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Elisa Lin
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Miguel Cantu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kathleen Wilson
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Olga K Weinberg
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jesse Manuel Jaso
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tamra L Slone
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jamie Truscott
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Julio Alvarenga Thiebaud
- Department of Internal Medicine (Hematology/Oncology), University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Stephen Chung
- Department of Internal Medicine (Hematology/Oncology), University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yazan F Madanat
- Department of Internal Medicine (Hematology/Oncology), University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Weina Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
5
|
Zhai Z, Meng F, Kuang J, Pei D. Phase Separation in Chromatin Organization and Human Diseases. Int J Mol Sci 2025; 26:5156. [PMID: 40507965 PMCID: PMC12154030 DOI: 10.3390/ijms26115156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2025] [Revised: 05/25/2025] [Accepted: 05/26/2025] [Indexed: 06/16/2025] Open
Abstract
Understanding how the genome is organized into multi-level chromatin structures within cells and how these chromatin structures regulate gene transcription influencing animal development and human diseases has long been a major goal in genetics and cell biology. Recent evidence suggests that chromatin structure formation and remodeling is regulated not only by chromatin loop extrusion but also by phase-separated condensates. Here, we discuss recent findings on the mechanisms of chromatin organization mediated by phase separation, with a focus on the roles of phase-separated condensates in chromatin structural dysregulation in human diseases. Indeed, these mechanistic revelations herald promising therapeutic strategies targeting phase-separated condensates-leveraging their intrinsic biophysical susceptibilities to restore chromatin structure dysregulated by aberrant phase separation.
Collapse
Affiliation(s)
- Ziwei Zhai
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China; (Z.Z.); (F.M.)
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Fei Meng
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China; (Z.Z.); (F.M.)
| | - Junqi Kuang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| |
Collapse
|
6
|
Wang H, Peng Y, Yang Z. Acute Myeloid Leukemia with NUP98::LNP1 Fusion Mimicking Chronic Myeloid Leukemia. Turk J Haematol 2025; 42:142-143. [PMID: 40091545 PMCID: PMC12099463 DOI: 10.4274/tjh.galenos.2025.2024.0391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/17/2025] [Indexed: 03/19/2025] Open
Affiliation(s)
- Haiyang Wang
- The Affiliated Hospital of Xuzhou Medical University, Department of Hematology, Xuzhou, P.R. China
| | - Yu Peng
- Chongqing University Cancer Hospital, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Department of Hematology-Oncology, Chongqing, P.R. China
| | - Zailin Yang
- Chongqing University Cancer Hospital, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Department of Hematology-Oncology, Chongqing, P.R. China
| |
Collapse
|
7
|
Troester S, Eder T, Wukowits N, Piontek M, Fernández-Pernas P, Schmoellerl J, Haladik B, Manhart G, Allram M, Maurer-Granofszky M, Scheidegger N, Nebral K, Superti-Furga G, Meisel R, Bornhauser B, Valent P, Dworzak MN, Zuber J, Boztug K, Grebien F. Transcriptional and epigenetic rewiring by the NUP98::KDM5A fusion oncoprotein directly activates CDK12. Nat Commun 2025; 16:4656. [PMID: 40389480 PMCID: PMC12089343 DOI: 10.1038/s41467-025-59930-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/08/2025] [Indexed: 05/21/2025] Open
Abstract
Nucleoporin 98 (NUP98) fusion oncoproteins are strong drivers of pediatric acute myeloid leukemia (AML) with poor prognosis. Here we show that NUP98 fusion-expressing AML harbors an epigenetic signature that is characterized by increased accessibility of hematopoietic stem cell genes and enrichment of activating histone marks. We employ an AML model for ligand-induced degradation of the NUP98::KDM5A fusion oncoprotein to identify epigenetic programs and transcriptional targets that are directly regulated by NUP98::KDM5A through CUT&Tag and nascent RNA-seq. Orthogonal genome-wide CRISPR/Cas9 screening identifies 12 direct NUP98::KDM5A target genes, which are essential for AML cell growth. Among these, we validate cyclin-dependent kinase 12 (CDK12) as a druggable vulnerability in NUP98::KDM5A-expressing AML. In line with its role in the transcription of DNA damage repair genes, small-molecule-mediated CDK12 inactivation causes increased DNA damage, leading to AML cell death. Altogether, we show that NUP98::KDM5A directly regulates a core set of essential target genes and reveal CDK12 as an actionable vulnerability in AML with oncogenic NUP98 fusions.
Collapse
MESH Headings
- Humans
- Nuclear Pore Complex Proteins/metabolism
- Nuclear Pore Complex Proteins/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/genetics
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Cyclin-Dependent Kinases/metabolism
- Cyclin-Dependent Kinases/genetics
- Epigenesis, Genetic
- Cell Line, Tumor
- Animals
- Transcription, Genetic
- Mice
- Gene Expression Regulation, Leukemic
- DNA Damage
- CRISPR-Cas Systems
- Retinoblastoma-Binding Protein 2
Collapse
Affiliation(s)
- Selina Troester
- Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Eder
- Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Nadja Wukowits
- Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martin Piontek
- Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Pablo Fernández-Pernas
- Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Johannes Schmoellerl
- Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Ben Haladik
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gabriele Manhart
- Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Melanie Allram
- Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Nastassja Scheidegger
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Karin Nebral
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Roland Meisel
- Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Beat Bornhauser
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseologay, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Michael N Dworzak
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
- Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Florian Grebien
- Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
8
|
Lin L, He F, Jin X, Zhang X, Li Y, Wang D, Wang J, Zheng L, Song H, Zhu X, Cheng Q, Zhao Y, Liang J, Ma J, Gao J, Tong J, Shi L. Liquid-liquid phase separation in normal hematopoiesis and hematological diseases. Cell Tissue Res 2025:10.1007/s00441-025-03974-2. [PMID: 40381034 DOI: 10.1007/s00441-025-03974-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/30/2025] [Indexed: 05/19/2025]
Abstract
Liquid-liquid phase separation (LLPS) is an emerging research field in cellular biology. LLPS-driven biomolecular condensates act as reaction chambers and regulatory hubs for critical processes, including chromatin architecture, gene expression, and metabolism. The dysregulation of these processes frequently impedes the proper execution of physiological functions. Current research indicates that abnormal phase separation plays a significant role in the pathogenesis of diseases and aging. This review briefly overviews the fundamental concepts and research methods related to phase separation. We also summarize studies concerning its physiological functions, particularly emphasizing its role in hematopoiesis. We further discuss how abnormal phase separation can lead to hematological disorders, specifically summarizing its involvement in the pathogenesis of leukemia. Despite recent advancements, elucidating LLPS mechanisms in hematopoiesis remains challenging due to the intricate interplay between biomolecular condensates and cellular function. Future research efforts aiming to reveal the role of LLPS in hematological diseases hold promise for novel therapeutic interventions and a deeper understanding of hematopoietic processes.
Collapse
Affiliation(s)
- Lexuan Lin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Fang He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Xu Jin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Xiaoru Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Yue Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Di Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Jingwei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Lingyue Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Haoze Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Xu Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Qimei Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Yitong Zhao
- Haihe Laboratory of Cell Ecosystem, Tianjin Medical University, Tianjin, China
| | - Jing Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Jinfa Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
9
|
Yu Y, Yu X, Pan B, Chan HM, Kaniskan HÜ, Jin J, Cai L, Wang GG. Pharmacologic degradation of WDR5 suppresses oncogenic activities of SS18::SSX and provides a therapeutic of synovial sarcoma. SCIENCE ADVANCES 2025; 11:eads7876. [PMID: 40267190 PMCID: PMC12017321 DOI: 10.1126/sciadv.ads7876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/19/2025] [Indexed: 04/25/2025]
Abstract
Cancer-causing aberrations recurrently target the chromatic-regulatory factors, leading to epigenetic dysregulation. Almost all patients with synovial sarcoma (SS) carry a characteristic gene fusion, SS18::SSX, which produces a disease-specific oncoprotein that is incorporated into the switch/sucrose non-fermentable (SWI/SNF) chromatin-remodeling complexes and profoundly alters their functionalities. Targeting epigenetic dependency in cancers holds promise for improving current treatment. Leveraging on cancer cell dependency dataset, pharmacological tools, and genomic profiling, we find WDR5, a factor critical for depositing histone H3 lysine 4 (H3K4) methylation, to be an unexplored vulnerability in SS. Mechanistically, WDR5 and SS18::SSX interact and colocalize at oncogenes where WDR5 promotes H3K4 methylation and the chromatin association of SS18::SSX-containing chromatin-remodeling complexes. WDR5 degradation by proteolysis-targeting chimera (PROTAC) not only suppresses the SS18::SSX-related oncogenic programs but additionally causes the ribosomal protein deregulations leading to p53 activation. WDR5-targeted PROTAC suppresses SS growth in vitro and in vivo, providing a promising strategy for the SS treatment.
Collapse
Affiliation(s)
- Yao Yu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xufen Yu
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bo Pan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ho Man Chan
- Research and Early Development, Oncology R&D, AstraZeneca, Waltham, MA 02451, USA
| | - H. Ümit Kaniskan
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ling Cai
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gang Greg Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
10
|
Frerich C, Li P, Raess PW, Dunlap J, Lachowiez C, Solis-Ruiz J, Press R, Long N, Swords RT, Wiszniewska J, Fan G, Xie W. Landscape of somatic mutations and clonal evolution in NUP98-rearranged adult acute myeloid leukaemia. Br J Haematol 2025; 206:1097-1102. [PMID: 39701595 DOI: 10.1111/bjh.19962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Acute myeloid leukaemia with NUP98 rearrangement (AML-NUP98) has been previously described in paediatric patients, and the clinical significance in adult AML patients remains largely unexplored. In this study, we identified specific partner fusion genes and examined somatic co-mutations and clonal evolution longitudinally in adult AML-NUP98 patients. Our comprehensive analysis provides an understanding of NUP98 rearrangement and co-mutations influencing clonal evolution and disease progression and offers valuable insights into potential therapeutic strategies. Further multiple centre studies are needed to investigate this entity in adult patients and improve treatment strategy.
Collapse
Affiliation(s)
- Candace Frerich
- Department of Pathology and Laboratory, Oregon Health & Science University, Portland, Oregon, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Peng Li
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Philipp W Raess
- Department of Pathology and Laboratory, Oregon Health & Science University, Portland, Oregon, USA
| | - Jennifer Dunlap
- Department of Pathology and Laboratory, Oregon Health & Science University, Portland, Oregon, USA
| | - Curtis Lachowiez
- Department of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Jose Solis-Ruiz
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Richard Press
- Department of Pathology and Laboratory, Oregon Health & Science University, Portland, Oregon, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Nicola Long
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Ronan T Swords
- Department of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Joanna Wiszniewska
- Department of Pathology and Laboratory, Oregon Health & Science University, Portland, Oregon, USA
| | - Guang Fan
- Department of Pathology and Laboratory, Oregon Health & Science University, Portland, Oregon, USA
| | - Wei Xie
- Department of Pathology and Laboratory, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
11
|
Xu J, Du W. HoxBlinc: a key driver of chromatin dynamics in NUP98 fusion-driven leukemia. J Clin Invest 2025; 135:e191355. [PMID: 40166939 PMCID: PMC11957688 DOI: 10.1172/jci191355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Nucleoporin 98 (NUP98) fusion oncogenes are known to promote aggressive pediatric leukemia by disrupting chromatin structure and modulating the expression of homeobox (HOX) genes, yet the precise molecular events are unclear. In this issue of the JCI, K. Hamamoto et al. explore the mechanistic underpinnings of NUP98 fusion-driven pediatric leukemia, with a focus on aberrant activation of the Hoxb-associated long, noncoding RNA (lncRNA) HoxBlinc. The authors provide compelling evidence that HoxBlinc plays a central role in the oncogenic transformation associated with NUP98 fusion protein. The study underscores a CTCF-independent role of HoxBlinc in the regulation of topologically associated domains (TADs) and chromatin accessibility, which has not been fully appreciated in previous research on the NUP98 fusion oncogenes. The discovery of HoxBlinc lncRNA as a downstream regulator of NUP98 fusion oncoproteins offers a potential target for therapeutic intervention in pediatric leukemia.
Collapse
Affiliation(s)
- Jian Xu
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Philadelphia, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Wei Du
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Philadelphia, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Gagnon MF, Tonk SS, Carcamo B, Bustamante D, Stein M, Johnson SH, Vasmatzis G, Zepeda-Mendoza CJ, Greipp PT, Xu X, Ketterling RP, Peterson JF, Wang W, Liu YJ, Tonk V, Tsuchiya K, Chavali S, Baughn LB. False positive NUP98 fluorescence in situ hybridization rearrangements in B-acute lymphoblastic leukemia. Cancer Genet 2025; 292-293:57-64. [PMID: 39892372 DOI: 10.1016/j.cancergen.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Gene fusions involving NUP98 have been reported in several hematologic malignancies yet have been very rarely reported in B-acute lymphoblastic leukemia (B-ALL). Two cases of B-ALL for which chromosome banding analysis (CBA) and fluorescence in situ hybridization (FISH) suggested apparent NUP98 rearrangements were further investigated with next-generation sequencing-based methodologies to verify the findings obtained with traditional cytogenetic methodologies. In the first case, CBA revealed a hyperdiploid karyotype with multiple structural abnormalities including additional material of unknown origin at 11p15; subsequent break-apart probe (BAP) FISH for NUP98 demonstrated 2 intact fusion signals and a single separate 5'NUP98 signal. However, whole-genome sequencing found no evidence of a NUP98 gene fusion. The results obtained with conventional cytogenetic methodologies were in fact attributable to structural variants (SV) with breakpoints not within NUP98 but within the 5'NUP98 BAP probe-binding sequence. In the second case, CBA revealed several structural and numeric abnormalities including a complex translocation between chromosomes 11 (at 11p15.4) and 19 (at 19p13.3) and an insertion of unknown material at 11p15.4. BAP FISH demonstrated a typical FISH signal pattern consistent with an apparent NUP98 rearrangement. However, no evidence of a NUP98 fusion was found on RNA sequencing. In conclusion, the two cases thus presented with clinical false positive NUP98 rearrangements by FISH. In the clinical laboratory, SVs in the vicinity of genes involved in recurrent rearrangements in hematologic malignancies may result in misleading results with conventional chromosome methodologies. This may preclude an accurate definition of the genetic attributes of malignancies with ensuing impacts on risk stratification and management. Higher-resolution testing methodologies such as whole-genome sequencing and RNA sequencing may be helpful in resolving unexpected results with conventional chromosome methodologies and enhancing the accuracy of genetic characterization of hematological malignancies in the clinical laboratory.
Collapse
Affiliation(s)
- Marie-France Gagnon
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Sahil S Tonk
- Department of Pediatrics-Genetics and Cytogenomics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Benjamin Carcamo
- Department of Pediatrics, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Daniel Bustamante
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Mariam Stein
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Sarah H Johnson
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - George Vasmatzis
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Cinthya J Zepeda-Mendoza
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Patricia T Greipp
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Xinjie Xu
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rhett P Ketterling
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jess F Peterson
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Wenjing Wang
- Department of Laboratory Medicine and Pathology, Clinical Genomics Laboratory, University of Washington, Seattle, WA, USA
| | - Yajuan J Liu
- Department of Laboratory Medicine and Pathology, Clinical Genomics Laboratory, University of Washington, Seattle, WA, USA
| | - Vijay Tonk
- Department of Pediatrics-Genetics and Cytogenomics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Karen Tsuchiya
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Santosh Chavali
- Department of Pediatrics-Genetics and Cytogenomics, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Linda B Baughn
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
13
|
Sabari BR, Hyman AA, Hnisz D. Functional specificity in biomolecular condensates revealed by genetic complementation. Nat Rev Genet 2025; 26:279-290. [PMID: 39433596 PMCID: PMC12186871 DOI: 10.1038/s41576-024-00780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 10/23/2024]
Abstract
Biomolecular condensates are thought to create subcellular microenvironments that regulate specific biochemical activities. Extensive in vitro work has helped link condensate formation to a wide range of cellular processes, including gene expression, nuclear transport, signalling and stress responses. However, testing the relationship between condensate formation and function in cells is more challenging. In particular, the extent to which the cellular functions of condensates depend on the nature of the molecular interactions through which the condensates form is a major outstanding question. Here, we review results from recent genetic complementation experiments in cells, and highlight how genetic complementation provides important insights into cellular functions and functional specificity of biomolecular condensates. Combined with observations from human genetic disease, these experiments suggest that diverse condensate-promoting regions within cellular proteins confer different condensate compositions, biophysical properties and functions.
Collapse
Affiliation(s)
- Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Denes Hnisz
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
14
|
Carraway HE, Nakitandwe J, Cacovean A, Ma Y, Munneke B, Waghmare G, Mandap C, Ahmed U, Kowalczyk N, Butler T, Morris SW. Complete remission of NUP98 fusion-positive acute myeloid leukemia with the covalent menin inhibitor BMF-219, icovamenib. Haematologica 2025; 110:1041-1046. [PMID: 39633542 PMCID: PMC11959225 DOI: 10.3324/haematol.2024.286537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Affiliation(s)
- Hetty E Carraway
- Department of Hematology and Medical Oncology, Taussig Cancer Center Institute, Cleveland Clinic, Cleveland, OH.
| | - Joy Nakitandwe
- Department of Pathology and Laboratory Medicine, Diagnostics Institute, Cleveland Clinic, Cleveland OH
| | | | - Yan Ma
- Biomea Fusion, Inc., Redwood City, CA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Yang K, Yang B, Zhou Y, Huang Q, Yin X. Promising activity of Selinexor in the treatment of a patient with refractory NUP98-NSD1+/FLT3-ITD + acute myeloid leukemia. Ann Hematol 2025; 104:2545-2549. [PMID: 40100393 PMCID: PMC12053520 DOI: 10.1007/s00277-025-06312-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
Nucleoporin 98 (NUP98) fusion oncoproteins are associated with various hematologic malignancies. Acute myeloid leukemia (AML) with NUP98-NSD1 typically co-occurs with FLT3-ITD mutations, exhibiting poor initial responses to traditional chemotherapy. This case report describes a relapsed and refractory AML case co-expressing NUP98/NSD1 and FLT3/ITD after matched sibling haplo-identical allogeneic hematopoietic stem cell transplantation, achieving molecular remission with a salvage therapy combining selinexor, venetoclax, and azacitidine. To our knowledge, this is the first report demonstrating the effectiveness of this combination therapy for relapsed/refractory NUP98-NSD1+/FLT3-ITD + AML. This report highlights the potential synergy between selinexor and established AML therapies, suggesting a promising approach to improve outcomes for refractory AML patients.
Collapse
Affiliation(s)
- Kun Yang
- Department of Hematology, Zigong First People's Hospital, Zigong, China
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Beibei Yang
- Department of Hematology, The 923rd Hospital of the Joint Logistics Support Force of the People's Liberation Army, Nanning, Guangxi, China
| | - Yali Zhou
- Department of Hematology, The 923rd Hospital of the Joint Logistics Support Force of the People's Liberation Army, Nanning, Guangxi, China
| | - Qiuying Huang
- Department of Hematology, The 923rd Hospital of the Joint Logistics Support Force of the People's Liberation Army, Nanning, Guangxi, China
| | - Xiaolin Yin
- Department of Hematology, The 923rd Hospital of the Joint Logistics Support Force of the People's Liberation Army, Nanning, Guangxi, China.
| |
Collapse
|
16
|
Xiong RJ, Tang HX, Yin TT, Pan HY, Jin RM. From low remission to hope: the efficacy of targeted therapies in NUP98-R positive pediatric acute myeloid leukemia. World J Pediatr 2025; 21:266-273. [PMID: 40016600 PMCID: PMC11958374 DOI: 10.1007/s12519-025-00875-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/02/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Treating pediatric acute myeloid leukemia (AML) with NUP98 rearrangement (NUP98-R) is challenging. Standard chemotherapy results in low remission rates. This study aimed to evaluate different induction regimens and explore alternative therapies to improve outcomes. METHODS This retrospective study included 111 pediatric patients with AML treated at our institution from March 2012 to March 2023. Patients were classified into two groups: NUP98-R-positive (n = 10) and NUP98-R-negative (n = 101). We compared their clinical characteristics, treatment responses, and prognoses. Additionally, we presented three cases of NUP98-R-positive patients to elaborate on the role of targeted therapies during induction in treatment outcomes and prognosis. RESULTS Patients with NUP98-R fusion genes had a complete remission (CR) rate of 20% after the first induction, which was significantly lower than the 64.3% reported in those without NUP98-R fusion genes (P < 0.05). The 3-year event-free survival (EFS) rate was also lower, with only 30% for NUP98-R patients and 55.3% for non-NUP98-R patients (P < 0.05). The prognosis of NUP98-R patients improved with targeted therapies during induction. For example, Patient 1 achieved CR with FLT3 and BCL-2 inhibitors plus conventional chemotherapy. Patient 2, who was treated with a CDK6 inhibitor, a BCL-2 inhibitor, azacitidine, and an FLT3 inhibitor, also achieved CR and underwent successful stem cell transplantation. Conversely, Patient 3, who received only standard chemotherapy, did not achieve remission and died from a severe infection. CONCLUSIONS This study demonstrated that using targeted drugs for the induction in NUP98-R pediatric AML improved treatment outcomes. BCL-2, FLT3, and CDK6 inhibitors available at our institution are promising options for this phase of treatment.
Collapse
Affiliation(s)
- Run-Ji Xiong
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, 430022, China
| | - Hong-Xia Tang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, 430022, China
| | - Tian-Tian Yin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, 430022, China
| | - Hui-Yi Pan
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, 430022, China
| | - Run-Ming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
17
|
Ahn JH, Guo Y, Lyons H, Mackintosh SG, Lau BK, Edmondson RD, Byrum SD, Storey AJ, Tackett AJ, Cai L, Sabari BR, Wang GG. The phenylalanine-and-glycine repeats of NUP98 oncofusions form condensates that selectively partition transcriptional coactivators. Mol Cell 2025; 85:708-725.e9. [PMID: 39922194 DOI: 10.1016/j.molcel.2024.12.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/21/2024] [Accepted: 12/30/2024] [Indexed: 02/10/2025]
Abstract
Recurrent cancer-causing fusions of NUP98 produce higher-order assemblies known as condensates. How NUP98 oncofusion-driven condensates activate oncogenes remains poorly understood. Here, we investigate NUP98-PHF23, a leukemogenic chimera of the disordered phenylalanine-and-glycine (FG)-repeat-rich region of NUP98 and the H3K4me3/2-binding plant homeodomain (PHD) finger domain of PHF23. Our integrated analyses using mutagenesis, proteomics, genomics, and condensate reconstitution demonstrate that the PHD domain targets condensate to the H3K4me3/2-demarcated developmental genes, while FG repeats determine the condensate composition and gene activation. FG repeats are necessary to form condensates that partition a specific set of transcriptional regulators, notably the KMT2/MLL H3K4 methyltransferases, histone acetyltransferases, and BRD4. FG repeats are sufficient to partition transcriptional regulators and activate a reporter when tethered to a genomic locus. NUP98-PHF23 assembles the chromatin-bound condensates that partition multiple positive regulators, initiating a feedforward loop of reading-and-writing the active histone modifications. This network of interactions enforces an open chromatin landscape at proto-oncogenes, thereby driving cancerous transcriptional programs.
Collapse
Affiliation(s)
- Jeong Hyun Ahn
- Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Yiran Guo
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Heankel Lyons
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Benjamin K Lau
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ricky D Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ling Cai
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Gang Greg Wang
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
18
|
Li J, Liu S, Kim S, Goell J, Drum Z, Flores J, Ma A, Mahata B, Escobar M, Raterink A, Ahn JH, Terán E, Guerra-Resendez R, Zhou Y, Yu B, Diehl M, Wang GG, Gustavsson AK, Phanstiel D, Hilton I. Biomolecular condensation of human IDRs initiates endogenous transcription via intrachromosomal looping or high-density promoter localization. Nucleic Acids Res 2025; 53:gkaf056. [PMID: 39933697 PMCID: PMC11811730 DOI: 10.1093/nar/gkaf056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/02/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Protein intrinsically disordered regions (IDRs) are critical gene-regulatory components and aberrant fusions between IDRs and DNA-binding/chromatin-associating domains cause diverse human cancers. Despite this importance, how IDRs influence gene expression, and how aberrant IDR fusion proteins provoke oncogenesis, remains incompletely understood. Here we develop a series of synthetic dCas9-IDR fusions to establish that locus-specific recruitment of IDRs can be sufficient to stimulate endogenous gene expression. Using dCas9 fused to the paradigmatic leukemogenic NUP98 IDR, we also demonstrate that IDRs can activate transcription via localized biomolecular condensation and in a manner that is dependent upon overall IDR concentration, local binding density, and amino acid composition. To better clarify the oncogenic role of IDRs, we construct clinically observed NUP98 IDR fusions and show that, while generally non-overlapping, oncogenic NUP98-IDR fusions convergently drive a core leukemogenic gene expression program in donor-derived human hematopoietic stem cells. Interestingly, we find that this leukemic program arises through differing mechanistic routes based upon IDR fusion partner; either distributed intragenic binding and intrachromosomal looping, or dense binding at promoters. Altogether, our studies clarify the gene-regulatory roles of IDRs and, for the NUP98 IDR, connect this capacity to pathological cellular programs, creating potential opportunities for generalized and mechanistically tailored therapies.
Collapse
Affiliation(s)
- Jing Li
- Department of Bioengineering, Rice University, Houston, TX, 77030, United States
| | - Shizhe Liu
- Department of BioSciences, Rice University, Houston, TX, 77030, United States
| | - Sunghwan Kim
- Department of Bioengineering, Rice University, Houston, TX, 77030, United States
| | - Jacob Goell
- Department of Bioengineering, Rice University, Houston, TX, 77030, United States
| | - Zachary Allen Drum
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, United States
| | - John Patrick Flores
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, United States
| | - Alex J Ma
- Department of Bioengineering, Rice University, Houston, TX, 77030, United States
| | - Barun Mahata
- Department of Bioengineering, Rice University, Houston, TX, 77030, United States
| | - Mario Escobar
- Department of Bioengineering, Rice University, Houston, TX, 77030, United States
| | - Alex Raterink
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, 77030, United States
| | - Jeong Hyun Ahn
- Lineberger Comprehensive Cancer Center and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, United States
| | - Erik R Terán
- Department of BioSciences, Rice University, Houston, TX, 77030, United States
| | | | - Yuhao Zhou
- Department of Bioengineering, Rice University, Houston, TX, 77030, United States
| | - Bo Yu
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Michael R Diehl
- Department of Bioengineering, Rice University, Houston, TX, 77030, United States
- Department of Chemistry, Rice University, Houston, TX, 77030, United States
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, United States
- Department of Pharmacology and Cancer Biology and Duke Cancer Institute, Duke University, Durham, NC, 27710, United States
| | - Anna-Karin Gustavsson
- Department of BioSciences, Rice University, Houston, TX, 77030, United States
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, 77030, United States
- Department of Chemistry, Rice University, Houston, TX, 77030, United States
| | - Douglas H Phanstiel
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, United States
| | - Isaac B Hilton
- Department of Bioengineering, Rice University, Houston, TX, 77030, United States
- Department of BioSciences, Rice University, Houston, TX, 77030, United States
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, 77030, United States
| |
Collapse
|
19
|
Inamura J, Taketani T, Mochida M, Goto T, Suzuki R, Igarashi S, Tsukada N, Yamamoto M, Shindo M, Sato K. Acute myeloid leukemia with NUP98::RARG rearrangement: a case report and review of the relevant literature. Int J Hematol 2025; 121:265-271. [PMID: 39630349 DOI: 10.1007/s12185-024-03881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 02/01/2025]
Abstract
We herein report a rare case of acute myeloid leukemia (AML) with t(11;12)(p15;q13) and NUP98::RARG, which seems to be involved in the development of AML. The morphological features were similar to those of classic acute promyelocytic leukemia (APL), but unlike classic APL, this leukemia was resistant to treatment with all-trans retinoic acid (ATRA). We decided to use standard chemotherapy for AML with monitoring of minimal residual disease (MRD) by qualitative reverse transcriptase-polymerase chain reaction (RT-PCR) analysis for NUP98::RARG mRNA. Although MRD disappeared after induction chemotherapy, it later reappeared, and hematological relapse occurred during subsequent chemotherapies. The patient received haploidentical hematopoietic stem cell transplantation while not in remission and achieved a second molecular remission. However, relapse occurred 4 months after transplantation. The specific mechanism of ATRA resistance in this unique case of AML remains unclear, and no standard treatment has been determined. This is the first case report of AML with NUP98::RARG rearrangement in Japan. Qualitative RT-PCR analysis for NUP98::RARG mRNA was helpful for the accurate diagnosis and evaluation of MRD to choose an adequate treatment for this type of AML.
Collapse
MESH Headings
- Humans
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 12/genetics
- Gene Rearrangement
- Hematopoietic Stem Cell Transplantation
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/therapy
- Neoplasm, Residual
- Nuclear Pore Complex Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Receptors, Retinoic Acid/genetics
- Translocation, Genetic
- Tretinoin/pharmacology
- Tretinoin/therapeutic use
Collapse
Affiliation(s)
- Junki Inamura
- Department of Hematology/Oncology, Asahikawa Kosei Hospital, Asahikawa, Japan.
| | - Takeshi Taketani
- Department of Pediatrics, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Miho Mochida
- Regenerative Medicine Center, Shimane University Hospital, Izumo, Japan
| | - Tsukimi Goto
- Clinical Laboratory Division, Shimane University Hospital, Izumo, Japan
| | - Ritsuro Suzuki
- Department of Hematology, Shimane University Hospital, Izumo, Japan
| | - Sho Igarashi
- Department of Hematology/Oncology, Asahikawa Kosei Hospital, Asahikawa, Japan
| | - Nodoka Tsukada
- Department of Hematology/Oncology, Asahikawa Kosei Hospital, Asahikawa, Japan
| | - Masayo Yamamoto
- Division of Hematology, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Motohiro Shindo
- Division of Hematology, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kazuya Sato
- Department of Hematology/Oncology, Asahikawa Kosei Hospital, Asahikawa, Japan
| |
Collapse
|
20
|
Hamamoto K, Zhu G, Lai Q, Lesperance J, Luo H, Li Y, Nigam N, Sharma A, Yang FC, Claxton D, Qiu Y, Aplan PD, Xu M, Huang S. HoxBlinc lncRNA reprograms CTCF-independent TADs to drive leukemic transcription and HSC dysregulation in NUP98-rearranged leukemia. J Clin Invest 2025; 135:e184743. [PMID: 39883527 PMCID: PMC11957699 DOI: 10.1172/jci184743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/24/2025] [Indexed: 01/31/2025] Open
Abstract
Although nucleoporin 98 (NUP98) fusion oncogenes often drive aggressive pediatric leukemia by altering chromatin structure and expression of homeobox (HOX) genes, underlying mechanisms remain elusive. Here, we report that the Hoxb-associated lncRNA HoxBlinc was aberrantly activated in NUP98-PHF23 fusion-driven leukemias. HoxBlinc chromatin occupancies led to elevated mixed-lineage leukemia 1 (MLL1) recruitment and aberrant homeotic topologically associated domains (TADs) that enhanced chromatin accessibilities and activated homeotic/hematopoietic oncogenes. HoxBlinc depletion in NUP98 fusion-driven leukemia impaired HoxBlinc binding, TAD integrity, MLL1 recruitment, and the MLL1-driven chromatin signature within HoxBlinc-defined TADs in a CCCTC-binding factor-independent (CTCF-independent) manner, leading to inhibited homeotic/leukemic oncogenes that mitigated NUP98 fusion-driven leukemogenesis in xenografted mouse models. Mechanistically, HoxBlinc overexpression in the mouse hematopoietic compartment induced leukemias resembling those in NUP98-PHF23-knockin (KI) mice via enhancement of HoxBlinc chromatin binding, TAD formation, and Hox gene aberration, leading to expansion of hematopoietic stem and progenitor cell and myeloid/lymphoid cell subpopulations. Thus, our studies reveal a CTCF-independent role of HoxBlinc in leukemic TAD organization and oncogene-regulatory networks.
Collapse
Affiliation(s)
- Karina Hamamoto
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Ganqian Zhu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Qian Lai
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Julia Lesperance
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Huacheng Luo
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Ying Li
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Nupur Nigam
- Genetics Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Arati Sharma
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Feng-Chun Yang
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - David Claxton
- Division of Hematology/Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Penn State Cancer Institute, Hershey, Pennsylvania, USA
| | - Yi Qiu
- Penn State Cancer Institute, Hershey, Pennsylvania, USA
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Peter D. Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Mingjiang Xu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Suming Huang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Penn State Cancer Institute, Hershey, Pennsylvania, USA
| |
Collapse
|
21
|
Kodali S, Sands CM, Guo L, Huang Y, Di Stefano B. Biomolecular condensates in immune cell fate. Nat Rev Immunol 2025:10.1038/s41577-025-01130-z. [PMID: 39875604 DOI: 10.1038/s41577-025-01130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 01/30/2025]
Abstract
Fate decisions during immune cell development require temporally precise changes in gene expression. Evidence suggests that the dynamic modulation of these changes is associated with the formation of diverse, membrane-less nucleoprotein assemblies that are termed biomolecular condensates. These condensates are thought to orchestrate fate-determining transcriptional and post-transcriptional processes by locally and transiently concentrating DNA or RNA molecules alongside their regulatory proteins. Findings have established a link between condensate formation and the gene regulatory networks that ensure the proper development of immune cells. Conversely, condensate dysregulation has been linked to impaired immune cell fates, including ageing and malignant transformation. This Review explores the putative mechanistic links between condensate assembly and the gene regulatory frameworks that govern normal and pathological development in the immune system.
Collapse
Affiliation(s)
- Srikanth Kodali
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Caroline M Sands
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Lei Guo
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA
| | - Yun Huang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA
| | - Bruno Di Stefano
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
22
|
Umeda M, Hiltenbrand R, Michmerhuizen NL, Barajas JM, Thomas ME, Arthur B, Walsh MP, Song G, Ma J, Westover T, Kumar A, Pölönen P, Mecucci C, Di Giacomo D, Locatelli F, Masetti R, Bertuccio SN, Pigazzi M, Pruett-Miller SM, Pounds S, Rubnitz J, Inaba H, Papadopoulos KP, Wick MJ, Iacobucci I, Mullighan CG, Klco JM. Fusion oncoproteins and cooperating mutations define disease phenotypes in NUP98-rearranged leukemia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.21.25320683. [PMID: 39974131 PMCID: PMC11838931 DOI: 10.1101/2025.01.21.25320683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Leukemias with NUP98 rearrangements exhibit heterogeneous phenotypes correlated to fusion partners, whereas the mechanism responsible for this heterogeneity is poorly understood. Through genome-wide mutational and transcriptional analyses of 177 NUP98-rearranged leukemias, we show that cooperating alterations are associated with differentiation status even among leukemias sharing the same NUP98 fusions, such as NUP98::KDM5A acute megakaryocytic leukemia with RB1 loss or T-cell acute lymphoblastic leukemia with NOTCH1 mutations. CUT&RUN profiling reveals that NUP98 fusion oncoproteins directly regulate differentiation-related genes, with binding patterns also influenced by differentiation stage. Using in vitro models, we show RB1 loss cooperates with NUP98::KDM5A by blocking terminal differentiation toward platelets and expanding megakaryocyte-like cells, whereas WT1 frameshifts skew differentiation toward dormant lympho-myeloid primed progenitor cells and cycling granulocyte-monocyte progenitor cells. NUP98::KDM5A models with RB1 or WT1 alterations have different sensitivities to menin inhibition, suggesting cellular differentiation stage-specific resistant mechanism against menin inhibitors with clinical implications for NUP98-rearranged leukemia.
Collapse
Affiliation(s)
- Masayuki Umeda
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Ryan Hiltenbrand
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | | | - Juan M. Barajas
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Melvin E. Thomas
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Bright Arthur
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Michael P Walsh
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Guangchun Song
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Jing Ma
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Tamara Westover
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Amit Kumar
- Center of Excellence for Leukemia Studies (CELS), St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Petri Pölönen
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Cristina Mecucci
- Department of Medicine and Surgery, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Danika Di Giacomo
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Franco Locatelli
- Department of Onco-Haematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Riccardo Masetti
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | - Martina Pigazzi
- Department of Women’s and Children’s Health, Onco-hematology lab and clinic, University of Padova, Padova, Italy
| | - Shondra M. Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, US
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Jeffrey Rubnitz
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | | | - Michael J. Wick
- XenoSTART/ The START Center for Cancer Research, San Antonio, TX, US
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
- Center of Excellence for Leukemia Studies (CELS), St. Jude Children’s Research Hospital, Memphis, TN, US
| | - Jeffery M. Klco
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, US
- Center of Excellence for Leukemia Studies (CELS), St. Jude Children’s Research Hospital, Memphis, TN, US
| |
Collapse
|
23
|
Cierpicki T, Grembecka J. Targeting Protein-Protein Interactions in Hematologic Malignancies. ANNUAL REVIEW OF PATHOLOGY 2025; 20:275-301. [PMID: 39854187 DOI: 10.1146/annurev-pathmechdis-031521-033231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Over the last two decades, there have been extensive efforts to develop small-molecule inhibitors of protein-protein interactions (PPIs) as novel therapeutics for cancer, including hematologic malignancies. Despite the numerous challenges associated with developing PPI inhibitors, a significant number of them have advanced to clinical studies in hematologic patients in recent years. The US Food and Drug Administration approval of the very first PPI inhibitor, venetoclax, demonstrated the real clinical value of blocking protein-protein interfaces. In this review, we discuss the most successful examples of PPI inhibitors that have reached clinical studies in patients with hematologic malignancies. We also describe the challenges of blocking PPIs with small molecules, clinical resistance to such compounds, and the lessons learned from the development of successful PPI inhibitors. Overall, this review highlights the remarkable success and substantial promise of blocking PPIs in hematologic malignancies.
Collapse
Affiliation(s)
- Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA; ,
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA; ,
| |
Collapse
|
24
|
Valkama A, Vorimo S, Tervasmäki A, Räsänen H, Savolainen ER, Pylkäs K, Mantere T. Structural Variant Analysis of Complex Karyotype Myelodysplastic Neoplasia Through Optical Genome Mapping. Genes Chromosomes Cancer 2025; 64:e70024. [PMID: 39865351 DOI: 10.1002/gcc.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/28/2025] Open
Abstract
Myelodysplastic neoplasia with complex karyotype (CK-MDS) poses significant clinical challenges and is associated with poor survival. Detection of structural variants (SVs) is crucial for diagnosis, prognostication, and treatment decision-making in MDS. However, the current standard-of-care (SOC) cytogenetic testing, relying on karyotyping, often yields ambiguous results in cases with CK. Here, SV detection by novel optical genome mapping (OGM) technique was explored in 15 CK-MDS cases, which collectively harbored 85 chromosomes with abnormalities reported by SOC. Additionally, OGM was utilized in the discovery of novel SVs. Altogether, OGM detected corresponding > 5 Mbp alterations for 73 out of 85 SOC reported abnormalities, resulting in an 86% concordance rate. OGM provided further specification of these abnormalities, revealing that 64% of the altered chromosomes were affected by multiple SVs or chromoanagenesis. Prominently, only 5% of missing chromosomes reported by SOC were true monosomies. In addition, OGM detected alterations in chromosomes not reported as abnormal by karyotyping in 93% of cases and provided clinically relevant gene-level information, such as SVs in TP53, MECOM, NUP98, IKZF1, and ETV6. Analysis of novel SVs revealed two previously unreported gene-fusions (SCFD1::ZNF592 and VPS8::LRBA), both confirmed by transcriptome sequencing. Furthermore, the repositioning of CCDC26 (8q24.21) was identified as a potential cause of inappropriate gene activation in two cases, affecting MECOM and SOX7, respectively. This study shows that OGM can significantly enhance the diagnostic analysis of SVs in CK-MDS and highlights the utility of OGM identifying novel SVs in complex cancer genomes.
Collapse
Affiliation(s)
- Andriana Valkama
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Medical Research Center Oulu and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sandra Vorimo
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Medical Research Center Oulu and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Anna Tervasmäki
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Medical Research Center Oulu and Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | | | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Medical Research Center Oulu and Biocenter Oulu, University of Oulu, Oulu, Finland
- Northern Finland Laboratory Centre Nordlab, Oulu, Finland
| | - Tuomo Mantere
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Medical Research Center Oulu and Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
25
|
Okuchi I, Nishimura A, Kamiya T, Sasaki M, Yamashita M, Hoshino A, Kajiwara M, Isoda T, Kanegane H, Morio T, Takagi M. Monitoring measurable residual disease in NUP98::NSD1-positive acute myeloid leukemia. Pediatr Int 2025; 67:e15859. [PMID: 39902715 DOI: 10.1111/ped.15859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/09/2024] [Accepted: 08/12/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND NUP98 fusion genes are detected in acute myeloid leukemia (AML) subgroups that have a poor prognosis. An appropriate therapeutic approach should therefore be established. Treatment intensification according to the minimal residual disease (MRD) level can lead to a better prognosis in patients with acute lymphoblastic leukemia (ALL). However, the importance of MRD monitoring in the patient with NUP98-positive AML is unclear. METHODS This study aimed to develop a digital droplet polymerase chain reaction (ddPCR) method for monitoring NUP98::NSD1-positive leukemic cells and to report its utility compared with the results of NUP98 split fluorescence in situ hybridization (FISH). RESULTS The results of NUP98::NSD1 ddPCR correlated with those of NUP98 split FISH and were more sensitive than NUP98 split FISH. The sensitivity of ddPCR was 0.001%, equivalent to 1 in 1 × 105 cells. The MRD level of NUP98::NSD1, measured by ddPCR, correlated well with relapse. CONCLUSION The use of ddPCR to target NUP98::NSD1 chimera mRNA for MRD monitoring would be beneficial for NUP98::NSD1 AML treatment.
Collapse
Affiliation(s)
- Ikuo Okuchi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Bunkyo-Ku, Tokyo, Japan
| | - Akira Nishimura
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Bunkyo-Ku, Tokyo, Japan
| | - Takahiro Kamiya
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Bunkyo-Ku, Tokyo, Japan
| | - Makiko Sasaki
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Bunkyo-Ku, Tokyo, Japan
| | - Motoi Yamashita
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Bunkyo-Ku, Tokyo, Japan
| | - Akihiro Hoshino
- Department of Child Health and Development, Tokyo Medical and Dental University (TMDU), Bunkyo-Ku, Tokyo, Japan
| | - Michiko Kajiwara
- Department of Transfusion Medicine and Cell Therapy, Tokyo Medical and Dental University Hospital, Bunkyo-Ku, Tokyo, Japan
| | - Takeshi Isoda
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Bunkyo-Ku, Tokyo, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Tokyo Medical and Dental University (TMDU), Bunkyo-Ku, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Bunkyo-Ku, Tokyo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Bunkyo-Ku, Tokyo, Japan
| |
Collapse
|
26
|
Yan XY, Kang YY, Zhang ZY, Huang P, Yang C, Naranmandura H. Therapeutic approaches targeting oncogenic proteins in myeloid leukemia: challenges and perspectives. Expert Opin Ther Targets 2024; 28:1131-1148. [PMID: 39679536 DOI: 10.1080/14728222.2024.2443577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION Leukemia is typically categorized into myeloid leukemia and lymphoblastic leukemia based on the origins of leukemic cells. Myeloid leukemia is a group of clonal malignancies characterized by the presence of increased immature myeloid cells in both the bone marrow and peripheral blood. Of note, the aberrant expression of specific proteins or the generation of fusion proteins due to chromosomal abnormalities are well established drivers in various forms of myeloid leukemia. Therefore, these oncoproteins represent promising targets for drug development. AREAS COVERED In this review, we comprehensively discussed the pathogenesis of typical leukemia oncoproteins and the current landscape of small molecule drugs targeting these oncogenic proteins. Additionally, we elucidated novel strategies, including proteolysis-targeting chimeras (PROTACs), hyperthermia, and genomic editing, which specifically degrade oncogenic proteins in myeloid malignancies. EXPERT OPINION Although small molecule drugs have significantly improved the prognosis of oncoprotein-driven myeloid leukemia patients, drug resistance due to the mutations in oncoproteins is still a great challenge in the clinic. New approaches such as PROTACs, hyperthermia, and genomic editing are considered promising approaches for the treatment of oncoprotein-driven leukemia, especially for drug-resistant mutants.
Collapse
Affiliation(s)
- Xing Yi Yan
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Yuan Kang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ze Yan Zhang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Huang
- Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Chang Yang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Heikamp EB, Martucci C, Henrich JA, Neel DS, Mahendra-Rajah S, Rice H, Wenge DV, Perner F, Wen Y, Hatton C, Armstrong SA. NUP98 fusion proteins and KMT2A-MENIN antagonize PRC1.1 to drive gene expression in AML. Cell Rep 2024; 43:114901. [PMID: 39475509 PMCID: PMC11780541 DOI: 10.1016/j.celrep.2024.114901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/09/2024] [Accepted: 10/08/2024] [Indexed: 11/09/2024] Open
Abstract
Control of stem cell-associated genes by Trithorax group (TrxG) and Polycomb group (PcG) proteins is frequently misregulated in cancer. In leukemia, oncogenic fusion proteins hijack the TrxG homolog KMT2A and disrupt PcG activity to maintain pro-leukemogenic gene expression, though the mechanisms by which oncofusion proteins antagonize PcG proteins remain unclear. Here, we define the relationship between NUP98 oncofusion proteins and the non-canonical polycomb repressive complex 1.1 (PRC1.1) in leukemia using Menin-KMT2A inhibitors and targeted degradation of NUP98 fusion proteins. Eviction of the NUP98 fusion-Menin-KMT2A complex from chromatin is not sufficient to silence pro-leukemogenic genes. In the absence of PRC1.1, key oncogenes remain transcriptionally active. Transition to a repressed chromatin state requires the accumulation of PRC1.1 and repressive histone modifications. We show that PRC1.1 loss leads to resistance to small-molecule Menin-KMT2A inhibitors in vivo. Therefore, a critical function of oncofusion proteins that hijack Menin-KMT2A activity is antagonizing repressive chromatin complexes.
Collapse
Affiliation(s)
- Emily B Heikamp
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Cynthia Martucci
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Jill A Henrich
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Dana S Neel
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | | | - Hannah Rice
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Daniela V Wenge
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Florian Perner
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Yanhe Wen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Charlie Hatton
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA.
| |
Collapse
|
28
|
Kim N, Choi YJ, Cho H, Jang JE, Lee ST, Song J, Choi JR, Cheong JW, Chung H, Shin S. NUP98 is rearranged in 5.0% of adult East Asian patients with AML. Blood Adv 2024; 8:5122-5125. [PMID: 39158088 PMCID: PMC11460442 DOI: 10.1182/bloodadvances.2024012960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024] Open
Affiliation(s)
- Namsoo Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
| | - Yu Jeong Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
| | - Hyunsoo Cho
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
| | - Ji Eun Jang
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
- Dxome Co Ltd, Seongnam-si, Korea
| | - Jaewoo Song
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
- Dxome Co Ltd, Seongnam-si, Korea
| | - June-Won Cheong
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
| | - Haerim Chung
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
| | - Saeam Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
| |
Collapse
|
29
|
Choi YJ, Lee S, Kim Y, Shin S, Lee KA. POU6F2, a novel fusion partner of NUP98 in acute myeloid leukaemia: A case report. Br J Haematol 2024; 205:1632-1635. [PMID: 39073102 DOI: 10.1111/bjh.19678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Affiliation(s)
- Yu Jeong Choi
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sojin Lee
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yoonjung Kim
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Saeam Shin
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung-A Lee
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Han TW, Portz B, Young RA, Boija A, Klein IA. RNA and condensates: Disease implications and therapeutic opportunities. Cell Chem Biol 2024; 31:1593-1609. [PMID: 39303698 DOI: 10.1016/j.chembiol.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024]
Abstract
Biomolecular condensates are dynamic membraneless organelles that compartmentalize proteins and RNA molecules to regulate key cellular processes. Diverse RNA species exert their effects on the cell by their roles in condensate formation and function. RNA abnormalities such as overexpression, modification, and mislocalization can lead to pathological condensate behaviors that drive various diseases, including cancer, neurological disorders, and infections. Here, we review RNA's role in condensate biology, describe the mechanisms of RNA-induced condensate dysregulation, note the implications for disease pathogenesis, and discuss novel therapeutic strategies. Emerging approaches to targeting RNA within condensates, including small molecules and RNA-based therapies that leverage the unique properties of condensates, may revolutionize treatment for complex diseases.
Collapse
Affiliation(s)
| | | | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ann Boija
- Dewpoint Therapeutics, Boston, MA, USA.
| | | |
Collapse
|
31
|
Xue S, Chen JQ, Wang T, Zhang LN, Chen M, Sun HP, Cao XY. Case report: NUP98::LEDGF fusion gene drives malignant hematological tumor with mixed immunological phenotype. Front Oncol 2024; 14:1396655. [PMID: 39301554 PMCID: PMC11410684 DOI: 10.3389/fonc.2024.1396655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
This is the first report of NUP98::LEDGF positive malignant hematological tumor expressing T cell and myeloid lineage antigens. Patients carrying this fusion gene have a high relapse rate and a poor prognosis, allo-HSCT may be an option to cure this disease. This patient underwent allo-HSCT, a relapse occurred three months post-transplantation. Subsequent screening at our hospital confirmed the presence of the NUP98::LEDGF fusion gene, salvage therapy was administered, followed by a successful second allo-HSCT. Furthermore, we included eight previously reported cases from the literature for analysis and discuss.
Collapse
Affiliation(s)
- Song Xue
- Department of Bone Marrow Transplant, Beijing Lu Daopei Hospital, Beijing, China
| | - Jia-Qi Chen
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Tong Wang
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Li-Na Zhang
- Division of Pathology & Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, China
| | - Man Chen
- Division of Pathology & Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, China
| | - Hui-Peng Sun
- Division of Pathology & Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, China
| | - Xing-Yu Cao
- Department of Bone Marrow Transplant, Hebei Yanda Lu Daopei Hospital, Langfang, China
| |
Collapse
|
32
|
Zhang JY, Chen CR, Qin JY, Shen DY, Liu LX, Song H, Xia T, Xu WQ, Wang Y, Zhu F, Fang MX, Shen HP, Liao C, Dong A, Cao SB, Tang YM, Xu XJ. Targeted gene sequencing and transcriptome sequencing reveal characteristics of NUP98 rearrangement in pediatric acute myeloid leukemia. Eur J Med Res 2024; 29:448. [PMID: 39223643 PMCID: PMC11370121 DOI: 10.1186/s40001-024-02042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND NUP98 rearrangements (NUP98-r) are rare but overrepresented mutations in pediatric acute myeloid leukemia (AML) patients. NUP98-r is often associated with chemotherapy resistance and a particularly poor prognosis. Therefore, characterizing pediatric AML with NUP98-r to identify aberrations is critically important. METHODS Here, we retrospectively analyzed the clinicopathological features, genomic and transcriptomic landscapes, treatments, and outcomes of pediatric patients with AML. RESULTS Nine patients with NUP98-r mutations were identified in our cohort of 142 patients. Ten mutated genes were detected in patients with NUP98-r. The frequency of FLT3-ITD mutations differed significantly between the groups harboring NUP98-r and those without NUP98-r (P = 0.035). Unsupervised hierarchical clustering via RNA sequencing data from 21 AML patients revealed that NUP98-r samples clustered together, strongly suggesting a distinct subtype. Compared with that in the non-NUP98-r fusion and no fusion groups, CMAHP expression was significantly upregulated in the NUP98-r samples (P < 0.001 and P = 0.001, respectively). Multivariate Cox regression analyses demonstrated that patients harboring NUP98-r (P < 0.001) and WT1 mutations (P = 0.030) had worse relapse-free survival, and patients harboring NUP98-r (P < 0.008) presented lower overall survival. CONCLUSIONS These investigations contribute to the understanding of the molecular characteristics, risk stratification, and prognostic evaluation of pediatric AML patients.
Collapse
Affiliation(s)
- Jing-Ying Zhang
- Division/Center of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, 310005, China
- National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Chun-Rong Chen
- Division/Center of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, 310005, China
- National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Jia-Yue Qin
- Department of Medical Affairs, Acornmed Biotechnology Co., Ltd., Beijing, 100176, China
| | - Di-Ying Shen
- Division/Center of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, 310005, China
- National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Li-Xia Liu
- Department of Medical Affairs, Acornmed Biotechnology Co., Ltd., Beijing, 100176, China
| | - Hua Song
- Division/Center of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, 310005, China
- National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Tian Xia
- Division/Center of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, 310005, China
- National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Wei-Qun Xu
- Division/Center of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, 310005, China
- National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Yan Wang
- Division/Center of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, 310005, China
- National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Feng Zhu
- Division/Center of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, 310005, China
- National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Mei-Xin Fang
- Division/Center of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, 310005, China
- National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - He-Ping Shen
- Division/Center of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, 310005, China
- National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Chan Liao
- Division/Center of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, 310005, China
- National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Ao Dong
- National Clinical Research Center for Child Health, Hangzhou, 310005, China
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
| | - Shan-Bo Cao
- Department of Medical Affairs, Acornmed Biotechnology Co., Ltd., Beijing, 100176, China
| | - Yong-Min Tang
- Division/Center of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, 310005, China
- National Clinical Research Center for Child Health, Hangzhou, 310005, China
| | - Xiao-Jun Xu
- Division/Center of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China.
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Hangzhou, 310005, China.
- National Clinical Research Center for Child Health, Hangzhou, 310005, China.
| |
Collapse
|
33
|
Rasouli M, Troester S, Grebien F, Goemans BF, Zwaan CM, Heidenreich O. NUP98 oncofusions in myeloid malignancies: An update on molecular mechanisms and therapeutic opportunities. Hemasphere 2024; 8:e70013. [PMID: 39323480 PMCID: PMC11423334 DOI: 10.1002/hem3.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy with a heterogeneous molecular landscape. In the pediatric context, the NUP98 gene is a frequent target of chromosomal rearrangements that are linked to poor prognosis and unfavorable treatment outcomes in different AML subtypes. The translocations fuse NUP98 to a diverse array of partner genes, resulting in fusion proteins with novel functions. NUP98 fusion oncoproteins induce aberrant biomolecular condensation, abnormal gene expression programs, and re-wired protein interactions which ultimately cause alterations in the cell cycle and changes in cellular structures, all of which contribute to leukemia development. The extent of these effects is steered by the functional domains of the fusion partners and the influence of concomitant somatic mutations. In this review, we discuss the complex characteristics of NUP98 fusion proteins and potential novel therapeutic approaches for NUP98 fusion-driven AML.
Collapse
Affiliation(s)
- Milad Rasouli
- Princess Maxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of Pediatric Hematology/OncologyErasmus MC‐Sophia Children's HospitalRotterdamThe Netherlands
| | - Selina Troester
- Department of Biological Sciences and PathobiologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - Florian Grebien
- Department of Biological Sciences and PathobiologyUniversity of Veterinary Medicine ViennaViennaAustria
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | | | - C. Michel Zwaan
- Princess Maxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of Pediatric Hematology/OncologyErasmus MC‐Sophia Children's HospitalRotterdamThe Netherlands
| | - Olaf Heidenreich
- Princess Maxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of HematologyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
34
|
Larizza L, Colombo EA. Interdependence between Nuclear Pore Gatekeepers and Genome Caretakers: Cues from Genome Instability Syndromes. Int J Mol Sci 2024; 25:9387. [PMID: 39273335 PMCID: PMC11394955 DOI: 10.3390/ijms25179387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
This review starts off with the first germline homozygous variants of the Nucleoporin 98 gene (NUP98) in siblings whose clinical presentation recalls Rothmund-Thomson (RTS) and Werner (WS) syndromes. The progeroid phenotype caused by a gene associated with haematological malignancies and neurodegenerative disorders primed the search for interplay between caretakers involved in genome instability syndromes and Nuclear Pore Complex (NPC) components. In the context of basic information on NPC architecture and functions, we discuss the studies on the interdependence of caretakers and gatekeepers in WS and Hereditary Fibrosing Poikiloderma (POIKTMP), both entering in differential diagnosis with RTS. In WS, the WRN/WRNIP complex interacts with nucleoporins of the Y-complex and NDC1 altering NPC architecture. In POIKTMP, the mutated FAM111B, recruited by the Y-complex's SEC13 and NUP96, interacts with several Nups safeguarding NPC structure. The linkage of both defective caretakers to the NPC highlights the attempt to activate a repair hub at the nuclear periphery to restore the DNA damage. The two separate WS and POIKTMP syndromes are drawn close by the interaction of their damage sensors with the NPC and by the shared hallmark of short fragile telomeres disclosing a major role of both caretakers in telomere maintenance.
Collapse
Affiliation(s)
- Lidia Larizza
- Experimental Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Via Ariosto 13, 20145 Milan, Italy
| | - Elisa Adele Colombo
- Genetica Medica, Dipartimento di Scienze Della Salute, Università Degli Studi di Milano, 20142 Milano, Italy
| |
Collapse
|
35
|
Wang JW, Yu-Li, Yang XG, Xu LH. NUP98::NSD1 and FLT3/ITD co-expression is an independent predictor of poor prognosis in pediatric AML patients. BMC Pediatr 2024; 24:547. [PMID: 39182032 PMCID: PMC11344362 DOI: 10.1186/s12887-024-05007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE Patients who carry NUP98::NSD1 or FLT3/ITD mutations are reported to have poor prognosis. Previous studies have confidently reported that the poor outcome in younger AML patients is owning to dual NUP98::NSD1 and FLT3/ITD positivity, with a high overlap for those two genetic lesions. In this study, we assessed the prognostic value of the presence of both NUP98::NSD1 and FLT3/ITD in pediatric AML patients. METHODS We screened a large cohort of 885 pediatric cases from the COG-National Cancer Institute (NCI) TARGET AML cohort and found 57 AML patients with NUP98 rearrangements. RESULTS The frequency of NUP98 gene fusion was 10.8% in 529 patients. NUP98::NSD1 fusion was the most common NUP98 rearrangement, with a frequency of 59.6%(34 of 57). NUP98::NSD1 -positive patients who carried FLT3/ITD mutations had a decreased CR1 or CR2 rate than those patients carried FLT3/ITD mutation alone (P = 0.0001). Moreover, patients harboring both NUP98::NSD1 fusion and FLT3/ITD mutation exhibited inferior event-free survival (EFS, P < 0.001) and overall survival (OS, P = 0.004) than patients who were dual negative for these two genetic lesions. The presence of only NUP98::NSD1 fusion had no significant impact on EFS or OS. We also found that cases with high FLT3/ITD AR levels ( > = 0.5) with or without NUP98::NSD1 had inferior prognosis. Multivariate analysis demonstrated that the presence of both NUP98::NSD1 and FLT3/ITD was an independent prognostic factors for EFS (hazard ratio: 3.2, P = 0.001) in patients with pediatric AML. However, there was no obvious correlation with OS (hazard ratio: 1.3, P = 0.618). Stem cell transplantation did not improve the survival rate of cases with NUP98 fusion or NUP98::NSD1 AML in terms of EFS or OS. CONCLUSION Presence of both NUP98::NSD1 and FLT3/ITD was found to be an independent factor for dismal prognosis in pediatric AML patients. Notably, lack of FLT3/ITD mutations in NUP98::NSD1 -positive patients did not retain its prognostic value.
Collapse
Affiliation(s)
- Jing-Wen Wang
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-Sen University, Guangzhou, China
| | - Yu-Li
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-Sen University, Guangzhou, China
| | - Xing-Ge Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China.
| | - Lu-Hong Xu
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
36
|
Liu L, Zhao S, Wang L, Xu H, Chen Z, Tu J, Huang J, Jin J, Tong H. Clinical features and prognosis of patients with myeloid neoplasms harboring t(7;11)(p15;p15) translocation: a single-center retrospective study. BMC Cancer 2024; 24:955. [PMID: 39103751 DOI: 10.1186/s12885-024-12679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND For myeloid neoplasms with t(7;11)(p15;p15) translocation, the prognosis is quite dismal. Because these tumors are rare, most occurrences are reported as single cases. Clinical results and optimal treatment approaches remain elusive. This study endeavors to elucidate the clinical implications and prognosis of this cytogenetic aberration. METHODS This study retrospectively analyzed 23 cases of myeloid neoplasm with t(7;11)(p15;p15). Clinicopathological characteristics, genetic alterations, and outcomes were evaluated, and the Kaplan-Meier method was employed to construct survival curves. RESULTS Of these, nine cases were newly diagnosed acute myeloid leukemia (ND AML), seven presented with relapsed refractory AML (R/R AML), four had myelodysplastic syndrome (MDS), two had secondary AML, and one exhibited a mixed germinoma associated with MDS. Patients with t(7;11)(p15;p15) in AML were primarily younger females who preferred subtype M2. Interestingly, these patients had decreased hemoglobin and red blood cell counts, along with markedly elevated levels of lactic dehydrogenase and interleukin-6, and exhibited the expression of CD117. R/R AML patients exhibited a higher likelihood of additional chromosome abnormalities (ACAs) besides t(7;11). WT1 and FLT3-ITD were the most commonly found mutated genes, and 10 of those instances showed evidence of the NUP98::HOXA9 fusion gene. The composite complete remission rate was 66.7% (12/18), while the cumulative graft survival rate was 100% (4/4). However, the survival outcomes were dismal. Interestingly, the median overall survival for R/R AML patients was 4.0 months (95% CI: 1.7-6.4). Additionally, the type of AML diagnosis or the presence of ACAs or molecular prognostic stratification did not significantly influence clinical outcomes (p = 0.066, p = 0.585, p = 0.570, respectively). CONCLUSION Myeloid leukemia with t(7;11) exhibits unique clinical features, cytogenetic properties, and molecular genetic characteristics. These survival outcomes were dismal. R/R AML patients have a limited lifespan. For myeloid patients with t(7;11), targeted therapy or transplantation may be an effective course of treatment.
Collapse
MESH Headings
- Humans
- Translocation, Genetic
- Female
- Male
- Retrospective Studies
- Adult
- Middle Aged
- Prognosis
- Chromosomes, Human, Pair 11/genetics
- Young Adult
- Aged
- Adolescent
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Chromosomes, Human, Pair 7/genetics
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/mortality
- Myelodysplastic Syndromes/therapy
Collapse
Affiliation(s)
- Lin Liu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Hematology Oncology, Diagnosis, and Treatment, Hangzhou, China
| | - Shuqi Zhao
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lu Wang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huan Xu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Hematology Oncology, Diagnosis, and Treatment, Hangzhou, China
| | - Zhimei Chen
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Hematology Oncology, Diagnosis, and Treatment, Hangzhou, China
| | - Jifang Tu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Hematology Oncology, Diagnosis, and Treatment, Hangzhou, China
| | - Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Hematology Oncology, Diagnosis, and Treatment, Hangzhou, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
- Zhejiang Province Key Laboratory of Hematology Oncology, Diagnosis, and Treatment, Hangzhou, China.
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
- Zhejiang Province Key Laboratory of Hematology Oncology, Diagnosis, and Treatment, Hangzhou, China.
| |
Collapse
|
37
|
Miao H, Chen D, Ropa J, Purohit T, Kim E, Sulis ML, Ferrando A, Cierpicki T, Grembecka J. Combination of menin and kinase inhibitors as an effective treatment for leukemia with NUP98 translocations. Leukemia 2024; 38:1674-1687. [PMID: 38890447 PMCID: PMC11963213 DOI: 10.1038/s41375-024-02312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Chromosomal translocations of the nucleoporin 98 (NUP98) gene are found in acute myeloid leukemia (AML) patients leading to very poor outcomes. The oncogenic activity of NUP98 fusion proteins is dependent on the interaction between Mixed Lineage Leukemia 1 and menin. NUP98-rearranged (NUP98-r) leukemia cells also rely on specific kinases, including CDK6 and/or FLT3, suggesting that simultaneous targeting of these kinases and menin could overcome limited sensitivity to single agents. Here, we found that combinations of menin inhibitor, MI-3454, with kinase inhibitors targeting either CDK6 (Palbociclib) or FLT3 (Gilteritinib) strongly enhance the anti-leukemic effect of menin inhibition in NUP98-r leukemia models. We found strong synergistic effects of both combinations on cell growth, colony formation and differentiation in patient samples with NUP98 translocations. These combinations also markedly augmented anti-leukemic efficacy of menin inhibitor in Patient Derived Xenograft models of NUP98-r leukemia. Despite inhibiting two unrelated kinases, when Palbociclib or Gilteritinib were combined with the menin inhibitor, they affected similar pathways relevant to leukemogenesis, including cell cycle regulation, cell proliferation and differentiation. This study provides strong rationale for clinical translation of the combination of menin and kinase inhibitors as novel treatments for NUP98-r leukemia, supporting the unexplored combinations of epigenetic drugs with kinase inhibitors.
Collapse
Affiliation(s)
- Hongzhi Miao
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dong Chen
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James Ropa
- Department of Microbiology and Immunology, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
| | - Trupta Purohit
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - EunGi Kim
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria-Luisa Sulis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Adolfo Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA
- Regeneron Genetics Center, Tarrytown, NY, 10591, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
38
|
Li Y, Zhu J, Zhai F, Kong L, Li H, Jin X. Advances in the understanding of nuclear pore complexes in human diseases. J Cancer Res Clin Oncol 2024; 150:374. [PMID: 39080077 PMCID: PMC11289042 DOI: 10.1007/s00432-024-05881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are sophisticated and dynamic protein structures that straddle the nuclear envelope and act as gatekeepers for transporting molecules between the nucleus and the cytoplasm. NPCs comprise up to 30 different proteins known as nucleoporins (NUPs). However, a growing body of research has suggested that NPCs play important roles in gene regulation, viral infections, cancer, mitosis, genetic diseases, kidney diseases, immune system diseases, and degenerative neurological and muscular pathologies. PURPOSE In this review, we introduce the structure and function of NPCs. Then We described the physiological and pathological effects of each component of NPCs which provide a direction for future clinical applications. METHODS The literatures from PubMed have been reviewed for this article. CONCLUSION This review summarizes current studies on the implications of NPCs in human physiology and pathology, highlighting the mechanistic underpinnings of NPC-associated diseases.
Collapse
Affiliation(s)
- Yuxuan Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Jie Zhu
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Hong Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| | - Xiaofeng Jin
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
39
|
Liu L, Nie Q, Xiao Z, Chen X, Yang C, Mao X, Li N, Zhou Y, Guo Q, Tian X. Treatment of three pediatric AML co-expressing NUP98-NSD1, FLT3-ITD, and WT1. BMC Pediatr 2024; 24:483. [PMID: 39068406 PMCID: PMC11282587 DOI: 10.1186/s12887-024-04954-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
During the treatment of 89 pediatric patients with Acute Myeloid Leukemia (AML) at the Hematology Department of Kunming Medical University's Children's Hospital from 2020 to 2023, three patients were identified to co-express the NUP98-NSD1, FLT3-ITD, and WT1 gene mutations. The bone marrow of these three patients was screened for high-risk genetic mutations using NGS and qPCR at the time of diagnosis. The treatment was administered following the China Children's Leukemia Group (CCLG)-AML-2019 protocol. All three patients exhibited a fusion of the NUP98 exon 12 with the NSD1 exon 6 and co-expressed the FLT3-ITD and WT1 mutations; two of the patients displayed normal karyotypes, while one presented chromosomal abnormalities. During the induction phase of the CCLG-AML-2019 treatment protocol, the DAH (Daunorubicin, Cytarabine, and Homoharringtonine) and IAH (Idarubicin, Cytarabine, and Homoharringtonine) regimens, in conjunction with targeted drug therapy, did not achieve remission. Subsequently, the patients were shifted to the relapsed/refractory chemotherapy regimen C + HAG (Cladribine, Homoharringtonine, Cytarabine, and G-CSF) for two cycles, which also failed to induce remission. One patient underwent Haploidentical Hematopoietic Stem Cell Transplantation (Haplo-HSCT) and achieved complete molecular remission during a 12-month follow-up period. Regrettably, the other two patients, who did not receive transplantation, passed away. The therapeutic conclusion is that pediatric AML patients with the aforementioned co-expression do not respond to chemotherapy. Non-remission transplantation, supplemented with tailor-made pre- and post-transplant strategies, may enhance treatment outcomes.
Collapse
Affiliation(s)
- Li Liu
- Department of Hematology, The Affiliated Children's Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- Department of Pediatrics, QuJing Medical College, Qujing, China
| | - Qi Nie
- Department of Pediatrics, Da Li University, Da Li, China
| | - Zugang Xiao
- Kunming Kingmed Institute for Clinical Laboratory Co., Kunming, China
| | - Xin Chen
- Department of Hematology, Kunming Children's Hospital, Kunming, China
| | - Chunhui Yang
- Kunming Kingmed Institute for Clinical Laboratory Co., Kunming, China
| | - Xiaoyan Mao
- Department of Pediatrics, Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Na Li
- Kunming Kingmed Institute for Clinical Laboratory Co., Kunming, China
| | - Yan Zhou
- Kunming Kingmed Institute for Clinical Laboratory Co., Kunming, China
| | - Qulian Guo
- Department of Pediatrics, Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xin Tian
- Department of Hematology, The Affiliated Children's Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.
- Department of Hematology, Kunming Children's Hospital, Kunming, China.
| |
Collapse
|
40
|
Merigliano C, Ryu T, See CD, Caridi CP, Li X, Butova NL, Reynolds TW, Deng C, Chenoweth DM, Capelson M, Chiolo I. "Off-pore" nucleoporins relocalize heterochromatic breaks through phase separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.07.570729. [PMID: 39071440 PMCID: PMC11275802 DOI: 10.1101/2023.12.07.570729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Phase separation forms membraneless compartments in the nuclei, including by establishing heterochromatin "domains" and repair foci. Pericentromeric heterochromatin mostly comprises repeated sequences prone to aberrant recombination, and "safe" homologous recombination (HR) repair of these sequences requires the movement of repair sites to the nuclear periphery before Rad51 recruitment and strand invasion. How this mobilization initiates is unknown, and the contribution of phase separation to these dynamics is unclear. Here, we show that Nup98 nucleoporin is recruited to heterochromatic repair sites before relocalization through Sec13 or Nup88 nucleoporins, and downstream from the Smc5/6 complex and SUMOylation. Remarkably, the phase separation properties of Nup98 are required and sufficient to mobilize repair sites and exclude Rad51, thus preventing aberrant recombination while promoting HR repair. Disrupting this pathway results in heterochromatin repair defects and widespread chromosome rearrangements, revealing a novel "off-pore" role for nucleoporins and phase separation in nuclear dynamics and genome integrity in a multicellular eukaryote.
Collapse
Affiliation(s)
- Chiara Merigliano
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| | - Taehyun Ryu
- Harvard Medical School, Department of Genetics, Boston, MA, USA
| | - Colby D. See
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| | - Christopher P. Caridi
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| | - Xiao Li
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| | - Nadejda L. Butova
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| | - Trevor W. Reynolds
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| | - Changfeng Deng
- University of Pennsylvania, Department of Chemistry, School of Arts and Sciences, Philadelphia, PA, USA
| | - David M. Chenoweth
- University of Pennsylvania, Department of Chemistry, School of Arts and Sciences, Philadelphia, PA, USA
| | - Maya Capelson
- San Diego State University, Department of Biology, San Diego, CA, USA
| | - Irene Chiolo
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA, USA
| |
Collapse
|
41
|
Zhang W, Li Z, Wang X, Sun T. Phase separation is regulated by post-translational modifications and participates in the developments of human diseases. Heliyon 2024; 10:e34035. [PMID: 39071719 PMCID: PMC11279762 DOI: 10.1016/j.heliyon.2024.e34035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) of intracellular proteins has emerged as a hot research topic in recent years. Membrane-less and liquid-like condensates provide dense spaces that ensure cells to high efficiently regulate genes transcription and rapidly respond to burst changes from the environment. The fomation and activity of LLPS are not only modulated by the cytosol conditions including but not limited to salt concentration and temperture. Interestingly, recent studies have shown that phase separation is also regulated by various post-translational modifications (PTMs) through modulating proteins multivalency, such as solubility and charge interactions. The regulation mechanism is crucial for normal functioning of cells, as aberrant protein aggregates are often closely related with the occurrence and development of human diseases including cancer and nurodegenerative diseases. Therefore, studying phase separation in the perspective of protein PTMs has long-term significance for human health. In this review, we summarized the properties and cellular physiological functions of LLPS, particularly its relationships with PTMs in human diseases according to recent researches.
Collapse
Affiliation(s)
- Weibo Zhang
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| | - Zhengfeng Li
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| | - Xianju Wang
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| | - Ting Sun
- Faculty of Health Sciences Building University of Macau E12 Avenida da Universidade, Taipa, Macau, China
| |
Collapse
|
42
|
Noura M, Tomita S, Yasuda T, Tsuzuki S, Kiyoi H, Hayakawa F. NUP98-BPTF promotes oncogenic transformation through PIM1 upregulation. Cancer Med 2024; 13:e7445. [PMID: 38940430 PMCID: PMC11212001 DOI: 10.1002/cam4.7445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
INTRODUCTION Nucleoporin 98 (NUP98) fusion proteins are recurrently found in leukemia and are associated with unfavorable clinical outcomes. They are distributed to the nucleus and contribute to leukemogenesis via aberrant transcriptional regulation. We previously identified NUP98-BPTF (NB) fusion in patients with T-cell acute lymphoblastic leukemia (T-ALL) using next-generation sequencing. The FG-repeat of NUP98 and the PHD finger and bromodomain of bromodomain PHD finger transcription factor (BPTF) are retained in the fusion. Like other NUP98 fusion proteins, NB is considered to regulate genes that are essential for leukemogenesis. However, its target genes or pathways remain unknown. MATERIALS AND METHODS To investigate the potential oncogenic properties of the NB fusion protein, we lentivirally transduced a doxycycline-inducible NB expression vector into mouse NIH3T3 fibroblasts and human Jurkat T-ALL cells. RESULTS NB promoted the transformation of mouse NIH3T3 fibroblasts by upregulating the proto-oncogene Pim1, which encodes a serine/threonine kinase. NB transcriptionally regulated Pim1 expression by binding to its promoter and activated MYC and mTORC1 signaling. PIM1 knockdown or pharmacological inhibition of mTORC1 signaling suppressed NB-induced NIH3T3 cell transformation. Furthermore, NB enhanced the survival of human Jurkat T-ALL cells by inactivating the pro-apoptotic protein BCL2-associated agonist of cell death (BAD). CONCLUSION We demonstrated the pivotal role of NB in cell transformation and survival and identified PIM1as a key downstream target of NB. These findings propose a promising therapeutic strategy for patients with NB fusion-positive leukemia.
Collapse
Affiliation(s)
- Mina Noura
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Sakura Tomita
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Takahiko Yasuda
- Clinical Research Center, National Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Shinobu Tsuzuki
- Department of BiochemistryAichi Medical University School of MedicineNagakuteJapan
| | - Hitoshi Kiyoi
- Department of Hematology and OncologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Fumihiko Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
43
|
Heald JS, López AM, Pato ML, Ruiz-Xivillé N, Cabezón M, Zamora L, Vives S, Coll R, Maluquer C, Granada I, Solé F, Esteller M, Berdasco M. Identification of novel NUP98 fusion partners and comutations in acute myeloid leukemia: an adult cohort study. Blood Adv 2024; 8:2691-2694. [PMID: 38536941 PMCID: PMC11170135 DOI: 10.1182/bloodadvances.2023012479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/01/2024] [Indexed: 05/31/2024] Open
Affiliation(s)
- James S. Heald
- Epigenetic Therapies Group, Experimental and Clinical Hematology Program, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Aleix Méndez López
- Hematology Department, Hospital Germans Trias i Pujol, Institut Català d’Oncologia, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Miguel L. Pato
- Epigenetic Therapies Group, Experimental and Clinical Hematology Program, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Neus Ruiz-Xivillé
- Hematology Department, Hospital Germans Trias i Pujol, Institut Català d’Oncologia, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Marta Cabezón
- Hematology Department, Hospital Germans Trias i Pujol, Institut Català d’Oncologia, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Lurdes Zamora
- Hematology Department, Hospital Germans Trias i Pujol, Institut Català d’Oncologia, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Susana Vives
- Hematology Department, Hospital Germans Trias i Pujol, Institut Català d’Oncologia, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Rosa Coll
- Hematology Department, Catalan Institute of Oncology-Hospital Universitari Dr. Josep Trueta, Girona, Spain
| | - Clara Maluquer
- Haematology Department, ICO Hospitalet, Hospitalet de Llobregat, Bellvitge Institute for Biomedical Research, Universitat de Barcelona, Barcelona, Spain
| | - Isabel Granada
- Hematology Department, Hospital Germans Trias i Pujol, Institut Català d’Oncologia, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Francesc Solé
- Myelodysplastic Syndromes Group, Institut de Recerca Contra la Leucèmia Josep Carreras, Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Cancer and Leukemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer, Madrid, Spain
| | - María Berdasco
- Epigenetic Therapies Group, Experimental and Clinical Hematology Program, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| |
Collapse
|
44
|
Zhu Y, Chen Y, Zhang F, Wang M, Lai Y, Pan J, Liu Y, Wang Q, Chen S. Novel ZFPL1::NUP98 fusion gene identified in an adult acute myeloid leukemia patient. Int J Lab Hematol 2024; 46:568-570. [PMID: 38318992 DOI: 10.1111/ijlh.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Affiliation(s)
- Yiyan Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Yu Chen
- Department of Hematology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, People's Republic of China
| | - Fenghong Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Man Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Yueyun Lai
- National Clinical Research Center for Hematologic Diseases, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University Institute of Hematology, Peking University People's Hospital, Peking University, Beijing, People's Republic of China
| | - Jinlan Pan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Yizi Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Qian Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
45
|
Wang Y, Zhang Z, Wang L, Wang H, Dong F. Rare NUP98::PRRX1 fusion transcript in a therapy-related acute myeloid leukemia associated with del(7q) following chemotherapy for diffuse large B-cell lymphoma. Cancer Genet 2024; 284-285:12-15. [PMID: 38493578 DOI: 10.1016/j.cancergen.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/02/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Therapy-related acute myeloid leukemia (t-AML) is increasingly recognized as a treatment complication in patients receiving chemotherapy, radiotherapy, or immunosuppressive agents for primary neoplasms. NUP98::PRRX1 fusion gene, caused by t(1;11)(q23;p15), is a rare recurrent cytogenetic alteration in leukemia, and only seven cases with NUP98::PRRX1 were reported so far. METHODS A 53-year-old female patient was diagnosed with t-AML after 20 months of complete remission (CR) from diffuse large B-cell lymphoma (DLBCL). Conventional karyotype, fluorescence in situ hybridization (FISH), and DNA/RNA next-generation sequence (NGS) were used to detect genetic abnormalities. RESULTS Abnormal karyotype of 46, XX, t(1;11)(q25;p15), del(7)(q22) was revealed. NUP98 gene rearrangement and del(7)(q22) were verified by FISH. Further, RNA NGS detected NUP98::PRRX1 fusion transcript, and DNA NGS detected KRAS gene mutation. The patient achieved CR after a combined chemotherapy regimen containing BCL-2 inhibitor and underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT), but she died of leukemia recurrence 14 months later. CONCLUSIONS Novel targeted drugs may provide opportunities for patients with NUP98::PRRX1 to undergo allo-HSCT. However, since the cases of carrying the NUP98::PRRX1 are limited, more patients with this genetic change need to be investigated to elucidate the prognostic significance.
Collapse
MESH Headings
- Humans
- Female
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Middle Aged
- Nuclear Pore Complex Proteins/genetics
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Homeodomain Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Chromosome Deletion
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- In Situ Hybridization, Fluorescence
Collapse
Affiliation(s)
- Yanfang Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Zhenhao Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Lingli Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Hua Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China
| | - Fei Dong
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
46
|
Fagnan A, Aid Z, Baille M, Drakul A, Robert E, Lopez CK, Thirant C, Lecluse Y, Rivière J, Ignacimouttou C, Salmoiraghi S, Anguita E, Naimo A, Marzac C, Pflumio F, Malinge S, Wichmann C, Huang Y, Lobry C, Chaumeil J, Soler E, Bourquin J, Nerlov C, Bernard OA, Schwaller J, Mercher T. The ETO2 transcriptional cofactor maintains acute leukemia by driving a MYB/EP300-dependent stemness program. Hemasphere 2024; 8:e90. [PMID: 38903535 PMCID: PMC11187848 DOI: 10.1002/hem3.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/13/2024] [Accepted: 05/01/2024] [Indexed: 06/22/2024] Open
Abstract
Transcriptional cofactors of the ETO family are recurrent fusion partners in acute leukemia. We characterized the ETO2 regulome by integrating transcriptomic and chromatin binding analyses in human erythroleukemia xenografts and controlled ETO2 depletion models. We demonstrate that beyond its well-established repressive activity, ETO2 directly activates transcription of MYB, among other genes. The ETO2-activated signature is associated with a poorer prognosis in erythroleukemia but also in other acute myeloid and lymphoid leukemia subtypes. Mechanistically, ETO2 colocalizes with EP300 and MYB at enhancers supporting the existence of an ETO2/MYB feedforward transcription activation loop (e.g., on MYB itself). Both small-molecule and PROTAC-mediated inhibition of EP300 acetyltransferases strongly reduced ETO2 protein, chromatin binding, and ETO2-activated transcripts. Taken together, our data show that ETO2 positively enforces a leukemia maintenance program that is mediated in part by the MYB transcription factor and that relies on acetyltransferase cofactors to stabilize ETO2 scaffolding activity.
Collapse
Affiliation(s)
- Alexandre Fagnan
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Zakia Aid
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Marie Baille
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Aneta Drakul
- Division of Oncology and Children's Research CentreUniversity Children's Hospital ZurichZurichSwitzerland
| | - Elie Robert
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Cécile K. Lopez
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Cécile Thirant
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Yann Lecluse
- Gustave Roussy, Plateforme Imagerie et Cytométrie, Université Paris‐Saclay, UMS AMMICA, INSERM US23, CNRS UMS 3655VillejuifFrance
| | - Julie Rivière
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Cathy Ignacimouttou
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
| | - Silvia Salmoiraghi
- Department of Oncology and HematologyAzienda Socio Sanitaria Territoriale Papa Giovanni XXIII, FROM Research Foundation, Papa Giovanni XXIII HospitalBergamoItaly
| | - Eduardo Anguita
- Hematology Department, Hospital Clínico San Carlos (HCSC), IML, IdISSC, Department of MedicineUniversidad Complutense de Madrid (UCM)MadridSpain
| | - Audrey Naimo
- Gustave Roussy, Genomic PlatformUniversité Paris‐Saclay, UMS AMMICA, INSERM US23, CNRS UMS 3655VillejuifFrance
| | - Christophe Marzac
- Department of HematologyLeukemia Interception Program, Personalized Cancer Prevention Center, Gustave RoussyVillejuifFrance
| | - Françoise Pflumio
- Equipe Labellisée Ligue Contre le CancerParisFrance
- Unité de Recherche (UMR)‐E008 Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Université de Paris‐Université Paris‐SaclayFontenay‐aux‐RosesFrance
- OPALE Carnot Institute, The Organization for Partnerships in LeukemiaParisFrance
| | - Sébastien Malinge
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Telethon Kids Institute, Perth Children's HospitalNedlandsAustralia
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and HaemostasisLudwig‐Maximilians‐University of MunichMunichGermany
| | - Yun Huang
- Division of Oncology and Children's Research CentreUniversity Children's Hospital ZurichZurichSwitzerland
| | - Camille Lobry
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- INSERM U944, CNRS UMR7212Institut de Recherche Saint Louis and Université de ParisParisFrance
| | - Julie Chaumeil
- Université de Paris, Institut Cochin, INSERM, CNRSParisFrance
| | - Eric Soler
- IGMM, University of Montpellier, CNRS, Montpellier, France & Université de Paris, Laboratory of Excellence GR‐ExParisFrance
| | - Jean‐Pierre Bourquin
- Division of Oncology and Children's Research CentreUniversity Children's Hospital ZurichZurichSwitzerland
| | - Claus Nerlov
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | | | - Juerg Schwaller
- Department of BiomedicineUniversity Children's Hospital Beider Basel (UKBB), University of BaselBaselSwitzerland
| | - Thomas Mercher
- Gustave Roussy, INSERM U1170Université Paris‐SaclayVillejuifFrance
- Equipe Labellisée Ligue Contre le CancerParisFrance
- OPALE Carnot Institute, The Organization for Partnerships in LeukemiaParisFrance
| |
Collapse
|
47
|
Tian J, Zhu Y, Li J, Yang G, Weng X, Huang T, Zhao L, Sun H, Yan Z, Zhang S. The landscape of NUP98 rearrangements clinical characteristics and treatment response from 1491 acute leukemia patients. Blood Cancer J 2024; 14:81. [PMID: 38744828 PMCID: PMC11094082 DOI: 10.1038/s41408-024-01066-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Affiliation(s)
- Jie Tian
- Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Road II 197, Shanghai, China
| | - Yongmei Zhu
- National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Road II 197, Shanghai, China
| | - Jianfeng Li
- National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Road II 197, Shanghai, China
| | - Guang Yang
- National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Road II 197, Shanghai, China
| | - Xiangqin Weng
- National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Road II 197, Shanghai, China
| | - Ting Huang
- National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Road II 197, Shanghai, China
| | - Lingling Zhao
- National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Road II 197, Shanghai, China
| | - Haimin Sun
- Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Road II 197, Shanghai, China
| | - Zeying Yan
- Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Road II 197, Shanghai, China
| | - Sujiang Zhang
- Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Road II 197, Shanghai, China.
- National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin Road II 197, Shanghai, China.
| |
Collapse
|
48
|
Rørvik SD, Torkildsen S, Bruserud Ø, Tvedt THA. Acute myeloid leukemia with rare recurring translocations-an overview of the entities included in the international consensus classification. Ann Hematol 2024; 103:1103-1119. [PMID: 38443661 PMCID: PMC10940453 DOI: 10.1007/s00277-024-05680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Two different systems exist for subclassification of acute myeloid leukemia (AML); the World Health Organization (WHO) Classification and the International Consensus Classification (ICC) of myeloid malignancies. The two systems differ in their classification of AML defined by recurrent chromosomal abnormalities. One difference is that the ICC classification defines an AML subset that includes 12 different genetic abnormalities that occur in less than 4% of AML patients. These subtypes exhibit distinct clinical traits and are associated with treatment outcomes, but detailed description of these entities is not easily available and is not described in detail even in the ICC. We searched in the PubMed database to identify scientific publications describing AML patients with the recurrent chromosomal abnormalities/translocations included in this ICC defined patient subset. This patient subset includes AML with t(1;3)(p36.3;q21.3), t(3;5)(q25.3;q35.1), t(8;16)(p11.2;p13.3), t(1;22)(p13.3;q13.1), t(5;11)(q35.2;p15.4), t(11;12)(p15.4;p13.3) (involving NUP98), translocation involving NUP98 and other partner, t(7;12)(q36.3;p13.2), t(10;11)(p12.3;q14.2), t(16;21)(p11.2;q22.2), inv(16)(p13.3q24.3) and t(16;21)(q24.3;q22.1). In this updated review we describe the available information with regard to frequency, biological functions of the involved genes and the fusion proteins, morphology/immunophenotype, required diagnostic procedures, clinical characteristics (including age distribution) and prognostic impact for each of these 12 genetic abnormalities.
Collapse
Affiliation(s)
- Synne D Rørvik
- Department of Cardiology, Haukeland University Hospital, Bergen, Norway
| | - Synne Torkildsen
- Department of Haematology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
49
|
Mojarad BA, Crees ZD, Schroeder MC, Xiang Z, Vader J, Sina J, Jacoby M, Frater JL, Duncavage EJ, Spencer DH, Lavine K, Neidich JA, Amarillo I. Clinical whole-genome sequencing and FISH identify two different fusion partners for NUP98 in a patient with acute myeloid leukemia: A case report. Cancer Genet 2024; 280-281:1-5. [PMID: 38056049 DOI: 10.1016/j.cancergen.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/15/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Only rare cases of acute myeloid leukemia (AML) have been shown to harbor a t(8;11)(p11.2;p15.4). This translocation is believed to involve the fusion of NSD3 or FGFR1 with NUP98; however, apart from targeted mRNA quantitative PCR analysis, no molecular approaches have been utilized to define the chimeric fusions present in these rare cases. CASE PRESENTATION Here we present the case of a 51-year-old female with AML with myelodysplastic-related morphologic changes, 13q deletion and t(8;11), where initial fluorescence in situ hybridization (FISH) assays were consistent with the presence of NUP98 and FGFR1 rearrangements, and suggestive of NUP98/FGFR1 fusion. Using a streamlined clinical whole-genome sequencing approach, we resolved the breakpoints of this translocation to intron 4 of NSD3 and intron 12 of NUP98, indicating NUP98/NSD3 rearrangement as the likely underlying aberration. Furthermore, our approach identified small variants in WT1 and STAG2, as well as an interstitial deletion on the short arm of chromosome 12, which were cryptic in G-banded chromosomes. CONCLUSIONS NUP98 fusions in acute leukemia are predictive of poor prognosis. The associated fusion partner and the presence of co-occurring mutations, such as WT1, further refine this prognosis with potential clinical implications. Using a clinical whole-genome sequencing analysis, we resolved t(8;11) breakpoints to NSD3 and NUP98, ruling out the involvement of FGFR1 suggested by FISH while also identifying multiple chromosomal and sequence level aberrations.
Collapse
Affiliation(s)
- Bahareh A Mojarad
- Cytogenetics and Molecular Pathology Lab, Division of Lab and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, MO, USA.
| | - Zachary D Crees
- Division of Oncology, Department of Medicine, Washington University School of Medicine in Saint Louis, MO, USA
| | - Molly C Schroeder
- Cytogenetics and Molecular Pathology Lab, Division of Lab and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, MO, USA
| | - Zhifu Xiang
- Division of Oncology, Department of Medicine, Washington University School of Medicine in Saint Louis, MO, USA
| | - Justin Vader
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine in Saint Louis, MO, USA
| | - Jason Sina
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, MO, USA
| | - Meagan Jacoby
- Division of Oncology, Department of Medicine, Washington University School of Medicine in Saint Louis, MO, USA
| | - John L Frater
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, MO, USA
| | - Eric J Duncavage
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, MO, USA
| | - David H Spencer
- Division of Oncology, Department of Medicine, Washington University School of Medicine in Saint Louis, MO, USA
| | - Kory Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine in Saint Louis, MO, USA
| | - Julie A Neidich
- Cytogenetics and Molecular Pathology Lab, Division of Lab and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, MO, USA; Department of Pediatrics, Washington University School of Medicine in Saint Louis, MO, USA
| | - Ina Amarillo
- Cytogenetics and Molecular Pathology Lab, Division of Lab and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, MO, USA
| |
Collapse
|
50
|
Cao Y, Zhang C, Zhao X, Huang J, Zhang Z, Jiang C, Mo X, Hu X. Allogeneic hematopoietic stem cell transplantation for adult acute myeloid leukemia patients with nucleoporin 98 (NUP98) gene rearrangements: a real-world study in China. Bone Marrow Transplant 2023; 58:1413-1415. [PMID: 37730801 DOI: 10.1038/s41409-023-02106-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Affiliation(s)
- Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chunli Zhang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaosu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences (2019RU029), Beijing, 100044, China
| | - Jiayu Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Collaborative Innovation Center of Hematology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zilu Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Collaborative Innovation Center of Hematology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chuanhe Jiang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Collaborative Innovation Center of Hematology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaodong Mo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China.
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences (2019RU029), Beijing, 100044, China.
| | - Xiaoxia Hu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Collaborative Innovation Center of Hematology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|