1
|
Prakash S, Orazi A. Diagnostic Approach to Myeloproliferative Neoplasms and Myelodysplastic/Myeloproliferative Neoplasms. Adv Anat Pathol 2025:00125480-990000000-00147. [PMID: 40243206 DOI: 10.1097/pap.0000000000000493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The International Consensus Classification (ICC) updated in 2022 the World Health Organization (WHO) classification of hematopoietic tumors (2016 revision of the 4th edition WHO classification). Although the major categories of myeloid neoplasms remained unchanged from the prior WHO classification, many disease entities including those in the myeloproliferative neoplasm (MPN) and myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN) categories underwent updates. For all these disease subtypes, a careful integration of clinicopathologic findings and molecular data led to improved diagnostic definitions. Although the classification of MPNs received only minor changes, these included a simpler definition of accelerated phase of chronic myeloid leukemia. For the MDS/MPN group, in addition to the presence of one or more increased peripheral blood cell counts as evidence of myeloproliferative features, concomitant cytopenia as evidence of ineffective hematopoiesis is now an explicit diagnostic requirement for all the entities included in this category. The presence of specific mutations in the appropriate clinicopathologic context is now included in the diagnostic criteria for some of the MPN and MDS/MPN entities. This review aims to briefly discuss the diagnostic approach to MPNs and MDS/MPNs according to the ICC.
Collapse
Affiliation(s)
- Sonam Prakash
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, TX
| |
Collapse
|
2
|
Malcovati L, Cazzola M. How I manage patients with unexplained cytopenia. Blood 2025; 145:1610-1620. [PMID: 39786421 DOI: 10.1182/blood.2024025771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025] Open
Abstract
ABSTRACT The term "unexplained cytopenia" is used to describe a condition characterized by peripheral blood cytopenia that cannot be attributed to identifiable causes using conventional tests or to any concomitant diseases. Unexplained cytopenia requires clinical attention and further investigation to identify individuals at risk of developing a hematologic neoplasm. The available evidence suggests that somatic mutation analysis may effectively complement the diagnostic workup and clinical management of unexplained cytopenia. Indeed, the presence or absence of somatic mutation(s) in myeloid genes shows high positive and negative predictive values for myeloid neoplasms (MNs). Mutation analysis is also crucial for identifying patients with clonal cytopenia of undetermined significance (CCUS), a condition at increased risk of developing a MN. Recently, clinical/molecular prognostic models have been developed, providing valuable tools for the personalization of clinical and molecular surveillance. Most patients with CCUS show mild cytopenia and do not require therapeutic intervention. Currently, there is no treatment approved for CCUS, and transfusion therapy is the sole therapeutic option for patients with severe symptomatic cytopenia. However, this field has been emerging as a domain of active clinical investigation. This article presents 4 case studies of patients with unexplained cytopenia, which hematologists may encounter in their clinical practice.
Collapse
Affiliation(s)
- Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Unit of Molecular Hematology and Precision Medicine, Department of Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Mario Cazzola
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Unit of Molecular Hematology and Precision Medicine, Department of Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
3
|
Santos J, Abbott D, Bosma G, Kent A, Schwartz M, McMahon CM, Gutman J, Pollyea DA, Amaya ML. Comparison of treatment-related and de novo CCUS: a retrospective analysis from two centers. Leuk Lymphoma 2025:1-3. [PMID: 40080662 DOI: 10.1080/10428194.2025.2478264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Affiliation(s)
- Jennifer Santos
- Division of Hospital Medicine, University of Colorado Hospital, Aurora, CO, USA
| | - Diana Abbott
- Center for Innovative Design & Analysis, Department of Biostatistics & Informatics, Anschutz Medical Campus, Aurora, CO, USA
| | - Grace Bosma
- Center for Innovative Design & Analysis, Department of Biostatistics & Informatics, Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Kent
- Division of Hematology, University of Colorado Cancer Center, Aurora, CO, USA
| | - Marc Schwartz
- Division of Hematology, University of Colorado Cancer Center, Aurora, CO, USA
| | - Christine M McMahon
- Division of Hematology, University of Colorado Cancer Center, Aurora, CO, USA
| | - Jonathan Gutman
- Division of Hematology, University of Colorado Cancer Center, Aurora, CO, USA
| | - Daniel A Pollyea
- Division of Hematology, University of Colorado Cancer Center, Aurora, CO, USA
| | - Maria L Amaya
- Division of Hematology, University of Colorado Cancer Center, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| |
Collapse
|
4
|
Haque T, Shastri A, Desai P, Xie Z, Hammond D, King Z, Kishtagari A, Madanat YF, Abaza Y, Silver AJ, Singh A, Borate UM, Heimlich JB, Slosky DA, Bolton KL, Patnaik MS, Bick AG, Verma AK, Jaiswal S, Steensma DP, Savona MR. A blueprint for pursuing therapeutic interventions and early phase clinical trials in clonal haematopoiesis. Br J Haematol 2025; 206:416-427. [PMID: 39653653 PMCID: PMC11829135 DOI: 10.1111/bjh.19925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/17/2024] [Indexed: 02/16/2025]
Abstract
The age-associated mutational state of clonal haematopoiesis (CH) is linked to multiple adverse health outcomes. As higher risk CH can lead to progressive neoplastic or vascular disease, there is interest in developing clinical trials to mitigate risk associated with CH. Given the high prevalence of CH, data from clinical trials could have broad public health implications for screening and therapy. Thoughtful consideration is needed to design trials that are both clinically relevant and avoid overmedicalization. Here, we summarize clinical studies of CH to date and provide suggestions and guidance on how to approach designing CH-focused therapeutic clinical trials. These recommendations are derived from discussions among clinical researchers and scientists emanating from the Inaugural Meeting on Somatic Mutations and Predisease in October 2021.
Collapse
Affiliation(s)
- Tamanna Haque
- Department of Medicine, Leukemia ServiceMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Aditi Shastri
- Division of Hematologic Malignancies, Department of OncologyMontefiore‐Einstein Comprehensive Cancer CenterBronxNew YorkUSA
| | - Pinkal Desai
- Department of Medicine, Hematology/OncologyCornell UniversityNew YorkNew YorkUSA
| | - Zhuoer Xie
- Malignant Hematology DepartmentMoffit Cancer CenterTampaFloridaUSA
| | | | - Zoe King
- Division of Hematologic Malignancies, Department of OncologyMontefiore‐Einstein Comprehensive Cancer CenterBronxNew YorkUSA
| | - Ashwin Kishtagari
- Department of Medicine, Vanderbilt University School of MedicineVanderbilt‐Ingram Cancer CenterNashvilleTennesseeUSA
| | - Yazan F. Madanat
- Division of Hematology and OncologyUT SouthwesternDallasTexasUSA
| | - Yasmin Abaza
- Department of Medicine, Hematology and OncologyNorthwestern UniversityChicagoIllinoisUSA
| | - Alexander J. Silver
- Department of Medicine, Vanderbilt University School of MedicineVanderbilt‐Ingram Cancer CenterNashvilleTennesseeUSA
| | - Abhay Singh
- Department of Hematology and Medical OncologyCleveland ClinicClevelandOhioUSA
| | - Uma M. Borate
- Division of Hematology, Department of MedicineThe Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - J. Brett Heimlich
- Department of Medicine, Vanderbilt University School of MedicineVanderbilt‐Ingram Cancer CenterNashvilleTennesseeUSA
| | - David A. Slosky
- Division of Cardiology, Department of MedicineUniversity of Wisconsin Medical CenterMadisonWisconsinUSA
| | - Kelly L. Bolton
- Division of Oncology, Department of MedicineWashington University in St. LouisSt. LouisMissouriUSA
| | - Mrinal S. Patnaik
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Alexander G. Bick
- Department of Medicine, Vanderbilt University School of MedicineVanderbilt‐Ingram Cancer CenterNashvilleTennesseeUSA
| | - Amit K. Verma
- Division of Hematologic Malignancies, Department of OncologyMontefiore‐Einstein Comprehensive Cancer CenterBronxNew YorkUSA
| | | | | | - Michael R. Savona
- Department of Medicine, Vanderbilt University School of MedicineVanderbilt‐Ingram Cancer CenterNashvilleTennesseeUSA
| |
Collapse
|
5
|
Hoermann G, Khoury JD. Can molecular patterns help to classify overlapping entities in myeloid neoplasms? Histopathology 2025; 86:146-157. [PMID: 39428913 PMCID: PMC11648353 DOI: 10.1111/his.15339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Myeloid neoplasms include myeloproliferative and myelodysplastic neoplasms and acute myeloid leukaemia. Historically, these diseases have been diagnosed based on clinicopathological features with sometimes arbitrary thresholds that have persisted even as molecular features were gradually incorporated into their classification. As such, although current diagnostic approaches can classify the majority of myeloid neoplasms accurately using a combination of molecular and clinicopathological features, some areas of overlap persist and occasionally pose diagnostic challenges. These include overlap across BCR::ABL1-negative myeloproliferative neoplasms; between clonal cytopenia of undetermined significance and myelodysplastic neoplasms; myelodysplastic/myeloproliferative neoplasms; and, detection of KIT mutations in myeloid neoplasms other than mastocytosis, raising the prospect of systemic mastocytosis. Molecular testing has become state of the art in the diagnostic work-up of myeloid neoplasms, and molecular patterns can inherently help to classify overlapping entities if considered within a framework of haematological presentations. For future development, molecular testing will likely include whole genome and transcriptome sequencing, and primarily molecular classifications of myeloid neoplasms have already been suggested. As such, genetically defined groups should still constitute the basis for our understanding of disease development from early onset to progression, while clinicopathological features could then be used to describe the stage of the disease rather than the specific type of myeloid neoplasm.
Collapse
Affiliation(s)
| | - Joseph D Khoury
- Department of Pathology, Microbiology, and ImmunologyUniversity of Nebraska Medical CenterOmahaUSA
| |
Collapse
|
6
|
Rombaut D, Sandmann S, Tekath T, Crouch S, de Graaf AO, Smith A, Painter D, Kosmider O, Tobiasson M, Lennartsson A, van der Reijden BA, Park S, D'Aveni M, Slama B, Clappier E, Fenaux P, Adès L, van de Loosdrecht A, Langemeijer S, Symeonidis A, Čermák J, Preudhomme C, Savic A, Germing U, Stauder R, Bowen D, van Marrewijk C, Bernard E, de Witte T, Varghese J, Hellström‐Lindberg E, Dugas M, Martens J, Malcovati L, Jansen JH, Fontenay M. Somatic mutations and DNA methylation identify a subgroup of poor prognosis within lower-risk myelodysplastic syndromes. Hemasphere 2025; 9:e70073. [PMID: 39850648 PMCID: PMC11754767 DOI: 10.1002/hem3.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/18/2024] [Accepted: 12/08/2024] [Indexed: 01/25/2025] Open
Abstract
Lower risk (LR) myelodysplastic syndromes (MDS) are heterogeneous hematopoietic stem and progenitor disorders caused by the accumulation of somatic mutations in various genes including epigenetic regulators that may produce convergent DNA methylation patterns driving specific gene expression profiles. The integration of genomic, epigenomic, and transcriptomic profiling has the potential to spotlight distinct LR-MDS categories on the basis of pathophysiological mechanisms. We performed a comprehensive study of somatic mutations and DNA methylation in a large and clinically well-annotated cohort of treatment-naive patients with LR-MDS at diagnosis from the EUMDS registry (ClinicalTrials.gov.NCT00600860). Unsupervised clustering analyses identified six clusters based on genetic profiling that concentrate into four clusters on the basis of genome-wide methylation profiling with significant overlap between the two clustering modes. The four methylation clusters showed distinct clinical and genetic features and distinct methylation landscape. All clusters shared hypermethylated enhancers enriched in binding motifs for ETS and bZIP (C/EBP) transcription factor families, involved in the regulation of myeloid cell differentiation. By contrast, one cluster gathering patients with early leukemic evolution exhibited a specific pattern of hypermethylated promoters and, distinctly from other clusters, the upregulation of AP-1 complex members FOS/FOSL2 together with the absence of hypermethylation of their binding motif at target gene enhancers, which is of relevance for leukemic initiation. Among MDS patients with lower-risk IPSS-M, this cluster displayed a significantly inferior overall survival (p < 0.0001). Our study showed that genetic and DNA methylation features of LR-MDS at early stages may refine risk stratification, therefore offering the frame for a precocious therapeutic intervention.
Collapse
Affiliation(s)
- David Rombaut
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104Assistance Publique‐Hôpitaux de Paris.Centre, Laboratory of Hematology, Hôpital CochinParisFrance
| | - Sarah Sandmann
- Institute of Medical InformaticsUniversity of MünsterMünsterGermany
| | - Tobias Tekath
- Institute of Medical InformaticsUniversity of MünsterMünsterGermany
| | - Simon Crouch
- Epidemiology and Cancer Statistics Group, Department of Health SciencesUniversity of YorkYorkUK
| | - Aniek O. de Graaf
- Department of Laboratory Medicine, Laboratory of HematologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Alexandra Smith
- Epidemiology and Cancer Statistics Group, Department of Health SciencesUniversity of YorkYorkUK
| | - Daniel Painter
- Epidemiology and Cancer Statistics Group, Department of Health SciencesUniversity of YorkYorkUK
| | - Olivier Kosmider
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104Assistance Publique‐Hôpitaux de Paris.Centre, Laboratory of Hematology, Hôpital CochinParisFrance
| | - Magnus Tobiasson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska InstituteKarolinska University HospitalStockholmSweden
| | | | - Bert A. van der Reijden
- Department of Laboratory Medicine, Laboratory of HematologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Sophie Park
- Department of HematologyUniversité de Grenoble‐Alpes, CHUGrenobleFrance
| | - Maud D'Aveni
- Service d'Hématologie CliniqueUniversity Hospital of Nancy and University of LorraineNancyFrance
| | - Borhane Slama
- Service d'onco‐hématologie, Centre Hospitalier Général d'AvignonAvignonFrance
| | - Emmanuelle Clappier
- Université Paris Cité, Assistance Publique des Hôpitaux de Paris.Nord, Laboratoire d'Hématologie, Hôpital Saint‐LouisParisFrance
| | - Pierre Fenaux
- Université Paris Cité, Assistance Publique des Hôpitaux de Paris.Nord, Service d'Hématologie Senior, Hôpital Saint‐LouisParisFrance
| | - Lionel Adès
- Université Paris Cité, Assistance Publique des Hôpitaux de Paris.Nord, Service d'Hématologie Senior, Hôpital Saint‐LouisParisFrance
| | | | - Saskia Langemeijer
- Department of HematologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Argiris Symeonidis
- Hematology Division, Department of Internal MedicineUniversity of PatrasPatrasGreece
| | - Jaroslav Čermák
- Department of Clinical HematologyInstitute of Hematology and Blood TransfusionPragueCzech Republic
| | - Claude Preudhomme
- Laboratoire d'hématologieCentre Hospitalier Régional UniversitaireLilleFrance
| | - Aleksandar Savic
- Clinic of Hematology, Clinical Center of VojvodinaFaculty of Medicine, University of Novi SadNovi SadSerbia
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical ImmunologyHeinrich‐Heine‐University, Medical FacultyDüsseldorfGermany
| | - Reinhard Stauder
- Department of Internal Medicine V (Haematology and Oncology), Comprehensive Cancer Center InnsbruckMedical University of InnsbruckInnsbruckAustria
| | - David Bowen
- St. James's Institute of OncologyLeeds Teaching HospitalsLeedsUK
| | - Corine van Marrewijk
- Department of HematologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Elsa Bernard
- Department of Computational BiologyInstitut Gustave Roussy, INSERM U981VillejuifFrance
| | - Theo de Witte
- Department of Tumor Immunology, Radboud Institute of Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Julian Varghese
- Institute of Medical InformaticsUniversity of MünsterMünsterGermany
| | - Eva Hellström‐Lindberg
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska InstituteKarolinska University HospitalStockholmSweden
| | - Martin Dugas
- Institute of Medical InformaticsUniversity of HeidelbergHeidelbergGermany
| | - Joost Martens
- Department of Molecular BiologyFaculty of Science, Radboud UniversityNijmegenThe Netherlands
| | - Luca Malcovati
- Department of Molecular Medicine and Department of Hematology OncologyUniversity of Pavia and Fondazione IRCCS Policlinico S. MatteoPaviaItaly
| | - Joop H. Jansen
- Department of Laboratory Medicine, Laboratory of HematologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Michaela Fontenay
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104Assistance Publique‐Hôpitaux de Paris.Centre, Laboratory of Hematology, Hôpital CochinParisFrance
| | | |
Collapse
|
7
|
Li P, Alnoor FNU, Xie W, Williams M, Feusier J, Ding Y, Zhao X, Zheng G, Zhao C, Zieske AW, Zu Y, Raess PW, Tantravahi S, Osman A, Patel AB, Tashi T, Patel JL, Matynia AP, Menon MP, Miles RR, Jacobsen JR, George TI, Sborov DW, Szankasi P, Rindler P, Close D, Ohgami RS. Rapid growth of acquired UBA1 mutations predisposes male patients to low-risk MDS. Leukemia 2025; 39:248-256. [PMID: 39516371 DOI: 10.1038/s41375-024-02397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Peng Li
- Department of Pathology, University of Utah Health, Salt Lake City, UT, USA.
- ARUP Laboratories, Salt Lake City, UT, USA.
| | - F N U Alnoor
- Department of Pathology, University of Utah Health, Salt Lake City, UT, USA
- Department of Pathology & Immunology, Washington University, St. Louis, MO, USA
| | - Wei Xie
- Department of Pathology and Laboratory Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Margaret Williams
- Department of Pathology, University of Utah Health, Salt Lake City, UT, USA
- ARUP Laboratories, Salt Lake City, UT, USA
| | - Julie Feusier
- Department of Pathology, University of Utah Health, Salt Lake City, UT, USA
- ARUP Laboratories, Salt Lake City, UT, USA
| | - Yi Ding
- Laboratory Medicine, Geisinger Medical Center, Danville, PA, USA
| | - Xiangrong Zhao
- Kaiser Permanente Sacramento Medical Center, Sacramento, CA, USA
| | - Gang Zheng
- Mayo Clinic Laboratories, Rochester, MN, USA
| | - Chen Zhao
- Department of Pathology and Laboratory Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Arthur W Zieske
- Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Youli Zu
- Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Philipp W Raess
- Department of Pathology and Laboratory Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Srinivas Tantravahi
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Afaf Osman
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Ami B Patel
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Tsewang Tashi
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Jay L Patel
- Department of Pathology, University of Utah Health, Salt Lake City, UT, USA
- ARUP Laboratories, Salt Lake City, UT, USA
| | - Anna P Matynia
- Department of Pathology, University of Utah Health, Salt Lake City, UT, USA
- ARUP Laboratories, Salt Lake City, UT, USA
| | - Madhu P Menon
- Department of Pathology, University of Utah Health, Salt Lake City, UT, USA
- ARUP Laboratories, Salt Lake City, UT, USA
| | - Rodney R Miles
- Department of Pathology, University of Utah Health, Salt Lake City, UT, USA
- ARUP Laboratories, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Jeffrey R Jacobsen
- Department of Pathology, University of Utah Health, Salt Lake City, UT, USA
- ARUP Laboratories, Salt Lake City, UT, USA
| | - Tracy I George
- Department of Pathology, University of Utah Health, Salt Lake City, UT, USA
- ARUP Laboratories, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Douglas W Sborov
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT, USA
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | | | | | | | - Robert S Ohgami
- Department of Pathology, University of Utah Health, Salt Lake City, UT, USA
- ARUP Laboratories, Salt Lake City, UT, USA
| |
Collapse
|
8
|
Zhang Q, Yim R, Lee P, Chin L, Li V, Gill H. Implications of Clonal Hematopoiesis in Hematological and Non-Hematological Disorders. Cancers (Basel) 2024; 16:4118. [PMID: 39682303 DOI: 10.3390/cancers16234118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Clonal hematopoiesis (CH) is associated with an increased risk of developing myeloid neoplasms (MNs) such as myelodysplastic neoplasm (MDS) and acute myeloid leukemia (AML). In general, CH comprises clonal hematopoiesis of indeterminate potential (CHIP) and clonal cytopenia of undetermined significance (CCUS). It is an age-related phenomenon characterized by the presence of somatic mutations in hematopoietic stem cells (HSCs) and hematopoietic stem and progenitor cells (HSPCs) that acquire a fitness advantage under selection pressure. Individuals with CHIP have an absolute risk of 0.5-1.0% per year for progressing to MDS or AML. Inflammation, smoking, cytotoxic therapy, and radiation can promote the process of clonal expansion and leukemic transformation. Of note, exposure to chemotherapy or radiation for patients with solid tumors or lymphomas can increase the risk of therapy-related MN. Beyond hematological malignancies, CH also serves as an independent risk factor for heart disease, stroke, chronic obstructive pulmonary disease, and chronic kidney disease. Prognostic models such as the CH risk score and MN-prediction models can provide a framework for risk stratification and clinical management of CHIP/CCUS and identify high-risk individuals who may benefit from close surveillance. For CH or related disorders, therapeutic strategies targeting specific CH-associated mutations and specific selection pressure may have a potential role in the future.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rita Yim
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Paul Lee
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lynn Chin
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vivian Li
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Harinder Gill
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Venugopal S, DeZern AE. Therapy-related myelodysplastic syndromes and acute myeloid leukemia. Semin Hematol 2024; 61:379-384. [PMID: 39426937 DOI: 10.1053/j.seminhematol.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/21/2024]
Abstract
Progress always comes at a price: the field of oncology has seen unprecedented progress in treatment options recently for many solid and hematologic cancers. Unfortunately, these long-term survivors of prior cancer and cytotoxic therapy exposure are at higher risk of therapy-related myelodysplastic syndromes/acute myeloid leukemia (t-MDS/AML.) T-MDS/AML is a myeloid malignancy which occur after exposure to chemotherapy or radiation therapy for unrelated malignancy. T-MDS/AML is associated with adverse cytogenomic features and poor prognosis. While advances in the field of clonal hematopoiesis and germline variants has unraveled the molecular underpinnings of t-MDS/AML, we have miles to go in terms of t-MDS/AML directed therapy and improvement in outcomes. In this review, we discuss the epidemiology of t-MDS/AML, clinical and biological insights, evolution of t-MDS/AML and available treatment options.
Collapse
Affiliation(s)
| | - Amy E DeZern
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD.
| |
Collapse
|
10
|
Menon A, Sukhanova M, Nocito KL, Gao J, Jennings LJ, Vormittag-Nocito ER. Detection and Interpretation of Clonal Hematopoiesis Variants during Routine Solid Tumor Next-Generation Sequencing: A Single-Institution Experience. J Mol Diagn 2024; 26:1149-1158. [PMID: 39362468 DOI: 10.1016/j.jmoldx.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 10/05/2024] Open
Abstract
Clonal hematopoiesis (CH) and clonal cytopenia of undetermined significance (CCUS) are recently recognized diagnostic entities that serve as independent risk factors for cardiovascular disease and myeloid malignancy. CH is an incidental finding, and evaluation of the incidence of CH/CCUS-associated mutations in solid tumor next-generation sequencing samples was undertaken to better understand the prevalence of mutations in this population. A retrospective review of clinical sequencing data for solid tumor malignancies diagnosed between February 2022 and April 2023 on next-generation sequencing data was performed. Cases were reviewed for variants in genes associated with CH/CCUS. Variant allele frequencies and other factors of the sequencing data were assessed for determining risk of CH/CCUS. A total of 2479 cases were evaluated during the study period. Of these, 29 cases demonstrated potential CH/CCUS-associated mutations, with a total of 33 variants identified. These were identified in a variety of tumor types, with gliomas being the most common. Significant cardiac histories were found in over half of cases identified, and few cases had abnormal blood counts. Detailed criteria for flagging variants as suspicious for CH and recommendations for these criteria as future guidelines for reporting are described. These variants are incidental findings that require more extensive follow-up or change in therapy management using a single institutional cohort.
Collapse
Affiliation(s)
- Adil Menon
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Madina Sukhanova
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kevin L Nocito
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Juehua Gao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Lawrence J Jennings
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Erica R Vormittag-Nocito
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| |
Collapse
|
11
|
Xie Z, Komrokji R, Al Ali N, Regelson A, Geyer S, Patel A, Saygin C, Zeidan AM, Bewersdorf JP, Mendez L, Kishtagari A, Zeidner JF, Coombs CC, Madanat YF, Chung S, Badar T, Foran J, Desai P, Tsai C, Griffiths EA, Al Malki MM, Amanam I, Lai C, Deeg HJ, Ades L, Arana Yi C, Osman AEG, Dinner S, Abaza Y, Taylor J, Chandhok N, Soong D, Brunner AM, Carraway HE, Singh A, Elena C, Ferrari J, Gallì A, Pozzi S, Padron E, Patnaik MM, Malcovati L, Savona MR, Al-Kali A. Risk prediction for clonal cytopenia: multicenter real-world evidence. Blood 2024; 144:2033-2044. [PMID: 38996210 PMCID: PMC11561536 DOI: 10.1182/blood.2024024756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
ABSTRACT Clonal cytopenia of undetermined significance (CCUS) represents a distinct disease entity characterized by myeloid-related somatic mutations with a variant allele fraction of ≥2% in individuals with unexplained cytopenia(s) but without a myeloid neoplasm (MN). Notably, CCUS carries a risk of progressing to MN, particularly in cases featuring high-risk mutations. Understanding CCUS requires dedicated studies to elucidate its risk factors and natural history. Our analysis of 357 patients with CCUS investigated the interplay between clonality, cytopenia, and prognosis. Multivariate analysis identified 3 key adverse prognostic factors: the presence of splicing mutation(s) (score = 2 points), platelet count of <100 × 109/L (score = 2.5), and ≥2 mutations (score = 3). Variable scores were based on the coefficients from the Cox proportional hazards model. This led to the development of the clonal cytopenia risk score (CCRS), which stratified patients into low- (score of <2.5 points), intermediate- (score of 2.5 to <5), and high-risk (score of ≥5) groups. The CCRS effectively predicted 2-year cumulative incidence of MN for low- (6.4%), intermediate- (14.1%), and high-risk (37.2%) groups, respectively, by the Gray test (P < .0001). We further validated the CCRS by applying it to an independent CCUS cohort of 104 patients, demonstrating a c-index of 0.64 (P = .005) in stratifying the cumulative incidence of MN. Our study underscores the importance of integrating clinical and molecular data to assess the risk of CCUS progression, making the CCRS a valuable tool that is practical and easily calculable. These findings are clinically relevant, shaping the management strategies for CCUS and informing future clinical trial designs.
Collapse
Affiliation(s)
- Zhuoer Xie
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Rami Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Najla Al Ali
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | | | - Susan Geyer
- Department of Biostatistics, Mayo Clinic, Rochester, MN
| | - Anand Patel
- Leukemia Program, University of Chicago Comprehensive Cancer Center, Chicago, IL
| | - Caner Saygin
- Leukemia Program, University of Chicago Comprehensive Cancer Center, Chicago, IL
| | - Amer M. Zeidan
- Division of Hematology, Departments of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT
| | - Jan Philipp Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lourdes Mendez
- Division of Hematology, Departments of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT
| | - Ashwin Kishtagari
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Joshua F. Zeidner
- Division of Hematology, The University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| | - Catherine C. Coombs
- Division of Hematology, The University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| | - Yazan F. Madanat
- Division of Hematology, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Stephen Chung
- Division of Hematology, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Talha Badar
- Division of Hematology, Mayo Clinic Florida, Jacksonville, FL
| | - James Foran
- Division of Hematology, Mayo Clinic Florida, Jacksonville, FL
| | - Pinkal Desai
- Division of Hematology and Oncology, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, NY
| | - Charlton Tsai
- Division of Hematology and Oncology, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, NY
| | - Elizabeth A. Griffiths
- Leukemia Service, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Monzr M. Al Malki
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Idoroenyi Amanam
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Catherine Lai
- Division of Hematology/Oncology, University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, PA
| | - H. Joachim Deeg
- Division of Hematology, Fred Hutchinson Cancer Center, Seattle, WA
| | - Lionel Ades
- Department of Hematology, Hospital Saint-Louis, Paris, France
| | | | - Afaf E. G. Osman
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, The University of Utah Salt Lake City, Salt Lake City, UT
| | - Shira Dinner
- Division of Hematology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Yasmin Abaza
- Division of Hematology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Justin Taylor
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Namrata Chandhok
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Deborah Soong
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Andrew M. Brunner
- Leukemia Program, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Hetty E. Carraway
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Leukemia Program Cleveland, Cleveland, OH
| | - Abhay Singh
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Leukemia Program Cleveland, Cleveland, OH
| | - Chiara Elena
- Department of Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Jacqueline Ferrari
- Department of Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Anna Gallì
- Department of Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Sara Pozzi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Eric Padron
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | | | - Luca Malcovati
- Department of Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Michael R. Savona
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Aref Al-Kali
- Division of Hematology, Mayo Clinic, Rochester, MN
| |
Collapse
|
12
|
Bernard E, Hasserjian RP, Greenberg PL, Arango Ossa JE, Creignou M, Tuechler H, Gutierrez-Abril J, Domenico D, Medina-Martinez JS, Levine M, Liosis K, Farnoud N, Sirenko M, Jädersten M, Germing U, Sanz G, van de Loosdrecht AA, Nannya Y, Kosmider O, Follo MY, Thol F, Zamora L, Pinheiro RF, Pellagatti A, Elias HK, Haase D, Ganster C, Ades L, Tobiasson M, Palomo L, Della Porta MG, Fenaux P, Belickova M, Savona MR, Klimek VM, Santos FPS, Boultwood J, Kotsianidis I, Santini V, Solé F, Platzbecker U, Heuser M, Valent P, Finelli C, Voso MT, Shih LY, Fontenay M, Jansen JH, Cervera J, Gattermann N, Ebert BL, Bejar R, Malcovati L, Ogawa S, Cazzola M, Hellström-Lindberg E, Papaemmanuil E. Molecular taxonomy of myelodysplastic syndromes and its clinical implications. Blood 2024; 144:1617-1632. [PMID: 38958467 PMCID: PMC11487646 DOI: 10.1182/blood.2023023727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/13/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
ABSTRACT Myelodysplastic syndromes (MDS) are clonal hematologic disorders characterized by morphologic abnormalities of myeloid cells and peripheral cytopenias. Although genetic abnormalities underlie the pathogenesis of these disorders and their heterogeneity, current classifications of MDS rely predominantly on morphology. We performed genomic profiling of 3233 patients with MDS or related disorders to delineate molecular subtypes and define their clinical implications. Gene mutations, copy-number alterations, and copy-neutral loss of heterozygosity were derived from targeted sequencing of a 152-gene panel, with abnormalities identified in 91%, 43%, and 11% of patients, respectively. We characterized 16 molecular groups, encompassing 86% of patients, using information from 21 genes, 6 cytogenetic events, and loss of heterozygosity at the TP53 and TET2 loci. Two residual groups defined by negative findings (molecularly not otherwise specified, absence of recurrent drivers) comprised 14% of patients. The groups varied in size from 0.5% to 14% of patients and were associated with distinct clinical phenotypes and outcomes. The median bone marrow (BM) blast percentage across groups ranged from 1.5% to 10%, and the median overall survival ranged from 0.9 to 8.2 years. We validated 5 well-characterized entities, added further evidence to support 3 previously reported subsets, and described 8 novel groups. The prognostic influence of BM blasts depended on the genetic subtypes. Within genetic subgroups, therapy-related MDS and myelodysplastic/myeloproliferative neoplasms had comparable clinical and outcome profiles to primary MDS. In conclusion, genetically-derived subgroups of MDS are clinically relevant and might inform future classification schemas and translational therapeutic research.
Collapse
Affiliation(s)
- Elsa Bernard
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Computational Oncology, UMR 981, Gustave Roussy, Villejuif, France
| | | | - Peter L. Greenberg
- Division of Hematology, Stanford University Cancer Institute, Stanford, CA
| | - Juan E. Arango Ossa
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Maria Creignou
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Jesus Gutierrez-Abril
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Dylan Domenico
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Juan S. Medina-Martinez
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Max Levine
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Konstantinos Liosis
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Noushin Farnoud
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Maria Sirenko
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Martin Jädersten
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ulrich Germing
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - Guillermo Sanz
- Department of Hematology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red Cáncer, Instituto de Salud Carlos III, Madrid, Spain
| | - Arjan A. van de Loosdrecht
- Department of Hematology, Amsterdam University Medical Center, Vrije University Medical Center, Amsterdam, The Netherlands
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Olivier Kosmider
- Department of Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin and Université de Paris, Université Paris Descartes, Paris, France
| | - Matilde Y. Follo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Felicitas Thol
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Lurdes Zamora
- Hematology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Barcelona, Spain
- Myelodysplastic Syndromes Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Ronald F. Pinheiro
- Drug Research and Development Center, Federal University of Ceara, Ceara, Brazil
| | - Andrea Pellagatti
- Radcliffe Department of Medicine, Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford, United KIngdom
| | - Harold K. Elias
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Detlef Haase
- Clinics of Hematology and Medical Oncology, University Medical Center, Göttingen, Germany
| | - Christina Ganster
- Clinics of Hematology and Medical Oncology, University Medical Center, Göttingen, Germany
| | - Lionel Ades
- Department of Hematology, Hôpital St Louis, and Paris University, Paris, France
| | - Magnus Tobiasson
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Laura Palomo
- Hematology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Barcelona, Spain
- Myelodysplastic Syndromes Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Matteo Giovanni Della Porta
- Department of Biomedical Sciences, Humanitas Clinical and Research Center and Humanitas University, Milan, Italy
| | - Pierre Fenaux
- Department of Hematology, Hôpital St Louis, and Paris University, Paris, France
| | - Monika Belickova
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Michael R. Savona
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Virginia M. Klimek
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Fabio P. S. Santos
- Oncology-Hematology Center, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Jacqueline Boultwood
- Radcliffe Department of Medicine, Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford, United KIngdom
| | - Ioannis Kotsianidis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Valeria Santini
- Myelodysplastic Syndromes Unit, Department of Experimental and Clinical Medicine, Hematology, Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | - Francesc Solé
- Myelodysplastic Syndromes Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Uwe Platzbecker
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, University of Leipzig, Leipzig, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Peter Valent
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine I, Ludwig Boltzmann Institute for Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Carlo Finelli
- Institute of Hematology Seràgnoli, Istituti di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maria Teresa Voso
- Myelodysplastic Syndromes Cooperative Group Gruppo Laziale Mielo-displasie (GROM-L), Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Lee-Yung Shih
- Division of Hematology, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan City, Taiwan
| | - Michaela Fontenay
- Department of Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin and Université de Paris, Université Paris Descartes, Paris, France
| | - Joop H. Jansen
- Laboratory of Hematology, Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - José Cervera
- Department of Hematology and Genetics Unit, University Hospital La Fe, Valencia, Spain
| | - Norbert Gattermann
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - Benjamin L. Ebert
- Department of Medical Oncology and Howard Hughes Medical Institute, Dana-Farber Cancer Center, Boston, MA
| | - Rafael Bejar
- University of California San Diego Moores Cancer Center, La Jolla, CA
| | - Luca Malcovati
- Department of Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Mario Cazzola
- Department of Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Eva Hellström-Lindberg
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Elli Papaemmanuil
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
13
|
Oster HS, Mittelman M. How we diagnose Myelodysplastic syndromes. Front Oncol 2024; 14:1415101. [PMID: 39346739 PMCID: PMC11427428 DOI: 10.3389/fonc.2024.1415101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024] Open
Abstract
The Myelodysplastic syndromes (MDS) are a heterogenous group of clonal bone marrow (BM) stem cell myeloid neoplasms, characterized by ineffective hematopoiesis that results in dysplasia in hematopoietic cells and peripheral cytopenias, especially anemia, and a propensity to leukemic transformation. The suspicion of MDS is raised by a typical but not specific clinical picture and routine laboratory findings, but the gold standard for MDS diagnosis is still BM examination with the presence of uni-or multi-lineage dysplasia and increased blast percentage, together with exclusion of other reasons. Cytogenetics is also an essential part of the diagnostic and prognostic processes. Flow cytometry and full genetic characterization are helpful but not mandatory for MDS diagnosis. This review summarizes the current steps of diagnostic approach for a patient suspected of having MDS. We also express our hopes that within the near future, non-invasive technologies, especially digital and peripheral blood genetics, will mature and be introduced into practice.
Collapse
Affiliation(s)
- Howard S Oster
- Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv University School of Medicine, Tel Aviv, Israel
| | - Moshe Mittelman
- Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv University School of Medicine, Tel Aviv, Israel
| |
Collapse
|
14
|
Petrone G, Turker I, Natarajan P, Bolton KL. Clinical and Therapeutic Implications of Clonal Hematopoiesis. Annu Rev Genomics Hum Genet 2024; 25:329-351. [PMID: 39190914 DOI: 10.1146/annurev-genom-120722-100409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Clonal hematopoiesis (CH) is an age-related process whereby hematopoietic stem and progenitor cells (HSPCs) acquire mutations that lead to a proliferative advantage and clonal expansion. The most commonly mutated genes are epigenetic regulators, DNA damage response genes, and splicing factors, which are essential to maintain functional HSPCs and are frequently involved in the development of hematologic malignancies. Established risk factors for CH, including age, prior cytotoxic therapy, and smoking, increase the risk of acquiring CH and/or may increase CH fitness. CH has emerged as a novel risk factor in many age-related diseases, such as hematologic malignancies, cardiovascular disease, diabetes, and autoimmune disorders, among others. Future characterization of the mechanisms driving CH evolution will be critical to develop preventative and therapeutic approaches.
Collapse
Affiliation(s)
- Giulia Petrone
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Isik Turker
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kelly L Bolton
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
15
|
Xiao W, Nardi V, Stein E, Hasserjian RP. A practical approach on the classifications of myeloid neoplasms and acute leukemia: WHO and ICC. J Hematol Oncol 2024; 17:56. [PMID: 39075565 PMCID: PMC11287910 DOI: 10.1186/s13045-024-01571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
In 2022, two new classifications of myeloid neoplasms and acute leukemias were published: the 5th edition WHO Classification (WHO-HAEM5) and the International Consensus Classification (ICC). As with prior classifications, the WHO-HAEM5 and ICC made updates to the prior classification (revised 4th edition WHO Classification, WHO-HAEM4R) based on a consensus of groups of experts, who examined new evidence. Both WHO-HAEM5 and ICC introduced several new disease entities that are based predominantly on genetic features, superseding prior morphologic definitions. While it is encouraging that two groups independently came to similar conclusions in updating the classification of myeloid neoplasms and acute leukemias, there are several divergences in how WHO-HAEM5 and ICC define specific entities as well as differences in nomenclature of certain diseases. In this review, we highlight the similarities and differences between the WHO-HAEM5 and ICC handling of myeloid neoplasms and acute leukemias and present a practical approach to diagnosing and classifying these diseases in this current era of two divergent classification guidelines.
Collapse
Affiliation(s)
- Wenbin Xiao
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Valentina Nardi
- Department of Pathology, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - Eytan Stein
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert P Hasserjian
- Department of Pathology, Mass General Brigham, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Shannon ML, Heimlich JB, Olson S, Debevec A, Copeland Z, Kishtagari A, Vlasschaert C, Snider C, Silver AJ, Brown D, Spaulding T, Bhatta M, Pugh K, Stockton SS, Ulloa J, Xu Y, Baljevic M, Moslehi J, Jahangir E, Ferrell PB, Slosky D, Bick AG, Savona MR. Clonal hematopoiesis and inflammation in the vasculature: CHIVE, a prospective, longitudinal clonal hematopoiesis cohort and biorepository. Blood Adv 2024; 8:3453-3463. [PMID: 38608257 PMCID: PMC11259927 DOI: 10.1182/bloodadvances.2023011510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 04/14/2024] Open
Abstract
ABSTRACT Clonal hematopoiesis (CH) is an age-associated phenomenon leading to an increased risk of both hematologic malignancy and nonmalignant organ dysfunction. Increasingly available genetic testing has made the incidental discovery of CH clinically common yet evidence-based guidelines and effective management strategies to prevent adverse CH health outcomes are lacking. To address this gap, the prospective CHIVE (clonal hematopoiesis and inflammation in the vasculature) registry and biorepository was created to identify and monitor individuals at risk, support multidisciplinary CH clinics, and refine taxonomy and standards of practice for CH risk mitigation. Data from the first 181 patients enrolled in this prospective registry recapitulate the molecular epidemiology of CH from biobank-scale retrospective studies, with DNMT3A, TET2, ASXL1, and TP53 as the most commonly mutated genes. Blood counts across all hematopoietic lineages trended lower in patients with CH. In addition, patients with CH had higher rates of end organ dysfunction, in particular chronic kidney disease. Among patients with CH, variant allele frequency was independently associated with the presence of cytopenias and progression to hematologic malignancy, whereas other common high-risk CH clone features were not clear. Notably, accumulation of multiple distinct high-risk clone features was also associated with cytopenias and hematologic malignancy progression, supporting a recently published CH risk score. Surprisingly, ∼30% of patients enrolled in CHIVE from CH clinics were adjudicated as not having clonal hematopoiesis of indeterminate potential, highlighting the need for molecular standards and purpose-built assays in this field. Maintenance of this well-annotated cohort and continued expansion of CHIVE to multiple institutions are underway and will be critical to understanding how to thoughtfully care for this patient population.
Collapse
Affiliation(s)
- Morgan L. Shannon
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - J. Brett Heimlich
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Sydney Olson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ariana Debevec
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Zachary Copeland
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ashwin Kishtagari
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Christina Snider
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Alexander J. Silver
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Donovan Brown
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Travis Spaulding
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Manasa Bhatta
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Kelly Pugh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Jessica Ulloa
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| | - Muhamed Baljevic
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Javid Moslehi
- Section of Cardio-Oncology & Immunology, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA
| | - Eiman Jahangir
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - P. Brent Ferrell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN
| | - David Slosky
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Alexander G. Bick
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN
| | - Michael R. Savona
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
17
|
Nathan DI, Brander T, Gold J, Paul D, Klein P, Cheng K, Liu JM, Marcellino BK. Diagnostic and Practical Challenges in Applying National Comprehensive Cancer Network Guidelines for Suspected Pathogenic TP53 Mosaicism. JCO Precis Oncol 2024; 8:e2400006. [PMID: 38991177 PMCID: PMC11285011 DOI: 10.1200/po.24.00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/12/2024] [Accepted: 05/08/2024] [Indexed: 07/13/2024] Open
Abstract
Benefits and limitations in using NCCN guidelines to distinguish TP53 CH from mosaic LFS.
Collapse
Affiliation(s)
- Daniel I. Nathan
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tehilla Brander
- Division of Medical Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Julie Gold
- Division of Medical Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Deborah Paul
- Department of Breast Services, The Blavatnik Family Chelsea Medical Center, Mount Sinai Beth Israel, New York, NY
| | - Paula Klein
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kit Cheng
- Division of Medical Oncology and Hematology, Zuckerberg Cancer Center, New Hyde Park, NY
| | - Johnson M. Liu
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Bridget K. Marcellino
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
18
|
Huber S, Baer C, Hutter S, Wossidlo N, Hoermann G, Pohlkamp C, Walter W, Meggendorfer M, Kern W, Haferlach T, Haferlach C. Genomic landscape of CCUS compared to MDS and its implications on risk prediction. Leukemia 2024; 38:1634-1637. [PMID: 38730270 PMCID: PMC11216976 DOI: 10.1038/s41375-024-02273-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Affiliation(s)
- Sandra Huber
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Constance Baer
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Stephan Hutter
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Natalie Wossidlo
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Gregor Hoermann
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Christian Pohlkamp
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Wencke Walter
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Manja Meggendorfer
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Wolfgang Kern
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Torsten Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Claudia Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany.
| |
Collapse
|
19
|
Pietka G, De Lord C, Matthias G, Cheung B, Atwal S, Furtado M, Cullis J, Grey-Davies L, Narayanan S, McGregor A, Kilner M, Bosworth J, McMullin MF, Coats T, Parcharidou A, Cavenagh J, Byrne J, Iyengar S, Mohammed K, Cross N, Hubank M, Ribeiro S, Khorashad J, Wren D, O'Connor S, Taussig D. Capture-based targeted sequencing using a T-cell control in myeloid malignancies and idiopathic cytopenias. Br J Haematol 2024; 204:1325-1334. [PMID: 38462984 DOI: 10.1111/bjh.19377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
We report on a study of next-generation sequencing in 257 patients undergoing investigations for cytopenias. We sequenced bone marrow aspirates using a target enrichment panel comprising 82 genes and used T cells from paired blood as a control. One hundred and sixty patients had idiopathic cytopenias, 81 had myeloid malignancies and 16 had lymphoid malignancies or other diagnoses. Forty-seven of the 160 patients with idiopathic cytopenias had evidence of somatic pathogenic variants consistent with clonal cytopenias. Only 39 genes of the 82 tested were mutated in the 241 patients with either idiopathic cytopenias or myeloid neoplasms. We confirm that T cells can be used as a control to distinguish between germline and somatic variants. The use of paired analysis with a T-cell control significantly reduced the time molecular scientists spent reporting compared to unpaired analysis. We identified somatic variants of uncertain significance (VUS) in a higher proportion (24%) of patients with myeloid malignancies or clonal cytopenias compared to less than 2% of patients with non-clonal cytopenias. This suggests that somatic VUS are indicators of a clonal process. Lastly, we show that blood depleted of lymphocytes can be used in place of bone marrow as a source of material for sequencing.
Collapse
Affiliation(s)
- Grzegorz Pietka
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
- Department of Translational Research, Royal Marsden Hospital NHS Trust, London, UK
| | - Corinne De Lord
- Department of Haematology, St Helier Hospital, London, UK
- Department of Haematology, Royal Marsden Hospital NHS Trust, London, UK
| | - Gwynn Matthias
- Department of Haematology, Queen Alexandra Hospital, Portsmouth, UK
| | - Betty Cheung
- Department of Haematology, Croydon University Hospital, London, UK
| | - Sangeeta Atwal
- Department of Haematology, Kingston Hospital NHS Foundation Trust, London, UK
| | - Michelle Furtado
- Department of Haematology, Royal Cornwall Hospitals NHS Foundation Trust, Cornwall, Truro, UK
| | - Jonathan Cullis
- Department of Haematology, Salisbury NHS Foundation Trust, Salisbury, UK
| | - Liz Grey-Davies
- Department of Haematology, Royal Surrey County Hospital NHS Foundation Trust, Guildford, UK
| | | | - Andrew McGregor
- Department of Haematology, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Mari Kilner
- Department of Haematology, Northumbria Healthcare NHS Foundation Trust, Tyneside, UK
| | - Jenny Bosworth
- Department of Haematology, St Helier Hospital, London, UK
- Department of Haematology, Royal Marsden Hospital NHS Trust, London, UK
| | | | - Thomas Coats
- Department of Haematology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | | | - Jamie Cavenagh
- Department of Haematology, St Bartholomew's Hospital, London, UK
| | - Jenny Byrne
- Department of Haematology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Sunil Iyengar
- Department of Haematology, Royal Marsden Hospital NHS Trust, London, UK
| | - Kabir Mohammed
- Department of Statistics, Royal Marsden Hospital NHS Trust, London, UK
| | - Nicholas Cross
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Genomics Laboratory Service, Salisbury NHS Foundation Trust, Salisbury, UK
| | - Mike Hubank
- Department of Translational Research, Royal Marsden Hospital Sutton, London, UK
- Division of Molecular Pathology, Clinical Genomics (Research), Institute of Cancer Research, London, UK
| | - Sara Ribeiro
- Department of Molecular Pathology, Royal Marsden Hospital Sutton, London, UK
| | - Jamshid Khorashad
- Department of Molecular Pathology, Royal Marsden Hospital Sutton, London, UK
| | - Dorte Wren
- Department of Molecular Pathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Simon O'Connor
- Department of Histopathology, Royal Marsden NHS Foundation Trust, London, UK
| | - David Taussig
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
- Department of Haematology, Royal Marsden Hospital NHS Trust, London, UK
| |
Collapse
|
20
|
Malcovati L. Navigating the misty lands of monocytosis. Blood 2024; 143:1062-1064. [PMID: 38512267 DOI: 10.1182/blood.2023023332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
|
21
|
Martinez TC, McNerney ME. Haploinsufficient Transcription Factors in Myeloid Neoplasms. ANNUAL REVIEW OF PATHOLOGY 2024; 19:571-598. [PMID: 37906947 DOI: 10.1146/annurev-pathmechdis-051222-013421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Many transcription factors (TFs) function as tumor suppressor genes with heterozygous phenotypes, yet haploinsufficiency generally has an underappreciated role in neoplasia. This is no less true in myeloid cells, which are normally regulated by a delicately balanced and interconnected transcriptional network. Detailed understanding of TF dose in this circuitry sheds light on the leukemic transcriptome. In this review, we discuss the emerging features of haploinsufficient transcription factors (HITFs). We posit that: (a) monoallelic and biallelic losses can have distinct cellular outcomes; (b) the activity of a TF exists in a greater range than the traditional Mendelian genetic doses; and (c) how a TF is deleted or mutated impacts the cellular phenotype. The net effect of a HITF is a myeloid differentiation block and increased intercellular heterogeneity in the course of myeloid neoplasia.
Collapse
Affiliation(s)
- Tanner C Martinez
- Department of Pathology, Department of Pediatrics, Section of Hematology/Oncology, The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois, USA;
- Medical Scientist Training Program, The University of Chicago, Chicago, Illinois, USA
| | - Megan E McNerney
- Department of Pathology, Department of Pediatrics, Section of Hematology/Oncology, The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois, USA;
| |
Collapse
|
22
|
Sadigh S, DeAngelo DJ, Garcia JS, Hasserjian RP, Hergott CB, Lane AA, Lovitch SB, Lucas F, Luskin MR, Morgan EA, Pinkus GS, Pozdnyakova O, Rodig SJ, Shanmugam V, Tsai HK, Winer ES, Zemmour D, Kim AS. Cutaneous Manifestations of Myeloid Neoplasms Exhibit Broad and Divergent Morphologic and Immunophenotypic Features but Share Ancestral Clonal Mutations With Bone Marrow. Mod Pathol 2024; 37:100352. [PMID: 37839675 DOI: 10.1016/j.modpat.2023.100352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
In this study, we performed a comprehensive molecular analysis of paired skin and peripheral blood/bone marrow (BM) samples from 17 patients with cutaneous myeloid or cutaneous histiocytic-dendritic neoplasms. The cutaneous manifestations included 10 patients with cutaneous acute myeloid leukemia (c-AML), 2 patients with full or partial Langerhans cell differentiation, 2 patients with blastic plasmacytoid dendritic cell neoplasms (BPDCN), 1 patient with both Langerhans cell differentiation and BPDCN, and 2 patients with full or partial indeterminate dendritic cell differentiation. Seven of the 10 c-AML patients (70%) exhibited concurrent or subsequent marrow involvement by acute myeloid leukemia, with all 7 cases (100%) demonstrating shared clonal mutations in both the skin and BM. However, clonal relatedness was documented in one additional case that never had any BM involvement. Nevertheless, NPM1 mutations were identified in 7 of the 10 (70%) of these c-AML cases while one had KMT2A rearrangement and one showed inv(16). All 3 patients (100%) with Langerhans cell neoplasms, 2 patients with BPDCN (100%), and one of the 2 patients (50%) with other cutaneous dendritic cell neoplasms also demonstrated shared mutations between the skin and concurrent or subsequent myeloid neoplasms. Both BM and c-AML shared identical founding drivers, with a predominance of NPM1, DNMT3A, and translocations associated with monocytic differentiation, with common cutaneous-only mutations involving genes in the signal transduction and epigenetic pathways. Cutaneous histiocytic-dendritic neoplasms shared founding drivers in ASXL1, TET2, and/or SRSF2. However, in the Langerhans cell histiocytosis or histiocytic sarcoma cases, there exist recurrent secondary RAS pathway hits, whereas cutaneous BPDCN cases exhibit copy number or structural variants. These results enrich and broaden our understanding of clonally related cutaneous manifestations of myeloid neoplasms and further illuminate the highly diverse spectrum of morphologic and immunophenotypic features they exhibit.
Collapse
Affiliation(s)
- Sam Sadigh
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jacqueline S Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Robert P Hasserjian
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Christopher B Hergott
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andrew A Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Scott B Lovitch
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Fabienne Lucas
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marlise R Luskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Elizabeth A Morgan
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Geraldine S Pinkus
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Olga Pozdnyakova
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Vignesh Shanmugam
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Harrison K Tsai
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eric S Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - David Zemmour
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Annette S Kim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Now with Department of Pathology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
23
|
Groarke EM. Predicting the progression of patients with CCUS to myeloid neoplasia. Lancet Haematol 2024; 11:e7-e8. [PMID: 38135374 DOI: 10.1016/s2352-3026(23)00361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023]
Affiliation(s)
- Emma M Groarke
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Cargo C, Bernard E, Beinortas T, Bolton KL, Glover P, Warren H, Payne D, Ali R, Khan A, Short M, Van Hoppe S, Smith A, Taylor J, Evans P, Papaemmanuil E, Crouch S. Predicting cytopenias, progression, and survival in patients with clonal cytopenia of undetermined significance: a prospective cohort study. Lancet Haematol 2024; 11:e51-e61. [PMID: 38135373 DOI: 10.1016/s2352-3026(23)00340-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Somatic mutations are frequently reported in individuals with cytopenia but without a confirmed haematological diagnosis (clonal cytopenia of undetermined significance; CCUS). These patients have an increased risk of progression to a myeloid malignancy and worse overall survival than those with no such mutations. To date, studies have been limited by retrospective analysis or small patient numbers. We aimed to establish the natural history of CCUS by prospectively investigating outcome in a large, well defined patient cohort. METHODS This prospective cohort study was conducted at the Haematological Malignancy Diagnostic Service, a diagnostic laboratory in Leeds, UK. Patients aged at least 18 years who were referred for investigation of cytopenia were eligible for inclusion; those with a history of myeloid malignancy were not eligible. Targeted sequencing was conducted alongside routine clinical testing. Baseline mutation analysis was then correlated with the main study outcomes: longitudinal blood counts, disease progression to a myeloid malignancy, and overall survival with a median follow-up of 4·54 years (IQR 4·03-5·04). Data were collected manually from hospital records or extracted from laboratory or clinical outcome databases. FINDINGS Bone marrow samples from 2348 patients were received at the Haematological Malignancy Diagnostic Service between July 1, 2014, and July 31, 2016. Of these, 2083 patients (median age 72 years [IQR 63-80, range 18-99]; 854 [41·0%] female and 1229 [59·0%] male) met the inclusion criteria and had samples of sufficient quality for further analysis. 598 (28·7%) patients received a diagnosis on the basis of their biopsy sample, whereas 1485 (71·3%) samples were classified as non-diagnostic; of these, CCUS was confirmed in 400 (26·9%) patients (256 [64·0%] male and 144 [36·0%] female). TET2, SRSF2, and DNMT3A were the most frequently mutated genes in patients with CCUS, with 320 (80%) of 400 patients harbouring a mutation in at least one of these genes. Age (p<0·0001), sex (p=0·0027), and mutations in ASXL1 (p=0·0009), BCOR (p=0·0056), and TP53 (p=0·0055) correlated with a worse overall survival; however, the number of mutations was the strongest predictor for progression to a myeloid malignancy (two mutations, p=0·0024; three or more mutations, p=0·0004). Extended sequencing of samples from a subgroup of patients with sequential samples and no mutations in the initial myeloid gene panel showed recurrent mutations in both DDX41 and UBA1, suggesting that these genes should be included in clinical test panels. INTERPRETATION Mutation analysis is advised in patients who have undergone bone marrow examination and have an otherwise-unexplained cytopenia. High-risk genetic mutations and increased numbers of mutations are predictive of both survival and progression within 5 years of presentation, warranting clinical surveillance and, when necessary, intervention. FUNDING MDS Foundation.
Collapse
Affiliation(s)
- Catherine Cargo
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK.
| | - Elsa Bernard
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tumas Beinortas
- St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Kelly L Bolton
- Washington University School of Medicine, St Louis, MO, USA
| | - Paul Glover
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Helen Warren
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Daniel Payne
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Rukhsaar Ali
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Alesia Khan
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Mike Short
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Suzan Van Hoppe
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Alex Smith
- Epidemiology and Cancer Statistics Group, University of York, York, UK
| | - Jan Taylor
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Paul Evans
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Elli Papaemmanuil
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon Crouch
- Epidemiology and Cancer Statistics Group, University of York, York, UK
| |
Collapse
|
25
|
Soderquist CR, Freeman C, Lin WH, Leeman-Neill RJ, Gu Y, Carter MC, Stutzel KC, Sigcha E, Alobeid B, Fernandes H, Bhagat G, Mansukhani MM, Hsiao SJ. Clinical Utility and Reimbursement of Next-Generation Sequencing-Based Testing for Myeloid Malignancies. J Mol Diagn 2024; 26:5-16. [PMID: 37981089 DOI: 10.1016/j.jmoldx.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/12/2023] [Accepted: 09/18/2023] [Indexed: 11/21/2023] Open
Abstract
Next-generation sequencing is becoming increasingly important for the diagnosis, risk stratification, and management of patients with established or suspected myeloid malignancies. These tests are being incorporated into clinical practice guidelines and many genetic alterations now constitute disease classification criteria. However, the reimbursement for these tests is uncertain. This study analyzed the clinical impact, ordering practices, prior authorization, and reimbursement outcomes of 505 samples from 477 patients sequenced with a 50-gene myeloid next-generation sequencing panel or a 15-gene myeloproliferative neoplasm subpanel. Overall, 98% (496 of 505) of tests provided clinically useful data. Eighty-nine percent of test results, including negative findings, informed or clarified potential diagnoses, 94% of results informed potential prognoses, and 19% of tests identified a potential therapeutic target. Sequencing results helped risk-stratify patients whose bone marrow biopsy specimens were inconclusive for dysplasia, monitor genetic evolution associated with disease progression, and delineate patients with mutation-defined diagnoses. Despite the clinical value, prior authorization from commercial payors or managed government payors was approved for less than half (45%) of requests. Only 51% of all cases were reimbursed, with lack of medical necessity frequently cited as a reason for denial. This study demonstrates the existence of a substantial gap between clinical utility and payor policies on test reimbursement.
Collapse
Affiliation(s)
- Craig R Soderquist
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Christopher Freeman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Wen-Hsuan Lin
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Rebecca J Leeman-Neill
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Yue Gu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Melissa C Carter
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Kate C Stutzel
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Evelyn Sigcha
- Faculty Practice Organization, Revenue Management, Columbia University Irving Medical Center, New York, New York
| | - Bachir Alobeid
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Helen Fernandes
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Mahesh M Mansukhani
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Susan J Hsiao
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York.
| |
Collapse
|
26
|
Weeks LD, Ebert BL. Causes and consequences of clonal hematopoiesis. Blood 2023; 142:2235-2246. [PMID: 37931207 PMCID: PMC10862247 DOI: 10.1182/blood.2023022222] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
ABSTRACT Clonal hematopoiesis (CH) is described as the outsized contribution of expanded clones of hematopoietic stem and progenitor cells (HSPCs) to blood cell production. The prevalence of CH increases dramatically with age. CH can be caused by somatic mutations in individual genes or by gains and/or losses of larger chromosomal segments. CH is a premalignant state; the somatic mutations detected in CH are the initiating mutations for hematologic malignancies, and CH is a strong predictor of the development of blood cancers. Moreover, CH is associated with nonmalignant disorders and increased overall mortality. The somatic mutations that drive clonal expansion of HSPCs can alter the function of terminally differentiated blood cells, including the release of elevated levels of inflammatory cytokines. These cytokines may then contribute to a broad range of inflammatory disorders that increase in prevalence with age. Specific somatic mutations in the peripheral blood in coordination with blood count parameters can powerfully predict the development of hematologic malignancies and overall mortality in CH. In this review, we summarize the current understanding of CH nosology and origins. We provide an overview of available tools for risk stratification and discuss management strategies for patients with CH presenting to hematology clinics.
Collapse
Affiliation(s)
- Lachelle D. Weeks
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Center for Early Detection and Interception of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Center for Early Detection and Interception of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| |
Collapse
|
27
|
Hasserjian RP, Germing U, Malcovati L. Diagnosis and classification of myelodysplastic syndromes. Blood 2023; 142:2247-2257. [PMID: 37774372 DOI: 10.1182/blood.2023020078] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
ABSTRACT Myelodysplastic syndromes (MDSs) are neoplastic myeloid proliferations characterized by ineffective hematopoiesis resulting in peripheral blood cytopenias. MDS is distinguished from nonneoplastic clonal myeloid proliferations by the presence of morphologic dysplasia and from acute myeloid leukemia by a blast threshold of 20%. The diagnosis of MDS can be challenging because of the myriad other causes of cytopenias: accurate diagnosis requires the integration of clinical features with bone marrow and peripheral blood morphology, immunophenotyping, and genetic testing. MDS has historically been subdivided into several subtypes by classification schemes, the most recent of which are the International Consensus Classification and World Health Organization Classification (fifth edition), both published in 2022. The aim of MDS classification is to identify entities with shared genetic underpinnings and molecular pathogenesis, and the specific subtype can inform clinical decision-making alongside prognostic risk categorization. The current MDS classification schemes incorporate morphologic features (bone marrow and blood blast percentage, degree of dysplasia, ring sideroblasts, bone marrow fibrosis, and bone marrow hypocellularity) and also recognize 3 entities defined by genetics: isolated del(5q) cytogenetic abnormality, SF3B1 mutation, and TP53 mutation. It is anticipated that with advancing understanding of the genetic basis of MDS pathogenesis, future MDS classification will be based increasingly on genetic classes. Nevertheless, morphologic features in MDS reflect the phenotypic expression of the underlying abnormal genetic pathways and will undoubtedly retain importance to inform prognosis and guide treatment.
Collapse
Affiliation(s)
| | - Ulrich Germing
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich-Heine University, Dusseldorf, Germany
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| |
Collapse
|
28
|
DeZern AE, Greenberg PL. The trajectory of prognostication and risk stratification for patients with myelodysplastic syndromes. Blood 2023; 142:2258-2267. [PMID: 37562001 DOI: 10.1182/blood.2023020081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023] Open
Abstract
ABSTRACT Risk stratification and prognostication are crucial for the appropriate management of patients with myelodysplastic syndromes (MDSs) or myelodysplastic neoplasms, for whom the expected survival can vary from a few months to >10 years. For the past 5 decades, patients with MDS have been classified into higher-risk vs lower-risk disease phenotypes using sequentially developed clinical prognostic scoring systems. Factors such as morphologic dysplasia, clinical hematologic parameters, cytogenetics, and, more recently, mutational information have been captured in prognostic scoring systems that refine risk stratification and guide therapeutic management in patients with MDS. This review describes the progressive evolution and improvement of these systems which has led to the current Molecular International Prognostic Scoring System.
Collapse
Affiliation(s)
- Amy E DeZern
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Peter L Greenberg
- Hematology Division, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
29
|
Landberg N, Köhnke T, Feng Y, Nakauchi Y, Fan AC, Linde MH, Karigane D, Lim K, Sinha R, Malcovati L, Thomas D, Majeti R. IDH1-mutant preleukemic hematopoietic stem cells can be eliminated by inhibition of oxidative phosphorylation. Blood Cancer Discov 2023; 5:731701. [PMID: 38091010 PMCID: PMC10905513 DOI: 10.1158/2643-3230.bcd-23-0195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/03/2023] [Accepted: 12/06/2023] [Indexed: 01/25/2024] Open
Abstract
Rare preleukemic hematopoietic stem cells (pHSCs) harboring only the initiating mutations can be detected at the time of AML diagnosis. pHSCs are the origin of leukemia and a potential reservoir for relapse. Using primary human samples and gene-editing to model isocitrate dehydrogenase 1 (IDH1) mutant pHSCs, we show epigenetic, transcriptional, and metabolic differences between pHSCs and healthy hematopoietic stem cells (HSCs). We confirm that IDH1 driven clonal hematopoiesis is associated with cytopenia, suggesting an inherent defect to fully reconstitute hematopoiesis. Despite giving rise to multilineage engraftment, IDH1-mutant pHSCs exhibited reduced proliferation, blocked differentiation, downregulation of MHC Class II genes, and reprogramming of oxidative phosphorylation metabolism. Critically, inhibition of oxidative phosphorylation resulted in complete eradication of IDH1-mutant pHSCs but not IDH2-mutant pHSCs or wildtype HSCs. Our results indicate that IDH1-mutant preleukemic clones can be targeted with complex I inhibitors, offering a potential strategy to prevent development and relapse of leukemia.
Collapse
Affiliation(s)
- Niklas Landberg
- Department of Medicine, Division of Hematology, Stanford School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Thomas Köhnke
- Department of Medicine, Division of Hematology, Stanford School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Yang Feng
- Department of Medicine, Division of Hematology, Stanford School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Yusuke Nakauchi
- Department of Medicine, Division of Hematology, Stanford School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Amy C. Fan
- Department of Medicine, Division of Hematology, Stanford School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Immunology Graduate Program, Stanford University, Stanford, California
| | - Miles H. Linde
- Department of Medicine, Division of Hematology, Stanford School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Immunology Graduate Program, Stanford University, Stanford, California
| | - Daiki Karigane
- Department of Medicine, Division of Hematology, Stanford School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Kelly Lim
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Precision Medicine, South Australian Health and Medical Research Institute, The University of Adelaide, Adelaide, Australia
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Daniel Thomas
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Precision Medicine, South Australian Health and Medical Research Institute, The University of Adelaide, Adelaide, Australia
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Stanford School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| |
Collapse
|
30
|
Craven KE, Ewalt MD. Premalignant Clonal Hematopoiesis (Clonal Hematopoiesis of Indeterminate Potential and Clonal Cytopenia of Undetermined Significance). Clin Lab Med 2023; 43:565-576. [PMID: 37865503 DOI: 10.1016/j.cll.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
Premalignant clonal hematopoiesis is the presence of somatic alterations in the blood of otherwise healthy individuals. Although the condition is not considered as a cancer, it carries an increased risk of developing a hematologic malignancy, particularly in those with large neoplastic clones, multiple pathogenic mutations, and high-risk mutations. In addition to the increased risk of malignancy, clonal hematopoiesis carries a markedly increased risk of cardiovascular events and death. Appropriate identification of this entity is critical to mitigate cardiovascular risk factors and ensure appropriate monitoring for the emergence of blood cancer.
Collapse
Affiliation(s)
- Kelly E Craven
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 36, New York, NY 10065, USA
| | - Mark D Ewalt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 36, New York, NY 10065, USA.
| |
Collapse
|
31
|
Todisco G, Creignou M, Bernard E, Björklund AC, Moura PL, Tesi B, Mortera-Blanco T, Sander B, Jansson M, Walldin G, Barbosa I, Reinsbach SE, Hofman IJ, Nilsson C, Yoshizato T, Dimitriou M, Chang D, Olafsdottir S, Venckute Larsson S, Tobiasson M, Malcovati L, Woll P, Jacobsen SEW, Papaemmanuil E, Hellström-Lindberg E. Integrated Genomic and Transcriptomic Analysis Improves Disease Classification and Risk Stratification of MDS with Ring Sideroblasts. Clin Cancer Res 2023; 29:4256-4267. [PMID: 37498312 PMCID: PMC10570683 DOI: 10.1158/1078-0432.ccr-23-0538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/12/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE Ring sideroblasts (RS) define the low-risk myelodysplastic neoplasm (MDS) subgroup with RS but may also reflect erythroid dysplasia in higher risk myeloid neoplasm. The benign behavior of MDS with RS (MDSRS+) is limited to SF3B1-mutated cases without additional high-risk genetic events, but one third of MDSRS+ carry no SF3B1 mutation, suggesting that different molecular mechanisms may underlie RS formation. We integrated genomic and transcriptomic analyses to evaluate whether transcriptome profiles may improve current risk stratification. EXPERIMENTAL DESIGN We studied a prospective cohort of MDSRS+ patients irrespective of World Health Organization (WHO) class with regard to somatic mutations, copy-number alterations, and bone marrow CD34+ cell transcriptomes to assess whether transcriptome profiles add to prognostication and provide input on disease classification. RESULTS SF3B1, SRSF2, or TP53 multihit mutations were found in 89% of MDSRS+ cases, and each mutation category was associated with distinct clinical outcome, gene expression, and alternative splicing profiles. Unsupervised clustering analysis identified three clusters with distinct hemopoietic stem and progenitor (HSPC) composition, which only partially overlapped with mutation groups. IPSS-M and the transcriptome-defined proportion of megakaryocyte/erythroid progenitors (MEP) independently predicted survival in multivariable analysis. CONCLUSIONS These results provide essential input on the molecular basis of SF3B1-unmutated MDSRS+ and propose HSPC quantification as a prognostic marker in myeloid neoplasms with RS.
Collapse
Affiliation(s)
- Gabriele Todisco
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Unit of Precision Hematology Oncology, IRCCS S. Matteo Hospital Foundation, Pavia, Italy
| | - Maria Creignou
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Phase I Unit, Center for Clinical Cancer Studies, Karolinska University Hospital, Stockholm, Sweden
| | - Elsa Bernard
- Computational Oncology Service, Department of Epidemiology & Biostatistics and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ann-Charlotte Björklund
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Pedro Luis Moura
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bianca Tesi
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Teresa Mortera-Blanco
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Sander
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Monika Jansson
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Medical Unit Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Gunilla Walldin
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Medical Unit Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Indira Barbosa
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Susanne E. Reinsbach
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, Sweden
| | - Isabel Juliana Hofman
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christer Nilsson
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Medical Unit Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Tetsuichi Yoshizato
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marios Dimitriou
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - David Chang
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Svannildur Olafsdottir
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sigita Venckute Larsson
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Tobiasson
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Medical Unit Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Unit of Precision Hematology Oncology, IRCCS S. Matteo Hospital Foundation, Pavia, Italy
| | - Petter Woll
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sten Eirik W. Jacobsen
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Elli Papaemmanuil
- Computational Oncology Service, Department of Epidemiology & Biostatistics and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eva Hellström-Lindberg
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Medical Unit Hematology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
32
|
Rosenquist R, Bernard E, Erkers T, Scott DW, Itzykson R, Rousselot P, Soulier J, Hutchings M, Östling P, Cavelier L, Fioretos T, Smedby KE. Novel precision medicine approaches and treatment strategies in hematological malignancies. J Intern Med 2023; 294:413-436. [PMID: 37424223 DOI: 10.1111/joim.13697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Genetic testing has been applied for decades in clinical routine diagnostics of hematological malignancies to improve disease (sub)classification, prognostication, patient management, and survival. In recent classifications of hematological malignancies, disease subtypes are defined by key recurrent genetic alterations detected by conventional methods (i.e., cytogenetics, fluorescence in situ hybridization, and targeted sequencing). Hematological malignancies were also one of the first disease areas in which targeted therapies were introduced, the prime example being BCR::ABL1 inhibitors, followed by an increasing number of targeted inhibitors hitting the Achilles' heel of each disease, resulting in a clear patient benefit. Owing to the technical advances in high-throughput sequencing, we can now apply broad genomic tests, including comprehensive gene panels or whole-genome and whole-transcriptome sequencing, to identify clinically important diagnostic, prognostic, and predictive markers. In this review, we give examples of how precision diagnostics has been implemented to guide treatment selection and improve survival in myeloid (myelodysplastic syndromes and acute myeloid leukemia) and lymphoid malignancies (acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and chronic lymphocytic leukemia). We discuss the relevance and potential of monitoring measurable residual disease using ultra-sensitive techniques to assess therapy response and detect early relapses. Finally, we bring up the promising avenue of functional precision medicine, combining ex vivo drug screening with various omics technologies, to provide novel treatment options for patients with advanced disease. Although we are only in the beginning of the field of precision hematology, we foresee rapid development with new types of diagnostics and treatment strategies becoming available to the benefit of our patients.
Collapse
Affiliation(s)
- Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Elsa Bernard
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA
- PRISM Center for Personalized Medicine, Gustave Roussy, Villejuif, France
| | - Tom Erkers
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - David W Scott
- BC Cancer's Centre for Lymphoid Cancer, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Raphael Itzykson
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Rousselot
- Department of Hematology, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Jean Soulier
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Hématologie Biologique, APHP, Hôpital Saint-Louis, Paris, France
| | - Martin Hutchings
- Department of Haematology and Phase 1 Unit, Rigshospitalet, Copenhagen, Denmark
| | - Päivi Östling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - Lucia Cavelier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Thoas Fioretos
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Karin E Smedby
- Department of Hematology, Karolinska University Hospital, Solna, Stockholm, Sweden
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
van Zeventer IA, de Graaf AO, Jansen JH, Huls G. Evolution of clonal hematopoiesis. Clin Transl Med 2023; 13:e1444. [PMID: 37846136 PMCID: PMC10579999 DOI: 10.1002/ctm2.1444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/01/2023] [Indexed: 10/18/2023] Open
Affiliation(s)
- Isabelle A. van Zeventer
- Department of HematologyUniversity Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Aniek O. de Graaf
- Department of Laboratory MedicineLaboratory of HematologyRadboud University Medical CenterNijmegenNetherlands
| | - Joop H. Jansen
- Department of Laboratory MedicineLaboratory of HematologyRadboud University Medical CenterNijmegenNetherlands
| | - Gerwin Huls
- Department of HematologyUniversity Medical Center Groningen, University of GroningenGroningenNetherlands
| |
Collapse
|
34
|
Liu J, Osman AEG, Bolton K, Godley LA. Germline predisposition to clonal hematopoiesis. Leuk Res 2023; 132:107344. [PMID: 37421681 DOI: 10.1016/j.leukres.2023.107344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/10/2023]
Abstract
We now recognize that with aging, hematopoietic stem and progenitor cells (HSPCs) acquire mutations that confer a fitness advantage and clonally expand in a process now termed clonal hematopoiesis (CH). Because CH predisposes to a variety of health problems, including cancers, cardiovascular diseases, and inflammatory conditions, there is intense interest in the inherited alleles associated with the development of CH. DNA variants near TERT, SMC4, KPNA4, IL12A, CD164, and ATM confer the strongest associations. In this review, we discuss our current state of knowledge regarding germline predisposition to CH.
Collapse
Affiliation(s)
- Jie Liu
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Afaf E G Osman
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA
| | - Kelly Bolton
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Lucy A Godley
- Division of Hematology/Oncology, Department of Medicine, and the Robert H. Lurie Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
35
|
Schulz E, Aplan PD, Freeman SD, Pavletic SZ. Moving toward a conceptualization of measurable residual disease in myelodysplastic syndromes. Blood Adv 2023; 7:4381-4394. [PMID: 37267435 PMCID: PMC10432617 DOI: 10.1182/bloodadvances.2023010098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Approximately 90% of patients with myelodysplastic syndromes (MDSs) have somatic mutations that are known or suspected to be oncogenic in the malignant cells. The genetic risk stratification of MDSs has evolved substantially with the introduction of the clinical molecular international prognostic scoring system, which establishes next-generation sequencing at diagnosis as a standard of care. Furthermore, the International Consensus Classification of myeloid neoplasms and acute leukemias has refined the MDS diagnostic criteria with the introduction of a new MDS/acute myeloid leukemia category. Monitoring measurable residual disease (MRD) has historically been used to define remission status, improve relapse prediction, and determine the efficacy of antileukemic drugs in patients with acute and chronic leukemias. However, in contrast to leukemias, assessment of MRD, including tracking of patient-specific mutations, has not yet been formally defined as a biomarker for MDS. This article summarizes current evidence and challenges and provides a conceptual framework for incorporating MRD into the treatment of MDS and future clinical trials.
Collapse
Affiliation(s)
- Eduard Schulz
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD
| | - Peter D. Aplan
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD
| | - Sylvie D. Freeman
- Department of Clinical Immunology, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Steven Z. Pavletic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD
| |
Collapse
|
36
|
Molteni E, Bono E, Gallì A, Elena C, Ferrari J, Fiorelli N, Pozzi S, Ferretti VV, Sarchi M, Rizzo E, Camilotto V, Boveri E, Cazzola M, Malcovati L. Prevalence and clinical expression of germ line predisposition to myeloid neoplasms in adults with marrow hypocellularity. Blood 2023; 142:643-657. [PMID: 37216690 PMCID: PMC10644067 DOI: 10.1182/blood.2022019304] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/27/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Systematic studies of germ line genetic predisposition to myeloid neoplasms in adult patients are still limited. In this work, we performed germ line and somatic targeted sequencing in a cohort of adult patients with hypoplastic bone marrow (BM) to study germ line predisposition variants and their clinical correlates. The study population included 402 consecutive adult patients investigated for unexplained cytopenia and reduced age-adjusted BM cellularity. Germ line mutation analysis was performed using a panel of 60 genes, and variants were interpreted per the American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines; somatic mutation analysis was performed using a panel of 54 genes. Of the 402 patients, 27 (6.7%) carried germ line variants that caused a predisposition syndrome/disorder. The most frequent disorders were DDX41-associated predisposition, Fanconi anemia, GATA2-deficiency syndrome, severe congenital neutropenia, RASopathy, and Diamond-Blackfan anemia. Eighteen of 27 patients (67%) with causative germ line genotype were diagnosed with myeloid neoplasm, and the remaining with cytopenia of undetermined significance. Patients with a predisposition syndrome/disorder were younger than the remaining patients and had a higher risk of severe or multiple cytopenias and advanced myeloid malignancy. In patients with myeloid neoplasm, causative germ line mutations were associated with increased risk of progression into acute myeloid leukemia. Family or personal history of cancer did not show significant association with a predisposition syndrome/disorder. The findings of this study unveil the spectrum, clinical expressivity, and prevalence of germ line predisposition mutations in an unselected cohort of adult patients with cytopenia and hypoplastic BM.
Collapse
Affiliation(s)
- Elisabetta Molteni
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Elisa Bono
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Anna Gallì
- Department of Hematology Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Chiara Elena
- Department of Hematology Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Jacqueline Ferrari
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Nicolas Fiorelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Sara Pozzi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Martina Sarchi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Virginia Camilotto
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Emanuela Boveri
- Department of Pathology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Mario Cazzola
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
37
|
DeZern AE, Goll JB, Lindsley RC, Bejar R, Wilson SH, Hebert D, Deeg J, Zhang L, Gore S, Al Baghdadi T, Maciejewski J, Liu J, Padron E, Komrojki R, Saber W, Abel G, Kroft SH, Harrington A, Grimes T, Reed H, Fulton RS, DiFronzo NL, Gillis N, Sekeres MA, Walter MJ. Utility of targeted gene sequencing to differentiate myeloid malignancies from other cytopenic conditions. Blood Adv 2023; 7:3749-3759. [PMID: 36947201 PMCID: PMC10368770 DOI: 10.1182/bloodadvances.2022008578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023] Open
Abstract
The National Heart, Lung, and Blood Institute-funded National MDS Natural History Study (NCT02775383) is a prospective cohort study enrolling patients with cytopenia with suspected myelodysplastic syndromes (MDS) to evaluate factors associated with disease. Here, we sequenced 53 genes in bone marrow samples harvested from 1298 patients diagnosed with myeloid malignancy, including MDS and non-MDS myeloid malignancy or alternative marrow conditions with cytopenia based on concordance between independent histopathologic reviews (local, centralized, and tertiary to adjudicate disagreements when needed). We developed a novel 2-stage diagnostic classifier based on mutational profiles in 18 of 53 sequenced genes that were sufficient to best predict a diagnosis of myeloid malignancy and among those with a predicted myeloid malignancy, predict whether they had MDS. The classifier achieved a positive predictive value (PPV) of 0.84 and negative predictive value (NPV) of 0.8 with an area under the receiver operating characteristic curve (AUROC) of 0.85 when classifying patients as having myeloid vs no myeloid malignancy based on variant allele frequencies (VAFs) in 17 genes and a PPV of 0.71 and NPV of 0.64 with an AUROC of 0.73 when classifying patients as having MDS vs non-MDS malignancy based on VAFs in 10 genes. We next assessed how this approach could complement histopathology to improve diagnostic accuracy. For 99 of 139 (71%) patients (PPV of 0.83 and NPV of 0.65) with local and centralized histopathologic disagreement in myeloid vs no myeloid malignancy, the classifier-predicted diagnosis agreed with the tertiary pathology review (considered the internal gold standard).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joachim Deeg
- Fred Hutchison Cancer Research Center, Seattle, WA
| | | | - Steven Gore
- National Cancer Institute, National Institutes of Health, Rockville, MD
| | | | | | | | | | | | - Wael Saber
- Center for International Blood and Marrow Transplant Research, Milwaukee, WI
| | | | | | | | | | | | - Robert S. Fulton
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Nancy L. DiFronzo
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD
| | | | | | - Matthew J. Walter
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
38
|
Abel GA, Hebert D, Lee C, Rollison D, Gillis N, Komrokji R, Foran JM, Liu JJ, Al Baghdadi T, Deeg J, Gore S, Saber W, Wilson S, Otterstatter M, Thompson J, Borchert C, Padron E, DeZern A, Cella D, Sekeres MA. Health-related quality of life and vulnerability among people with myelodysplastic syndromes: a US national study. Blood Adv 2023; 7:3506-3515. [PMID: 37146263 PMCID: PMC10362255 DOI: 10.1182/bloodadvances.2022009000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/21/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
Health-related quality of life (HRQoL) and vulnerability are variably affected in patients with myelodysplastic syndromes (MDS) and other cytopenic states; however, the heterogeneity of these diseases has limited our understanding of these domains. The National Heart, Lung, and Blood Institute-sponsored MDS Natural History Study is a prospective cohort enrolling patients undergoing workup for suspected MDS in the setting of cytopenias. Untreated patients undergo bone marrow assessment with central histopathology review for assignment as MDS, MDS/myeloproliferative neoplasm (MPN), idiopathic cytopenia of undetermined significance (ICUS), acute myeloid leukemia (AML) with <30% blasts, or "At-Risk." HRQoL data are collected at enrollment, including the MDS-specific Quality of Life in Myelodysplasia Scale (QUALMS). Vulnerability is assessed with the Vulnerable Elders Survey. Baseline HRQoL scores from 449 patients with MDS, MDS/MPN, AML <30%, ICUS or At-Risk were similar among diagnoses. In MDS, HRQoL was worse for vulnerable participants (eg, mean Patent-Reported Outcomes Management Information Systems [PROMIS] Fatigue of 56.0 vs 49.5; P < .001) and those with worse prognosis (eg, mean Euroqol-5 Dimension-5 Level [EQ-5D-5L] of 73.4, 72.7, and 64.1 for low, intermediate, and high-risk disease; P = .005). Among vulnerable MDS participants, most had difficulty with prolonged physical activity (88%), such as walking a quarter mile (74%). These data suggest that cytopenias leading to MDS evaluation are associated with similar HRQoL, regardless of eventual diagnosis, but with worse HRQoL among the vulnerable. Among those with MDS, lower-risk disease was associated with better HRQoL, but the relationship was lost among the vulnerable, showing for the first time that vulnerability trumps disease risk in affecting HRQoL. This study is registered at www.clinicaltrials.gov as NCT02775383.
Collapse
Affiliation(s)
- Gregory A. Abel
- Divisions of Population Sciences and Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA
| | | | - Cecilia Lee
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD
| | - Dana Rollison
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Nancy Gillis
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Rami Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - James M. Foran
- Division of Hematology & Medical Oncology, Mayo Clinic Florida, Jacksonville, FL
| | | | - Tareq Al Baghdadi
- Trinity Health IHA Medical Group, Hematology Oncology, Ann Arbor, MI
| | - Joachim Deeg
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Steven Gore
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD
| | - Wael Saber
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | | | | | | | | | - Eric Padron
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Amy DeZern
- Department of Oncology, Sidney Kimmel Cancer Center, Baltimore, MD
| | - David Cella
- Department of Medical Social Sciences, Feinberg School of Medicine, Chicago, IL
| | - Mikkael A. Sekeres
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| |
Collapse
|
39
|
|
40
|
Stahl M, Abdel-Wahab O, Wei AH, Savona MR, Xu ML, Xie Z, Taylor J, Starczynowski D, Sanz GF, Sallman DA, Santini V, Roboz GJ, Patnaik MM, Padron E, Odenike O, Nazha A, Nimer SD, Majeti R, Little RF, Gore S, List AF, Kutchroo V, Komrokji RS, Kim TK, Kim N, Hourigan CS, Hasserjian RP, Halene S, Griffiths EA, Greenberg PL, Figueroa M, Fenaux P, Efficace F, DeZern AE, Della Porta MG, Daver NG, Churpek JE, Carraway HE, Brunner AM, Borate U, Bennett JM, Bejar R, Boultwood J, Loghavi S, Bewersdorf JP, Platzbecker U, Steensma DP, Sekeres MA, Buckstein RJ, Zeidan AM. An agenda to advance research in myelodysplastic syndromes: a TOP 10 priority list from the first international workshop in MDS. Blood Adv 2023; 7:2709-2714. [PMID: 36260702 PMCID: PMC10333740 DOI: 10.1182/bloodadvances.2022008747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Omar Abdel-Wahab
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andrew H. Wei
- Peter MacCallum Cancer Centre, Royal Melbourne Hospital, University of Melbourne and Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Michael R. Savona
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Mina L. Xu
- Departments of Pathology & Laboratory Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT
| | - Zhuoer Xie
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Justin Taylor
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| | - Daniel Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Guillermo F. Sanz
- Hematology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Health Research Institute La Fe, Valencia, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - David A. Sallman
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | | | - Gail J. Roboz
- Weill Cornell Medicine and The New York Presbyterian Hospital, New York, NY
| | - Mrinal M. Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Eric Padron
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | | | - Aziz Nazha
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Stephen D. Nimer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Richard F. Little
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Steven Gore
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - Vijay Kutchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Rami S. Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Tae Kon Kim
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Nina Kim
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Christopher S. Hourigan
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT
| | | | - Peter L. Greenberg
- Division of Hematology, Department of Medicine, Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Maria Figueroa
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| | | | - Fabio Efficace
- Italian Group for Adult Hematologic Diseases (GIMEMA), Data Center and Health Outcomes Research Unit, Rome, Italy
| | - Amy E. DeZern
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, MD
| | - Matteo G. Della Porta
- Humanitas Clinical and Research Center & Humanitas University, Department of Biomedical Sciences, Milan, Italy
| | - Naval G. Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jane E. Churpek
- Department of Hematology, Oncology, and Palliative Care, Carbone Cancer Center, The University of Wisconsin-Madison, Madison, WI
| | - Hetty E. Carraway
- Leukemia Program, Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | | | - Uma Borate
- Division of Hematology, Department of Internal Medicine, James Cancer Center, Ohio State University, Columbus, OH
| | - John M. Bennett
- Hematopathology Division, Departments of Pathology and Medicine, University of Rochester Medical Center, Rochester, NY
| | - Rafael Bejar
- Division of Hematology and Oncology, Moores Cancer Center, UC San Diego, La Jolla, CA
| | - Jacqueline Boultwood
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jan Philipp Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Uwe Platzbecker
- Department of Hematology and Cellular Therapy, Medical Clinic and Policlinic I, Leipzig University Hospital, Leipzig, Germany
| | | | - Mikkael A. Sekeres
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| | - Rena J. Buckstein
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Amer M. Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT
| |
Collapse
|
41
|
van Zeventer IA, de Graaf AO, Salzbrunn JB, Nolte IM, Kamphuis P, Dinmohamed A, van der Reijden BA, Schuringa JJ, Jansen JH, Huls G. Evolutionary landscape of clonal hematopoiesis in 3,359 individuals from the general population. Cancer Cell 2023:S1535-6108(23)00132-0. [PMID: 37146604 DOI: 10.1016/j.ccell.2023.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/05/2023] [Accepted: 04/07/2023] [Indexed: 05/07/2023]
Abstract
Knowledge about evolution of clonal hematopoiesis, which may drive malignant progression, is crucial for clinical decision-making. We investigated the landscape of clonal evolution by error-corrected sequencing on 7,045 sequential samples from 3,359 individuals in the prospective population-based Lifelines cohort, with a special focus on cytosis and cytopenia. Spliceosome (SRSF2/U2AF1/SF3B1) and JAK2 mutated clones show highest growth rates over a median 3.6-year period, while clone sizes for DNMT3A and TP53 increase only marginally, independent of cytosis or cytopenia. Nevertheless, large differences are observed between individuals carrying the same mutation, indicative of modulation by non-mutation-related factors. Clonal expansion is not dependent on classical cancer risk factors (e.g., smoking). Risk for incident myeloid malignancy diagnosis is highest for JAK2, spliceosome, or TP53 mutations and absent for DNMT3A, and it is mostly preceded by cytosis or cytopenia. The results provide important insight into high-risk evolutionary patterns to guide monitoring of "CHIP" and "CCUS."
Collapse
Affiliation(s)
- Isabelle A van Zeventer
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Aniek O de Graaf
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jonas B Salzbrunn
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Priscilla Kamphuis
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Avinash Dinmohamed
- Department of Research and Development, Netherlands Comprehensive Cancer Organization, Utrecht, the Netherlands; Department of Public Health, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Bert A van der Reijden
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan Jacob Schuringa
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Joop H Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Gerwin Huls
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
42
|
Randall MP, DeZern AE. The Management of Low-Risk Myelodysplastic Syndromes-Current Standards and Recent Advances. Cancer J 2023; 29:152-159. [PMID: 37195771 DOI: 10.1097/ppo.0000000000000655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
ABSTRACT The myelodysplastic syndromes (MDSs) are a heterogeneous group of hematologic neoplasms with varied natural histories and prognoses. Specific to this review, treatment of low-risk MDS most often focuses on improving quality of life by correcting cytopenias, as opposed to urgent disease modification to avoid acute myeloid leukemia. These treatments include transfusion support with iron chelation when necessary, growth factors including novel maturation agents such as luspatercept, lenalidomide for del(5q) disease, and, increasingly, low-dose hypomethylating agents. Recent advances in the understanding of the genetic lesions that drive MDS have prompted a reassessment of how low-risk disease is defined and helped to identify a subset of low-risk MDS patients who may benefit from a more aggressive treatment paradigm, including hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Michael P Randall
- From the Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Amy E DeZern
- Division of Hematologic Malignancies, The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
43
|
Weeks LD, Niroula A, Neuberg D, Wong W, Lindsley RC, Luskin M, Berliner N, Stone RM, DeAngelo DJ, Soiffer R, Uddin MM, Griffin G, Vlasschaert C, Gibson CJ, Jaiswal S, Bick AG, Malcovati L, Natarajan P, Ebert BL. Prediction of risk for myeloid malignancy in clonal hematopoiesis. NEJM EVIDENCE 2023; 2:10.1056/evidoa2200310. [PMID: 37483562 PMCID: PMC10361696 DOI: 10.1056/evidoa2200310] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Background Clonal hematopoiesis of indeterminate potential (CHIP) and clonal cytopenia of undetermined significance (CCUS) are defined by somatic mutations in genes associated with myeloid neoplasms (MN) at a variant allele fraction (VAF) ≥ 0.02, in the absence and presence of cytopenia, respectively. CHIP/CCUS is highly prevalent in adults and defining predictors of MN risk would aid clinical management and research. Methods We analyzed sequenced exomes of healthy UK Biobank (UKB) participants (n = 438,890) in separate derivation and validation cohorts. Genetic mutations, laboratory values, and MN outcomes were used in conditional probability-based recursive partitioning and Cox regression to determine predictors of incident MN. Combined statistical weights defined a clonal hematopoiesis risk score (CHRS). Independent CHIP/CCUS patient cohorts were used to test prognostic capability of the CHRS in the clinical setting. Results Recursive partitioning distinguished CHIP/CCUS cases with 10-year probabilities of MN ranging from 0.0078 - 0.85. Multivariable analysis validated partitioning variables as predictors of MN. Key features, including single DNMT3A mutations, high risk mutations, ≥ 2 mutations, VAF ≥ 0.2, age ≥ 65 years, CCUS vs CHIP and red blood cell indices, influenced MN risk in variable direction. The CHRS defined low risk (n = 10018, 88.4%), intermediate risk (n = 1196, 10.5%), and high risk (n = 123, 1.1%) groups. In clinical cohorts, most MN events occurred in high risk CHIP/CCUS patients. Conclusions The CHRS provides simple prognostic framework for CHIP/CCUS, distinguishing a high risk minority from the majority of CHIP/CCUS which has minimal risk for progression to MN.
Collapse
Affiliation(s)
- Lachelle D. Weeks
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Center for Prevention of Progression, Dana-Farber Cancer Institute, Boston, MA
| | - Abhishek Niroula
- Broad Institute of MIT and Harvard University, Cambridge, MA
- Department of Lab Medicine, Lund University, Lund, Sweden
| | - Donna Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Waihay Wong
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - R. Coleman Lindsley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Marlise Luskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Nancy Berliner
- Department of Medicine, Harvard Medical School, Boston, MA
- Department of Hematology, Brigham and Women’s Hospital, Boston, MA
| | - Richard M. Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Daniel J. DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Robert Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Center for Prevention of Progression, Dana-Farber Cancer Institute, Boston, MA
| | - Md Mesbah Uddin
- Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN 3.184, Boston, MA
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
| | - Gabriel Griffin
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Christopher J. Gibson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | | | - Alexander G. Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation, Pavia, Italy
| | - Pradeep Natarajan
- Department of Medicine, Harvard Medical School, Boston, MA
- Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, CPZN 3.184, Boston, MA
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Center for Prevention of Progression, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of MIT and Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Boston, MA
| |
Collapse
|
44
|
Mendez LM, Patnaik MM. Clonal Hematopoiesis: Origins and determinants of evolution. Leuk Res 2023; 129:107076. [PMID: 37075557 DOI: 10.1016/j.leukres.2023.107076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/22/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
The accrual of somatic mutations is a byproduct of aging. When a clone bearing a somatic genetic alteration, conferring comparative competitive advantage, displays sufficient outgrowth to become detectable amongst an otherwise polyclonal background in the hematopoietic system, this is called clonal hematopoiesis (CH). Somatic genetic alterations observed in CH include point mutations in cancer related genes, mosaic chromosomal alterations or a combination of these. Interestingly, clonal hematopoiesis (CH) can also occur with somatic variants in genes without a known role in cancer and in the absence of a somatic genetic alteration through a process that has been described as 'genetic drift'. Clonal hematopoiesis of indeterminate significance (CHIP), is age-related and defined by the presence of somatic point mutations in cancer related genes, in the absence of cytopenias or a diagnosis of hematologic neoplasm, with a variant allele fraction ≥ 2 %. Remarkably, the increased mortality associated with CHIP is largely due to cardiovascular disease. Subsequently, CHIP has been associated with a myriad of age-related conditions such as Alzheimer's Disease, osteoporosis, CVA and COPD. CHIP is associated with an increased risk of hematologic malignancies, particularly myeloid neoplasms, with the risk rising with increasing clone size and clonal complexity. Mechanisms regulating clonal evolution and progression to hematologic malignancies remain to be defined. However, observations on context specific CH arising in the setting of bone marrow failure states, or on exposure to chemotherapy and radiation therapy, suggest that CH reflects context specific selection pressures and constraint-escape mechanisms.
Collapse
Affiliation(s)
- Lourdes M Mendez
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center and Smilow Cancer Hospital, Yale University School of Medicine, CT, USA
| | - Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, MN, USA.
| |
Collapse
|
45
|
Patwardhan PP, Aarabi M, Aggarwal N. Genomics of myelodysplastic/myeloproliferative neoplasm. Semin Diagn Pathol 2023; 40:195-201. [PMID: 37105794 DOI: 10.1053/j.semdp.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
Myelodysplastic/ Myeloproliferative neoplasms (MDS/MPN) demonstrate overlapping pathologic and molecular features of myelodysplastic (MDS) and myeloproliferative (MPN) neoplasms. Diagnosis is difficult based on morphology alone, requiring exclusion of various non-neoplastic causes for CBC abnormalities and morphologic findings and other myeloid neoplasms. Identifying a clonal abnormality by cytogenetics or molecular studies has vastly improved our ability to diagnose MDS/MPN and has been incorporated in the different classification schemas. Currently two separate classification systems are in use- The 5th edition WHO and international consensus classification. The two competing classifications emphasize genetic work-up and are similar on many levels; however, they do introduce diagnostic dilemma when diagnosing certain entities such as chronic myelomonocytic leukemia in the presence of NPM1 mutations. The genetic profile overlaps among different subentities; however, the combination and the incidence of mutations; together with the clinical features and morphology helps in further subclassification. In this review, we discuss the advances in molecular characterization of MDS/MPN. We attempt to summarize the differences between the various classification schemes, and highlight the changes made in the diagnostic criteria.
Collapse
Affiliation(s)
| | - Mahmoud Aarabi
- UPMC Medical Genetics & Genomics Laboratories, UPMC Magee-Womens Hospital, Pittsburgh, PA, 15213, United States of America; Departments of Pathology, and Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, United States of America
| | - Nidhi Aggarwal
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America.
| |
Collapse
|
46
|
Fioredda F, Skokowa J, Tamary H, Spanoudakis M, Farruggia P, Almeida A, Guardo D, Höglund P, Newburger PE, Palmblad J, Touw IP, Zeidler C, Warren AJ, Dale DC, Welte K, Dufour C, Papadaki HA. The European Guidelines on Diagnosis and Management of Neutropenia in Adults and Children: A Consensus Between the European Hematology Association and the EuNet-INNOCHRON COST Action. Hemasphere 2023; 7:e872. [PMID: 37008163 PMCID: PMC10065839 DOI: 10.1097/hs9.0000000000000872] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/09/2023] [Indexed: 04/03/2023] Open
Abstract
Neutropenia, as an isolated blood cell deficiency, is a feature of a wide spectrum of acquired or congenital, benign or premalignant disorders with a predisposition to develop myelodysplastic neoplasms/acute myeloid leukemia that may arise at any age. In recent years, advances in diagnostic methodologies, particularly in the field of genomics, have revealed novel genes and mechanisms responsible for etiology and disease evolution and opened new perspectives for tailored treatment. Despite the research and diagnostic advances in the field, real world evidence, arising from international neutropenia patient registries and scientific networks, has shown that the diagnosis and management of neutropenic patients is mostly based on the physicians' experience and local practices. Therefore, experts participating in the European Network for the Innovative Diagnosis and Treatment of Chronic Neutropenias have collaborated under the auspices of the European Hematology Association to produce recommendations for the diagnosis and management of patients across the whole spectrum of chronic neutropenias. In the present article, we describe evidence- and consensus-based guidelines for the definition and classification, diagnosis, and follow-up of patients with chronic neutropenias including special entities such as pregnancy and the neonatal period. We particularly emphasize the importance of combining the clinical findings with classical and novel laboratory testing, and advanced germline and/or somatic mutational analyses, for the characterization, risk stratification, and monitoring of the entire spectrum of neutropenia patients. We believe that the wide clinical use of these practical recommendations will be particularly beneficial for patients, families, and treating physicians.
Collapse
Affiliation(s)
| | - Julia Skokowa
- Department of Oncology, Hematology, Immunology, Rheumatology, and Clinical Immunology, University Hospital Tübingen, Germany
| | - Hannah Tamary
- The Rina Zaizov Hematology/Oncology Division, Schneider Children’s Medical Center of Israel, Petah Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Israel
| | - Michail Spanoudakis
- Department of Hematology, Warrington and Halton Teaching Hospitals NHS foundation Trust, Warrington, United Kingdom
| | - Piero Farruggia
- Pediatric Onco-Hematology, ARNAS Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Antonio Almeida
- Department of Hematology, Hospital da Luz Lisboa, Portugal
- Faculdade de Medicina, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Daniela Guardo
- Unit of Hematology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Petter Höglund
- Clinical Immunology and Transfusion Medicine Clinic, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Jan Palmblad
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Ivo P. Touw
- Department of Hematology and Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Cornelia Zeidler
- Department of Oncology, Hematology, Immunology and Bone Marrow Transplantation, Hannover Medical School, Hannover, Germany
| | - Alan J. Warren
- Department of Hematology, University of Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, United Kingdom
- Wellcome Trust–Medical Research Council Stem Cell Institute, University of Cambridge, United Kingdom
| | | | - Karl Welte
- University Children’s Hospital Tübingen, Germany
| | - Carlo Dufour
- Unit of Hematology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Helen A. Papadaki
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, Heraklion, Greece
- Department of Hematology, University Hospital of Heraklion, Crete, Greece
| |
Collapse
|
47
|
Ziemann F, Metzeler KH. Klonale Hämatopoese (CHIP) und klonale Zytopenie unbestimmter Signifikanz (CCUS). Dtsch Med Wochenschr 2023; 148:441-450. [PMID: 36990116 DOI: 10.1055/a-1873-4250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) refers to the outgrowth of blood cells from a hematopoietic stem cell (HSC) clone that acquired one or more somatic mutations, leading to a growth advantage compared to wild type HSCs. In the last years this age-associated phenomenon has been extensively studied, and several cohort studies found association between CH and age-related diseases, esp. leukaemia and cardiovascular disease. For patients with CH present with abnormal blood counts, the term 'clonal cytopenia of unknown significance' is used, which carries a higher risk for developing myeloid neoplasms. In this year, CHIP and CCUS have been included in the updated WHO classification of hematolymphoid tumours. We review the current understanding of the emergence of CHIP, diagnostics, association with other diseases, and potential therapeutic interventions.
Collapse
|
48
|
Xie Z, Zeidan AM. CHIPing away the progression potential of CHIP: A new reality in the making. Blood Rev 2023; 58:101001. [PMID: 35989137 DOI: 10.1016/j.blre.2022.101001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/15/2022]
Abstract
Over the past few years, we have gained a deeper understanding of clonal hematopoiesis of indeterminate potential (CHIP), especially with regard to the epidemiology, clinical sequelae, and mechanical aspects. However, interventional strategies to prevent or delay the potential negative consequences of CHIP remain underdeveloped. In this review, we highlight the latest updates on clonal hematopoiesis research, including molecular mechanisms and clinical implications, with a particular focus on the evolving strategies for the interventions that are being evaluated in ongoing observational and interventional trials. There remains an urgent need to formulate standardized and evidence-based recommendations and guidelines for evaluating and managing individuals with clonal hematopoiesis. In addition, patient-centric endpoints must be defined for clinical trials, which will enable us to continue the robust development of effective preventive strategies and improve clinical outcomes.
Collapse
Affiliation(s)
- Zhuoer Xie
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center and Smilow Cancer Hospital, Yale University School of Medicine, CT, United States.
| |
Collapse
|
49
|
Zheng G, Li P, Zhang X, Pan Z. The fifth edition of the World Health Organization Classification and the International Consensus Classification of myeloid neoplasms: evolving guidelines in the molecular era with practical implications. Curr Opin Hematol 2023; 30:53-63. [PMID: 36728868 DOI: 10.1097/moh.0000000000000748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW There have been major advances in our understanding of molecular pathogenesis of myeloid neoplasms, which prompt the updates in the classification of myeloid neoplasms in the fifth edition of World Health Organization Classification (WHO-5) and the new International Consensus Classification (ICC). The purpose of this review is to provide an overview of these two classification systems for myeloid neoplasms. RECENT FINDINGS The definition, classification, and diagnostic criteria in many myeloid entities have been refined in WHO-5 and ICC with improved understanding of morphology and integration of new genetic findings. Particularly, molecular and cytogenetic studies have been increasingly incorporated into the classification, risk stratification, and selection of therapy of myeloid neoplasms. Overall, despite some revisions and discrepancies between WHO-5 and ICC, the major categories of myeloid neoplasms remain the same. Further validation studies are warranted to fine-tune and, ideally, integrate these two classifications. SUMMARY Integration of clinical information, laboratory parameters, morphologic features, and cytogenetic and molecular studies is essential for the classification of myeloid neoplasms, as recommended by both WHO-5 and ICC.
Collapse
Affiliation(s)
- Gang Zheng
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Peng Li
- Department of Pathology, University of Utah School of Medicine, ARUP Laboratories, Salt Lake City, Utah
| | - Xiaohui Zhang
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Zenggang Pan
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
50
|
Ferrone CK, McNaughton AJM, Rashedi I, Ring B, Buckstein R, Tsui H, Rauh MJ. A Lower Frequency of Spliceosome Mutations Distinguishes Clonal Cytopenias of Undetermined Significance From Low-Risk Myelodysplastic Syndromes, Despite Inherent Similarities in Genomic, Laboratory, and Clinical Features. Mod Pathol 2023; 36:100068. [PMID: 36788103 DOI: 10.1016/j.modpat.2022.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023]
Abstract
Clonal cytopenias of undetermined significance (CCUS) are associated with an increased risk of developing a myelodysplastic syndrome (MDS); however, the mechanism and factors associated with evolution remain unclear. We propose that next-generation sequencing (NGS) of cytopenic cases with equivocal morphologic dysplasia will improve patient clinical care and that serial sequencing of such equivocal cases could identify the factors that predict evolution to MDS. We performed targeted NGS of samples from 193 individuals with confirmed or suspected MDS or MDS/myeloproliferative neoplasm, including sequential investigation for 28 individuals at the time of diagnosis and during follow-up. NGS facilitated the diagnosis of all suspicious cases as myeloid neoplasm (21%), CCUS (34%), or idiopathic cytopenias of undetermined significance (45%) when no variants were detected. We found that there was no significant difference in most measured clinical features or clonal phenotypes, such as cell counts, number of variants, variant allele frequencies, and overall survival, between CCUS and International Prognostic Scoring System-Revised-defined low-risk MDS. However, there was a significant difference in the types of variants between CCUS and low-risk MDS, with a significantly lower number of splicing factor mutations in CCUS cases (P < .001). Moreover, we observed an increased probability of evolution to MDS of individuals with CCUS compared with that in those with idiopathic cytopenias of undetermined significance over the first 5 years (P = .045). Our analyses revealed no conclusive pattern associating clonal expansion or the number of variants with the evolution of CCUS to MDS, perhaps further supporting the similarity of these diseases and the clinical importance of recognizing and formally defining CCUS as a category of precursor myeloid disease state in the next revision of the World Health Organization guidelines.
Collapse
Affiliation(s)
- Christina K Ferrone
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Amy J M McNaughton
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Iran Rashedi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Molecular Diagnostics, Precision Diagnostics and Therapeutics Program, Sunnybrook Health Sciences Centre and Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Brooke Ring
- Department Medicine, Queen's University, Kingston, Ontario, Canada
| | - Rena Buckstein
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Medical Oncology and Hematology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Odette Cancer Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Hubert Tsui
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Molecular Diagnostics, Precision Diagnostics and Therapeutics Program, Sunnybrook Health Sciences Centre and Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Michael J Rauh
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|