1
|
Kato S, Nakashima K, Yamato G, Saito S, Taneyama Y, Yamamoto N, Miyamura T, Kato K, Sato Y, Yamada A, Kamiya T, Nishikawa T, Uemura S, Tomizawa D, Moritake H, Terui K, Taga T, Hasegawa D. Azacitidine treatment for myeloid leukemia associated with Down syndrome: A nationwide retrospective study in Japan. Pediatr Blood Cancer 2024; 71:e31244. [PMID: 39099137 DOI: 10.1002/pbc.31244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Hypomethylating agent treatment for myeloid leukemia associated with Down syndrome (ML-DS) has been scarcely reported. Herein, we collected information on azacitidine treatment for ML-DS in Japan. Forty-eight cycles of azacitidine treatment were performed for 12 patients, including 11 relapsed or refractory (R/R) patients. In 40 cycles, azacitidine was used as monotherapy. No azacitidine-related death was observed. One cycle concurrently administered with methotrexate-based intrathecal therapy was discontinued due to toxicities. Only 4 of the 19 cycles given in non-remission achieved complete or partial remission. In conclusion, although most toxicities were acceptable, azacitidine monotherapy might be insufficient for R/R ML-DS cases.
Collapse
Affiliation(s)
- Shota Kato
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Nakashima
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Genki Yamato
- Department of Pediatrics, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shoji Saito
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuichi Taneyama
- Department of Hematology/Oncology, Chiba Children's Hospital, Chiba, Japan
| | - Nobuyuki Yamamoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takako Miyamura
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Keisuke Kato
- Division of Pediatric Hematology and Oncology, Ibaraki Children's Hospital, Mito, Japan
| | - Yuya Sato
- Department of Pediatrics, Dokkyo Medical University, Tochigi, Japan
| | - Ai Yamada
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takahiro Kamiya
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takuro Nishikawa
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Suguru Uemura
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Hiroshi Moritake
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kiminori Terui
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Daisuke Hasegawa
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| |
Collapse
|
2
|
Miladinovic M, Reinhardt D, Hasle H, Goemans BF, Tomizawa D, Hitzler J, Klusmann JH. Guideline for treating relapsed or refractory myeloid leukemia in children with Down syndrome. Pediatr Blood Cancer 2024; 71:e31141. [PMID: 38965693 DOI: 10.1002/pbc.31141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024]
Abstract
Treatment of relapsed and refractory myeloid leukemia in Down syndrome (r/r ML-DS) poses significant challenges, as prognosis is dire and there is no established standard treatment. This guideline provides treatment recommendations based on a literature review and collection of expert opinions, aiming to improve overall and event-free survival of patients. Treatment options include fludarabine and cytarabine (FLA) ± gemtuzumab ozogamicin (GO), azacytidine (AZA) ± panobinostat, and hematopoietic stem cell transplantation (HSCT). Preferred approaches are AZA ± panobinostat for cases with low blast count or FLA ± GO for cases with high blast count, followed by HSCT after remission. Further research is crucial for the investigation of targeted therapies (e.g., BH3 mimetics, LSD1, JAK inhibitors).
Collapse
Affiliation(s)
- Milica Miladinovic
- Department of Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
| | - Dirk Reinhardt
- Pediatric Hematology and Oncology, Pediatrics III, University Hospital Essen, Essen, Germany
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Bianca F Goemans
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Johann Hitzler
- Division of Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
3
|
Mason NR, Cahill H, Diamond Y, McCleary K, Kotecha RS, Marshall GM, Mateos MK. Down syndrome-associated leukaemias: current evidence and challenges. Ther Adv Hematol 2024; 15:20406207241257901. [PMID: 39050114 PMCID: PMC11268035 DOI: 10.1177/20406207241257901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/13/2024] [Indexed: 07/27/2024] Open
Abstract
Children with Down syndrome (DS) are at increased risk of developing haematological malignancies, in particular acute megakaryoblastic leukaemia and acute lymphoblastic leukaemia. The microenvironment established by abnormal haematopoiesis driven by trisomy 21 is compounded by additional genetic and epigenetic changes that can drive leukaemogenesis in patients with DS. GATA-binding protein 1 (GATA1) somatic mutations are implicated in the development of transient abnormal myelopoiesis and the progression to myeloid leukaemia of DS (ML-DS) and provide a model of the multi-step process of leukaemogenesis in DS. This review summarises key genetic drivers for the development of leukaemia in patients with DS, the biology and treatment of ML-DS and DS-associated acute lymphoblastic leukaemia, late effects of treatments for DS-leukaemias and the focus for future targeted therapy.
Collapse
Affiliation(s)
- Nicola R. Mason
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Hilary Cahill
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Yonatan Diamond
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Karen McCleary
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Rishi S. Kotecha
- Department of Clinical Haematology, Oncology, Blood and Bone Marrow Transplantation, Perth Children’s Hospital, Perth, WA, Australia
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Glenn M. Marshall
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, Randwick, NSW, Australia School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Marion K. Mateos
- Kids Cancer Centre, Sydney Children’s Hospital, Level 1 South Wing, High Street, Randwick, NSW 2031, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| |
Collapse
|
4
|
Klusmann JH. MYC-stery of Down syndrome unraveled. Blood 2024; 143:2566-2567. [PMID: 38900477 DOI: 10.1182/blood.2024024595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
|
5
|
Tanaka T, Kudo K, Kanezaki R, Yuzawa K, Toki T, Okuse R, Kobayashi A, Sato T, Kamio T, Terui K, Ito E. Antileukemic effect of azacitidine, a DNA methyltransferase inhibitor, on cell lines of myeloid leukemia associated with Down syndrome. Exp Hematol 2024; 132:104179. [PMID: 38342295 DOI: 10.1016/j.exphem.2024.104179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/12/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Myeloid leukemia associated with Down syndrome (ML-DS) responds well to chemotherapy and has a favorable prognosis, but the clinical outcome of patients with refractory or relapsed ML-DS is dismal. We recently reported a case of relapsed ML-DS with an effective response to a DNA methyltransferase inhibitor, azacitidine (AZA). However, the efficacy of AZA for refractory or relapsed ML-DS remains uncertain. Here, we investigated the effects and mechanism of action of AZA on three ML-DS cell lines derived from relapsed cases. AZA inhibited the proliferation of all examined ML-DS cell lines to the same extent as that of AZA-sensitive acute myeloid leukemia non-Down syndrome cell lines. Transient low-dose AZA treatment exerted durable antileukemic effects on ML-DS cells. The inhibitory effect included cell cycle arrest, apoptosis, and reduction of aldehyde dehydrogenase activity. Comprehensive differential gene expression analysis showed that AZA induced megakaryocytic differentiation in all ML-DS cell lines examined. Furthermore, AZA induced activation of type I interferon-stimulated genes, primarily involved in antiproliferation signaling, without stimulation of the interferon receptor-mediated autocrine system. Activation of the type I interferon pathway by stimulation with interferon-α exerted antiproliferative effects on ML-DS cells, suggesting that AZA exerts its antileukemic effects on ML-DS cells at least partially through the type I interferon pathway. Moreover, the effect of AZA on normal hematopoiesis did not differ significantly between individuals with non-Down syndrome and Down syndrome. In summary, this study suggests that AZA is a potentially effective treatment option for ML-DS disease control, including relapsed cases, and has reduced side effects.
Collapse
Affiliation(s)
- Tatsuhiko Tanaka
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ko Kudo
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Rika Kanezaki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kentaro Yuzawa
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tsutomu Toki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ryo Okuse
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akie Kobayashi
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomohiko Sato
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takuya Kamio
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kiminori Terui
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan; Department of Community Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| |
Collapse
|
6
|
Barwe SP, Kolb EA, Gopalakrishnapillai A. Down syndrome and leukemia: An insight into the disease biology and current treatment options. Blood Rev 2024; 64:101154. [PMID: 38016838 DOI: 10.1016/j.blre.2023.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
Children with Down syndrome (DS) have a 10- to 20-fold greater predisposition to develop acute leukemia compared to the general population, with a skew towards myeloid leukemia (ML-DS). While ML-DS is known to be a subtype with good outcome, patients who relapse face a dismal prognosis. Acute lymphocytic leukemia in DS (DS-ALL) is considered to have poor prognosis. The relapse rate is high in DS-ALL compared to their non-DS counterparts. We have a better understanding about the mutational spectrum of DS leukemia. Studies using animal, embryonic stem cell- and induced pluripotent stem cell-based models have shed light on the mechanism by which these mutations contribute to disease initiation and progression. In this review, we list the currently available treatment strategies for DS-leukemias along with their outcome with emphasis on challenges with chemotherapy-related toxicities in children with DS. We focus on the mechanisms of initiation and progression of leukemia in children with DS and highlight the novel molecular targets with greater success in preclinical trials that have the potential to progress to the clinic.
Collapse
Affiliation(s)
- Sonali P Barwe
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA
| | - E Anders Kolb
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA
| | - Anilkumar Gopalakrishnapillai
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA.
| |
Collapse
|
7
|
Takasaki K, Chou ST. GATA1 in Normal and Pathologic Megakaryopoiesis and Platelet Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:261-287. [PMID: 39017848 DOI: 10.1007/978-3-031-62731-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
GATA1 is a highly conserved hematopoietic transcription factor (TF), essential for normal erythropoiesis and megakaryopoiesis, that encodes a full-length, predominant isoform and an amino (N) terminus-truncated isoform GATA1s. It is consistently expressed throughout megakaryocyte development and interacts with its target genes either independently or in association with binding partners such as FOG1 (friend of GATA1). While the N-terminus and zinc finger have classically been demonstrated to be necessary for the normal regulation of platelet-specific genes, murine models, cell-line studies, and human case reports indicate that the carboxy-terminal activation domain and zinc finger also play key roles in precisely controlling megakaryocyte growth, proliferation, and maturation. Murine models have shown that disruptions to GATA1 increase the proliferation of immature megakaryocytes with abnormal architecture and impaired terminal differentiation into platelets. In humans, germline GATA1 mutations result in variable cytopenias, including macrothrombocytopenia with abnormal platelet aggregation and excessive bleeding tendencies, while acquired GATA1s mutations in individuals with trisomy 21 (T21) result in transient abnormal myelopoiesis (TAM) and myeloid leukemia of Down syndrome (ML-DS) arising from a megakaryocyte-erythroid progenitor (MEP). Taken together, GATA1 plays a key role in regulating megakaryocyte differentiation, maturation, and proliferative capacity. As sequencing and proteomic technologies expand, additional GATA1 mutations and regulatory mechanisms contributing to human diseases of megakaryocytes and platelets are likely to be revealed.
Collapse
Affiliation(s)
- Kaoru Takasaki
- Department of Pediatrics, Division of Hematology, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stella T Chou
- Department of Pediatrics, Division of Hematology, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Satty A, Stieglitz E, Kucine N. Too many white cells-TAM, JMML, or something else? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:37-42. [PMID: 38066851 PMCID: PMC10727065 DOI: 10.1182/hematology.2023000464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Leukocytosis is a common finding in pediatric patients, and the differential diagnosis can be broad, including benign reactive leukocytosis and malignant myeloproliferative disorders. Transient abnormal myelopoiesis is a myeloproliferative disorder that occurs in young infants with constitutional trisomy 21 and somatic GATA1 mutations. Most patients are observed, but outcomes span the spectrum from spontaneous resolution to life-threatening complications. Juvenile myelomonocytic leukemia is a highly aggressive myeloproliferative disorder associated with altered RAS-pathway signaling that occurs in infants and young children. Treatment typically involves hematopoietic stem cell transplantation, but certain patients can be observed. Early recognition of these and other myeloproliferative disorders is important and requires a clinician to be aware of these diagnoses and have a clear understanding of their presentations. This paper discusses the presentation and evaluation of leukocytosis when myeloproliferative disorders are part of the differential and reviews different concepts regarding treatment strategies.
Collapse
Affiliation(s)
- Alexandra Satty
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospitals, University of California San Francisco, San Francisco, CA
| | - Nicole Kucine
- Department of Pediatrics, Weill Cornell Medicine, New York, NY
| |
Collapse
|
9
|
Raghuram N, Hasegawa D, Nakashima K, Rahman S, Antoniou E, Skajaa T, Merli P, Verma A, Rabin KR, Aftandilian C, Kotecha RS, Cheuk D, Jahnukainen K, Kolenova A, Balwierz W, Norton A, O’Brien M, Cellot S, Chopek A, Arad-Cohen N, Goemans B, Rojas-Vasquez M, Ariffin H, Bartram J, Kolb EA, Locatelli F, Klusmann JH, Hasle H, McGuire B, Hasnain A, Sung L, Hitzler J. Survival outcomes of children with relapsed or refractory myeloid leukemia associated with Down syndrome. Blood Adv 2023; 7:6532-6539. [PMID: 36735769 PMCID: PMC10632607 DOI: 10.1182/bloodadvances.2022009381] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Children with Down syndrome (DS) are at a significantly higher risk of developing acute myeloid leukemia, also termed myeloid leukemia associated with DS (ML-DS). In contrast to the highly favorable prognosis of primary ML-DS, the limited data that are available for children who relapse or who have refractory ML-DS (r/r ML-DS) suggest a dismal prognosis. There are few clinical trials and no standardized treatment approach for this population. We conducted a retrospective analysis of international study groups and pediatric oncology centers and identified 62 patients who received treatment with curative intent for r/r ML-DS between year 2000 to 2021. Median time from diagnosis to relapse was 6.8 (range, 1.1-45.5) months. Three-year event-free survival (EFS) and overall survival (OS) were 20.9 ± 5.3% and 22.1 ± 5.4%, respectively. Survival was associated with receipt of hematopoietic stem cell transplantation (HSCT) (hazard ratio [HR], 0.28), duration of first complete remission (CR1) (HR, 0.31 for > 12 months) and attainment of remission after relapse (HR, 4.03). Patients who achieved complete remission (CR) before HSCT, had an improved OS and EFS of 56.0 ± 11.8% and 50.5 ± 11.9%, respectively compared to those who underwent HSCT without CR (3-year OS and EFS of 10.0 ± 9.5%). Treatment failure after HSCT was predominantly because of disease recurrence (52%) followed by treatment-related mortality (10%). The prognosis of r/r ML-DS remains dismal even in the current treatment period and serve as a reference point for current prognostication and future interventional studies. Clinical trials aimed at improving the survival of patients with r/r ML-DS are needed.
Collapse
Affiliation(s)
- Nikhil Raghuram
- Division of Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Daisuke Hasegawa
- Department of Pediatrics, St. Luke's International Hospital, 9-1, Akashi-cho, Chuo-ku, Tokyo, 104-8560, Japan
| | - Kentaro Nakashima
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Syaza Rahman
- Division of Paediatric Haematology-Oncology and BM Transplantation, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Evangelia Antoniou
- Department of Pediatric Hematology and Oncology, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Torjus Skajaa
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Pietro Merli
- Department of Pediatric Hematology/Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Sapienza University of Rome, Rome, Italy
| | - Anupam Verma
- Division of Hematology/Oncology, Department of Pediatrics, University of Utah and Primary Children's Hospital, Salt Lake City, UT
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Karen R. Rabin
- Pediatric Hematology-Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX
| | - Catherine Aftandilian
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Rishi S. Kotecha
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, WA, Australia
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, University of WA, Perth, WA, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Daniel Cheuk
- Department of Paediatrics and Adolescent Medicine, the University of Hong Kong and Hong Kong Children's Hospital, Hong Kong, China
| | - Kirsi Jahnukainen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | - Walentyna Balwierz
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Alice Norton
- Department of Haematology, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom
| | - Maureen O’Brien
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Sonia Cellot
- Division of Hematology, Department of Pediatrics, Ste-Justine Hospital, Montréal, Université de Montréal, Montréal, QC, Canada
| | - Ashley Chopek
- Pediatric Blood and Marrow Transplant Program, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Nira Arad-Cohen
- Pediatric Hematology-Oncology Department, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Bianca Goemans
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marta Rojas-Vasquez
- Department of Pediatric Hematology-Oncology, Stollery Children's Hospital, University of Alberta, Edmonton, Canada
| | - Hany Ariffin
- Division of Paediatric Haematology-Oncology and BM Transplantation, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Jack Bartram
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - E. Anders Kolb
- Nemours Center for Cancer and Blood Disorders/Alfred I. DuPont Hospital for Children, Wilmington, DE
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Pediatrico Bambino Gesù, Sapienza University of Rome, Rome, Italy
| | | | - Henrik Hasle
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Bryan McGuire
- Division of Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Afia Hasnain
- Division of Genome Diagnostics, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lillian Sung
- Division of Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Johann Hitzler
- Division of Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| |
Collapse
|
10
|
Baruchel A, Bourquin JP, Crispino J, Cuartero S, Hasle H, Hitzler J, Klusmann JH, Izraeli S, Lane AA, Malinge S, Rabin KR, Roberts I, Ryeom S, Tasian SK, Wagenblast E. Down syndrome and leukemia: from basic mechanisms to clinical advances. Haematologica 2023; 108:2570-2581. [PMID: 37439336 PMCID: PMC10542835 DOI: 10.3324/haematol.2023.283225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023] Open
Abstract
Children with Down syndrome (DS, trisomy 21) are at a significantly higher risk of developing acute leukemia compared to the overall population. Many studies investigating the link between trisomy 21 and leukemia initiation and progression have been conducted over the last two decades. Despite improved treatment regimens and significant progress in iden - tifying genes on chromosome 21 and the mechanisms by which they drive leukemogenesis, there is still much that is unknown. A focused group of scientists and clinicians with expertise in leukemia and DS met in October 2022 at the Jérôme Lejeune Foundation in Paris, France for the 1st International Symposium on Down Syndrome and Leukemia. This meeting was held to discuss the most recent advances in treatment regimens and the biology underlying the initiation, progression, and relapse of acute lymphoblastic leukemia and acute myeloid leukemia in children with DS. This review provides a summary of what is known in the field, challenges in the management of DS patients with leukemia, and key questions in the field.
Collapse
Affiliation(s)
- André Baruchel
- Hôpital Universitaire Robert Debré (APHP and Université Paris Cité), Paris, France
| | | | - John Crispino
- St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Sergi Cuartero
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Henrik Hasle
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Johann Hitzler
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Shai Izraeli
- Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Aviv University, Aviv, Israel
| | | | - Sébastien Malinge
- Telethon Kids Institute - Cancer Centre, Perth, Western Australia, Australia
| | - Karen R. Rabin
- Baylor College of Medicine, Texas Children's Cancer Center, Houston, TX, USA
| | | | - Sandra Ryeom
- Department of Surgery, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Sarah K. Tasian
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
11
|
Verma A, Lupo PJ, Shah NN, Hitzler J, Rabin KR. Management of Down Syndrome-Associated Leukemias: A Review. JAMA Oncol 2023; 9:1283-1290. [PMID: 37440251 DOI: 10.1001/jamaoncol.2023.2163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Importance Down syndrome (DS), caused by an extra copy of material from chromosome 21, is one of the most common genetic conditions. The increased risk of acute leukemia in DS (DS-AL) has been recognized for decades, consisting of an approximately 150-fold higher risk of acute myeloid leukemia (AML) before age 4 years, and a 10- to 20-fold higher risk of acute lymphoblastic leukemia (ALL), compared with children without DS. Observations A recent National Institutes of Health-sponsored conference, ImpacT21, reviewed research and clinical trials in children, adolescents, and young adults (AYAs) with DS-AL and are presented herein, including presentation and treatment, clinical trial design, and ethical considerations for this unique population. Between 10% to 30% of infants with DS are diagnosed with transient abnormal myelopoiesis (TAM), which spontaneously regresses. After a latency period of up to 4 years, 20% to 30% develop myeloid leukemia associated with DS (ML-DS). Recent studies have characterized somatic mutations associated with progression from TAM to ML-DS, but predicting which patients will progress to ML-DS remains elusive. Clinical trials for DS-AL have aimed to reduce treatment-related mortality (TRM) and improve survival. Children with ML-DS have better outcomes compared with non-DS AML, but outcomes remain dismal in relapse. In contrast, patients with DS-ALL have inferior outcomes compared with those without DS, due to both higher TRM and relapse. Management of relapsed leukemia poses unique challenges owing to disease biology and increased vulnerability to toxic effects. Late effects in survivors of DS-AL are an important area in need of further study because they may demonstrate unique patterns in the setting of chronic medical conditions associated with DS. Conclusions and Relevance Optimal management of DS-AL requires specific molecular testing, meticulous supportive care, and tailored therapy to reduce TRM while optimizing survival. There is no standard approach to treatment of relapsed disease. Future work should include identification of biomarkers predictive of toxic effects; enhanced clinical and scientific collaborations; promotion of access to novel agents through innovative clinical trial design; and dedicated studies of late effects of treatment.
Collapse
Affiliation(s)
- Anupam Verma
- Pediatric Oncology Branch, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland
| | - Philip J Lupo
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research (CCR), NCI, NIH, Bethesda, Maryland
| | - Johann Hitzler
- Division of Hematology Oncology, The Hospital for Sick Children, Toronto, Canada
| | - Karen R Rabin
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
12
|
Cooper TM, Alonzo TA, Tasian SK, Kutny MA, Hitzler J, Pollard JA, Aplenc R, Meshinchi S, Kolb EA. Children's Oncology Group's 2023 blueprint for research: Myeloid neoplasms. Pediatr Blood Cancer 2023; 70 Suppl 6:e30584. [PMID: 37480164 PMCID: PMC10614720 DOI: 10.1002/pbc.30584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023]
Abstract
During the past decade, the outcomes of pediatric patients with acute myeloid leukemia (AML) have plateaued with 5-year event-free survival (EFS) and overall survival (OS) of approximately 46 and 64%, respectively. Outcomes are particularly poor for those children with high-risk disease, who have 5-year OS of 46%. Substantial survival improvements have been observed for a subset of patients treated with targeted therapies. Specifically, children with KMT2A-rearranged AML and/or FLT3 internal tandem duplication (FLT3-ITD) mutations benefitted from the addition of gemtuzumab ozogamicin, an anti-CD33 antibody-drug conjugate, in the AAML0531 clinical trial (NCT00372593). Sorafenib also improved response and survival in children with FLT3-ITD AML in the AAML1031 clinical trial (NCT01371981). Advances in characterization of prognostic cytomolecular events have helped to identify patients at highest risk of relapse and facilitated allocation to consolidative hematopoietic stem cell transplant (HSCT) in first remission. Some patients clearly have improved survival with HSCT, although the benefit is largely unknown for most patients. Finally, data-driven refinements in supportive care recommendations continue to evolve with meaningful and measurable reductions in toxicity and improvements in EFS and OS. As advances in application of targeted therapies, risk stratification, and improved supportive care measures are incorporated into current trials and become standard-of-care, there is every expectation that we will see improved survival with a reduction in toxic morbidity and mortality. The research agenda of the Children's Oncology Group's Myeloid Diseases Committee continues to build upon experience and outcomes with an overarching goal of curing more children with AML.
Collapse
Affiliation(s)
- Todd M Cooper
- Seattle Children’s Hospital Cancer and Blood Disorders Service, University of Washington School of Medicine; Seattle, Washington
| | | | - Sarah K Tasian
- Children’s Hospital of Philadelphia Division of Oncology and Center for Childhood Cancer Research and University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania
| | - Matthew A Kutny
- University of Alabama at Birmingham, Department of Pediatrics, Division of Hematology/Oncology, Birmingham, Alabama
| | - Johann Hitzler
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Paediatrics, University of Toronto, ON, Canada; Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Jessica A Pollard
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Richard Aplenc
- Children’s Hospital of Philadelphia Division of Oncology and Center for Childhood Cancer Research and University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania
| | - Soheil Meshinchi
- Seattle Children’s Hospital Cancer and Blood Disorders Service, University of Washington School of Medicine; Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - E Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Nemours Children’s Health, Wilmington, DE
| |
Collapse
|
13
|
Egan G, Tasian SK. Relapsed pediatric acute myeloid leukaemia: state-of-the-art in 2023. Haematologica 2023; 108:2275-2288. [PMID: 36861399 PMCID: PMC10483345 DOI: 10.3324/haematol.2022.281106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Although outcomes of children and adolescents with newly diagnosed acute myeloid leukemia (AML) have improved significantly over the past two decades, more than one-third of patients continue to relapse and experience suboptimal long-term outcomes. Given the small numbers of patients with relapsed AML and historical logistical barriers to international collaboration including poor trial funding and drug availability, the management of AML relapse has varied among pediatric oncology cooperative groups with several salvage regimens utilized and a lack of universally defined response criteria. The landscape of relapsed pediatric AML treatment is changing rapidly, however, as the international AML community harnesses collective knowledge and resources to characterize the genetic and immunophenotypic heterogeneity of relapsed disease, identify biological targets of interest within specific AML subtypes, develop new precision medicine approaches for collaborative investigation in early-phase clinical trials, and tackle challenges of universal drug access across the globe. This review provides a comprehensive overview of progress achieved to date in the treatment of pediatric patients with relapsed AML and highlights modern, state-of-the-art therapeutic approaches under active and emerging clinical investigation that have been facilitated by international collaboration among academic pediatric oncologists, laboratory scientists, regulatory agencies, pharmaceutical partners, cancer research sponsors, and patient advocates.
Collapse
Affiliation(s)
- Grace Egan
- Division of Haematology/Oncology, The Hospital for Sick Children, Department of Paediatrics, University of Toronto; Toronto, Ontario
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Pennsylvania, United States; University of Pennsylvania Perelman School of Medicine and Abramson Cancer Center; Philadelphia, Pennsylvania.
| |
Collapse
|
14
|
Hsu FC, Hudson C, Wilson ER, Pardo LM, Singleton TP, Xu D, Zehentner BK, Hitzler J, Berman J, Wells DA, Loken MR, Brodersen LE. The impact of Down syndrome-specific non-malignant hematopoietic regeneration in the bone marrow on the detection of leukemic measurable residual disease. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2023; 104:311-318. [PMID: 37015883 DOI: 10.1002/cyto.b.22118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/23/2023] [Accepted: 02/17/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND Detection of measurable residual disease detection (MRD) by flow cytometry after the first course of chemotherapy is a standard measure of early response in patients with acute myeloid leukemia (AML). Myeloid leukemia associated with Down Syndrome (ML-DS) is a distinct form of AML. Differences in steady-state and regenerating hematopoiesis between patients with or without DS are not well understood. This understanding is essential to accurately determine the presence of residual leukemia in patients with ML-DS. METHODS A standardized antibody panel defined quantitative antigen expression in 115 follow-up bone marrow (BM) aspirates from 45 patients following chemotherapy for ML-DS or DS precursor B-cell acute lymphoblastic leukemia (B-ALL-DS) with the "difference from normal (ΔN)" technique. When possible, FISH and SNP/CGH microarray studies were performed on sorted cell fractions. RESULTS 93% of BM specimens submitted post chemotherapy had a clearly identifiable CD34+ CD56+ population present between 0.06% and 2.6% of total non-erythroid cells. An overlapping CD34+ HLA-DRheterogeneous population was observed among 92% of patients at a lower frequency (0.04%-0.8% of total non-erythroid cells). In B-ALL-DS patients, the same CD34+ CD56+ HLA-DRheterogeneous expression was observed. FACS-FISH/Array studies demonstrated no residual genetic clones in the DS-specific myeloid progenitor cells. CONCLUSIONS Non-malignant myeloid progenitors in the regenerating BM of patients who have undergone chemotherapy for either ML-DS or B-ALL-DS express an immunophenotype that is different from normal BM of non-DS patients. Awareness of this DS-specific non-malignant myeloid progenitor is essential to the interpretation of MRD by flow cytometry in patients with ML-DS.
Collapse
Affiliation(s)
- Fan-Chi Hsu
- Hematologics, Inc., Seattle, Washington, USA
| | - Chad Hudson
- Hematologics, Inc., Seattle, Washington, USA
| | | | - Laura M Pardo
- Hematologics, Inc., Seattle, Washington, USA
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Dongbin Xu
- Hematologics, Inc., Seattle, Washington, USA
| | | | - Johann Hitzler
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason Berman
- CHEO Research Institute, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
15
|
Kosmidou A, Tragiannidis A, Gavriilaki E. Myeloid Leukemia of Down Syndrome. Cancers (Basel) 2023; 15:3265. [PMID: 37444375 DOI: 10.3390/cancers15133265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/01/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Myeloid leukemia of Down syndrome (ML-DS) is characterized by a distinct natural history and is classified by the World Health Organization (WHO) as an independent entity, occurring with unique clinical and molecular features. The presence of a long preleukemic, myelodysplastic phase, called transient abnormal myelopoiesis (TAM), precedes the initiation of ML-DS and is defined by unusual chromosomal findings. Individuals with constitutional trisomy 21 have a profound dosage imbalance in the hematopoiesis-governing genes located on chromosome 21 and thus are subject to impaired fetal as well as to neonatal erythro-megakaryopoiesis. Almost all neonates with DS develop quantitative and morphological hematological abnormalities, yet still only 5-10% of them present with one of the preleukemic or leukemic conditions of DS. The acquired mutations in the key hematopoietic transcription factor gene GATA1, found solely in cells trisomic for chromosome 21, are considered to be the essential step for the selective growth advantage of leukemic cells. While the majority of cases of TAM remain clinically 'silent' or undergo spontaneous remission, the remaining 20% to 30% of them progress into ML-DS until the age of 4 years. The hypersensitivity of ML-DS blasts to chemotherapeutic agents, including but not limited to cytarabine, and drugs' increased infectious and cardiac toxicity have necessitated the development of risk-adapted treatment protocols for children with ML-DS. Recent advances in cytogenetics and specific molecular mechanisms involved in the evolution of TAM and ML-DS are reviewed here, as well as their integration in the improvement of risk stratification and targeted management of ML-DS.
Collapse
Affiliation(s)
- Aikaterini Kosmidou
- 2nd Department of Internal Medicine, General Hospital of Kavala, 65500 Kavala, Greece
| | - Athanasios Tragiannidis
- 2nd Department of Pediatrics, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Eleni Gavriilaki
- Hematology Department, G. Papanikolaou Hospital, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| |
Collapse
|
16
|
Patients with Down syndrome can be included in early phase clinical trials- a report from the T2016-003 Therapeutic Advances in Childhood Leukemia and Lymphoma (TACL) study. Leukemia 2023; 37:1138-1140. [PMID: 36813993 DOI: 10.1038/s41375-023-01856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023]
|
17
|
Roberts I. Leukemogenesis in infants and young children with trisomy 21. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:1-8. [PMID: 36485097 PMCID: PMC9820574 DOI: 10.1182/hematology.2022000395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Children with Down syndrome (DS) have a greater than 100-fold increased risk of developing acute myeloid leukemia (ML) and an approximately 30-fold increased risk of acute lymphoblastic leukemia (ALL) before their fifth birthday. ML-DS originates in utero and typically presents with a self-limiting, neonatal leukemic syndrome known as transient abnormal myelopoiesis (TAM) that is caused by cooperation between trisomy 21-associated abnormalities of fetal hematopoiesis and somatic N-terminal mutations in the transcription factor GATA1. Around 10% of neonates with DS have clinical signs of TAM, although the frequency of hematologically silent GATA1 mutations in DS neonates is much higher (~25%). While most cases of TAM/silent TAM resolve without treatment within 3 to 4 months, in 10% to 20% of cases transformation to full-blown leukemia occurs within the first 4 years of life when cells harboring GATA1 mutations persist and acquire secondary mutations, most often in cohesin genes. By contrast, DS-ALL, which is almost always B-lineage, presents after the first few months of life and is characterized by a high frequency of rearrangement of the CRLF2 gene (60%), often co-occurring with activating mutations in JAK2 or RAS genes. While treatment of ML-DS achieves long-term survival in approximately 90% of children, the outcome of DS-ALL is inferior to ALL in children without DS. Ongoing studies in primary cells and model systems indicate that the role of trisomy 21 in DS leukemogenesis is complex and cell context dependent but show promise in improving management and the treatment of relapse, in which the outcome of both ML-DS and DS-ALL remains poor.
Collapse
Affiliation(s)
- Irene Roberts
- Correspondence Irene Roberts, Department of Paediatrics, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford OX3 9DS, United Kingdom; e-mail: ,
| |
Collapse
|
18
|
Gupte A, Al-Antary ET, Edwards H, Ravindranath Y, Ge Y, Taub JW. The Paradox of Myeloid Leukemia Associated with Down Syndrome. Biochem Pharmacol 2022; 201:115046. [PMID: 35483417 DOI: 10.1016/j.bcp.2022.115046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/03/2023]
Abstract
Children with Down syndrome constitute a distinct genetic population who has a greater risk of developing acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) compared to their non-Down syndrome counterparts. The risk for developing solid tumors is also distinct from the non-Down syndrome population. In the case of myeloid leukemias, the process of leukemogenesis in Trisomy 21 begins in early fetal life where genetic drivers including GATA1 mutations lead to the development of the preleukemic condition, transient abnormal myelopoiesis (TAM). Various other mutations in genes encoding cohesin, epigenetic regulators and RAS pathway can result in subsequent progression to Myeloid Leukemia associated with Down Syndrome (ML-DS). The striking paradoxical feature in the Down syndrome population is that even though there is a higher predisposition to developing AML, they are also very sensitive to chemotherapy agents, particularly cytarabine, thus accounting for the very high cure rates for ML-DS compared to AML in children without Down syndrome. Current clinical trials for ML-DS attempt to balance effective curative therapies while trying to reduce treatment-associated toxicities including infections by de-intensifying chemotherapy doses, if possible. The small proportion of patients with relapsed ML-DS have an extremely poor prognosis and require the development of new therapies.
Collapse
Affiliation(s)
- Avanti Gupte
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eman T Al-Antary
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yaddanapudi Ravindranath
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jeffrey W Taub
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA; Discipline of Pediatrics, Central Michigan University, Saginaw, Michigan, USA.
| |
Collapse
|
19
|
AraC: up for down. Blood 2021; 138:2302-2303. [PMID: 34882214 DOI: 10.1182/blood.2021013439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/01/2021] [Indexed: 11/20/2022] Open
|
20
|
Boucher AC, Caldwell KJ, Crispino JD, Flerlage JE. Clinical and biological aspects of myeloid leukemia in Down syndrome. Leukemia 2021; 35:3352-3360. [PMID: 34518645 PMCID: PMC8639661 DOI: 10.1038/s41375-021-01414-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Children with Down syndrome are at an elevated risk of leukemia, especially myeloid leukemia (ML-DS). This malignancy is frequently preceded by transient abnormal myelopoiesis (TAM), which is self-limited expansion of fetal liver-derived megakaryocyte progenitors. An array of international studies has led to consensus in treating ML-DS with reduced-intensity chemotherapy, leading to excellent outcomes. In addition, studies performed in the past 20 years have revealed many of the genetic and epigenetic features of the tumors, including GATA1 mutations that are arguably associated with all cases of both TAM and ML-DS. Despite these advances in understanding the clinical and biological aspects of ML-DS, little is known about the mechanisms of relapse. Upon relapse, patients face a poor outcome, and there is no consensus on treatment. Future studies need to be focused on this challenging aspect of leukemia in children with DS.
Collapse
Affiliation(s)
- Austin C Boucher
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kenneth J Caldwell
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - John D Crispino
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Jamie E Flerlage
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|