1
|
Smit Y, Scheuter P, Lange MPM, Janssen JJWM, Posthuma EFM, Bekker CL, Hermens RPMG, Blijlevens NMA. Patient-reported toxicity symptoms during tyrosine kinase inhibitor treatment in chronic myeloid leukemia: a systematic review and meta-analysis. Support Care Cancer 2025; 33:446. [PMID: 40317312 PMCID: PMC12049300 DOI: 10.1007/s00520-025-09451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/10/2025] [Indexed: 05/07/2025]
Abstract
PURPOSE One in five chronic myeloid leukemia (CML) patients experiences such intolerability that they switch tyrosine kinase inhibitor (TKI) treatment within 3 years. Information on tolerability is needed to guide shared decision-making. However, an overview of symptoms patients experience per TKI is lacking, and physician-graded toxicity underestimates patients' experiences. METHODS We systematically searched PubMed and Embase from inception to February 2025 and conducted a meta-analysis on the prevalence of patient-reported symptoms in CML per TKI. This study follows the Preferred Reporting Items for Systematic Reviews (PRISMA) guideline for systematic reviews. RESULTS We included 11 studies with 2987 patients, reporting on 47 different symptoms of any severity. The low-grade patient-reported symptom burden was high. No data were available on asciminib and ponatinib, and minimal data were available for bosutinib. In indirect, unadjusted comparisons, 13 out of 47 symptoms (of any severity) showed significant differences in prevalence between common TKI types. CONCLUSION Our findings provide essential information to guide treatment decisions in cases of intolerability. However, there is a clear need for further research with standardized instruments, especially in second and third generation TKI types, including direct comparisons and comparisons adjusted for covariates.
Collapse
Affiliation(s)
- Yolba Smit
- Department of Hematology, Radboud university medical center, Route 476, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Pien Scheuter
- Department of Hematology, Radboud university medical center, Route 476, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Myrthe P M Lange
- Department of Hematology, Radboud university medical center, Route 476, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Jeroen J W M Janssen
- Department of Hematology, Radboud university medical center, Route 476, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Charlotte L Bekker
- Department of Pharmacy, Radboud university medical center, Nijmegen, The Netherlands
| | - Rosella P M G Hermens
- Department of IQ Health, Radboud university medical center, Nijmegen, The Netherlands
| | - Nicole M A Blijlevens
- Department of Hematology, Radboud university medical center, Route 476, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Buckley M, Yeung DT, White DL, Eadie LN. T-cell acute lymphoblastic leukaemia: subtype prevalence, clinical outcome, and emerging targeted treatments. Leukemia 2025:10.1038/s41375-025-02599-2. [PMID: 40247105 DOI: 10.1038/s41375-025-02599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/19/2025]
Abstract
T-cell Acute Lymphoblastic Leukaemia (T-ALL) is a high-risk hematological disease constituting ~20% of acute leukemias. To date, the only subtype recognized by the World Health Organization's International Consensus Classification is early T-cell precursor ALL. To improve clinical outcomes, several studies have investigated and defined T-ALL genomic subtypes within cohorts of varied ages and geographical locations. These studies have also utilized differing analysis methods including whole transcriptome, exome, or genome sequencing as well as immunophenotyping and cytogenetic testing. As a result, there are significant differences in reported subtypes as well as the frequency at which each occurs. The reported clinical outcomes for specific genomic alterations also depend on patient demographics and treatment protocols. This review synthesizes the data from four T-ALL genomic landscape studies establishing consensus and highlighting differences, details clinical outcomes for the most common genomic alterations observed in T-ALL patients, and proposes novel avenues for future investigation and treatment.
Collapse
Affiliation(s)
- Maxim Buckley
- Blood Cancer, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - David T Yeung
- Blood Cancer, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Hematology Department, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Deborah L White
- Blood Cancer, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Laura N Eadie
- Blood Cancer, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
3
|
Nguyen T, Harama D, Tamai M, Kagami K, Komatsu C, Kasai S, Akahane K, Goi K, Inukai T. Synergistic effect of asciminib with reduced doses of ponatinib in human Ph + myeloid leukemia with the T315M mutation. Int J Hematol 2025:10.1007/s12185-025-03981-7. [PMID: 40208408 DOI: 10.1007/s12185-025-03981-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025]
Abstract
In Philadelphia chromosome-positive (Ph +) leukemia, substitution of threonine at the 315 position of BCR::ABL1 with isoleucine (T315I) induces severe resistance to tyrosine kinase inhibitors (TKIs). Of clinical importance, the substitution of the baseline T315I mutation by methionine (I315M) was reported in a Ph + leukemia patient treated with ponatinib. The resultant T315M mutation induces severe TKI-resistance in a murine Ba/F3 model. Asciminib, an allosteric inhibitor of BCR::ABL1, is reportedly active in ponatinib-resistant patients with the T315I mutation. Although asciminib alone is not active in a murine Ba/F3 model with the T315M mutation, asciminib and ponatinib show synergistic activities. In the present study, we introduced the T315M mutation into the intrinsic BCR::ABL1 gene of two Ph + myeloid and one Ph + lymphoid leukemia cell lines using the CRISPR/Cas9 system to directly verify the utility of the combined asciminib and ponatinib in human models. All three T315M-acquired sublines were more resistant to TKIs including ponatinib than T315I-acquired sublines. Notably, asciminib exhibited a stronger synergistic effect with reduced doses of ponatinib in the T315M-acquired sublines of two myeloid cell lines, but not in the lymphoid cell line. This indicates that the combination of ponatinib and asciminib may have a clinical utility in human Ph + myeloid leukemia.
Collapse
Affiliation(s)
- Thao Nguyen
- Global Leukemia Cell-Line Assembly Network and Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409 - 3898, Japan
| | - Daisuke Harama
- Global Leukemia Cell-Line Assembly Network and Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409 - 3898, Japan
| | - Minori Tamai
- Global Leukemia Cell-Line Assembly Network and Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409 - 3898, Japan
| | - Keiko Kagami
- Global Leukemia Cell-Line Assembly Network and Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409 - 3898, Japan
| | - Chiaki Komatsu
- Global Leukemia Cell-Line Assembly Network and Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409 - 3898, Japan
| | - Shin Kasai
- Global Leukemia Cell-Line Assembly Network and Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409 - 3898, Japan
| | - Koshi Akahane
- Global Leukemia Cell-Line Assembly Network and Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409 - 3898, Japan
| | - Kumiko Goi
- Global Leukemia Cell-Line Assembly Network and Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409 - 3898, Japan
| | - Takeshi Inukai
- Global Leukemia Cell-Line Assembly Network and Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409 - 3898, Japan.
| |
Collapse
|
4
|
Martins DM, Fernandes PO, Vieira LA, Maltarollo VG, Moraes AH. Structure-Guided Drug Design Targeting Abl Kinase: How Structure and Regulation Can Assist in Designing New Drugs. Chembiochem 2024; 25:e202400296. [PMID: 39008807 DOI: 10.1002/cbic.202400296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The human protein Abelson kinase (Abl), a tyrosine kinase, plays a pivotal role in developing chronic myeloid leukemia (CML). Abl's involvement in various signaling pathways underscores its significance in regulating fundamental biological processes, including DNA damage responses, actin polymerization, and chromatin structural changes. The discovery of the Bcr-Abl oncoprotein, resulting from a chromosomal translocation in CML patients, revolutionized the understanding and treatment of the disease. The introduction of targeted therapies, starting with interferon-alpha and culminating in the development of tyrosine kinase inhibitors (TKIs) like imatinib, significantly improved patient outcomes. However, challenges such as drug resistance and side effects persist, indicating the necessity of research into novel therapeutic strategies. This review describes advancements in Abl kinase inhibitor development, emphasizing rational compound design from structural and regulatory information. Strategies, including bivalent inhibitors, PROTACs, and compounds targeting regulatory domains, promise to overcome resistance and minimize side effects. Additionally, leveraging the intricate structure and interactions of Bcr-Abl may provide insights into developing inhibitors for other kinases. Overall, this review highlights the importance of continued research into Abl kinase inhibition and its broader implications for therapeutic interventions targeting kinase-driven diseases. It provides valuable insights and strategies that may guide the development of next-generation therapies.
Collapse
MESH Headings
- Humans
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Drug Design
- Proto-Oncogene Proteins c-abl/metabolism
- Proto-Oncogene Proteins c-abl/antagonists & inhibitors
- Proto-Oncogene Proteins c-abl/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Molecular Structure
Collapse
Affiliation(s)
- Diego M Martins
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Philipe O Fernandes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Lucas A Vieira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Vinícius G Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Adolfo H Moraes
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| |
Collapse
|
5
|
Nguyen TT, Tamai M, Harama D, Kagami K, Komatsu C, Kasai S, Akahane K, Goi K, Inukai T. Sensitivity to Tyrosine Kinase Inhibitors in a Human Philadelphia Chromosome-Positive (Ph+) Leukemia Model With the T315I-Inclusive Compound Mutation. Cureus 2024; 16:e76538. [PMID: 39872583 PMCID: PMC11772067 DOI: 10.7759/cureus.76538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2024] [Indexed: 01/30/2025] Open
Abstract
The T315I-inclusive compound mutation, the multiple mutations including the T315I mutation on the same BCR::ABL1 gene, confers resistance to diverse tyrosine kinase inhibitors (TKIs). Development of the F311I/T315I compound mutation has been reported in chronic myeloid leukemia patients who sequentially showed clinical resistance to imatinib and dasatinib. The establishment of a human leukemia model with the T315I-inclusive compound mutation remains an experimental challenge. Here, we introduced the F311I/T315I compound mutation into the intrinsic BCR::ABL1 gene of a human TKI-sensitive Philadelphia chromosome-positive leukemia cell line via homologous recombination using the CRISPR/Cas9 system and obtained three types of sublines: the F311I mutation alone, the T315I mutation alone, and the F311I/T315I compound mutation. The F311I subline was sensitive to dasatinib but moderately resistant to imatinib and nilotinib, while the T315I subline and the F311I/T315I subline were highly resistant to these TKIs. Notably, the T315I subline and the F311I/T315I subline were sensitive to therapeutic concentrations of ponatinib, although more resistant than the F311I subline. Moreover, the T315 subline and the F311I/T315 subline were sensitive to asciminib at therapeutic concentration, as was the F311I subline. This is the first human leukemia model in which the impact of the T315I-inclusive compound mutation on TKI sensitivity was directly confirmed.
Collapse
Affiliation(s)
- Thao T Nguyen
- Department of Pediatrics, University of Yamanashi, Chuo, JPN
| | - Minori Tamai
- Department of Pediatrics, University of Yamanashi, Chuo, JPN
| | - Daisuke Harama
- Department of Pediatrics, University of Yamanashi, Chuo, JPN
| | - Keiko Kagami
- Department of Pediatrics, University of Yamanashi, Chuo, JPN
| | - Chiaki Komatsu
- Department of Pediatrics, University of Yamanashi, Chuo, JPN
| | - Shin Kasai
- Department of Pediatrics, University of Yamanashi, Chuo, JPN
| | - Koshi Akahane
- Department of Pediatrics, University of Yamanashi, Chuo, JPN
| | - Kumiko Goi
- Department of Pediatrics, University of Yamanashi, Chuo, JPN
| | - Takeshi Inukai
- Department of Pediatrics, University of Yamanashi, Chuo, JPN
| |
Collapse
|
6
|
Leske IB, Hantschel O. The e13a3 (b2a3) and e14a3 (b3a3) BCR::ABL1 isoforms are resistant to asciminib. Leukemia 2024; 38:2041-2045. [PMID: 38879610 PMCID: PMC11347367 DOI: 10.1038/s41375-024-02314-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 08/28/2024]
MESH Headings
- Humans
- Fusion Proteins, bcr-abl/genetics
- Drug Resistance, Neoplasm/genetics
- Protein Isoforms/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-abl/genetics
- Proto-Oncogene Proteins c-abl/metabolism
- Niacinamide/analogs & derivatives
- Pyrazoles
Collapse
Affiliation(s)
- Inga B Leske
- Institute of Physiological Chemistry, Faculty of Medicine, Philipps University of Marburg, 35032, Marburg, Germany
| | - Oliver Hantschel
- Institute of Physiological Chemistry, Faculty of Medicine, Philipps University of Marburg, 35032, Marburg, Germany.
| |
Collapse
|
7
|
Li X, Li W, Zhang Y, Xu L, Song Y. Exploiting the potential of the ubiquitin-proteasome system in overcoming tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Genes Dis 2024; 11:101150. [PMID: 38947742 PMCID: PMC11214299 DOI: 10.1016/j.gendis.2023.101150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/15/2023] [Accepted: 09/01/2023] [Indexed: 07/02/2024] Open
Abstract
The advent of tyrosine kinase inhibitors (TKI) targeting BCR-ABL has drastically changed the treatment approach of chronic myeloid leukemia (CML), greatly prolonged the life of CML patients, and improved their prognosis. However, TKI resistance is still a major problem with CML patients, reducing the efficacy of treatment and their quality of life. TKI resistance is mainly divided into BCR-ABL-dependent and BCR-ABL-independent resistance. Now, the main clinical strategy addressing TKI resistance is to switch to newly developed TKIs. However, data have shown that these new drugs may cause serious adverse reactions and intolerance and cannot address all resistance mutations. Therefore, finding new therapeutic targets to overcome TKI resistance is crucial and the ubiquitin-proteasome system (UPS) has emerged as a focus. The UPS mediates the degradation of most proteins in organisms and controls a wide range of physiological processes. In recent years, the study of UPS in hematological malignant tumors has resulted in effective treatments, such as bortezomib in the treatment of multiple myeloma and mantle cell lymphoma. In CML, the components of UPS cooperate or antagonize the efficacy of TKI by directly or indirectly affecting the ubiquitination of BCR-ABL, interfering with CML-related signaling pathways, and negatively or positively affecting leukemia stem cells. Some of these molecules may help overcome TKI resistance and treat CML. In this review, the mechanism of TKI resistance is briefly described, the components of UPS are introduced, existing studies on UPS participating in TKI resistance are listed, and UPS as the therapeutic target and strategies are discussed.
Collapse
Affiliation(s)
- Xudong Li
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yanli Zhang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Linping Xu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Yongping Song
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
8
|
Kumar R, Goel H, Solanki R, Rawat L, Tabasum S, Tanwar P, Pal S, Sabarwal A. Recent developments in receptor tyrosine kinase inhibitors: A promising mainstay in targeted cancer therapy. MEDICINE IN DRUG DISCOVERY 2024; 23:100195. [PMID: 39281823 PMCID: PMC11393807 DOI: 10.1016/j.medidd.2024.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
During the past two decades, significant advances have been made in the discovery and development of targeted inhibitors aimed at improving the survival rates of cancer patients. Among the multitude of potential therapeutic targets identified thus far, Receptor Tyrosine Kinases (RTKs) are of particular importance. Dysregulation of RTKs has been implicated in numerous human diseases, particularly cancer, where aberrant signaling pathways contribute to disease progression. RTKs have a profound impact on intra and intercellular communication, and they also facilitate post-translational modifications, notably phosphorylation, which intricately regulates a multitude of cellular processes. Prolonged phosphorylation or the disruption of kinase regulation may lead to significant alterations in cell signaling. The emergence of small molecule kinase inhibitors has revolutionized cancer therapy by offering a targeted and strategic approach that surpasses the efficacy of traditional chemotherapeutic drugs. Over the last two decades, a plethora of targeted inhibitors have been identified or engineered and have undergone clinical evaluation to enhance the survival rates of cancer patients. In this review, we have compared the expression of different RTKs, including Met, KDR/VEGFR2, EGFR, BRAF, BCR, and ALK across different cancer types in TCGA samples. Additionally, we have summarized the recent development of small molecule inhibitors and their potential in treating various malignancies. Lastly, we have discussed the mechanisms of acquired therapeutic resistance with a focus on kinase inhibitors in EGFR mutant and ALK-rearranged non-small cell lung cancer and BCR-ABL positive chronic myeloid leukemia.
Collapse
Affiliation(s)
- Rahul Kumar
- Dr B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Harsh Goel
- Dr B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Laxminarayan Rawat
- Division of Nephrology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Saba Tabasum
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Pranay Tanwar
- Dr B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Soumitro Pal
- Division of Nephrology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Akash Sabarwal
- Division of Nephrology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Fontana D, Malighetti F, Villa M, Zambon A, Gambacorti-Passerini C, Mologni L. Repurposing pexmetinib as an inhibitor of TKI-resistant BCR::ABL1. Leukemia 2024; 38:1843-1847. [PMID: 38750137 PMCID: PMC11286508 DOI: 10.1038/s41375-024-02282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 07/31/2024]
Affiliation(s)
- Diletta Fontana
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Federica Malighetti
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Matteo Villa
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alfonso Zambon
- Department of Chemistry and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Hematology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
10
|
George B, Chan KH, Rios A. Therapeutic options for chronic myeloid leukemia following the failure of second-generation tyrosine kinase inhibitor therapy. Front Oncol 2024; 14:1446517. [PMID: 39139284 PMCID: PMC11320603 DOI: 10.3389/fonc.2024.1446517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
The management of chronic myeloid leukemia in the chronic phase (CML-CP) has witnessed significant advancements since the identification of a common chromosomal translocation anomaly involving chromosomes 9 and 22, which results in the formation of the Philadelphia chromosome driven by the BCR-ABL1 fusion protein. This discovery paved the way for the development of tyrosine kinase inhibitors (TKIs) that target the adenosine triphosphate (ATP) binding site of ABL1 through the BCR-ABL-1 fusion protein. Following the approval of Imatinib by the Food and Drug Administration (FDA) as the first TKI for CML treatment in 2001, the median overall survival (OS) for chronic phase CML (CML-CP) has significantly improved, approaching that of the general population. However, achieving this milestone crucially depends on reaching certain treatment response milestones. Since the introduction of imatinib, five additional TKIs have been approved for CML-CP treatment. Despite the availability of these treatments, many patients may experience treatment failure and require multiple lines of therapy due to factors such as the emergence of resistance, such as mutations in the ATP binding site of ABL, or intolerance to therapy. This review will primarily focus on exploring treatment options for patients who fail second-generation TKI therapy due to true resistance.
Collapse
Affiliation(s)
- Binsah George
- Division of Hematology/Oncology, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | | |
Collapse
|
11
|
Savani S, Pawa A, Salim N, Savani T, Master S. Asciminib Use Highlighting Underlying Moyamoya Disease: A Case Report. Cureus 2024; 16:e63364. [PMID: 39077244 PMCID: PMC11283928 DOI: 10.7759/cureus.63364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
We highlight here a case of Moyamoya disease (MMD) developed after treatment for chronic myeloid leukemia (CML). Moyamoya, a term meaning "a hazy puff of smoke" in Japanese, denotes a chronic occlusive cerebrovascular condition involving bilateral stenosis or closure of the terminal part of the internal carotid arteries (ICAs) and the proximal sections of the anterior cerebral arteries (ACAs) and middle cerebral arteries (MCAs) resulting in the development of abnormal vascular collaterals. A 40-year-old African-American female with a past medical history of CML presented to the oncology clinic with expressive aphasia. Of note, she was diagnosed with CML eight years ago and was previously treated with dasatinib and nilotinib with only partial remission. She tested positive for the T315I mutation and was initiated on asciminib therapy about a month before her symptoms surfaced. Asciminib, an allosteric inhibitor targeting breakpoint cluster region-abelson murine leukemia 1 (BCR-ABL1) kinase activity, has gained approval for treating patients diagnosed with chronic-phase CML who have not responded to two prior lines of therapy or for those carrying the T315I mutation. During admission, the patient underwent brain magnetic resonance imaging (MRI) and a computed tomography (CT) angiogram of the head showed moderate to severe narrowing at the origins of the bilateral MCA and ACA, concerning Moyamoya syndrome. Although not classically associated with asciminib therapy, we report here a patient with CML who developed expressive aphasia one month after starting the medication. Due to the high index of suspicion, asciminib was discontinued, and the patient was referred for bone marrow transplant evaluation and concurrently started on cytarabine + peginterferon. The patient had improvement in her symptoms of aphasia after the drug was discontinued and returned to her baseline functional status. No cardiovascular side effects associated with the use of asciminib are currently reported in the literature. However, we have described a case of such an occurrence. Therefore, extra caution should be taken in prescribing asciminib in patients with risk factors or a prior history of stroke.
Collapse
Affiliation(s)
- Saloni Savani
- Internal Medicine, Willis-Knighton Health System, Shreveport, USA
| | - Arpita Pawa
- Internal Medicine, Willis-Knighton Health System, Shreveport, USA
| | - Naved Salim
- College of Medicine, Edward Via College of Osteopathic Medicine, Shreveport, USA
| | - Tithi Savani
- Internal Medicine, Gujarat Medical Education and Research Society, Ahmedabad, IND
| | - Samip Master
- Hematology and Oncology, Willis-Knighton Health System, Shreveport, USA
| |
Collapse
|
12
|
Wang Y, Liang ZJ, Gale RP, Liao HZ, Ma J, Gong TJ, Shao YQ, Liang Y. Chronic myeloid leukaemia: Biology and therapy. Blood Rev 2024; 65:101196. [PMID: 38604819 DOI: 10.1016/j.blre.2024.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Chronic myeloid leukaemia (CML) is caused by BCR::ABL1. Tyrosine kinase-inhibitors (TKIs) are the initial therapy. Several organizations have reported milestones to evaluate response to initial TKI-therapy and suggest when a change of TKI should be considered. Achieving treatment-free remission (TFR) is increasingly recognized as the optimal therapy goal. Which TKI is the best initial therapy for which persons and what depth and duration of molecular remission is needed to achieve TFR are controversial. In this review we discuss these issues and suggest future research directions.
Collapse
MESH Headings
- Humans
- Protein Kinase Inhibitors/therapeutic use
- Fusion Proteins, bcr-abl/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Remission Induction
- Biology
Collapse
Affiliation(s)
- Yun Wang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zhi-Jian Liang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Robert Peter Gale
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Hua-Ze Liao
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jun Ma
- Harbin Institute of Hematology and Oncology, Harbin First Hospital, Harbin 150010, China
| | - Tie-Jun Gong
- Harbin Institute of Hematology and Oncology, Harbin First Hospital, Harbin 150010, China.
| | - Ying-Qi Shao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| | - Yang Liang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|
13
|
Han HJ, Kim JJ, Pyne D, Travas A, Ambalavanan A, Kimura S, Deininger MW, Kim JW, Kim DDH. In vitro evidence of synergistic efficacy with asciminib combined with reduced dose of ATP-binding pocket tyrosine kinase inhibitors according to the ABL1 kinase domain mutation profile. Leukemia 2024; 38:412-415. [PMID: 38155246 DOI: 10.1038/s41375-023-02122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023]
Affiliation(s)
- Ho-Jae Han
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jaeyoon John Kim
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Danielle Pyne
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Anthea Travas
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Amirthagowri Ambalavanan
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | | | - Jong-Won Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea.
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Dennis Dong Hwan Kim
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
FitzGerald EA, Vagrys D, Opassi G, Klein HF, Hamilton DJ, Talibov VO, Abramsson M, Moberg A, Lindgren MT, Holmgren C, Davis B, O'Brien P, Wijtmans M, Hubbard RE, de Esch IJP, Danielson UH. Multiplexed experimental strategies for fragment library screening against challenging drug targets using SPR biosensors. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:40-51. [PMID: 37714432 DOI: 10.1016/j.slasd.2023.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023]
Abstract
Surface plasmon resonance (SPR) biosensor methods are ideally suited for fragment-based lead discovery. However, generally applicable experimental procedures and detailed protocols are lacking, especially for structurally or physico-chemically challenging targets or when tool compounds are not available. Success depends on accounting for the features of both the target and the chemical library, purposely designing screening experiments for identification and validation of hits with desired specificity and mode-of-action, and availability of orthogonal methods capable of confirming fragment hits. The range of targets and libraries amenable to an SPR biosensor-based approach for identifying hits is considerably expanded by adopting multiplexed strategies, using multiple complementary surfaces or experimental conditions. Here we illustrate principles and multiplexed approaches for using flow-based SPR biosensor systems for screening fragment libraries of different sizes (90 and 1056 compounds) against a selection of challenging targets. It shows strategies for the identification of fragments interacting with 1) large and structurally dynamic targets, represented by acetyl choline binding protein (AChBP), a Cys-loop receptor ligand gated ion channel homologue, 2) targets in multi protein complexes, represented by lysine demethylase 1 and a corepressor (LSD1/CoREST), 3) structurally variable or unstable targets, represented by farnesyl pyrophosphate synthase (FPPS), 4) targets containing intrinsically disordered regions, represented by protein tyrosine phosphatase 1B (PTP1B), and 5) aggregation-prone proteins, represented by an engineered form of human tau (tau K18M). Practical considerations and procedures accounting for the characteristics of the proteins and libraries, and that increase robustness, sensitivity, throughput and versatility are highlighted. The study shows that the challenges for addressing these types of targets is not identification of potentially useful fragments per se, but establishing methods for their validation and evolution into leads.
Collapse
Affiliation(s)
- Edward A FitzGerald
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden; Beactica Therapeutics AB, Virdings allé 2, Uppsala, Sweden
| | - Darius Vagrys
- Vernalis (R&D) Ltd., Granta Park, Great Abington, Cambridge, United Kingdom; YSBL, Department of Chemistry, University of York, York, United Kingdom
| | - Giulia Opassi
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Hanna F Klein
- Department of Chemistry, University of York, York, United Kingdom
| | - David J Hamilton
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | | | - Mia Abramsson
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | | | | | | | - Ben Davis
- Vernalis (R&D) Ltd., Granta Park, Great Abington, Cambridge, United Kingdom
| | - Peter O'Brien
- Department of Chemistry, University of York, York, United Kingdom
| | - Maikel Wijtmans
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Roderick E Hubbard
- Vernalis (R&D) Ltd., Granta Park, Great Abington, Cambridge, United Kingdom; YSBL, Department of Chemistry, University of York, York, United Kingdom
| | - Iwan J P de Esch
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - U Helena Danielson
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
15
|
El-Damasy AK, Kim HJ, Park JW, Nam Y, Hur W, Bang EK, Keum G. Discovery of 3-((3-amino- 1H-indazol-4-yl)ethynyl)- N-(4-((4-ethylpiperazin-1-yl)methyl)-3-(trifluoromethyl)phenyl)benzamide (AKE-72), a potent Pan-BCR-ABL inhibitor including the T315I gatekeeper resistant mutant. J Enzyme Inhib Med Chem 2023; 38:2228515. [PMID: 37470410 PMCID: PMC10360995 DOI: 10.1080/14756366.2023.2228515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/01/2023] [Accepted: 06/17/2023] [Indexed: 07/21/2023] Open
Abstract
BCR-ABL inhibition is an effective therapeutic approach for the treatment of chronic myeloid leukaemia (CML). Herein, we report the discovery of AKE-72 (5), a diarylamide 3-aminoindazole, as a potent pan-BCR-ABL inhibitor, including the imatinib-resistant mutant T315I. A focussed array of compounds 4a, 4b, and 5 has been designed based on our previously reported indazole I to improve its BCR-ABLT315I inhibitory activity. Replacing the morpholine moiety of I with the privileged tail (4-ethylpiperazin-1-yl)methyl afforded 5 (AKE-72) with IC50 values of < 0.5 nM, and 9 nM against BCR-ABLWT and BCR-ABLT315I, respectively. Moreover, AKE-72 potently inhibited a panel of other clinically important mutants in single-digit nanomolar IC50 values. AKE-72 elicited remarkable anti-leukemic activity against K-562 cell line (GI50 < 10 nM, TGI = 154 nM). In addition, AKE-72 strongly inhibited the proliferation of Ba/F3 cells expressing native BCR-ABL or its T315I mutant. Overall, AKE-72 may serve as a promising candidate for the treatment of CML, including those harbouring T315I mutation.
Collapse
Affiliation(s)
- Ashraf K El-Damasy
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Hyun Ji Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jung Woo Park
- Supercomputing Application Center, Div. of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
| | - Yunju Nam
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Wooyoung Hur
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Eun-Kyoung Bang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Gyochang Keum
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| |
Collapse
|
16
|
Verhagen NE, Koenderink JB, Blijlevens NMA, Janssen JJWM, Russel FGM. Transporter-Mediated Cellular Distribution of Tyrosine Kinase Inhibitors as a Potential Resistance Mechanism in Chronic Myeloid Leukemia. Pharmaceutics 2023; 15:2535. [PMID: 38004514 PMCID: PMC10675650 DOI: 10.3390/pharmaceutics15112535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a hematologic neoplasm characterized by the expression of the BCR::ABL1 oncoprotein, a constitutively active tyrosine kinase, resulting in uncontrolled growth and proliferation of cells in the myeloid lineage. Targeted therapy using tyrosine kinase inhibitors (TKIs) such as imatinib, nilotinib, dasatinib, bosutinib, ponatinib and asciminib has drastically improved the life expectancy of CML patients. However, treatment resistance occurs in 10-20% of CML patients, which is a multifactorial problem that is only partially clarified by the presence of TKI inactivating BCR::ABL1 mutations. It may also be a consequence of a reduction in cytosolic TKI concentrations in the target cells due to transporter-mediated cellular distribution. This review focuses on drug-transporting proteins in stem cells and progenitor cells involved in the distribution of TKIs approved for the treatment of CML. Special attention will be given to ATP-binding cassette transporters expressed in lysosomes, which may facilitate the extracytosolic sequestration of these compounds.
Collapse
Affiliation(s)
- Noor E. Verhagen
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.E.V.); (J.B.K.)
| | - Jan B. Koenderink
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.E.V.); (J.B.K.)
| | - Nicole M. A. Blijlevens
- Department of Haematology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.M.A.B.); (J.J.W.M.J.)
| | - Jeroen J. W. M. Janssen
- Department of Haematology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.M.A.B.); (J.J.W.M.J.)
| | - Frans G. M. Russel
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.E.V.); (J.B.K.)
| |
Collapse
|
17
|
Lee YC, Chiou JT, Wang LJ, Chen YJ, Chang LS. Amsacrine downregulates BCL2L1 expression and triggers apoptosis in human chronic myeloid leukemia cells through the SIDT2/NOX4/ERK/HuR pathway. Toxicol Appl Pharmacol 2023; 474:116625. [PMID: 37451322 DOI: 10.1016/j.taap.2023.116625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Accumulating evidence indicates that the anticancer activity of acridine derivatives is mediated through the regulation of anti-apoptotic and pro-apoptotic BCL2 protein expression. Therefore, we investigated whether the cytotoxicity of amsacrine with an acridine structural scaffold in human chronic myeloid leukemia (CML) K562 cells was mediated by BCL2 family proteins. Amsacrine induced apoptosis, mitochondrial depolarization, and BCL2L1 (also known as BCL-XL) downregulation in K562 cells. BCL2L1 overexpression inhibited amsacrine-induced cell death and mitochondrial depolarization. Amsacrine treatment triggered SIDT2-mediated miR-25 downregulation, leading to increased NOX4-mediated ROS production. ROS-mediated inactivation of ERK triggered miR-22 expression, leading to increased HuR mRNA decay. As HuR is involved in stabilizing BCL2L1 mRNA, downregulation of BCL2L1 was noted in K562 cells after amsacrine treatment. In contrast, amsacrine-induced BCL2L1 downregulation was alleviated by restoring ERK phosphorylation and HuR expression. Altogether, the results of this study suggest that amsacrine triggers apoptosis in K562 cells by inhibiting BCL2L1 expression through the SIDT2/NOX4/ERK-mediated downregulation of HuR. Furthermore, a similar pathway also explains the cytotoxicity of amsacrine in CML MEG-01 and KU812 cells.
Collapse
Affiliation(s)
- Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Ying-Jung Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
18
|
Xu Z, Zhuang Y, Chen Q. Current scenario of pyrazole hybrids with in vivo therapeutic potential against cancers. Eur J Med Chem 2023; 257:115495. [PMID: 37209450 DOI: 10.1016/j.ejmech.2023.115495] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Chemotherapeutics occupy a pivotal role in the medication of different types of cancers, but the prevalence and mortality rates of cancer remain high. The drug resistance and low specificity of current available chemotherapeutics are the main barriers for the effective cancer chemotherapy, evoking an immediate need for the development of novel anticancer agents. Pyrazole is a highly versatile five-membered heterocycle with two adjacent nitrogen atoms and possesses remarkable therapeutic effects and robust pharmacological potency. The pyrazole derivatives especially pyrazole hybrids have demonstrated potent in vitro and in vivo efficacies against cancers through multiple mechanisms, inclusive of apoptosis induction, autophagy regulation, and cell cycle disruption. Moreover, several pyrazole hybrids such as crizotanib (pyrazole-pyridine hybrid), erdafitinib (pyrazole-quinoxaline hybrid) and ruxolitinib (pyrazole-pyrrolo [2,3-d]pyrimidine hybrid) have already been approved for the cancer therapy, revealing that pyrazole hybrids are useful scaffolds to develop novel anticancer agents. The purpose of this review is to summarize the current scenario of pyrazole hybrids with potential in vivo anticancer efficacy along with mechanisms of action, toxicity, and pharmacokinetics, covering papers published in recent 5 years (2018-present), to facilitate further rational exploitation of more effective candidates.
Collapse
Affiliation(s)
- Zhi Xu
- Industry Innovation & Research and Development Institute of Zhumadian, Huanghuai University, Zhumadian, 463000, China.
| | - Yafei Zhuang
- Industry Innovation & Research and Development Institute of Zhumadian, Huanghuai University, Zhumadian, 463000, China
| | - Qingtai Chen
- College of Chemistry Pharmaceutical Engineering, Huanghuai University, Zhumadian, 463000, China
| |
Collapse
|
19
|
Lee YC, Chiou JT, Chang LS. AMPK inhibition induces MCL1 mRNA destabilization via the p38 MAPK/miR-22/HuR axis in chronic myeloid leukemia cells. Biochem Pharmacol 2023; 209:115442. [PMID: 36720359 DOI: 10.1016/j.bcp.2023.115442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
The oncogenic and tumor-suppressive roles of AMPK in chronic myeloid leukemia (CML) are controvertible. This study aimed to investigate the cytotoxic effects of the AMPK inhibitor Compound C in the CML cell lines K562, KU812, and MEG-01. Compared to K562 cells, KU812 and MEG-01 cells were more sensitive to Compound C-mediated cytotoxicity. Moreover, Compound C induced SIRT3 upregulation in K562 cells but not in KU812 or MEG-01 cells. SIRT3 silencing increased the sensitivity of K562 cells to Compound C. Additionally; Compound C-induced autophagy attenuated its induced apoptosis in KU812 and MEG-01 cells. Compound C-induced ROS-mediated AMPKα inactivation resulted in the downregulation of apoptotic regulator MCL1 in KU812 and MEG-01 cells. Mechanistically, AMPK inhibition activated p38 MAPK-mediated miR-22 expression, which in turn inhibited HuR expression, thereby reducing MCL1 mRNA stability. Overexpression of constitutively active AMPKα1 and abolishment of the activation of p38 MAPK inhibited Compound C-induced cell death and MCL1 downregulation. Furthermore, Compound C synergistically enhanced the cytotoxicity of BCR-ABL inhibitors and the BCL2 inhibitor ABT-199. Collectively, this study indicates that Compound C induces MCL1 downregulation through the AMPK/p38 MAPK/miR-22/HuR pathway, thereby inducing apoptosis of KU812 and MEG-01 cells. Furthermore, our findings suggest that AMPK inhibition is a promising strategy for improving CML therapy.
Collapse
Affiliation(s)
- Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
20
|
Shima H, Shimada H. Recent progress in the management of pediatric chronic myeloid leukemia. Int J Hematol 2023; 117:182-187. [PMID: 36574169 DOI: 10.1007/s12185-022-03526-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Chronic myeloid leukemia (CML) is a rare myeloproliferative disease in children. The primary cause of CML is the chimeric BCR::ABL1 gene in hematopoietic stem cells, which leads to leukocytosis, platelet proliferation, and splenomegaly. Lately, tyrosine kinase inhibitors (TKIs) have replaced hematopoietic cell transplantation, which was previously considered the only curative therapy, as the first-line treatment for chronic-phase CML. However, the clinical efficacy of TKIs, including those effective in adult CML, has not been well-investigated in pediatric CML. This review describes the recommended TKI-based management strategies for pediatric CML according to the literature and guidelines. Furthermore, we discuss the prospects for TKI discontinuation to avoid important adverse events, such as growth impairment, in children.
Collapse
Affiliation(s)
- Haruko Shima
- Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 1608582, Japan.
| | - Hiroyuki Shimada
- Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 1608582, Japan
| |
Collapse
|
21
|
Sorokin M, Rabushko E, Rozenberg JM, Mohammad T, Seryakov A, Sekacheva M, Buzdin A. Clinically relevant fusion oncogenes: detection and practical implications. Ther Adv Med Oncol 2022; 14:17588359221144108. [PMID: 36601633 PMCID: PMC9806411 DOI: 10.1177/17588359221144108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/22/2022] [Indexed: 12/28/2022] Open
Abstract
Mechanistically, chimeric genes result from DNA rearrangements and include parts of preexisting normal genes combined at the genomic junction site. Some rearranged genes encode pathological proteins with altered molecular functions. Those which can aberrantly promote carcinogenesis are called fusion oncogenes. Their formation is not a rare event in human cancers, and many of them were documented in numerous study reports and in specific databases. They may have various molecular peculiarities like increased stability of an oncogenic part, self-activation of tyrosine kinase receptor moiety, and altered transcriptional regulation activities. Currently, tens of low molecular mass inhibitors are approved in cancers as the drugs targeting receptor tyrosine kinase (RTK) oncogenic fusion proteins, that is, including ALK, ABL, EGFR, FGFR1-3, NTRK1-3, MET, RET, ROS1 moieties. Therein, the presence of the respective RTK fusion in the cancer genome is the diagnostic biomarker for drug prescription. However, identification of such fusion oncogenes is challenging as the breakpoint may arise in multiple sites within the gene, and the exact fusion partner is generally unknown. There is no gold standard method for RTK fusion detection, and many alternative experimental techniques are employed nowadays to solve this issue. Among them, RNA-seq-based methods offer an advantage of unbiased high-throughput analysis of only transcribed RTK fusion genes, and of simultaneous finding both fusion partners in a single RNA-seq read. Here we focus on current knowledge of biology and clinical aspects of RTK fusion genes, related databases, and laboratory detection methods.
Collapse
Affiliation(s)
| | - Elizaveta Rabushko
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia,I.M. Sechenov First Moscow State Medical
University, Moscow, Russia
| | | | - Tharaa Mohammad
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia
| | | | - Marina Sekacheva
- I.M. Sechenov First Moscow State Medical
University, Moscow, Russia
| | - Anton Buzdin
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia,I.M. Sechenov First Moscow State Medical
University, Moscow, Russia,Shemyakin-Ovchinnikov Institute of Bioorganic
Chemistry, Moscow, Russia,PathoBiology Group, European Organization for
Research and Treatment of Cancer (EORTC), Brussels, Belgium
| |
Collapse
|
22
|
Shanmuganathan N, Hughes TP. Asciminib for chronic myeloid leukaemia: Next questions. Br J Haematol 2022; 199:322-331. [PMID: 35729850 DOI: 10.1111/bjh.18323] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Recent approval of asciminib, a novel "specifically targeting the ABL myristoyl pocket" (STAMP) BCR-ABL1 inhibitor, for the treatment of chronic myeloid leukaemia (CML) patients who have either failed ≥2 lines of therapy or have the T315I mutation, has provided clinicians with a wider selection of potentially effective treatment options. Asciminib has the attractive twin attributes of high potency directed against BCR-ABL1 and good tolerability based on its limited off-target effects. However, it is unclear exactly where asciminib will be positioned amongst the other available tyrosine kinase inhibitors (TKIs), especially ponatinib which is also available for the same indications. There are many questions yet to be answered with regard to the optimal use of asciminib which include its role in the first- and second-line settings, combination therapy with other TKIs, and effectiveness in advanced phase CML. In this review, we discuss the available data on asciminib while exploring a number of clinical trials in progress. Finally, we provide our opinion based on the current data about where asciminib is most likely to be the optimal choice, which will hopefully assist clinicians with therapy selection.
Collapse
Affiliation(s)
- Naranie Shanmuganathan
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, South Australia, Australia.,Department of Genetics and Molecular Pathology and Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia.,Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Timothy P Hughes
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, South Australia, Australia.,Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|