1
|
Ho NHJG, Talvard-Balland N, Köhler N, Zeiser R. Immune Escape of Acute Myeloid Leukemia after Transplantation. Blood Cancer Discov 2025; 6:168-181. [PMID: 40168448 PMCID: PMC12050969 DOI: 10.1158/2643-3230.bcd-24-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/13/2024] [Accepted: 01/22/2025] [Indexed: 04/03/2025] Open
Abstract
SIGNIFICANCE We discuss the mechanisms of AML immune evasion including loss or downregulation of MHC class I and II, reduced TRAIL receptor expression, inhibitory metabolite production, inhibitory ligand expression, impaired proinflammatory cytokine production, and AML niche alterations.
Collapse
Affiliation(s)
- Nguyen Huong Jenny Giang Ho
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Center, Freiburg, Germany
| | - Nana Talvard-Balland
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Center, Freiburg, Germany
| | - Natalie Köhler
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Center, Freiburg, Germany
- CIBSS – Centre for Integrative Biological Signaling Studies, Freiburg, Germany
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Center, Freiburg, Germany
| |
Collapse
|
2
|
Xie DH, Li SQ, Sun K, Wang J, Shi ZY, Wang YZ, Chang Y, Yuan XY, Jiang H, Jiang Q, Chang YJ, Huang XJ, Qin YZ. The effect of TIGIT and PD1 expression on T cell function and prognosis in adult patients with acute myeloid leukemia at diagnosis. Cancer Immunol Immunother 2025; 74:170. [PMID: 40214805 PMCID: PMC11992289 DOI: 10.1007/s00262-025-04024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/17/2025] [Indexed: 04/14/2025]
Abstract
T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) is a recently-identified immune checkpoint molecule, and no study ever explores the prognostic significance of TIGIT on bone marrow T cells of newly-diagnosed acute myeloid leukemia (AML) patients. We collected fresh marrow samples from 71 adult AML patients at diagnosis and 31 healthy donors (HDs) to test for TIGIT and PD1 expression in T cells by flow cytometry. Fifteen newly-diagnosed AML patients and six HDs were performed T cell activation in vitro and tested intracellular TNF-α and INF-γ production. Three bone marrow samples of AML patients were performed single cell RNA-sequencing (scRNA-seq). AML patients had significantly higher frequency of TIGIT + cells in CD4 + T cells but similar frequency in CD8 + T cells compared with HDs (p = 0.0006 and 0.77). High percentage of TIGIT + PD1 + in CD8 + T cells independently predicted poor relapse-free survival (RFS) (p = 0.029). Differing from HDs, AML patients had lower level of intracellular TNF-α and INF-γ in TIGIT + cells compared with their TIGIT- counterparts in both CD4 + T and CD8 + T cells. TIGIT + PD1 + CD8 + T cells of patients exhibited significantly lower level of intracellular TNF-α compared with those of HDs (p = 0.024). scRNA-seq data showed that TIGIT + PDCD1 + CD8 + T cells had significantly higher exhaustion score than TIGIT + and PD1 + CD8 + T cells and lower cytotoxic score than TIGIT + CD8 + T cells (p = 0.0016, 0.012 and 0.0014). Therefore, CD8 + T cells with TIGIT and PD1 co-expression exhibited high degree of exhaustion and dysfunctional cytotoxicity, and high percentage of bone marrow TIGIT + PD1 + in CD8 + T cells at diagnosis predicted poor outcome in AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Female
- Programmed Cell Death 1 Receptor/metabolism
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Male
- Adult
- Middle Aged
- Prognosis
- Aged
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Young Adult
- Lymphocyte Activation/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Dai-Hong Xie
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Si-Qi Li
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Kai Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Jun Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Zong-Yan Shi
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Ya-Zhe Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Yan Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Xiao-Ying Yuan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Ying-Jun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, People's Republic of China.
| |
Collapse
|
3
|
Chen C, Qiu K, Chen J, Wang S, Zhang Y, Wang C, Li Y. Increased Co-Expression of PD-L1 and CTLA-4 Predicts Poor Overall Survival in Patients with Acute Myeloid Leukemia Following Allogeneic Hematopoietic Stem Cell Transplantation. Immunotargets Ther 2025; 14:25-33. [PMID: 39866547 PMCID: PMC11759576 DOI: 10.2147/itt.s500723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025] Open
Abstract
Purpose Our previous study has demonstrated that high expression of immune checkpoints (ICs) was significantly associated with adverse clinical outcomes in patients with acute myeloid leukemia (AML). This study aims to investigate the significance of the alteration of IC co-expression for evaluating the prognosis of AML patients following allogeneic hematopoietic stem cell transplantation (allo-HSCT). Patients and Methods Quantitative real-time PCR (qRT-PCR) data of bone marrow (BM) samples from 62 de novo AML patients, including 37 patients who received allo-HSCT and 25 patients who received chemotherapy only, were used for prognostic analysis. Results High expression of PD-1, PD-L1, PD-L2, CTLA-4, and LAG-3 was associated with poor overall survival (OS) in AML patients receiving allo-HSCT, while the expression levels of PD-1, PD-L2, CTLA-4, and LAG-3, other than PD-L1, were not significantly correlated with OS in AML patients receiving chemotherapy. Importantly, PD-L1/CTLA-4 was the best combination model for predicting poor OS in AML patients following allo-HSCT, especially combined with minimal residual disease (MRD). Conclusion High expression of ICs in BM of AML patients following allo-HSCT was related to poor outcomes, and increasing co-expression of PD-L1 and CTLA-4 might be one of the best immune biomarkers to predict outcomes in patients with AML.
Collapse
Affiliation(s)
- Cunte Chen
- Department of Hematology, Guangzhou First People’s Hospital, Institute of Blood Transfusion and Hematology, Guangzhou Medical University, Guangzhou, 510180, People’s Republic of China
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, People’s Republic of China
| | - Kangjie Qiu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, People’s Republic of China
| | - Jie Chen
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, People’s Republic of China
| | - Shunqing Wang
- Department of Hematology, Guangzhou First People’s Hospital, Institute of Blood Transfusion and Hematology, Guangzhou Medical University, Guangzhou, 510180, People’s Republic of China
| | - Yuping Zhang
- Department of Hematology, Guangzhou First People’s Hospital, Institute of Blood Transfusion and Hematology, Guangzhou Medical University, Guangzhou, 510180, People’s Republic of China
| | - Caixia Wang
- Department of Hematology, Guangzhou First People’s Hospital, Institute of Blood Transfusion and Hematology, Guangzhou Medical University, Guangzhou, 510180, People’s Republic of China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
4
|
Ramzi M, Dehghani M, Hajimaghsoodi M, Golmoghaddam H, Arandi N. The impact of PD-1/PD-L1, CTLA-4, TIM-3 and LAG-3 immune checkpoint receptor expression in the development of acute graft versus host disease (aGVHD) and disease recurrence after allogeneic hematopoietic stem cell transplantation. Hum Immunol 2025; 86:111225. [PMID: 39740301 DOI: 10.1016/j.humimm.2024.111225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/26/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025]
Abstract
The immune checkpoint receptors play a crucial role in managing the transplantation outcome including development of acute graft versus host disease (aGVHD) and disease recurrence following allogeneic hematopoietic stem cell transplantation (allo-HSCT) is well established. This study aimed to investigate the expression of immune checkpoint receptors, including PD-1/PD-L1, CTLA-4, TIM-3, and LAG-3 in donors, as well as changes in their expression during the first 90 days (day 30 and day 90) post-HLA-matched allo-HSCT, concerning the development of aGVHD and disease relapse. Forty-one donor/recipient pairs were included in this study. The relative expression of immune checkpoint receptors was measured using the SYBR Green Real-Time PCR method. There was no significant relationship between the expression of PD-1/PD-L1, CTLA-4, TIM-3, and LAG-3 immune checkpoint receptors in donors and the occurrence of aGVHD and disease relapse. Additionally, alterations in the expression of these receptors during the initial 90 days post-transplantation did not correlate with aGVHD development. However, patients exhibiting elevated PD-L1 levels at day 90 had an increased risk of disease recurrence post-allo-HSCT (*P = 0.027). This study is the first to demonstrate that high PD-L1 expression in the peripheral blood at day 90 after allo-HSCT is associated with an increased rate of post-transplantation relapse.
Collapse
Affiliation(s)
- Mani Ramzi
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Stem Cell Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dehghani
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Stem Cell Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hossein Golmoghaddam
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nargess Arandi
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Bawek S, Gurusinghe S, Burwinkel M, Przespolewski A. Updates in novel immunotherapeutic strategies for relapsed/refractory AML. Front Oncol 2024; 14:1374963. [PMID: 39697225 PMCID: PMC11652486 DOI: 10.3389/fonc.2024.1374963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Acute myeloid leukemia (AML) is a severe hematological malignancy with poor outcomes, particularly in older adults. Traditional treatment options like high-dose chemotherapy often lead to refractory or relapsed AML, with even worse outcomes. New therapies for relapsed and refractory AML are needed, and this review explores the most recent advancements in immunotherapy in AML. Checkpoint Inhibitors utilizing innate or adaptive immune targeting have shown potential to improve AML outcomes when combined with hypomethylating agents and chemotherapy. The use of adoptive cell therapy in AML demonstrates promising early data, however, there is a need for better target selection. Although early in development, both vaccine therapy as well as stimulator of interferon genes (STING) agonists have potential to enhance the innate immune response to overcome AML's immune evasion. Immunotherapy has become a promising approach for AML treatment, especially in refractory and relapsed AML, especially in patients who are not eligible for allogeneic stem cell transplants. Future research should focus on a deeper understanding of the immune microenvironment to identify the most critical targets for optimization, as well as personalized therapeutic combination strategies. Here we present a comprehensive overview of the recent developments in immunotherapy for relapsed and refractory AML.
Collapse
Affiliation(s)
- Sawyer Bawek
- Department of Internal Medicine, University at Buffalo, Buffalo, NY, United States
- Leukemia Service, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Sayuri Gurusinghe
- Department of Internal Medicine, University at Buffalo, Buffalo, NY, United States
| | - Matthew Burwinkel
- Department of Internal Medicine, University at Buffalo, Buffalo, NY, United States
| | - Amanda Przespolewski
- Leukemia Service, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Cell Therapy, Bristol Myers Squibb, Princeton, NJ, United States
| |
Collapse
|
6
|
Liu Y, Liu W, Wu T. TIGIT: Will it be the next star therapeutic target like PD-1 in hematological malignancies? Crit Rev Oncol Hematol 2024; 204:104495. [PMID: 39236904 DOI: 10.1016/j.critrevonc.2024.104495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024] Open
Abstract
Research on the mechanism and application of checkpoint inhibitory receptors in hematologic diseases has progressed rapidly. However, in the treatment of relapserefractory (R/R) hematologic malignancies and anti-programmed cell death protein 1 (PD-1), patients who are resistant to anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) are in urgent need of alternative therapeutic targets. T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) has a broad prospect as an inhibitory receptor like PD-1, but its more specific mechanism of action and application in hematologic diseases still need to be further studied. In this review, we discuss the mechanism of TIGIT pathway, combined effects with other immune checkpoints, immune-related therapy, the impact of TIGIT on hematopoietic stem cell transplantation (HSCT) and the tumor microenvironment (TME) provides a potential therapeutic target for hematologic malignancies.
Collapse
Affiliation(s)
- Yang Liu
- The 940th Hostipal of Joint Logistics Support force of Chinese People's Liberation Army, China.
| | - Wenhui Liu
- The 940th Hostipal of Joint Logistics Support force of Chinese People's Liberation Army, China.
| | - Tao Wu
- The 940th Hostipal of Joint Logistics Support force of Chinese People's Liberation Army, China.
| |
Collapse
|
7
|
Short SM, Perez MD, Morse AE, Jennings RD, Howard DS, Foureau D, Chojecki A, David C, Blaha L, Shaw Y, Lee CJ, Park N, Marsac C, D'Agostino R, Khuri N, Grayson JM. High-dimensional Immune Profiles and Machine Learning May Predict Acute Myeloid Leukemia Relapse Early following Transplant. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1441-1451. [PMID: 39373568 DOI: 10.4049/jimmunol.2300827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
Identification of early immune signatures associated with acute myeloid leukemia (AML) relapse following hematopoietic stem cell transplant (HSCT) is critical for patient outcomes. We analyzed PBMCs from 58 patients with AML undergoing HSCT, focusing on T cell subsets and functional profiles. High-dimensional flow cytometry coupled with Uniform Manifold Approximation and Projection dimensionality reduction and PhenoGraph clustering revealed distinct changes in CD4+ and CD8+ T cell populations in 16 patients who relapsed within 1 y of HSCT. We observed increased IL-2, IL-10, and IL-17-producing CD4+ T cells, alongside decreased CD8+ T cell function early in relapsing patients. Notably, relapsing patients exhibited increased TCF-1intermediate cells, which lacked granzyme B or IFN-γ production in the CD4+ T cell compartment. We then developed a supervised machine learning algorithm that predicted AML relapse with 90% accuracy within 30 d after HSCT using high-throughput assays. The algorithm leverages condensed immune phenotypic data, alongside the ADASYN algorithm, for data balancing and 100 rounds of XGBoost supervised learning. This approach holds potential for detecting relapse-associated immune signatures months before clinical manifestation. Our findings demonstrate a distinct immunological signature potentially capable of predicting AML relapse as early as 30 d after HSCT.
Collapse
Affiliation(s)
- Samantha M Short
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Mildred D Perez
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Alexis E Morse
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Rebecca Damron Jennings
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest University School of Medicine, One Medical Center Boulevard, Winston-Salem, NC
| | - Dianna S Howard
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest University School of Medicine, One Medical Center Boulevard, Winston-Salem, NC
| | - David Foureau
- Immune Monitoring Core Laboratory, Levine Cancer Institute Atrium Health, Charlotte, NC
| | - Aleksander Chojecki
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute Atrium Health, Charlotte, NC
| | - Camille David
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Lauren Blaha
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Yolanda Shaw
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - C Jiah Lee
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Nuri Park
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Caitlyn Marsac
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Ralph D'Agostino
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, One Medical Center Boulevard, Winston-Salem, NC
| | - Natalia Khuri
- Department of Computer Science, Wake Forest University, Winston-Salem, NC
| | - Jason M Grayson
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
8
|
Xue L, Du R, Bi N, Xiao Q, Sun Y, Niu R, Tan Y, Chen L, Liu J, Wang T, Xiong L. Transplantation of human placental chorionic plate-derived mesenchymal stem cells for repair of neurological damage in neonatal hypoxic-ischemic encephalopathy. Neural Regen Res 2024; 19:2027-2035. [PMID: 38227532 DOI: 10.4103/1673-5374.390952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 09/18/2023] [Indexed: 01/17/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202409000-00035/figure1/v/2024-01-16T170235Z/r/image-tiff Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy, neurosensory impairments, and cognitive deficits, and there is no effective treatment for complications related to hypoxic-ischemic encephalopathy. The therapeutic potential of human placental chorionic plate-derived mesenchymal stem cells for various diseases has been explored. However, the potential use of human placental chorionic plate-derived mesenchymal stem cells for the treatment of neonatal hypoxic-ischemic encephalopathy has not yet been investigated. In this study, we injected human placental chorionic plate-derived mesenchymal stem cells into the lateral ventricle of a neonatal hypoxic-ischemic encephalopathy rat model and observed significant improvements in both cognitive and motor function. Protein chip analysis showed that interleukin-3 expression was significantly elevated in neonatal hypoxic-ischemic encephalopathy model rats. Following transplantation of human placental chorionic plate-derived mesenchymal stem cells, interleukin-3 expression was downregulated. To further investigate the role of interleukin-3 in neonatal hypoxic-ischemic encephalopathy, we established an in vitro SH-SY5Y cell model of hypoxic-ischemic injury through oxygen-glucose deprivation and silenced interleukin-3 expression using small interfering RNA. We found that the activity and proliferation of SH-SY5Y cells subjected to oxygen-glucose deprivation were further suppressed by interleukin-3 knockdown. Furthermore, interleukin-3 knockout exacerbated neuronal damage and cognitive and motor function impairment in rat models of hypoxic-ischemic encephalopathy. The findings suggest that transplantation of hpcMSCs ameliorated behavioral impairments in a rat model of hypoxic-ischemic encephalopathy, and this effect was mediated by interleukin-3-dependent neurological function.
Collapse
Affiliation(s)
- Lulu Xue
- Transformation Research Laboratory, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan Province, China
| | - Ruolan Du
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ning Bi
- Department of Animal Zoology, Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Qiuxia Xiao
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yifei Sun
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ruize Niu
- Department of Animal Zoology, Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yaxin Tan
- Department of Pediatrics, the People's Liberation Army Rocket Force Characteristic Medical Center, Beijing, China
| | - Li Chen
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jia Liu
- Department of Animal Zoology, Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Tinghua Wang
- Transformation Research Laboratory, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan Province, China
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Department of Animal Zoology, Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Liulin Xiong
- Transformation Research Laboratory, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| |
Collapse
|
9
|
Bordenave J, Gajda D, Michonneau D, Vallet N, Chevalier M, Clappier E, Lemaire P, Mathis S, Robin M, Xhaard A, Sicre de Fontbrune F, Corneau A, Caillat-Zucman S, Peffault de Latour R, Curis E, Socié G. Deciphering bone marrow engraftment after allogeneic stem cell transplantation in humans using single-cell analyses. J Clin Invest 2024; 134:e180331. [PMID: 39207851 PMCID: PMC11473149 DOI: 10.1172/jci180331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUNDDonor cell engraftment is a prerequisite of successful allogeneic hematopoietic stem cell transplantation. Based on peripheral blood analyses, it is characterized by early myeloid recovery and T and B cell lymphopenia. However, cellular networks associated with bone marrow engraftment of allogeneic human cells have been poorly described.METHODSMass cytometry and CITE-Seq analyses were performed on bone marrow cells 3 months after transplantation in patients with acute myelogenous leukemia.RESULTSMass cytometric analyses in 26 patients and 20 healthy controls disclosed profound alterations in myeloid and B cell progenitors, with a shift toward terminal myeloid differentiation and decreased B cell progenitors. Unsupervised analysis separated recipients into 2 groups, one of them being driven by previous graft-versus-host disease (R2 patients). We then used single-cell CITE-Seq to decipher engraftment, which resolved 36 clusters, encompassing all bone marrow cellular components. Hematopoiesis in transplant recipients was sustained by committed myeloid and erythroid progenitors in a setting of monocyte-, NK cell-, and T cell-mediated inflammation. Gene expression revealed major pathways in transplant recipients, namely, TNF-α signaling via NF-κB and the IFN-γ response. The hallmark of allograft rejection was consistently found in clusters from transplant recipients, especially in R2 recipients.CONCLUSIONBone marrow cell engraftment of allogeneic donor cells is characterized by a state of emergency hematopoiesis in the setting of an allogeneic response driving inflammation.FUNDINGThis study was supported by the French National Cancer Institute (Institut National du Cancer; PLBIO19-239) and by an unrestricted research grant by Alexion Pharmaceuticals.
Collapse
Affiliation(s)
| | - Dorota Gajda
- UR 7537 BioSTM, Faculté de Pharmacie, Université Paris Cité, Paris, France
| | - David Michonneau
- INSERM UMR 976, Université Paris Cité, Paris, France
- Assistance Publique–Hôpitaux de Paris (APHP), Hématologie Greffe, Hôpital Saint Louis, Paris, France
- UFR de Médecine, Université Paris Cité, Paris, France
| | | | | | - Emmanuelle Clappier
- UFR de Médecine, Université Paris Cité, Paris, France
- APHP, Laboratoire d’Hématologie, Hôpital Saint Louis, Saint-Louis, France
| | - Pierre Lemaire
- APHP, Laboratoire d’Hématologie, Hôpital Saint Louis, Saint-Louis, France
| | - Stéphanie Mathis
- APHP, Laboratoire d’Hématologie, Hôpital Saint Louis, Saint-Louis, France
| | - Marie Robin
- Assistance Publique–Hôpitaux de Paris (APHP), Hématologie Greffe, Hôpital Saint Louis, Paris, France
| | - Aliénor Xhaard
- Assistance Publique–Hôpitaux de Paris (APHP), Hématologie Greffe, Hôpital Saint Louis, Paris, France
| | - Flore Sicre de Fontbrune
- Assistance Publique–Hôpitaux de Paris (APHP), Hématologie Greffe, Hôpital Saint Louis, Paris, France
| | - Aurélien Corneau
- Plateforme de Cytométrie de la Pitié-Salpétrière (CyPS), UMS037-PASS, Paris, France
- Faculté de Médecine, Sorbonne Université, Paris, France
| | - Sophie Caillat-Zucman
- INSERM UMR 976, Université Paris Cité, Paris, France
- UFR de Médecine, Université Paris Cité, Paris, France
- APHP, Laboratoire d’Immunologie, Hôpital Saint Louis, Saint-Louis, France
| | - Regis Peffault de Latour
- INSERM UMR 976, Université Paris Cité, Paris, France
- Assistance Publique–Hôpitaux de Paris (APHP), Hématologie Greffe, Hôpital Saint Louis, Paris, France
- UFR de Médecine, Université Paris Cité, Paris, France
| | - Emmanuel Curis
- UR 7537 BioSTM, Faculté de Pharmacie, Université Paris Cité, Paris, France
- APHP, Laboratoire d’Hématologie, Hôpital Lariboisière, Paris, France
| | - Gérard Socié
- INSERM UMR 976, Université Paris Cité, Paris, France
- Assistance Publique–Hôpitaux de Paris (APHP), Hématologie Greffe, Hôpital Saint Louis, Paris, France
- UFR de Médecine, Université Paris Cité, Paris, France
| |
Collapse
|
10
|
Tameni A, Toffalori C, Vago L. Tricking the trickster: precision medicine approaches to counteract leukemia immune escape after transplant. Blood 2024; 143:2710-2721. [PMID: 38728431 DOI: 10.1182/blood.2023019962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/08/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT Over the last decades, significant improvements in reducing the toxicities of allogeneic hematopoietic cell transplantation (allo-HCT) have widened its use as consolidation or salvage therapy for high-risk hematological malignancies. Nevertheless, relapse of the original malignant disease remains an open issue with unsatisfactory salvage options and limited rationales to select among them. In the last years, several studies have highlighted that relapse is often associated with specific genomic and nongenomic mechanisms of immune escape. In this review we summarize the current knowledge about these modalities of immune evasion, focusing on the mechanisms that leverage antigen presentation and pathologic rewiring of the bone marrow microenvironment. We present examples of how this biologic information can be translated into specific approaches to treat relapse, discuss the status of the clinical trials for patients who relapsed after a transplant, and show how dissecting the complex immunobiology of allo-HCT represents a crucial step toward developing new personalized approaches to improve clinical outcomes.
Collapse
Affiliation(s)
- Annalisa Tameni
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Cristina Toffalori
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
11
|
Rathgeber AC, Ludwig LS, Penter L. Single-cell genomics-based immune and disease monitoring in blood malignancies. Clin Hematol Int 2024; 6:62-84. [PMID: 38884110 PMCID: PMC11180218 DOI: 10.46989/001c.117961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/25/2023] [Indexed: 06/18/2024] Open
Abstract
Achieving long-term disease control using therapeutic immunomodulation is a long-standing concept with a strong tradition in blood malignancies. Besides allogeneic hematopoietic stem cell transplantation that continues to provide potentially curative treatment for otherwise challenging diagnoses, recent years have seen impressive progress in immunotherapies for leukemias and lymphomas with immune checkpoint blockade, bispecific monoclonal antibodies, and CAR T cell therapies. Despite their success, non-response, relapse, and immune toxicities remain frequent, thus prioritizing the elucidation of the underlying mechanisms and identifying predictive biomarkers. The increasing availability of single-cell genomic tools now provides a system's immunology view to resolve the molecular and cellular mechanisms of immunotherapies at unprecedented resolution. Here, we review recent studies that leverage these technological advancements for tracking immune responses, the emergence of immune resistance, and toxicities. As single-cell immune monitoring tools evolve and become more accessible, we expect their wide adoption for routine clinical applications to catalyze more precise therapeutic steering of personal immune responses.
Collapse
Affiliation(s)
- Anja C. Rathgeber
- Berlin Institute for Medical Systems BiologyMax Delbrück Center for Molecular Medicine
- Department of Hematology, Oncology, and TumorimmunologyCharité - Universitätsmedizin Berlin
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin
| | - Leif S. Ludwig
- Berlin Institute for Medical Systems BiologyMax Delbrück Center for Molecular Medicine
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin
| | - Livius Penter
- Department of Hematology, Oncology, and TumorimmunologyCharité - Universitätsmedizin Berlin
- BIH Biomedical Innovation AcademyBerlin Institute of Health at Charité - Universitätsmedizin Berlin
| |
Collapse
|
12
|
Pagliuca S, Schmid C, Santoro N, Simonetta F, Battipaglia G, Guillaume T, Greco R, Onida F, Sánchez-Ortega I, Yakoub-Agha I, Kuball J, Hazenberg MD, Ruggeri A. Donor lymphocyte infusion after allogeneic haematopoietic cell transplantation for haematological malignancies: basic considerations and best practice recommendations from the EBMT. Lancet Haematol 2024; 11:e448-e458. [PMID: 38796194 DOI: 10.1016/s2352-3026(24)00098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 05/28/2024]
Abstract
Since the early description of three patients with relapsed leukaemia after allogeneic haematopoietic cell transplantation (HCT) who obtained complete remission after donor lymphocyte infusions (DLIs), the added value of this procedure to induce or maintain graft-versus-leukaemia immunity has been undisputed. For more than 30 years, DLIs have become common practice as prophylactic, pre-emptive, or therapeutic immunotherapy. However, as with many aspects of allogeneic HCT, centres have developed their own routines and practices, and many questions related to the optimal applications and toxicity, or to the immunobiology of DLI induced tumour-immunity, remain. As a part of the Practice Harmonization and Guidelines Committee and the Cellular Therapy and Immunobiology Working Party of the European Society for Blood and Marrow Transplantation effort, a panel of experts with clinical and translational knowledge in transplantation immunology and cellular therapy met during a 2-day workshop in September, 2023, in Lille, France, and developed a set of consensus-based recommendations for the application of unmanipulated DLI after allogeneic HCT for haematological malignancies. Given the absence of prospective data in the majority of publications, these recommendations are mostly based on retrospective studies and expert consensus.
Collapse
Affiliation(s)
- Simona Pagliuca
- Department of Hematology, Nancy University Hospital, Nancy, France; UMR 7365, IMoPA, Lorraine University, CNRS, Vandœuvre-lès-Nancy, France
| | - Christoph Schmid
- Department of Haematology and Oncology, Augsburg University Hospital and Medical Faculty Comprehensive Cancer Center, Bavarian Cancer Research Center, Augsburg, Germany
| | - Nicole Santoro
- Haematology Unit, Department of Oncology and Hematology, Santo Spirito Hospital, Pescara, Italy
| | - Federico Simonetta
- Division of Haematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - Giorgia Battipaglia
- Haematology Department and Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Thierry Guillaume
- Division of Haematology, Nantes University Hospital, Nantes, France; INSERM U1232 CNRS, CRCINA, Nantes, France
| | - Raffaella Greco
- Haematology and BMT Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Onida
- Haematology and BMT Unit, ASST Fatebenefratelli Sacco, University of Milan, Milan, Italy
| | | | | | - Jurgen Kuball
- Department of Haematology and Center for Translational Immunology, UMC Utrecht, Utrecht, Netherlands
| | - Mette D Hazenberg
- Department of Haematology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Annalisa Ruggeri
- Haematology and BMT Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
13
|
Notarantonio AB, Bertrand A, Piucco R, Fievet G, Sartelet H, Boulangé L, de Isla N, De Carvalho Bittencourt M, Hergalant S, Rubio MT, D'Aveni M. Highly immunosuppressive myeloid cells correlate with early relapse after allogeneic stem cell transplantation. Exp Hematol Oncol 2024; 13:50. [PMID: 38734654 PMCID: PMC11088072 DOI: 10.1186/s40164-024-00516-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only curative treatment for myeloid malignancies such as some acute myeloid leukemias (AML) and high-risk myelodysplastic syndromes (MDS). It aims to eradicate the malignant clone using immunocompetent donor cells (graft-versus-leukemia effect, GVL). Unfortunately, relapse is the primary cause of transplant failure mainly related on HLA loss or downregulation and upregulation of inhibitory ligands on blasts which result in donor immune effector dysfunctions. METHODS Between 2018 and 2021, we conducted a monocentric prospective study including 61 consecutive patients transplanted for AML or high-risk MDS. We longitudinally investigated immune cells at days + 30, + 90 and + 180 post-transplant from bone marrow and peripheral blood. We assessed the dynamics between myeloid derived suppressor cells (MDSCs) and T-cells. RESULTS Among the 61 patients, 45 did not relapse over the first 12 months while 16 relapsed during the first year post-transplant. Through months 1 to 6, comparison with healthy donors revealed an heterogenous increase in MDSC frequency. In all recipients, the predominant MDSC subset was granulocytic with no specific phenotypic relapse signature. However, in relapsed patients, in vitro and in vivo functional analyses revealed that MDSCs from peripheral blood were highly immunosuppressive from day + 30 onwards, with an activated NLRP3 inflammasome signature. Only circulating immunosuppressive MDSCs were statistically correlated to circulating double-positive Tim3+LAG3+ exhausted T cells. CONCLUSION Our simple in vitro functional assay defining MDSC immunosuppressive properties might serve as an early biomarker of relapse and raise the question of new preventive treatments targeting MDSCs in the future. Trial registration NCT03357172.
Collapse
Affiliation(s)
- Anne-Béatrice Notarantonio
- UMR 7365 CNRS, IMoPA, Université de Lorraine, 54000, Nancy, France
- Hematology Department, CHRU Nancy, Université de Lorraine, 54000, Nancy, France
| | - Allan Bertrand
- UMR 7365 CNRS, IMoPA, Université de Lorraine, 54000, Nancy, France
| | - Romain Piucco
- Inserm UMR_S 1256 NGERE, Université de Lorraine, 54500, Vandœuvre-les-Nancy, France
| | - Ghislain Fievet
- Inserm UMR_S 1256 NGERE, Université de Lorraine, 54500, Vandœuvre-les-Nancy, France
| | - Hervé Sartelet
- Anatomopathology Department, CHRU Nancy, Université de Lorraine, 54000, Nancy, France
| | - Laura Boulangé
- UMR 7365 CNRS, IMoPA, Université de Lorraine, 54000, Nancy, France
| | - Natalia de Isla
- UMR 7365 CNRS, IMoPA, Université de Lorraine, 54000, Nancy, France
| | - Marcelo De Carvalho Bittencourt
- UMR 7365 CNRS, IMoPA, Université de Lorraine, 54000, Nancy, France
- Immunology Laboratory, CHRU Nancy, Université de Lorraine, 54000, Nancy, France
| | - Sébastien Hergalant
- Inserm UMR_S 1256 NGERE, Université de Lorraine, 54500, Vandœuvre-les-Nancy, France
| | - Marie-Thérèse Rubio
- UMR 7365 CNRS, IMoPA, Université de Lorraine, 54000, Nancy, France
- Hematology Department, CHRU Nancy, Université de Lorraine, 54000, Nancy, France
| | - Maud D'Aveni
- UMR 7365 CNRS, IMoPA, Université de Lorraine, 54000, Nancy, France.
- Hematology Department, CHRU Nancy, Université de Lorraine, 54000, Nancy, France.
| |
Collapse
|
14
|
Zhou G, Zhan Q, Huang L, Dou X, Cui J, Xiang L, Qi Y, Wu S, Liu L, Xiao Q, Chen J, Tang X, Zhang H, Wang X, Luo X, Ren G, Yang Z, Liu L, Yan X, Luo Q, Pei C, Dai Y, Zhu Y, Zhou H, Ren G, Wang L. The dynamics of B-cell reconstitution post allogeneic hematopoietic stem cell transplantation: A real-world study. J Intern Med 2024; 295:634-650. [PMID: 38439117 DOI: 10.1111/joim.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
BACKGROUND The immune reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is crucial for preventing infections and relapse and enhancing graft-versus-tumor effects. B cells play an important role in humoral immunity and immune regulation, but their reconstitution after allo-HSCT has not been well studied. METHODS In this study, we analyzed the dynamics of B cells in 252 patients who underwent allo-HSCT for 2 years and assessed the impact of factors on B-cell reconstitution and their correlations with survival outcomes, as well as the development stages of B cells in the bone marrow and the subsets in the peripheral blood. RESULTS We found that the B-cell reconstitution in the bone marrow was consistent with the peripheral blood (p = 0.232). B-cell reconstitution was delayed by the male gender, age >50, older donor age, the occurrence of chronic and acute graft-versus-host disease, and the infections of fungi and cytomegalovirus. The survival analysis revealed that patients with lower B cells had higher risks of death and relapse. More importantly, we used propensity score matching to obtain the conclusion that post-1-year B-cell reconstitution is better in females. Meanwhile, using mediation analysis, we proposed the age-B cells-survival axis and found that B-cell reconstitution at month 12 posttransplant mediated the effect of age on patient survival (p = 0.013). We also found that younger patients showed more immature B cells in the bone marrow after transplantation (p = 0.037). CONCLUSION Our findings provide valuable insights for optimizing the management of B-cell reconstitution and improving the efficacy and safety of allo-HSCT.
Collapse
Affiliation(s)
- Guangyu Zhou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Qian Zhan
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Lingle Huang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Xi Dou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Jin Cui
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Lin Xiang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Yuhong Qi
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Sicen Wu
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Lin Liu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Qing Xiao
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Jianbin Chen
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Xiaoqiong Tang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Hongbin Zhang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Xin Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Xiaohua Luo
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Zesong Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Lanxiang Liu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Xinyu Yan
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Qin Luo
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Caixia Pei
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Yulian Dai
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Yu Zhu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Hao Zhou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Guilin Ren
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| |
Collapse
|
15
|
Hou Q, Wang P, Kong X, Chen J, Yao C, Luo X, Li Y, Jin Z, Wu X. Higher TIGIT+ γδ T CM cells may predict poor prognosis in younger adult patients with non-acute promyelocytic AML. Front Immunol 2024; 15:1321126. [PMID: 38711501 PMCID: PMC11070478 DOI: 10.3389/fimmu.2024.1321126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/19/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction γδ T cells recognize and exert cytotoxicity against tumor cells. They are also considered potential immune cells for immunotherapy. Our previous study revealed that the altered expression of immune checkpoint T-cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) on γδ T cells may result in immunosuppression and is possibly associated with a poor overall survival in acute myeloid leukemia (AML). However, whether γδ T-cell memory subsets are predominantly involved and whether they have a relationship with clinical outcomes in patients with AML under the age of 65 remain unclear. Methods In this study, we developed a multicolor flow cytometry-based assay to monitor the frequency and distribution of γδ T-cell subsets, including central memory γδ T cells (TCM γδ), effector memory γδ T cells (TEM γδ), and TEM expressing CD45RA (TEMRA γδ), in peripheral blood from 30 young (≤65 years old) patients with newly diagnosed non-acute promyelocytic leukemia (also known as M3) AML (AMLy-DN), 14 young patients with AML in complete remission (AMLy-CR), and 30 healthy individuals (HIs). Results Compared with HIs, patients with AMLy-DN exhibited a significantly higher differentiation of γδ T cells, which was characterized by decreased TCM γδ cells and increased TEMRA γδ cells. A generally higher TIGIT expression was observed in γδ T cells and relative subsets in patients with AMLy-DN, which was partially recovered in patients with AMLy-CR. Furthermore, 17 paired bone marrow from patients with AMLy-DN contained higher percentages of γδ and TIGIT+ γδ T cells and a lower percentage of TCM γδ T cells. Multivariate logistic regression analyses revealed the association of high percentage of TIGIT+ TCM γδ T cells with an increased risk of poor induction chemotherapy response. Conclusions In this study, we investigated the distribution of γδ T cells and their memory subsets in patients with non-M3 AML and suggested TIGIT+ TCM γδ T cells as potential predictive markers of induction chemotherapy response.
Collapse
MESH Headings
- Humans
- Receptors, Immunologic/metabolism
- Male
- Female
- Adult
- Middle Aged
- Prognosis
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Young Adult
- Aged
- Memory T Cells/immunology
- Memory T Cells/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/diagnosis
- Immunologic Memory
- Leukemia, Promyelocytic, Acute/immunology
- Leukemia, Promyelocytic, Acute/diagnosis
- Leukemia, Promyelocytic, Acute/mortality
- Immunophenotyping
Collapse
Affiliation(s)
- Qi Hou
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
| | - Penglin Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Xueting Kong
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Junjie Chen
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
| | - Chao Yao
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaodan Luo
- Department of Hematology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Zhenyi Jin
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiuli Wu
- Institute of Hematology, Medical Laboratory Center, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| |
Collapse
|
16
|
Ullah MA, Moin AT, Nipa JF, Islam NN, Johora FT, Chowdhury RH, Islam S. Exploring risk factors and molecular targets in leukemia patients with COVID-19: a bioinformatics analysis of differential gene expression. J Leukoc Biol 2024; 115:723-737. [PMID: 38323674 DOI: 10.1093/jleuko/qiae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/13/2023] [Accepted: 12/14/2023] [Indexed: 02/08/2024] Open
Abstract
The molecular mechanism of COVID-19's pathogenic effects in leukemia patients is still poorly known. Our study investigated the possible disease mechanism of COVID-19 and its associated risk factors in patients with leukemia utilizing differential gene expression analysis. We also employed network-based approaches to identify molecular targets that could potentially diagnose and treat COVID-19-infected leukemia patients. Our study demonstrated a shared set of 60 genes that are expressed differentially among patients with leukemia and COVID-19. Most of these genes are expressed in blood and bone marrow tissues and are predominantly implicated in the pathogenesis of different hematologic malignancies, increasingly imperiling COVID-19 morbidity and mortality among the affected patients. Additionally, we also found that COVID-19 may influence the expression of several cancer-associated genes in leukemia patients, such as CCR7, LEF1, and 13 candidate cancer-driver genes. Furthermore, our findings reveal that COVID-19 may predispose leukemia patients to altered blood homeostasis, increase the risk of COVID-19-related liver injury, and deteriorate leukemia-associated injury and patient prognosis. Our findings imply that molecular signatures, like transcription factors, proteins such as TOP21, and 25 different microRNAs, may be potential targets for diagnosing and treating COVID-19-infected leukemia patients. Nevertheless, additional experimental studies will contribute to further validating the study's findings.
Collapse
Affiliation(s)
- Md Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Hathazari, Chattogram-4331, Bangladesh
| | - Jannatul Ferdous Nipa
- Department of Genetic Engineering and Biotechnology, East West University, Aftabnagar, Dhaka-1212, Bangladesh
| | - Nafisa Nawal Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Fatema Tuz Johora
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Rahee Hasan Chowdhury
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Hathazari, Chattogram-4331, Bangladesh
| | - Saiful Islam
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram Laboratories, Chittagong Cantonment, Chattogram-4220, Bangladesh
| |
Collapse
|
17
|
Alvarez Calderon F, Kang BH, Kyrysyuk O, Zheng S, Wang H, Mathewson ND, Luoma AM, Ning X, Pyrdol J, Cao X, Suvà ML, Yuan GC, Wittrup KD, Wucherpfennig KW. Targeting of the CD161 inhibitory receptor enhances T-cell-mediated immunity against hematological malignancies. Blood 2024; 143:1124-1138. [PMID: 38153903 PMCID: PMC10972713 DOI: 10.1182/blood.2023022882] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023] Open
Abstract
ABSTRACT The CD161 inhibitory receptor is highly upregulated by tumor-infiltrating T cells in multiple human solid tumor types, and its ligand, CLEC2D, is expressed by both tumor cells and infiltrating myeloid cells. Here, we assessed the role of the CD161 receptor in hematological malignancies. Systematic analysis of CLEC2D expression using the Cancer Cell Line Encyclopedia revealed that CLEC2D messenger RNA was most abundant in hematological malignancies, including B-cell and T-cell lymphomas as well as lymphocytic and myelogenous leukemias. CLEC2D protein was detected by flow cytometry on a panel of cell lines representing a diverse set of hematological malignancies. We, therefore, used yeast display to generate a panel of high-affinity, fully human CD161 monoclonal antibodies (mAbs) that blocked CLEC2D binding. These mAbs were specific for CD161 and had a similar affinity for human and nonhuman primate CD161, a property relevant for clinical translation. A high-affinity CD161 mAb enhanced key aspects of T-cell function, including cytotoxicity, cytokine production, and proliferation, against B-cell lines originating from patients with acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and Burkitt lymphoma. In humanized mouse models, this CD161 mAb enhanced T-cell-mediated immunity, resulting in a significant survival benefit. Single cell RNA-seq data demonstrated that CD161 mAb treatment enhanced expression of cytotoxicity genes by CD4 T cells as well as a tissue-residency program by CD4 and CD8 T cells that is associated with favorable survival outcomes in multiple human cancer types. These fully human mAbs, thus, represent potential immunotherapy agents for hematological malignancies.
Collapse
Affiliation(s)
- Francesca Alvarez Calderon
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
- Harvard Medical School, Boston, MA
| | - Byong H. Kang
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Oleksandr Kyrysyuk
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Shiwei Zheng
- Department of Genetics and Genomic Sciences, Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hao Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Nathan D. Mathewson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Adrienne M. Luoma
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Xiaohan Ning
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Jason Pyrdol
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Xuan Cao
- Department of Genetics and Genomic Sciences, Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mario L. Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - K. Dane Wittrup
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Kai W. Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
18
|
Talvard-Balland N, Lambert M, Chevalier MF, Minet N, Salou M, Tourret M, Bohineust A, Milo I, Parietti V, Yvorra T, Socié G, Lantz O, Caillat-Zucman S. Human MAIT cells inhibit alloreactive T cell responses and protect against acute graft-versus-host disease. JCI Insight 2024; 9:e166310. [PMID: 38300704 PMCID: PMC11143928 DOI: 10.1172/jci.insight.166310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
Adoptive transfer of immunoregulatory cells can prevent or ameliorate graft-versus-host disease (GVHD), which remains the main cause of nonrelapse mortality after allogeneic hematopoietic stem cell transplantation. Mucosal-associated invariant T (MAIT) cells were recently associated with tissue repair capacities and with lower rates of GVHD in humans. Here, we analyzed the immunosuppressive effect of MAIT cells in an in vitro model of alloreactivity and explored their adoptive transfer in a preclinical xenogeneic GVHD model. We found that MAIT cells, whether freshly purified or short-term expanded, dose-dependently inhibited proliferation and activation of alloreactive T cells. In immunodeficient mice injected with human PBMCs, MAIT cells greatly delayed GVHD onset and decreased severity when transferred early after PBMC injection but could also control ongoing GVHD when transferred at delayed time points. This effect was associated with decreased proliferation and effector function of human T cells infiltrating tissues of diseased mice and was correlated with lower circulating IFN-γ and TNF-α levels and increased IL-10 levels. MAIT cells acted partly in a contact-dependent manner, which likely required direct interaction of their T cell receptor with MHC class I-related molecule (MR1) induced on host-reactive T cells. These results support the setup of clinical trials using MAIT cells as universal therapeutic tools to control severe GVHD or mucosal inflammatory disorders.
Collapse
Affiliation(s)
- Nana Talvard-Balland
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Marion Lambert
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Mathieu F. Chevalier
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Norbert Minet
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Marion Salou
- Institut Curie, Université PSL, INSERM U932, Immunity and Cancer, Paris, France
| | - Marie Tourret
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Armelle Bohineust
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Idan Milo
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Véronique Parietti
- Université Paris Cité, INSERM, CNRS, UMS Saint-Louis (US53/UAR2030), Paris, France
| | - Thomas Yvorra
- Institut Curie, Université PSL, CNRS UMR3666, INSERM U1143, Paris, France
| | - Gérard Socié
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
- Hematology Transplantation, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Olivier Lantz
- Institut Curie, Université PSL, INSERM U932, Immunity and Cancer, Paris, France
- Clinical Immunology Laboratory, Institut Curie, Paris, France
- Centre d’investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| | - Sophie Caillat-Zucman
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
- Immunology Laboratory, Hôpital Saint-Louis, AP-HP, Université Paris Cité, Paris, France
| |
Collapse
|
19
|
Wu Y, Li Y, Gao Y, Zhang P, Jing Q, Zhang Y, Jin W, Wang Y, Du J, Wu G. Immunotherapies of acute myeloid leukemia: Rationale, clinical evidence and perspective. Biomed Pharmacother 2024; 171:116132. [PMID: 38198961 DOI: 10.1016/j.biopha.2024.116132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is a prevalent hematological malignancy that exhibits a wide array of molecular abnormalities. Although traditional treatment modalities such as chemotherapy and allogeneic stem cell transplantation (HSCT) have become standard therapeutic approaches, a considerable number of patients continue to face relapse and encounter a bleak prognosis. The emergence of immune escape, immunosuppression, minimal residual disease (MRD), and other contributing factors collectively contribute to this challenge. Recent research has increasingly highlighted the notable distinctions between AML tumor microenvironments and those of healthy individuals. In order to investigate the potential therapeutic mechanisms, this study examines the intricate transformations occurring between leukemic cells and their surrounding cells within the tumor microenvironment (TME) of AML. This review classifies immunotherapies into four distinct categories: cancer vaccines, immune checkpoint inhibitors (ICIs), antibody-based immunotherapies, and adoptive T-cell therapies. The results of numerous clinical trials strongly indicate that the identification of optimal combinations of novel agents, either in conjunction with each other or with chemotherapy, represents a crucial advancement in this field. In this review, we aim to explore the current and emerging immunotherapeutic methodologies applicable to AML patients, identify promising targets, and emphasize the crucial requirement to augment patient outcomes. The application of these strategies presents substantial therapeutic prospects within the realm of precision medicine for AML, encompassing the potential to ameliorate patient outcomes.
Collapse
Affiliation(s)
- Yunyi Wu
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Yan Gao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yinhao Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weidong Jin
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Gongqiang Wu
- Department of Hematology, Dongyang Hospitai Affiliated to Wenzhou Medical University, Dongyang People's Hospital, Dongyang, Zhejiang, China.
| |
Collapse
|
20
|
Huang J, Pan Z, Wang L, Zhang Z, Huang J, Jiang C, Cai G, Yin T. Early T-cell reconstitution predicts risk of EBV reactivation after allogeneic hematopoietic stem cell transplantation. Clin Exp Med 2024; 24:22. [PMID: 38280072 PMCID: PMC10821970 DOI: 10.1007/s10238-023-01270-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/01/2023] [Indexed: 01/29/2024]
Abstract
The quality of immune reconstitution (IR) is crucial for the outcome of patients who received allogeneic hematopoietic stem cell transplantation (allo-HSCT), and is closely connected with infection, relapse and graft-versus-host disease (GvHD) which are the most important causes for transplantation failure. However, the IR pattern in the early stage after allo-HSCT, particularly haploidentical (HID) HSCT, remains unclear. In this retrospective study, we examined the T cell reconstitution of patients within the initial 30 days (n = 173) and 100 days (n = 122) after allo-HSCT with myeloablative condition (MAC), of which > 70% were HID HSCT, to assess the influence of IR on the transplant outcomes. By comparing 78 patients with good IR (GIR) to 44 patients with poor IR (PIR), we observed that GIR was associated with lower risk for Epstein-Barr virus (EBV) reactivation and cytomegalovirus (CMV) reactivation, but had no significant impacts on the survival outcomes (i.e., overall survival, event-free survival) and cumulative incidences of GvHD. Importantly, we found lymphocyte reconstitution pattern at day 30 after allo-HSCT would be a surrogate for IR evaluated at day 100. In the Cox proportional hazard model, early reconstitution of CD4+, CD4+CD25+, CD4+CD45RO+, CD4+CD25+CD27low, and CD8+ T cells at day 30 was reversely correlated with risk of EBV reactivation. Finally, we constructed a predictive model for EBV reactivation with CD8+ and CD4+CD45RO+ T cell proportions of the training cohort (n = 102), which was validated with a validation cohort (n = 37). In summary, our study found that the quality of IR at day 30 had a predictive value for the risk of EBV reactivation, and might provide guidance for close monitoring for EBV reactivation.
Collapse
Affiliation(s)
- Jingtao Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zengkai Pan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Luxiang Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zilu Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jiayu Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chuanhe Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Gang Cai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Tong Yin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
Zhang P, Liu X, Gu Z, Jiang Z, Zhao S, Song Y, Yu J. Targeting TIGIT for cancer immunotherapy: recent advances and future directions. Biomark Res 2024; 12:7. [PMID: 38229100 PMCID: PMC10790541 DOI: 10.1186/s40364-023-00543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/08/2023] [Indexed: 01/18/2024] Open
Abstract
As a newly identified checkpoint, T cell immunoreceptor with immunoglobulin and tyrosine-based inhibitory motif (ITIM) domain (TIGIT) is highly expressed on CD4+ T cells, CD8+ T cells, natural killer (NK) cells, regulatory T cells (Tregs), and tumor-infiltrating lymphocytes (TILs). TIGIT has been associated with NK cell exhaustion in vivo and in individuals with various cancers. It not only modulates NK cell survival but also mediates T cell exhaustion. As the primary ligand of TIGIT in humans, CD155 may be the main target for immunotherapy due to its interaction with TIGIT. It has been found that the anti-programmed cell death protein 1 (PD-1) treatment response in cancer immunotherapy is correlated with CD155 but not TIGIT. Anti-TIGIT alone and in combination with anti-PD-1 agents have been tested for cancer immunotherapy. Although two clinical studies on advanced lung cancer had positive results, the TIGIT-targeted antibody, tiragolumab, recently failed in two new trials. In this review, we highlight the current developments on TIGIT for cancer immunotherapy and discuss the characteristics and functions of TIGIT.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Thoracic Oncology, Zhengzhou, 450052, Henan, China
| | - Xinyuan Liu
- Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Zhuoyu Gu
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Thoracic Oncology, Zhengzhou, 450052, Henan, China
| | - Zhongxing Jiang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Song Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yongping Song
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Jifeng Yu
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan International Joint Laboratory of Nuclear Protein Gene Regulation, Henan University College of Medicine, Kaifeng, 475004, Henan, China.
| |
Collapse
|
22
|
Herrity E, Pereira MP, Kim DDH. Acute myeloid leukaemia relapse after allogeneic haematopoietic stem cell transplantation: Mechanistic diversity and therapeutic directions. Br J Haematol 2023; 203:722-735. [PMID: 37787151 DOI: 10.1111/bjh.19121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
Emerging biological and clinical data, along with advances in new technologies, have exposed the mechanistic diversity in post-haematopoietic stem cell transplant (HCT) relapse. Post-HCT relapse mechanisms are relevant for guiding sophisticated selection of therapeutic interventions and identification of areas for further research. Clonal evolution and emergence of resistant leukemic strains is a common mechanism shared by relapse post-chemotherapy and post-HCT, other mechanisms such as leukemic immune escape and donor T cell exhaustion are unique entities to post-HCT relapse. Due to diversity in the mechanisms behind post-HCT relapse, the subsequent clinical approach relies on clinician discretion, rather than objective evidence. Lack of standardized selection based on post-HCT relapse mechanism(s) could be a contributing factor to observed poor outcomes. Therapeutic strategies including donor lymphocyte infusion (DLI), second transplant, immunotherapies, hypomethylating agents, and targeted strategies are supported options and efficacy may be enhanced when post-HCT AML relapse mechanism is established and guides treatment selection. This review aims, through compilation of supporting studies, to describe mechanisms of post-HCT relapse and their implications for subsequent treatment selection and inspiration for future research.
Collapse
Affiliation(s)
- Elizabeth Herrity
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Mariana Pinto Pereira
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Dennis Dong Hwan Kim
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Leukemia Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Hematology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Sauerer T, Velázquez GF, Schmid C. Relapse of acute myeloid leukemia after allogeneic stem cell transplantation: immune escape mechanisms and current implications for therapy. Mol Cancer 2023; 22:180. [PMID: 37951964 PMCID: PMC10640763 DOI: 10.1186/s12943-023-01889-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by the expansion of immature myeloid cells in the bone marrow (BM) and peripheral blood (PB) resulting in failure of normal hematopoiesis and life-threating cytopenia. Allogeneic hematopoietic stem cell transplantation (allo-HCT) is an established therapy with curative potential. Nevertheless, post-transplant relapse is common and associated with poor prognosis, representing the major cause of death after allo-HCT. The occurrence of relapse after initially successful allo-HCT indicates that the donor immune system is first able to control the leukemia, which at a later stage develops evasion strategies to escape from immune surveillance. In this review we first provide a comprehensive overview of current knowledge regarding immune escape in AML after allo-HCT, including dysregulated HLA, alterations in immune checkpoints and changes leading to an immunosuppressive tumor microenvironment. In the second part, we draw the line from bench to bedside and elucidate to what extend immune escape mechanisms of relapsed AML are yet exploited in treatment strategies. Finally, we give an outlook how new emerging technologies could help to improve the therapy for these patients, and elucidate potential new treatment options.
Collapse
Affiliation(s)
- Tatjana Sauerer
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Bavarian Cancer Research Center (BZKF) and Comprehensive Cancer Center Augsburg, Augsburg, Germany
| | - Giuliano Filippini Velázquez
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Bavarian Cancer Research Center (BZKF) and Comprehensive Cancer Center Augsburg, Augsburg, Germany
| | - Christoph Schmid
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Bavarian Cancer Research Center (BZKF) and Comprehensive Cancer Center Augsburg, Augsburg, Germany.
| |
Collapse
|
24
|
Gurska L, Gritsman K. Unveiling T cell evasion mechanisms to immune checkpoint inhibitors in acute myeloid leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:674-687. [PMID: 37842238 PMCID: PMC10571054 DOI: 10.20517/cdr.2023.39] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/01/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous and aggressive hematologic malignancy that is associated with a high relapse rate and poor prognosis. Despite advances in immunotherapies in solid tumors and other hematologic malignancies, AML has been particularly difficult to treat with immunotherapies, as their efficacy is limited by the ability of leukemic cells to evade T cell recognition. In this review, we discuss the common mechanisms of T cell evasion in AML: (1) increased expression of immune checkpoint molecules; (2) downregulation of antigen presentation molecules; (3) induction of T cell exhaustion; and (4) creation of an immunosuppressive environment through the increased frequency of regulatory T cells. We also review the clinical investigation of immune checkpoint inhibitors (ICIs) in AML. We discuss the limitations of ICIs, particularly in the context of T cell evasion mechanisms in AML, and we describe emerging strategies to overcome T cell evasion, including combination therapies. Finally, we provide an outlook on the future directions of immunotherapy research in AML, highlighting the need for a more comprehensive understanding of the complex interplay between AML cells and the immune system.
Collapse
Affiliation(s)
- Lindsay Gurska
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kira Gritsman
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
25
|
Crees ZD, Rettig MP, Bashey A, Devine SM, Jaglowski S, Wan F, Zhou A, Harding M, Vainstein-Haras A, Sorani E, Gliko-Kabir I, Grossman BJ, Westervelt P, DiPersio JF, Uy GL. Hematopoietic stem cell mobilization for allogeneic stem cell transplantation by motixafortide, a novel CXCR4 inhibitor. Blood Adv 2023; 7:5210-5214. [PMID: 37327120 PMCID: PMC10500469 DOI: 10.1182/bloodadvances.2023010407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023] Open
Affiliation(s)
- Zachary D. Crees
- Division of Oncology, Washington University School of Medicine, St. Louis, MO
| | - Michael P. Rettig
- Division of Oncology, Washington University School of Medicine, St. Louis, MO
| | - Asad Bashey
- Blood and Marrow Transplant Program, Northside Hospital, Atlanta, GA
| | - Steven M. Devine
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program, Minneapolis, MN
| | - Samantha Jaglowski
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Fei Wan
- Division of Oncology, Washington University School of Medicine, St. Louis, MO
| | - Amy Zhou
- Division of Oncology, Washington University School of Medicine, St. Louis, MO
| | - Melinda Harding
- Division of Oncology, Washington University School of Medicine, St. Louis, MO
| | | | | | | | - Brenda J. Grossman
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Peter Westervelt
- Division of Oncology, Washington University School of Medicine, St. Louis, MO
| | - John F. DiPersio
- Division of Oncology, Washington University School of Medicine, St. Louis, MO
| | - Geoffrey L. Uy
- Division of Oncology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
26
|
Guo X, Yu S, Ren X, Li L. Immune checkpoints represent a promising breakthrough in targeted therapy and prognosis of myelodysplastic syndrome. Heliyon 2023; 9:e19222. [PMID: 37810157 PMCID: PMC10558320 DOI: 10.1016/j.heliyon.2023.e19222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/27/2023] [Accepted: 08/16/2023] [Indexed: 10/10/2023] Open
Abstract
Myelodysplastic syndrome (MDS) is a hematological malignancy of undetermined etiology, possibly linked to chromosomal structural alterations, genetic mutations, presentation and carcinogenicity of variant antigens on cell surface, and the generation of pro-inflammatory microenvironment in the bone marrow. Current drugs are unable to cure this disease, and therefore, decreasing the survival and proliferation of malignant cells to delay disease progression and extend the survival time of patients becomes the primary approach to management. In recent years, the immune system has received increasing attention for its potential role in the occurrence and development of MDS, leading to the emergence of immunoregulation as a viable treatment option. The current review provides a brief overview of pathogenesis of MDS and current treatment principles. In the meantime, the significance of immune proteins in treatment and prognosis of MDS is also discussed.
Collapse
Affiliation(s)
- Xinyu Guo
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, Heping District 154 Anshan Road, Tianjin, China
| | - Shunjie Yu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, Heping District 154 Anshan Road, Tianjin, China
| | - Xiaotong Ren
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, Heping District 154 Anshan Road, Tianjin, China
| | - Lijuan Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, Heping District 154 Anshan Road, Tianjin, China
| |
Collapse
|
27
|
Chergui A, Reagan JL. Immunotherapy in Acute Leukemias: Past Success Paves the Way for Future Progress. Cancers (Basel) 2023; 15:4137. [PMID: 37627165 PMCID: PMC10453133 DOI: 10.3390/cancers15164137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Immunotherapy as a cancer treatment modality has undergone recent widespread proliferation across all cancer types, especially amongst patients with solid tumors. However, the longest tenured immunotherapy approach to cancer is allogeneic stem cell transplantation (allo-SCT) for two hematologic malignancies: acute myeloid and acute lymphoid leukemia (AML and ALL, respectively). While allo-SCT remains a standard of care for eligible patients, recent advances/applications of monoclonal antibodies, immune checkpoint inhibitors, bispecific T-cell engagers (BiTEs), and CAR T-cell therapy are changing the treatment landscape for these acute leukemias by either direct to tumor immune targeting or through decreased toxicities that expand patient eligibility. Pre-clinical data and clinical trials have shown promising results for novel immunotherapies in acute leukemia, and multiple ongoing trials are investigating these novel approaches. While there have been promising results with these approaches, particularly in the relapsed/refractory setting, there remain challenges in optimizing the use of these therapies, such as managing cytokine release syndrome and other immune-related toxicities. Immunotherapy is a rapidly evolving field in the treatment of acute leukemia and has the potential to significantly impact the management of both AML and ALL. This review highlights the history of immunotherapy in the treatment of acute leukemias, the evolution of immunotherapy into more targeted approaches, the potential benefits and limitations of different immune targeting approaches, and ongoing research and development in the field.
Collapse
Affiliation(s)
| | - John L. Reagan
- Division of Hematology and Oncology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA;
| |
Collapse
|
28
|
Vallet N, Salmona M, Malet-Villemagne J, Bredel M, Bondeelle L, Tournier S, Mercier-Delarue S, Cassonnet S, Ingram B, Peffault de Latour R, Bergeron A, Socié G, Le Goff J, Lepage P, Michonneau D. Circulating T cell profiles associate with enterotype signatures underlying hematological malignancy relapses. Cell Host Microbe 2023; 31:1386-1403.e6. [PMID: 37463582 DOI: 10.1016/j.chom.2023.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023]
Abstract
Early administration of azithromycin after allogeneic hematopoietic stem cell transplantation was shown to increase the relapse of hematological malignancies. To determine the impact of azithromycin on the post-transplant gut ecosystem and its influence on relapse, we characterized overtime gut bacteriome, virome, and metabolome of 55 patients treated with azithromycin or a placebo. We describe four enterotypes and the network of associated bacteriophage species and metabolic pathways. One enterotype associates with sustained remission. One taxon from Bacteroides specifically associates with relapse, while two from Bacteroides and Prevotella correlate with complete remission. These taxa are associated with lipid, pentose, and branched-chain amino acid metabolic pathways and several bacteriophage species. Enterotypes and taxa associate with exhausted T cells and the functional status of circulating immune cells. These results illustrate how an antibiotic influences a complex network of gut bacteria, viruses, and metabolites and may promote cancer relapse through modifications of immune cells.
Collapse
Affiliation(s)
- Nicolas Vallet
- Université de Paris Cité, INSERM U976, 75010 Paris, France
| | - Maud Salmona
- Université de Paris Cité, INSERM U976, 75010 Paris, France; Virology Department, AP-HP, Saint-Louis Hospital, 75010 Paris, France
| | - Jeanne Malet-Villemagne
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - Maxime Bredel
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - Louise Bondeelle
- Pneumology Unit, AP-HP, Saint-Louis Hospital, 75010 Paris, France
| | - Simon Tournier
- Core Facilities, Saint-Louis Research Institute, Université de Paris Cité, UAR 2030/US 53, 75010 Paris, France
| | | | - Stéphane Cassonnet
- Service de Biostatistique et Information Médicale, AP-HP, Saint-Louis Hospital, 75010 Paris, France
| | | | - Régis Peffault de Latour
- Hematology Transplantation, AP-HP, Saint-Louis Hospital, 1 avenue Claude Vellefaux, 75010 Paris, France; Cryostem Consortium, 13382 Marseille, France
| | - Anne Bergeron
- Pneumology Department, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Gérard Socié
- Université de Paris Cité, INSERM U976, 75010 Paris, France; Hematology Transplantation, AP-HP, Saint-Louis Hospital, 1 avenue Claude Vellefaux, 75010 Paris, France
| | - Jérome Le Goff
- Université de Paris Cité, INSERM U976, 75010 Paris, France; Virology Department, AP-HP, Saint-Louis Hospital, 75010 Paris, France
| | - Patricia Lepage
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - David Michonneau
- Université de Paris Cité, INSERM U976, 75010 Paris, France; Hematology Transplantation, AP-HP, Saint-Louis Hospital, 1 avenue Claude Vellefaux, 75010 Paris, France.
| |
Collapse
|
29
|
Loke J, McCarthy N, Jackson A, Siddique S, Hodgkinson A, Mason J, Crawley C, Gilleece M, Peniket A, Protheroe R, Salim R, Tholouli E, Wilson K, Andrew G, Dillon R, Khan N, Potter V, Krishnamurthy P, Craddock C, Freeman S. Posttransplant MRD and T-cell chimerism status predict outcomes in patients who received allografts for AML/MDS. Blood Adv 2023; 7:3666-3676. [PMID: 37058448 PMCID: PMC10365943 DOI: 10.1182/bloodadvances.2022009493] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023] Open
Abstract
Allogeneic stem-cell transplant allows for the delivery of curative graft-versus-leukemia (GVL) in patients with acute myeloid leukemia/myelodysplasia (AML/MDS). Surveillance of T-cell chimerism, measurable residual disease (MRD) and blast HLA-DR expression may inform whether GVL effectiveness is reduced. We report here the prognostic impact of these biomarkers in patients allografted for AML/MDS. One hundred eighty-seven patients from FIGARO, a randomized trial of reduced-intensity conditioning regimens in AML/MDS, were alive and relapse-free at the first MRD time-point and provided monitoring samples for flow cytometric MRD and T-cell chimerism, requested to month+12. Twenty-nine (15.5%) patients had at least 1 MRD-positive result posttransplant. MRD-positivity was associated with reduced overall survival (OS) (hazard ratio [HR], 2.18; P = .0028) as a time-varying Cox variable and remained significant irrespective of pretransplant MRD status in multivariate analyses (P < .001). Ninety-four patients had sequential MRD with T-cell chimerism results at months+3/+6. Patients with full donor T-cell chimerism (FDTC) had an improved OS as compared with patients with mixed donor T-cell chimerism (MDTC) (adjusted HR=0.4; P = .0019). In patients with MDTC (month+3 or +6), MRD-positivity was associated with a decreased 2-year OS (34.3%) vs MRD-negativity (71.4%) (P = .001). In contrast, in the group with FDTC, MRD was infrequent and did not affect the outcome. Among patients with posttransplant MRD-positivity, decreased HLA-DR expression on blasts significantly reduced OS, supporting this as a mechanism for GVL escape. In conclusion, posttransplant MRD is an important predictor of the outcome in patients allografted for AML/MDS and is most informative when combined with T-cell chimerism results, underlining the importance of a GVL effect in AML/MDS.
Collapse
Affiliation(s)
- Justin Loke
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom
| | - Nicholas McCarthy
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Aimee Jackson
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom
| | - Shamyla Siddique
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom
| | - Andrea Hodgkinson
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom
| | - John Mason
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | - Rachel Protheroe
- Bristol Haematology and Oncology Centre, Bristol, United Kingdom
| | - Rahuman Salim
- Royal Liverpool University Hospital, Liverpool, United Kingdom
| | | | | | - Georgia Andrew
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Richard Dillon
- Department of Medical and Molecular Genetics, King’s College, London, United Kingdom
| | - Naeem Khan
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | | | - Charles Craddock
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom
| | - Sylvie Freeman
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
30
|
Pan Y, Wang Y, Hu M, Xu S, Jiang F, Han Y, Chen F, Liu Z. Aggrephagy-related patterns in tumor microenvironment, prognosis, and immunotherapy for acute myeloid leukemia: a comprehensive single-cell RNA sequencing analysis. Front Oncol 2023; 13:1195392. [PMID: 37534253 PMCID: PMC10393257 DOI: 10.3389/fonc.2023.1195392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/12/2023] [Indexed: 08/04/2023] Open
Abstract
Acute myeloid leukemia (AML) is a complex mixed entity composed of malignant tumor cells, immune cells and stromal cells, with intra-tumor and inter-tumor heterogeneity. Single-cell RNA sequencing enables a comprehensive study of the highly complex tumor microenvironment, which is conducive to exploring the evolutionary trajectory of tumor cells. Herein, we carried out comprehensive analyses of aggrephagy-related cell clusters based on single-cell sequencing for patients with acute myeloid leukemia. A total of 11 specific cell types (T, NK, CMP, Myeloid, GMP, MEP, Promono, Plasma, HSC, B, and Erythroid cells) using t-SNE dimension reduction analysis. Several aggrephagy-related genes were highly expressed in the 11 specific cell types. Using Monocle analysis and NMF clustering analysis, six aggrephagy-related CD8+ T clusters, six aggrephagy-related NK clusters, and six aggrephagy-related Mac clusters were identified. We also evaluated the ligand-receptor links and Cell-cell communication using CellChat package and CellChatDB database. Furthermore, the transcription factors (TFs) of aggrephagy-mediated cell clusters for AML were assessed through pySCENIC package. Prognostic analysis of the aggrephagy-related cell clusters based on R package revealed the differences in prognosis of aggrephagy-mediated cell clusters. Immunotherapy of the aggrephagy-related cell clusters was investigated using TIDE algorithm and public immunotherapy cohorts. Our study revealed the significance of aggrephagy-related patterns in tumor microenvironment, prognosis, and immunotherapy for AML.
Collapse
Affiliation(s)
- Yan Pan
- Department of Blood Transfusion, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang, China
| | - Yingjian Wang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengsi Hu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shoufang Xu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feiyu Jiang
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yetao Han
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fangjian Chen
- Department of Blood Transfusion, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang, China
| | - Zhiwei Liu
- Department of Blood Transfusion, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
31
|
Maurer K, Soiffer RJ. The delicate balance of graft versus leukemia and graft versus host disease after allogeneic hematopoietic stem cell transplantation. Expert Rev Hematol 2023; 16:943-962. [PMID: 37906445 PMCID: PMC11195539 DOI: 10.1080/17474086.2023.2273847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION The curative basis of allogeneic hematopoietic stem cell transplantation (HSCT) relies in part upon the graft versus leukemia (GvL) effect, whereby donor immune cells recognize and eliminate recipient malignant cells. However, alloreactivity of donor cells against recipient tissues may also be deleterious. Chronic graft versus host disease (cGvHD) is an immunologic phenomenon wherein alloreactive donor T cells aberrantly react against host tissues, leading to damaging inflammatory symptoms. AREAS COVERED Here, we discuss biological insights into GvL and cGvHD and strategies to balance the prevention of GvHD with maintenance of GvL in modern HSCT. EXPERT OPINION/COMMENTARY Relapse remains the leading cause of mortality after HSCT with rates as high as 40% for some diseases. GvHD is a major cause of morbidity after HSCT, occurring in up to half of patients and responsible for 15-20% of deaths after HSCT. Intriguingly, the development of chronic GvHD may be linked to lower relapse rates after HSCT, suggesting that GvL and GvHD may be complementary sides of the immunologic foundation of HSCT. The ability to fine tune the balance of GvL and GvHD will lead to improvements in survival, relapse rates, and quality of life for patients undergoing HSCT.
Collapse
Affiliation(s)
- Katie Maurer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Robert J Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Chu X, Tian W, Wang Z, Zhang J, Zhou R. Co-inhibition of TIGIT and PD-1/PD-L1 in Cancer Immunotherapy: Mechanisms and Clinical Trials. Mol Cancer 2023; 22:93. [PMID: 37291608 DOI: 10.1186/s12943-023-01800-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023] Open
Abstract
Over the past decade, immune checkpoint inhibitors (ICIs) have emerged as a revolutionary cancer treatment modality, offering long-lasting responses and survival benefits for a substantial number of cancer patients. However, the response rates to ICIs vary significantly among individuals and cancer types, with a notable proportion of patients exhibiting resistance or showing no response. Therefore, dual ICI combination therapy has been proposed as a potential strategy to address these challenges. One of the targets is TIGIT, an inhibitory receptor associated with T-cell exhaustion. TIGIT has diverse immunosuppressive effects on the cancer immunity cycle, including the inhibition of natural killer cell effector function, suppression of dendritic cell maturation, promotion of macrophage polarization to the M2 phenotype, and differentiation of T cells to regulatory T cells. Furthermore, TIGIT is linked with PD-1 expression, and it can synergize with PD-1/PD-L1 blockade to enhance tumor rejection. Preclinical studies have demonstrated the potential benefits of co-inhibition of TIGIT and PD-1/PD-L1 in enhancing anti-tumor immunity and improving treatment outcomes in several cancer types. Several clinical trials are underway to evaluate the safety and efficacy of TIGIT and PD-1/PD-L1 co-inhibition in various cancer types, and the results are awaited. This review provides an overview of the mechanisms of TIGIT and PD-1/PD-L1 co-inhibition in anti-tumor treatment, summarizes the latest clinical trials investigating this combination therapy, and discusses its prospects. Overall, co-inhibition of TIGIT and PD-1/PD-L1 represents a promising therapeutic approach for cancer treatment that has the potential to improve the outcomes of cancer patients treated with ICIs.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Jing Zhang
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, P.R. China.
| |
Collapse
|
33
|
Zhao J, Li L, Yin H, Feng X, Lu Q. TIGIT: An emerging immune checkpoint target for immunotherapy in autoimmune disease and cancer. Int Immunopharmacol 2023; 120:110358. [PMID: 37262959 DOI: 10.1016/j.intimp.2023.110358] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
Immune checkpoints (ICs), also referred to as co-inhibitory receptors (IRs), are essential for regulating immune cell function to maintain tolerance and prevent autoimmunity. IRs, such as programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), have been shown to possess immunoregulatory properties that are relevant to various autoimmune diseases and cancers. Tumors are characterized by suppressive microenvironments with elevated levels of IRs on tumor-infiltrating lymphocytes (TILs). Therefore, IR blockade has shown great potential in cancer therapy and has even been approved for clinical use. However, other IRs, including cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT), may also represent promising targets for anti-tumor therapy. The increasing importance of IRs in autoimmune diseases has become apparent. In mouse models, TIGIT pathway blockade or TIGIT deficiency has been linked to T cell overactivation and proliferation, exacerbation of inflammation, and increased susceptibility to autoimmune disorders. On the other hand, TIGIT activation has been shown to alleviate autoimmune disorders in murine models. Given these findings, we examine the effects of TIGIT and its potential as a therapeutic target for both autoimmune diseases and cancers. It is clear that TIGIT represents an emerging and exciting target for immunotherapy in these contexts.
Collapse
Affiliation(s)
- Junpeng Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciencs, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Liming Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciencs, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Huiqi Yin
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciencs, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xiwei Feng
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciencs, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciencs, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
34
|
Haroun-Izquierdo A, Lanuza PM, Pfefferle A, Netskar H, Ask EH, Törlén J, Björklund A, Sohlberg E, Malmberg KJ. Effect of mTOR Inhibition with Sirolimus on Natural Killer Cell Reconstitution in Allogeneic Stem Cell Transplantation. Transplant Cell Ther 2023:S2666-6367(23)01201-0. [PMID: 36966873 DOI: 10.1016/j.jtct.2023.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023]
Abstract
Sirolimus is an inhibitor of the mammalian target of rapamycin (mTOR) and is emerging as a promising component of graft-versus-host disease (GVHD) prophylaxis regimens in the context of allogeneic hematopoietic stem cell transplantation (HSCT). Multiple studies have explored the clinical benefits of adding sirolimus to GVHD prophylaxis; however, detailed immunologic studies have not yet been carried out in this context. Mechanistically, mTOR is at the center of metabolic regulation in T cells and natural killer (NK) cells and is critical for their differentiation to mature effector cells. Therefore, close evaluation of the inhibition of mTOR in the context of immune reconstitution post-HSCT is warranted. In this work, we studied the effect of sirolimus on immune reconstitution using a biobank of longitudinal samples from patients receiving either tacrolimus/sirolimus (TAC/SIR) or cyclosporin A/methotrexate (CSA/MTX) as conventional GVHD prophylaxis. Healthy donor controls, donor graft material, and samples from 28 patients (14 with TAC/SIR, 14 with CSA/MTX) at 3 to 4 weeks and 34 to 39 weeks post- HSCT were collected. Multicolor flow cytometry was used to perform broad immune cell mapping, with a focus on NK cells. NK cell proliferation was evaluated over a 6-day in vitro homeostatic proliferation protocol. Furthermore, in vitro NK cell responses to cytokine stimulation or tumor cells were evaluated. Systems-level assessment of the immune repertoire revealed a deep and prolonged suppression (weeks 34 to 39 post-HSCT) of the naïve CD4 T cell compartment with relative sparing of regulatory T cells and enrichment of CD69+Ki-67+HLA-DR+ CD8 T cells, independent of the type of GVHD prophylaxis. Early after transplantation (weeks 3 to 4), while patients were still on TAC/SIR or CSA/MTX, we found a relative increase in less-differentiated CD56bright NK cells and NKG2A+CD57-KIR- CD56dim NK cells and a distinct loss of CD16 and DNAM-1 expression. Both regimens led to suppressed proliferative responses ex vivo and functional impairment with preferential loss of cytokine responsiveness and IFN-γ production. Patients who received TAC/SIR as GVHD prophylaxis showed delayed NK cell reconstitution with lower overall NK cell counts and fewer CD56bright and NKG2A+ CD56dim NK cells. Treatment with sirolimus- containing regimens generated similar immune cell profiles as conventional prophylaxis; however, the NK cell compartment seemed to be composed of slightly more mature NK cells. These effects were also present after the completion of GVHD prophylaxis, suggesting that mTOR inhibition with sirolimus leaves a lasting imprint on homeostatic proliferation and NK cell reconstitution following HSCT.
Collapse
Affiliation(s)
- Alvaro Haroun-Izquierdo
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Pilar M Lanuza
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Aline Pfefferle
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Herman Netskar
- Institute for Cancer Research, Department of Cancer Immunology, University of Oslo, Oslo University Hospital, Norway
| | - Eivind H Ask
- Institute for Cancer Research, Department of Cancer Immunology, University of Oslo, Oslo University Hospital, Norway
| | - Johan Törlén
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
| | - Andreas Björklund
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
| | - Ebba Sohlberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Karl-Johan Malmberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Institute for Cancer Research, Department of Cancer Immunology, University of Oslo, Oslo University Hospital, Norway.
| |
Collapse
|
35
|
Tong X, Zhou F. Integrated bioinformatic analysis of mitochondrial metabolism-related genes in acute myeloid leukemia. Front Immunol 2023; 14:1120670. [PMID: 37138869 PMCID: PMC10149950 DOI: 10.3389/fimmu.2023.1120670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Background Acute myeloid leukemia (AML) is a common hematologic malignancy characterized by poor prognoses and high recurrence rates. Mitochondrial metabolism has been increasingly recognized to be crucial in tumor progression and treatment resistance. The purpose of this study was to examined the role of mitochondrial metabolism in the immune regulation and prognosis of AML. Methods In this study, mutation status of 31 mitochondrial metabolism-related genes (MMRGs) in AML were analyzed. Based on the expression of 31 MMRGs, mitochondrial metabolism scores (MMs) were calculated by single sample gene set enrichment analysis. Differential analysis and weighted co-expression network analysis were performed to identify module MMRGs. Next, univariate Cox regression and the least absolute and selection operator regression were used to select prognosis-associated MMRGs. A prognosis model was then constructed using multivariate Cox regression to calculate risk score. We validated the expression of key MMRGs in clinical specimens using immunohistochemistry (IHC). Then differential analysis was performed to identify differentially expressed genes (DEGs) between high- and low-risk groups. Functional enrichment, interaction networks, drug sensitivity, immune microenvironment, and immunotherapy analyses were also performed to explore the characteristic of DEGs. Results Given the association of MMs with prognosis of AML patients, a prognosis model was constructed based on 5 MMRGs, which could accurately distinguish high-risk patients from low-risk patients in both training and validation datasets. IHC results showed that MMRGs were highly expressed in AML samples compared to normal samples. Additionally, the 38 DEGs were mainly related to mitochondrial metabolism, immune signaling, and multiple drug resistance pathways. In addition, high-risk patients with more immune-cell infiltration had higher Tumor Immune Dysfunction and Exclusion scores, indicating poor immunotherapy response. mRNA-drug interactions and drug sensitivity analyses were performed to explore potential druggable hub genes. Furthermore, we combined risk score with age and gender to construct a prognosis model, which could predict the prognosis of AML patients. Conclusion Our study provided a prognostic predictor for AML patients and revealed that mitochondrial metabolism is associated with immune regulation and drug resistant in AML, providing vital clues for immunotherapies.
Collapse
|
36
|
Zhao X, Wang W, Nie S, Geng L, Song K, Zhang X, Yao W, Qiang P, Sun G, Wang D, Liu H. Dynamic comparison of early immune reactions and immune cell reconstitution after umbilical cord blood transplantation and peripheral blood stem cell transplantation. Front Immunol 2023; 14:1084901. [PMID: 37114055 PMCID: PMC10126295 DOI: 10.3389/fimmu.2023.1084901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Umbilical cord blood transplantation (UCBT) and peripheral blood stem cell transplantation (PBSCT) are effective allogeneic treatments for patients with malignant and non-malignant refractory hematological diseases. However, the differences in the immune cell reconstitution and the immune reactions during initial stages post-transplantation are not well established between UCBT and PBSCT. Therefore, in this study, we analyzed the differences in the immune reactions during the early stages (days 7-100 post-transplantation) such as pre-engraftment syndrome (PES), engraftment syndrome (ES), and acute graft-versus-host disease (aGVHD) and the immune cell reconstitution between the UCBT and the PBSCT group of patients. We enrolled a cohort of patients that underwent UCBT or PBSCT and healthy controls (n=25 each) and evaluated their peripheral blood mononuclear cell (PBMC) samples and plasma cytokine (IL-10 and GM-CSF) levels using flow cytometry and ELISA, respectively. Our results showed that the incidences of early immune reactions such as PES, ES, and aGVHD were significantly higher in the UCBT group compared to the PBSCT group. Furthermore, in comparison with the PBSCT group, the UCBT group showed higher proportion and numbers of naïve CD4+ T cells, lower proportion and numbers of Tregs, higher proportion of CD8+ T cells with increased activity, and higher proportion of mature CD56dim CD16+ NK cells during the early stages post-transplantation. Moreover, the plasma levels of GM-CSF were significantly higher in the UCBT group compared to the PBSCT group in the third week after transplantation. Overall, our findings demonstrated significant differences in the post-transplantation immune cell reconstitution between the UCBT and the PBSCT group of patients. These characteristics were associated with significant differences between the UCBT and the PBSCT groups regarding the incidences of immune reactions during the early stages post transplantation.
Collapse
Affiliation(s)
- Xuxu Zhao
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wenya Wang
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shiqin Nie
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Liangquan Geng
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kaidi Song
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinyi Zhang
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wen Yao
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ping Qiang
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Guangyu Sun
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dongyao Wang
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui, China
- *Correspondence: Dongyao Wang, ; Huilan Liu,
| | - Huilan Liu
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Transfusion, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- *Correspondence: Dongyao Wang, ; Huilan Liu,
| |
Collapse
|
37
|
Azithromycin promotes relapse by disrupting immune and metabolic networks after allogeneic stem cell transplantation. Blood 2022; 140:2500-2513. [PMID: 35984904 DOI: 10.1182/blood.2022016926] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/28/2022] [Accepted: 08/16/2022] [Indexed: 12/13/2022] Open
Abstract
Administration of azithromycin after allogeneic hematopoietic stem cell transplantation for hematologic malignancies has been associated with relapse in a randomized phase 3 controlled clinical trial. Studying 240 samples from patients randomized in this trial is a unique opportunity to better understand the mechanisms underlying relapse, the first cause of mortality after transplantation. We used multi-omics on patients' samples to decipher immune alterations associated with azithromycin intake and post-transplantation relapsed malignancies. Azithromycin was associated with a network of altered energy metabolism pathways and immune subsets, including T cells biased toward immunomodulatory and exhausted profiles. In vitro, azithromycin exposure inhibited T-cell cytotoxicity against tumor cells and impaired T-cell metabolism through glycolysis inhibition, down-regulation of mitochondrial genes, and up-regulation of immunomodulatory genes, notably SOCS1. These results highlight that azithromycin directly affects immune cells that favor relapse, which raises caution about long-term use of azithromycin treatment in patients at high risk of malignancies. The ALLOZITHRO trial was registered at www.clinicaltrials.gov as #NCT01959100.
Collapse
|
38
|
AML relapse after a TIGIT race. Blood 2022; 140:1189-1191. [PMID: 36107461 PMCID: PMC9479034 DOI: 10.1182/blood.2022017614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
|