1
|
Stoltze U, Junk SV, Byrjalsen A, Cavé H, Cazzaniga G, Elitzur S, Fronkova E, Hjalgrim LL, Kuiper RP, Lundgren L, Mescher M, Mikkelsen T, Pastorczak A, Strullu M, Trka J, Wadt K, Izraeli S, Borkhardt A, Schmiegelow K. Overt and covert genetic causes of pediatric acute lymphoblastic leukemia. Leukemia 2025; 39:1031-1045. [PMID: 40128563 DOI: 10.1038/s41375-025-02535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/08/2025] [Accepted: 02/10/2025] [Indexed: 03/26/2025]
Abstract
Pediatric acute lymphoblastic leukemia (pALL) is the most common childhood malignancy, yet its etiology remains incompletely understood. However, over the course of three waves of germline genetic research, several non-environmental causes have been identified. Beginning with trisomy 21, seven overt cancer predisposition syndromes (CPSs)-characterized by broad clinical phenotypes that include an elevated risk of pALL-were first described. More recently, newly described CPSs conferring high risk of pALL are increasingly covert, with six exhibiting only minimal or no non-cancer features. These 13 CPSs now represent the principal known hereditary causes of pALL, and human pangenomic data indicates a strong negative selection against mutations in the genes associated with these conditions. Collectively they affect approximately 1 in 450 newborns, of which just a minority will develop the disease. As evidenced by tailored leukemia care protocols for children with trisomy 21, there is growing recognition that CPSs warrant specialized diagnostic, therapeutic, and long-term management strategies. In this review, we investigate the evidence that the 12 other CPSs associated with high risk of pALL may also see benefits from specialized care - even if these needs are often incompletely mapped or addressed in the clinic. Given the rarity of each syndrome, collaborative international research and shared data initiatives will be crucial for advancing knowledge and improving outcomes for these patients.
Collapse
Affiliation(s)
- Ulrik Stoltze
- Department of Childhood and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark.
| | - Stefanie V Junk
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anna Byrjalsen
- Department of Childhood and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Hélène Cavé
- Department of Genetics, Robert Debré University Hospital, APHP, Paris, France
- University Paris Cité, Paris, France
- INSERM UMR_S1131 - Institut de Recherche Saint-Louis, Paris France, Paris, France
| | - Giovanni Cazzaniga
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Sarah Elitzur
- Department of Pediatric Hematology and Oncology, Schneider Children's Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eva Fronkova
- Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Lisa Lyngsie Hjalgrim
- Department of Childhood and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Medicine, Copenhagen University, Copenhagen, Denmark
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Louise Lundgren
- Department of Childhood and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Melina Mescher
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Theis Mikkelsen
- Department of Childhood and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Agata Pastorczak
- Department of Pediatrics, Oncology, and Hematology, Medical University of Lodz, Lodz, Poland
- Department of Genetic Predisposition to Cancer, Medical University of Lodz, Lodz, Poland
| | - Marion Strullu
- University Paris Cité, Paris, France
- INSERM UMR_S1131 - Institut de Recherche Saint-Louis, Paris France, Paris, France
- Pediatric Hematology and Immunology Department, Robert Debré Academic Hospital, GHU AP-HP Nord Paris, Paris, France
| | - Jan Trka
- Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Karin Wadt
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Medicine, Copenhagen University, Copenhagen, Denmark
| | - Shai Izraeli
- Department of Pediatric Hematology and Oncology, Schneider Children's Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kjeld Schmiegelow
- Department of Childhood and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Medicine, Copenhagen University, Copenhagen, Denmark.
| |
Collapse
|
2
|
Balestra T, Niswander LM, Bagashev A, Loftus JP, Ross SL, Chen RK, McClellan SM, Junco JJ, Bárcenas López DA, Rabin KR, Fry TJ, Tasian SK. Co-targeting of the thymic stromal lymphopoietin receptor to decrease immunotherapeutic resistance in CRLF2-rearranged Ph-like and Down syndrome acute lymphoblastic leukemia. Leukemia 2025; 39:555-567. [PMID: 39681640 PMCID: PMC11879877 DOI: 10.1038/s41375-024-02493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024]
Abstract
CRLF2 rearrangements occur in >50% of Ph-like and Down syndrome (DS)-associated B-acute lymphoblastic leukemia (ALL) and induce constitutive kinase signaling targetable by the JAK1/2 inhibitor ruxolitinib under current clinical investigation. While chimeric antigen receptor T cell (CART) immunotherapies have achieved remarkable remission rates in children with relapsed/refractory B-ALL, ~50% of CD19CART-treated patients relapse again, many with CD19 antigen loss. We previously reported preclinical activity of thymic stromal lymphopoietin receptor-targeted cellular immunotherapy (TSLPRCART) against CRLF2-overexpressing ALL as an alternative approach. In this study, we posited that combinatorial TSLPRCART and ruxolitinib would have superior activity and first validated potent TSLPRCART-induced inhibition of leukemia proliferation in vitro in CRLF2-rearranged ALL cell lines and in vivo in Ph-like and DS-ALL patient-derived xenograft (PDX) models. However, simultaneous TSLPRCART/ruxolitinib or CD19CART/ruxolitinib treatment during initial CART expansion diminished T cell proliferation, blunted cytokine production, and/or facilitated leukemia relapse, which was abrogated by time-sequenced/delayed ruxolitinib co-exposure. Importantly, ruxolitinib co-administration prevented fatal TSLPRCART cytokine-associated toxicity in ALL PDX mice. Upon ruxolitinib withdrawal, TSLPRCART functionality recovered in vivo with clearance of subsequent ALL rechallenge. These translational studies demonstrate an effective two-pronged therapeutic strategy that mitigates acute CART-induced hyperinflammation and provides potential anti-leukemia 'maintenance' relapse prevention for CRLF2-rearranged Ph-like and DS-ALL.
Collapse
Grants
- U01CA243072 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- W81XWH-19-1-0197 U.S. Department of Defense (United States Department of Defense)
- U01CA232486 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- U01 CA243072 NCI NIH HHS
- K12HD043245 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- W81XWH-19-1-0196 U.S. Department of Defense (United States Department of Defense)
- T32HD043021 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- K12 HD043245 NICHD NIH HHS
- T32 CA009615 NCI NIH HHS
- T32 HD043021 NICHD NIH HHS
- U01 CA232486 NCI NIH HHS
- U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- St. Baldrick's Foundation (St. Baldrick's Foundation, Inc)
- V Foundation for Cancer Research (V Foundation)
- These studies were supported by the CHOP Cell and Gene Therapy Collaborative (TB, SKT), National Institutes of Health (NIH)/National Institute of Child Health and Human Development T32HD043021 and K12HD043245 (LMN), NIH/National Cancer Institute T32CA009615 (LMN), U01CA232486 (TJF, SKT), U01CA243072 (SKT) awards, the Lynch family (KRR), Department of Defense Translational Team Science W81XWH-19-1-0197 award (TJF, SKT), St Baldrick’s Foundation and Ty Louis Campbell Foundation (SKT), V Foundation for Cancer Research (SKT), and St Baldrick’s Foundation/Stand Up to Cancer Pediatric Dream Team (SKT, TJF). Stand Up to Cancer is a program of the Entertainment Industry Foundation administered by the American Association for Cancer Research. LMN is a St. Baldrick’s Foundation Fellow and a Hyundai Hope on Wheels Young Investigator. TJF holds the Charles C Gates Endowed Chair at the Gates Institute for Cell and Gene Therapy at the University of Colorado Anschutz Medical Center. SKT is a Scholar of the Leukemia & Lymphoma Society and holds the Joshua Kahan Endowed Chair in Pediatric Leukemia Research at the Children's Hospital of Philadelphia. We dedicate this study in fond memory of Charlotte Clare Burke and with sincere appreciation to the Crookes and Burke families for their generous philanthropic support of our Down syndrome-associated ALL research at CHOP.
- U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- Hyundai Motor Group | Hyundai Motor America | Hyundai Hope On Wheels (Hope On Wheels)
Collapse
Affiliation(s)
- Tommaso Balestra
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lisa M Niswander
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - Asen Bagashev
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph P Loftus
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Savannah L Ross
- Division of Hematology/Oncology/Bone Marrow Transplant and Center for Cancer and Blood Disorders, Children's Hospital of Colorado, Aurora, CO, USA
| | - Robert K Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Samantha M McClellan
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jacob J Junco
- Texas Children's Hospital Cancer Center and Division of Pediatric Hematology/Oncology, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Diego A Bárcenas López
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Karen R Rabin
- Texas Children's Hospital Cancer Center and Division of Pediatric Hematology/Oncology, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Terry J Fry
- Division of Hematology/Oncology/Bone Marrow Transplant and Center for Cancer and Blood Disorders, Children's Hospital of Colorado, Aurora, CO, USA
- University of Colorado Anschutz Medical Campus and Gates Institute, Aurora, CO, USA
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA.
- Abramson Cancer Center, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA.
- Prinses Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Liu J, Kharazmi E, Liang Q, Chen Y, Sundquist J, Sundquist K, Fallah M. Maternal weight during pregnancy and risk of childhood acute lymphoblastic leukemia in offspring. Leukemia 2025; 39:590-598. [PMID: 39865137 PMCID: PMC11879861 DOI: 10.1038/s41375-025-02517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
In addition to biological factors, maternal exposures during pregnancy can contribute to leukemogenesis in offspring. We conducted a population-based cohort study in Sweden to investigate the association between risk of acute lymphoblastic leukemia (ALL) in offspring and maternal anthropometrics during pregnancy. A total of 2,961,435 live-born singletons during 1983-2018 were followed from birth to ALL diagnosis, end of age 18, or end of 2018. 1388 children were diagnosed with ALL (55.6% boys). We observed an increased risk of ALL among daughters of overweight/obese mothers in early pregnancy [Body mass index (BMI) ≥ 25 kg/m2; Standardized incidence ratio (SIR) = 1.4, 95% CI: 1.2-1.6] compared with the risk in daughters of mothers with normal BMI. This association was not found in their sons (SIR = 1.0, 95% CI: 0.9-1.1). Similar results were found for the association between ALL and maternal BMI before delivery. We did not find an association between low or high gestational weight gain (GWG) and risk of ALL (both SIRs = 1.0) in male/female offspring. These suggest that maternal overweight/obesity are important risk factors for childhood ALL in daughters, whereas GWG is not associated with risk of ALL. Further research on this mother-daughter association may shed light on a possible sex hormone/chromosome-related etiology of ALL.
Collapse
Affiliation(s)
- Jiaye Liu
- Risk Adapted Prevention Group, Division of Primary Cancer Prevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Elham Kharazmi
- Risk Adapted Prevention Group, Division of Primary Cancer Prevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Qunfeng Liang
- Risk Adapted Prevention Group, Division of Primary Cancer Prevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yafei Chen
- Risk Adapted Prevention Group, Division of Primary Cancer Prevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Sundquist
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Malmö, Sweden
- University Clinic Primary Care Skåne, Region Skåne, Sweden
| | - Kristina Sundquist
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Malmö, Sweden
- University Clinic Primary Care Skåne, Region Skåne, Sweden
| | - Mahdi Fallah
- Risk Adapted Prevention Group, Division of Primary Cancer Prevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Malmö, Sweden.
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland.
| |
Collapse
|
4
|
Galli E, Corrente A, Chiusolo P, Sica S, Sorà F. CAR-T treatment is safe and effective in adult patients with Down syndrome and B-cell acute lymphoblastic leukemia (B-ALL). Bone Marrow Transplant 2024; 59:1611-1613. [PMID: 39122835 DOI: 10.1038/s41409-024-02386-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Affiliation(s)
- Eugenio Galli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento di Scienze di Laboratorio ed Ematologiche, Rome (IT), Italy
| | - Alessandro Corrente
- Università Cattolica del Sacro Cuore, Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Rome (IT), Italy
| | - Patrizia Chiusolo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento di Scienze di Laboratorio ed Ematologiche, Rome (IT), Italy
- Università Cattolica del Sacro Cuore, Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Rome (IT), Italy
| | - Simona Sica
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento di Scienze di Laboratorio ed Ematologiche, Rome (IT), Italy.
- Università Cattolica del Sacro Cuore, Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Rome (IT), Italy.
| | - Federica Sorà
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento di Scienze di Laboratorio ed Ematologiche, Rome (IT), Italy
- Università Cattolica del Sacro Cuore, Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Rome (IT), Italy
| |
Collapse
|
5
|
He GQ, Lei YP, Huang DW, Gao J, Yang R. Philadelphia chromosome-like acute lymphoblastic leukemia with concomitant rearrangements of CRLF2 and ABL1: a pediatric case report. BMC Pediatr 2024; 24:517. [PMID: 39127642 PMCID: PMC11316372 DOI: 10.1186/s12887-024-04991-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND BCR::ABL1-like or Philadelphia chromosome-like (Ph-like) acute lymphoblastic leukemia (ALL) was first reported in 2009. Ph-like ALL is characterized by gene signature similar to Philadelphia chromosome ALL, but without BCR::ABL1 fusions. Molecularly, Ph-like ALL is divided into seven categories, with CRLF2 and ABL-class rearrangements being the two most common subtypes, exhibiting alterations in distinct downstream signaling cascades. CASE PRESENTATION We report a rare case of pediatric Ph-like ALL with concomitant CRLF2 and ABL1 rearrangements. CRLF2 was fused with P2RY8, its most common fusion partner, whereas ABL1 was fused with MYO18B, a novel fusion partner that has not been previously reported. The 4-year-old female patient was treated using the national multicenter CCCG-ALL-2020 protocol with the addition of dasatinib at the end of induction when ABL1 rearrangement was confirmed by RNA-seq. Morphologically and molecularly, the patient remained in continuous remission until the last follow-up. To the best of our knowledge, this is the first case of Ph-like ALL harboring two distinct rearrangement categories. CONCLUSIONS Our results identified that ABL1 rearrangement and CRLF2 rearrangement can coexist. The application of FISH, whole transcription sequencing, PCR can help us to have a more comprehensive understanding of ALL cytogenetics and molecular biology. Further studies are needed to explore the role of targeted therapies in such rare clinical scenarios.
Collapse
Affiliation(s)
- Guo-Qian He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Ministry of Education, Sichuan University, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yu-Peng Lei
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Ministry of Education, Sichuan University, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Duo-Wen Huang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Ministry of Education, Sichuan University, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ju Gao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Ministry of Education, Sichuan University, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rong Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Ministry of Education, Sichuan University, Chengdu, China.
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Mason NR, Cahill H, Diamond Y, McCleary K, Kotecha RS, Marshall GM, Mateos MK. Down syndrome-associated leukaemias: current evidence and challenges. Ther Adv Hematol 2024; 15:20406207241257901. [PMID: 39050114 PMCID: PMC11268035 DOI: 10.1177/20406207241257901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/13/2024] [Indexed: 07/27/2024] Open
Abstract
Children with Down syndrome (DS) are at increased risk of developing haematological malignancies, in particular acute megakaryoblastic leukaemia and acute lymphoblastic leukaemia. The microenvironment established by abnormal haematopoiesis driven by trisomy 21 is compounded by additional genetic and epigenetic changes that can drive leukaemogenesis in patients with DS. GATA-binding protein 1 (GATA1) somatic mutations are implicated in the development of transient abnormal myelopoiesis and the progression to myeloid leukaemia of DS (ML-DS) and provide a model of the multi-step process of leukaemogenesis in DS. This review summarises key genetic drivers for the development of leukaemia in patients with DS, the biology and treatment of ML-DS and DS-associated acute lymphoblastic leukaemia, late effects of treatments for DS-leukaemias and the focus for future targeted therapy.
Collapse
Affiliation(s)
- Nicola R. Mason
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Hilary Cahill
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Yonatan Diamond
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Karen McCleary
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Rishi S. Kotecha
- Department of Clinical Haematology, Oncology, Blood and Bone Marrow Transplantation, Perth Children’s Hospital, Perth, WA, Australia
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Glenn M. Marshall
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, Randwick, NSW, Australia School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Marion K. Mateos
- Kids Cancer Centre, Sydney Children’s Hospital, Level 1 South Wing, High Street, Randwick, NSW 2031, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| |
Collapse
|
7
|
Carey-Smith SL, Simad MH, Panchal K, Aya-Bonilla C, Smolders H, Lin S, Armitage JD, Nguyen VT, Bentley K, Ford J, Singh S, Oommen J, Laurent AP, Mercher T, Crispino JD, Montgomery AP, Kassiou M, Besson T, Deau E, Meijer L, Cheung LC, Kotecha RS, Malinge S. Efficacy of DYRK1A inhibitors in novel models of Down syndrome acute lymphoblastic leukemia. Haematologica 2024; 109:2309-2315. [PMID: 38426275 PMCID: PMC11215345 DOI: 10.3324/haematol.2023.284271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Affiliation(s)
- Shannon L Carey-Smith
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia; Curtin Medical School, Curtin University, Perth, WA
| | - Maryam H Simad
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA
| | - Kunjal Panchal
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia; Curtin Medical School, Curtin University, Perth, WA
| | | | - Hannah Smolders
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA
| | - Sang Lin
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA
| | | | - Vivien T Nguyen
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA
| | - Kathryn Bentley
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA
| | - Jette Ford
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA
| | - Sajla Singh
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA
| | - Joyce Oommen
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA
| | | | | | - John D Crispino
- Department of Hematology, St Jude Children's Hospital, Memphis, TN
| | | | | | - Thierry Besson
- University Rouen Normandie, INSA Rouen Normandie, CNRS, COBRA UMR 6014, 76000
| | | | | | - Laurence C Cheung
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia; Curtin Medical School, Curtin University, Perth, WA, Australia; Curtin Health Innovation Research Institute, Curtin University, Perth, WA
| | - Rishi S Kotecha
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia; Curtin Medical School, Curtin University, Perth, WA, Australia; Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, WA, Australia; University of Western Australia, Perth, WA
| | - Sébastien Malinge
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia; Curtin Medical School, Curtin University, Perth, WA, Australia; University of Western Australia, Perth, WA.
| |
Collapse
|
8
|
Ling RE, Cross JW, Roy A. Aberrant stem cell and developmental programs in pediatric leukemia. Front Cell Dev Biol 2024; 12:1372899. [PMID: 38601080 PMCID: PMC11004259 DOI: 10.3389/fcell.2024.1372899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Hematopoiesis is a finely orchestrated process, whereby hematopoietic stem cells give rise to all mature blood cells. Crucially, they maintain the ability to self-renew and/or differentiate to replenish downstream progeny. This process starts at an embryonic stage and continues throughout the human lifespan. Blood cancers such as leukemia occur when normal hematopoiesis is disrupted, leading to uncontrolled proliferation and a block in differentiation of progenitors of a particular lineage (myeloid or lymphoid). Although normal stem cell programs are crucial for tissue homeostasis, these can be co-opted in many cancers, including leukemia. Myeloid or lymphoid leukemias often display stem cell-like properties that not only allow proliferation and survival of leukemic blasts but also enable them to escape treatments currently employed to treat patients. In addition, some leukemias, especially in children, have a fetal stem cell profile, which may reflect the developmental origins of the disease. Aberrant fetal stem cell programs necessary for leukemia maintenance are particularly attractive therapeutic targets. Understanding how hijacked stem cell programs lead to aberrant gene expression in place and time, and drive the biology of leukemia, will help us develop the best treatment strategies for patients.
Collapse
Affiliation(s)
- Rebecca E. Ling
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Joe W. Cross
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Anindita Roy
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| |
Collapse
|
9
|
Monovich AC, Gurumurthy A, Ryan RJH. The Diverse Roles of ETV6 Alterations in B-Lymphoblastic Leukemia and Other Hematopoietic Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:291-320. [PMID: 39017849 DOI: 10.1007/978-3-031-62731-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Genetic alterations of the repressive ETS family transcription factor gene ETV6 are recurrent in several categories of hematopoietic malignancy, including subsets of B-cell and T-cell acute lymphoblastic leukemias (B-ALL and T-ALL), myeloid neoplasms, and mature B-cell lymphomas. ETV6 is essential for adult hematopoietic stem cells (HSCs), contributes to specific functions of some mature immune cells, and plays a key role in thrombopoiesis as demonstrated by familial ETV6 mutations associated with thrombocytopenia and predisposition to hematopoietic cancers, particularly B-ALL. ETV6 appears to have a tumor suppressor role in several hematopoietic lineages, as demonstrated by recurrent somatic loss-of-function (LoF) and putative dominant-negative alterations in leukemias and lymphomas. ETV6 rearrangements contribute to recurrent fusion oncogenes such as the B-ALL-associated transcription factor (TF) fusions ETV6::RUNX1 and PAX5::ETV6, rare drivers such as ETV6::NCOA6, and a spectrum of tyrosine kinase gene fusions encoding hyperactive signaling proteins that self-associate via the ETV6 N-terminal pointed domain. Another subset of recurrent rearrangements involving the ETV6 gene locus appear to function primarily to drive overexpression of the partner gene. This review surveys what is known about the biochemical and genome regulatory properties of ETV6 as well as our current understanding of how alterations in these functions contribute to hematopoietic and nonhematopoietic cancers.
Collapse
Affiliation(s)
- Alexander C Monovich
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Aishwarya Gurumurthy
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Russell J H Ryan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Yang CX, Yang Y, Zhang FL, Wang DH, Bian QH, Zhou M, Zhou MX, Yang XY. Congenital leukemia: A case report and review of literature. World J Clin Cases 2023; 11:7227-7233. [PMID: 37946786 PMCID: PMC10631425 DOI: 10.12998/wjcc.v11.i29.7227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Acute leukemia in newborns is also known as neonatal or congenital leukemia (CL) and is a rare disease with an incidence rate of 1-5 per 1000000 live births. After birth, infants with CL exhibit infiltrative cutaneous nodules, hepatosplenomegaly, thrombocytopenia, and immature leukocytes in the peripheral blood. These symptoms are frequently accompanied by congenital abnormalities including trisomy 21, trisomy 9, trisomy 13, or Turner syndrome. Despite significant advances in disease management, the survival rate is approximately 25% at 2 years. CASE SUMMARY Here, we document a case of trisomy 21-related acute myeloid leukemia (AML) in a female neonate. The baby was sent to the neonatal intensive care unit because of anorexia, poor responsiveness, and respiratory distress. She was diagnosed with AML based on bone marrow aspiration and immunophenotyping. Genetic sequencing identified a mutation in the GATA1 gene. After receiving the diagnosis, the parents decided against medical care for their child, and the baby died at home on day 9 after birth. CONCLUSIONS The newborn infant was diagnosed with trisomy 21-related AML. Genetic sequencing identified a mutation in the GATA1 gene. The parents abandoned medical treatment for their infant after receiving the diagnosis, and the infant died at home on the 9th day after birth.
Collapse
Affiliation(s)
- Chun-Xia Yang
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou Province, China
- Clinical Medicine, Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| | - Ying Yang
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| | - Fen-Li Zhang
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| | - Ding-Huan Wang
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| | - Qiu-Han Bian
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| | - Man Zhou
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| | - Ming-Xiang Zhou
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| | - Xiao-Yan Yang
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| |
Collapse
|
11
|
Baruchel A, Bourquin JP, Crispino J, Cuartero S, Hasle H, Hitzler J, Klusmann JH, Izraeli S, Lane AA, Malinge S, Rabin KR, Roberts I, Ryeom S, Tasian SK, Wagenblast E. Down syndrome and leukemia: from basic mechanisms to clinical advances. Haematologica 2023; 108:2570-2581. [PMID: 37439336 PMCID: PMC10542835 DOI: 10.3324/haematol.2023.283225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023] Open
Abstract
Children with Down syndrome (DS, trisomy 21) are at a significantly higher risk of developing acute leukemia compared to the overall population. Many studies investigating the link between trisomy 21 and leukemia initiation and progression have been conducted over the last two decades. Despite improved treatment regimens and significant progress in iden - tifying genes on chromosome 21 and the mechanisms by which they drive leukemogenesis, there is still much that is unknown. A focused group of scientists and clinicians with expertise in leukemia and DS met in October 2022 at the Jérôme Lejeune Foundation in Paris, France for the 1st International Symposium on Down Syndrome and Leukemia. This meeting was held to discuss the most recent advances in treatment regimens and the biology underlying the initiation, progression, and relapse of acute lymphoblastic leukemia and acute myeloid leukemia in children with DS. This review provides a summary of what is known in the field, challenges in the management of DS patients with leukemia, and key questions in the field.
Collapse
Affiliation(s)
- André Baruchel
- Hôpital Universitaire Robert Debré (APHP and Université Paris Cité), Paris, France
| | | | - John Crispino
- St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Sergi Cuartero
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Henrik Hasle
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Johann Hitzler
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Shai Izraeli
- Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Aviv University, Aviv, Israel
| | | | - Sébastien Malinge
- Telethon Kids Institute - Cancer Centre, Perth, Western Australia, Australia
| | - Karen R. Rabin
- Baylor College of Medicine, Texas Children's Cancer Center, Houston, TX, USA
| | | | - Sandra Ryeom
- Department of Surgery, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Sarah K. Tasian
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|