1
|
Pilard M, Babran S, Martel C. Regulation of Platelet Function by HDL. Arterioscler Thromb Vasc Biol 2025. [PMID: 40207365 DOI: 10.1161/atvbaha.124.318260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Over the past decade, increasing the capacity of HDL (high-density lipoprotein) cholesterol to mediate macrophage reverse cholesterol transport has been a target of interest in the treatment of cardiovascular diseases (CVDs). However, clinical studies reporting the limited efficacy of HDL or its main apolipoprotein, APOA1, in reducing cardiovascular events have emerged. Although HDL cholesterol is unlikely to play a direct causal role in CVD, its inverse, albeit modest, association with CVD risk, consistently observed in large population studies, suggests it may influence alternative pathways beyond cholesterol metabolism. Given the diverse functions of HDL and its components, it is conceivable that its impact on CVD occurs through less direct mechanisms. A potential hypothesis is that HDL modulates platelet function, a crucial player in the initiation and progression of atherothrombosis, which may contribute to its observed relationship with CVD risk. In this review, we focus on how HDL and its components, with an emphasis on APOA1, interact with platelets (and their precursors or activation products) to modulate atherothrombotic responses.
Collapse
Affiliation(s)
- Marion Pilard
- Department of Medicine, Faculty of Medicine, Université de Montréal, Canada
- Montreal Heart Institute, Canada
| | - Sara Babran
- Department of Medicine, Faculty of Medicine, Université de Montréal, Canada
- Montreal Heart Institute, Canada
| | - Catherine Martel
- Department of Medicine, Faculty of Medicine, Université de Montréal, Canada
- Montreal Heart Institute, Canada
| |
Collapse
|
2
|
Anjum A, Mader M, Mahameed S, Muraly A, Denorme F, Kliem FP, Rossaro D, Agköl S, Di Fina L, Mulkers M, Laun L, Li L, Kupper N, Yue K, Hoffknecht ML, Akhalkatsi A, Loew Q, Pircher J, Escaig R, Strasser E, Wichmann C, Pekayvaz K, Nieswandt B, Schulz C, Robles MS, Kaiser R, Massberg S, Campbell R, Nicolai L. Aging platelets shift their hemostatic properties to inflammatory functions. Blood 2025; 145:1568-1582. [PMID: 39841014 PMCID: PMC12002221 DOI: 10.1182/blood.2024024901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
ABSTRACT Platelets are crucial players in hemostasis and thrombosis but also contribute to immune regulation and host defense, using different receptors, signaling pathways, and effector functions, respectively. Whether distinct subsets of platelets specialize in these diverse tasks is insufficiently understood. Here, we used a pulse-labeling method in Mus musculus models for tracking in vivo platelet aging and its functional implications. Using in vitro and in vivo assays, we reveal that young, reticulated platelets show heightened responses in the setting of clot formation, with corresponding, increased responses to agonists, adhesion, and retractile function. Unexpectedly, aged platelets lose their hemostatic proficiency but are more prone to react to inflammatory challenge: compared with reticulated platelets, this cohort was more likely to form platelet-leukocyte aggregates and showed increased adhesion to neutrophils in vitro, as well as enhanced bactericidal function. In vivo, this was reflected in increased pulmonary recruitment of aged platelets in an acute lung injury model. Proteomic analyses confirmed the upregulation of immune pathways in this cohort, including enhanced procoagulant function. In mouse models of prolonged platelet half-life, this resulted in increased pulmonary leukocyte infiltration and inflammation upon acute lung injury. Similarly, human platelet concentrates decreased their hemostatic function and elevated their putative immunomodulatory potential in vitro over time, and in a mouse model of platelet transfusion, aged platelet concentrates resulted in augmented inflammation. In summary, we show that platelets exhibit age-dependent phenotypic shifts, allowing them to fulfill their diverse tasks in the vasculature. Because functional alterations of aging platelets extend to platelet concentrates, this may hold important implications for transfusion medicine.
Collapse
Affiliation(s)
- Afra Anjum
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Magdalena Mader
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Shaan Mahameed
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Abhinaya Muraly
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Frederik Denorme
- Department of Emergency Medicine, Washington University, St. Louis, MO
| | - Fabian P. Kliem
- Institute of Medical Psychology and Biomedical Center, Faculty of Medicine, Ludwig Maximilian University Munich, Munich, Germany
| | - Dario Rossaro
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Sezer Agköl
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Lea Di Fina
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Maité Mulkers
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Lisa Laun
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Lukas Li
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Nadja Kupper
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Keyang Yue
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Marie-Louise Hoffknecht
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Anastassia Akhalkatsi
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Quentin Loew
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Joachim Pircher
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Raphael Escaig
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Erwin Strasser
- Division of Transfusion Medicine, Cell Therapeutics, and Hemostaseology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics, and Hemostaseology, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Kami Pekayvaz
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Bernhard Nieswandt
- Institute for Experimental Biomedicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Christian Schulz
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
- Department of Immunopharmacology, Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Maria S. Robles
- Institute of Medical Psychology and Biomedical Center, Faculty of Medicine, Ludwig Maximilian University Munich, Munich, Germany
| | - Rainer Kaiser
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Steffen Massberg
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Robert Campbell
- Department of Emergency Medicine, Washington University, St. Louis, MO
| | - Leo Nicolai
- Department of Medicine I, Ludwig Maximilian University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
3
|
Lin X, Gao H, Xin M, Huang J, Li X, Zhou Y, Lv K, Huang X, Wang J, Zhou Y, Cui D, Fang C, Wu L, Shi X, Ma Z, Qian Y, Tong H, Dai J, Jin J, Huang J. α-Actinin-1 deficiency in megakaryocytes causes low platelet count, platelet dysfunction, and mitochondrial impairment. Blood Adv 2025; 9:1185-1201. [PMID: 39813624 PMCID: PMC11925533 DOI: 10.1182/bloodadvances.2024014805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/23/2024] [Accepted: 01/04/2025] [Indexed: 01/18/2025] Open
Abstract
ABSTRACT Cytoskeletal remodeling and mitochondrial bioenergetics play important roles in thrombocytopoiesis and platelet function. Recently, α-actinin-1 mutations have been reported in patients with congenital macrothrombocytopenia. However, the role and underlying mechanism of α-actinin-1 in thrombocytopoiesis and platelet function remain elusive. Using megakaryocyte (MK)-specific α-actinin-1 knockout (KO; PF4-Actn1-/-) mice, we demonstrated that PF4-Actn1-/- mice exhibited reduced platelet counts. The decreased platelet number in PF4-Actn1-/- mice was due to defects in thrombocytopoiesis. Hematoxylin and eosin staining and flow cytometry revealed a decrease in the number of MKs in the bone marrow of PF4-Actn1-/- mice. The absence of α-actinin-1 increased the proportion of 2 N-4 N MKs and decreased the proportion of 8 N-32 N MKs. Colony-forming unit-MK colony formation, the ratio of proplatelet formation-bearing MKs, and MK migration in response to stromal cell-derived factor-1 signaling were inhibited in PF4-Actn1-/- mice. Platelet spreading, clot retraction, aggregation, integrin αIIbβ3 activation, and CD62P exposure in response to various agonists were decreased in PF4-Actn1-/- platelets. Notably, PF4-Actn1-/- platelets inhibited calcium mobilization, reactive oxygen species (ROS) generation, and actin polymerization in response to collagen and thrombin. Furthermore, the PF4-Actn1-/- mice exhibited impaired hemostasis and thrombosis. Mechanistically, proteomic analysis of low-ploidy (2-4 N) and high-ploidy (≥8 N) PF4-Actn1-/- MKs revealed that α-actinin-1 deletion reduced platelet activation and mitochondrial function. PF4-Actn1-/- platelets and Actn1 KO 293T cells exhibited reduced mitochondrial membrane potential, mitochondrial ROS generation, mitochondrial calcium mobilization, and mitochondrial bioenergetics. Overall, in this study, we report that mice with α-actinin-1 deficiency in MKs exhibit low platelet count and impaired platelet function, thrombosis, and mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Xiangjie Lin
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanchen Gao
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Xin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Huang
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Li
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yutong Zhou
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Keyu Lv
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Huang
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinghan Wang
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yulan Zhou
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Fang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lanlan Wu
- Department of Emergency Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaofeng Shi
- Department of Hematology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhixin Ma
- Clinical Prenatal Diagnosis Center, Key Laboratory of Reproductive Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Qian
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyan Tong
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Dai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Jin
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China
| | - Jiansong Huang
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Josefsson EC. Platelets and megakaryocytes in cancer. J Thromb Haemost 2025; 23:804-816. [PMID: 39742972 DOI: 10.1016/j.jtha.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
Platelets have important roles in hemostasis but also actively participate in cancer metastasis and inflammatory processes. They are produced by large precursor cells, the megakaryocytes, residing mainly in the bone marrow. Clinically, elevated platelet counts and/or increased platelet-to-lymphocyte ratio are being explored as biomarkers of metastatic disease and to predict survival or response to therapy in certain cancers. Multiple mechanisms have been put forward on how platelets promote hematogenous metastasis stemming mainly from murine experimental models. Research is now beginning to explore the potential roles of megakaryocytes in solid cancer, myeloma, and lymphoma. Here, we review mechanisms on how platelets and megakaryocytes contribute to cancer progression and metastasis but also discuss potential cancer-suppressing functions mainly related to the regulation of vascular intratumor integrity. Recent developments in cancer immune checkpoint therapy are reviewed with a focus on the potential roles of platelets. Moreover, we review studies exploring platelets for targeted drug delivery systems in cancer therapy.
Collapse
Affiliation(s)
- Emma C Josefsson
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Chemistry, Gothenburg, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, The University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
5
|
Mazharian A, Senis YA. Defining and Harnessing the Megakaryocyte/Platelet Checkpoint. Mol Cell Biol 2025; 45:116-128. [PMID: 39991916 DOI: 10.1080/10985549.2025.2451279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 02/25/2025] Open
Abstract
Platelets, or thrombocytes are anucleate cell fragments of megakaryocytes (MKs) that are highly reactive to sites of vascular injury and implicated in many pathologies. However, the molecular mechanisms regulating the number and activity of platelets in the circulation remain undefined. The primary outstanding question remains what is the triggering mechanism of platelet production, or thrombopoiesis? Putative stimulatory factors and mechanical forces are thought to drive this process, but none induce physiological levels of thrombopoiesis. Intrinsic inhibitory mechanisms that maintain MKs in a refractory state in sites of thrombopoiesis are conspicuously overlooked, as well as extrinsic cues that release this brake system, allowing asymmetric platelet production to proceed toward the vascular lumen. Here we introduce the novel concept of a MK/platelet checkpoint, putative components and a working model of how it may be regulated. We postulate that the co-inhibitory receptor G6b-B and the non-transmembrane protein-tyrosine phosphatases (PTPs) Shp1 and Shp2 form an inhibitory complex that is the primary gatekeeper of this checkpoint, which is spatiotemporally regulated by the receptor-type PTP CD148 and vascular heparan sulfate proteoglycans. By advancing this alternative model of thrombopoiesis, we hope to stimulate discourse and a shift in how we conceptualize and address this fundamental question.
Collapse
Affiliation(s)
- Alexandra Mazharian
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche-S 1255, Etablissement Français du Sang Grand Est, Université de Strasbourg, Strasbourg, France
| | - Yotis A Senis
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche-S 1255, Etablissement Français du Sang Grand Est, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
6
|
Italiano JE, Payne C, Bekendam RH. Looking Under the Hood at the Cytoskeletal Engine of Platelet Production. Arterioscler Thromb Vasc Biol 2025; 45:186-197. [PMID: 39665140 DOI: 10.1161/atvbaha.124.320392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Blood platelets are anucleate cells essential for normal blood hemostasis. To maintain a normal platelet count of 150 000 to 400 000 per μL of blood, 1011 platelets must be released each day from precursor cells called megakaryocytes. In this review, we aim to provide an overview of platelet production and evaluate the proposed mechanisms of platelet generation. We will discuss novel cytoskeletal mechanisms of platelet production, including microtubule and actin-based systems. We present new evidence that supports a cytoplasmic trigger for platelet production, discuss centrosome clustering as a new mechanism to trigger proplatelet production, and review new data supporting the bone marrow as the major location of platelet production.
Collapse
Affiliation(s)
- Joseph E Italiano
- Vascular Biology Program, Boston Children's Hospital, MA (J.E.I., C.P., R.H.B.)
- Department of Surgery, Harvard Medical School, Boston, MA (J.E.I., C.P., R.H.B.)
| | - Clementine Payne
- Vascular Biology Program, Boston Children's Hospital, MA (J.E.I., C.P., R.H.B.)
- Department of Surgery, Harvard Medical School, Boston, MA (J.E.I., C.P., R.H.B.)
| | - Roelof H Bekendam
- Vascular Biology Program, Boston Children's Hospital, MA (J.E.I., C.P., R.H.B.)
- Department of Surgery, Harvard Medical School, Boston, MA (J.E.I., C.P., R.H.B.)
- Division of Hematology and Hematologic Malignancies, Beth Israel Deaconess Medical Center, Boston, MA (R.H.B.)
| |
Collapse
|
7
|
Bravaccini S, Boldrin E, Gurioli G, Tedaldi G, Piano MA, Canale M, Curtarello M, Ulivi P, Pilati P. The use of platelets as a clinical tool in oncology: opportunities and challenges. Cancer Lett 2024; 607:217044. [PMID: 38876385 DOI: 10.1016/j.canlet.2024.217044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
Platelets are small circulating anucleated cells mainly involved in thrombosis and hemostasis processes. Moreover, platelets play an active role in tumorigenesis and cancer progression, stimulating angiogenesis and vascular remodelling, and protecting circulating cancer cells from shear forces and immune surveillance. Several reports indicate that platelet number in the blood circulation of cancer patients is associated with prognosis and response to treatment. However, the mechanisms of platelets "education" by cancer cells and the crosstalk between platelets and tumor are still unclear, and the role of "tumor educated platelets" (TEPs) is achieving growing interest in cancer research. TEPs are a biological source of cancer-derived biomarkers, especially RNAs that are protected by platelets membrane from circulating RNases, and could serve as a non-invasive tool for tumor detection, molecular profiling and evolution during therapy in clinical practice. Moreover, short platelet lifespan offers the possibility to get a snapshot assessment of cancer molecular profile, providing a real-time tool. We review and discuss the potential and the clinical utility, in terms of cancer diagnosis and monitoring, of platelet count together with other morphological parameters and of the more recent and innovative TEP profiling.
Collapse
Affiliation(s)
- Sara Bravaccini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via P. Maroncelli 40, 47014, Meldola, Italy.
| | - Elisa Boldrin
- Immunology and Molecular Oncology Diagnostics Unit, Veneto Institute of Oncology IOV-IRCCS, 35128, Padua, Italy.
| | - Giorgia Gurioli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via P. Maroncelli 40, 47014, Meldola, Italy.
| | - Gianluca Tedaldi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via P. Maroncelli 40, 47014, Meldola, Italy.
| | - Maria Assunta Piano
- Immunology and Molecular Oncology Diagnostics Unit, Veneto Institute of Oncology IOV-IRCCS, 35128, Padua, Italy.
| | - Matteo Canale
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via P. Maroncelli 40, 47014, Meldola, Italy.
| | - Matteo Curtarello
- Immunology and Molecular Oncology Diagnostics Unit, Veneto Institute of Oncology IOV-IRCCS, 35128, Padua, Italy.
| | - Paola Ulivi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via P. Maroncelli 40, 47014, Meldola, Italy.
| | - Pierluigi Pilati
- Surgical Oncology of Digestive Tract Unit, Veneto Institute of Oncology IOV-IRCCS, 35128, Padova, Italy.
| |
Collapse
|
8
|
Kumar V, Stewart Iv JH. Platelet's plea to Immunologists: Please do not forget me. Int Immunopharmacol 2024; 143:113599. [PMID: 39547015 DOI: 10.1016/j.intimp.2024.113599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/07/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Platelets are non-nucleated mammalian cells originating from the cytoplasmic expulsion of the megakaryocytes. Megakaryocytes develop during hematopoiesis through megakaryopoiesis, whereas platelets develop from megakaryocytes through thrombopoiesis. Since their first discovery, platelets have been studied as critical cells controlling hemostasis or blood coagulation. However, coagulation and innate immune response are evolutionarily linked processes. Therefore, it has become critical to investigate the immunological functions of platelets to maintain immune homeostasis. Advances in immunology and platelet biology research have explored different critical roles of platelets, including phagocytosis, release of different immune mediators, and controlling functions of different immune cells by direct interaction and immune mediators. The current article discusses platelet's development and their critical role as innate immune cells, which express different pattern recognition receptors (PRRs), recognizing different pathogen or microbe-associated molecular patterns (PAMPs or MAMPs) and death/damage-associated molecular patterns (DAMPs) and their direct interactions with innate and adaptive immune cells to maintain immune homeostasis.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA.
| | - John H Stewart Iv
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA
| |
Collapse
|
9
|
Becker IC, Barrachina MN, Lykins J, Camacho V, Stone AP, Chua BA, Signer RAJ, Machlus KR, Whiteheart SW, Roweth HG, Italiano JE. Inhibition of RhoA-mediated secretory autophagy in megakaryocytes mitigates myelofibrosis in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626665. [PMID: 39677616 PMCID: PMC11642871 DOI: 10.1101/2024.12.04.626665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Megakaryocytes (MKs) are large, polyploid cells that contribute to bone marrow homeostasis through the secretion of cytokines such as transforming growth factor β1 (TGFβ1). During neoplastic transformation, immature MKs accumulate in the bone marrow where they induce fibrotic remodeling ultimately resulting in myelofibrosis. Current treatment strategies aim to prevent MK hyperproliferation, however, little is understood about the potential of targeting dysregulated cytokine secretion from neoplastic MKs as a novel therapeutic avenue. Unconventional secretion of TGFβ1 as well as interleukin 1β (IL1β) via secretory autophagy occurs in cells other than MKs, which prompted us to investigate whether similar mechanisms are utilized by MKs. Here, we identified that TGFβ1 strongly co-localized with the autophagy marker light chain 3B in native MKs. Disrupting secretory autophagy by inhibiting the small GTPase RhoA or its downstream effector Rho kinase (ROCK) markedly reduced TGFβ1 and IL1β secretion in vitro . In vivo , conditional deletion of the essential autophagy gene Atg5 from the hematopoietic system limited megakaryocytosis and aberrant cytokine secretion in an MPL W515L -driven transplant model. Similarly, mice with a selective deletion of Rhoa from the MK and platelet lineage were protected from progressive fibrosis. Finally, disease hallmarks in MPL W515L -transplanted mice were attenuated upon treatment with the autophagy inhibitor hydroxychloroquine or the ROCK inhibitor Y27632, either as monotherapy or in combination with the JAK2 inhibitor ruxolitinib. Overall, our data indicate that aberrant cytokine secretion is dependent on secretory autophagy downstream of RhoA, targeting of which represents a novel therapeutic avenue in the treatment of myelofibrosis. One Sentence Summary TGFβ1 is released from megakaryocytes via RhoA-mediated secretory autophagy, and targeting this process can alleviate fibrosis progression in a preclinical mouse model of myelofibrosis.
Collapse
|
10
|
Furniss JA, Tarassova N, Poole AW. Platelet generation in vivo and in vitro. Blood 2024; 144:2283-2294. [PMID: 39357055 DOI: 10.1182/blood.2024024601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/08/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
ABSTRACT Platelets play crucial roles in hemostasis, thrombosis, and immunity, but our understanding of their complex biogenesis (thrombopoiesis) is currently incomplete. Deeper insight into the mechanisms of platelet biogenesis inside and outside the body is fundamental for managing hematological disorders and for the development of novel cell-based therapies. In this article, we address the current understanding of in vivo thrombopoiesis, including mechanisms of platelet generation from megakaryocytes (proplatelet formation, cytoplasmic fragmentation, and membrane budding) and their physiological location. Progress has been made in replicating these processes in vitro for potential therapeutic application, notably in platelet transfusion and bioengineering of platelets for novel targeted therapies. The current platelet-generating systems and their limitations, particularly yield, scalability, and functionality, are discussed. Finally, we highlight the current controversies and challenges in the field that need to be addressed to achieve a full understanding of these processes, in vivo and in vitro.
Collapse
Affiliation(s)
- Jonathan A Furniss
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Nathalie Tarassova
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Alastair W Poole
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
11
|
Leung G, Middleton EA. The role of platelets and megakaryocytes in sepsis and ARDS. J Physiol 2024; 602:6047-6063. [PMID: 39425883 DOI: 10.1113/jp284879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/06/2024] [Indexed: 10/21/2024] Open
Abstract
Since the global COVID-19 pandemic, there has been a renewed focus on lung injury during infection. Systemic inflammatory responses such as acute respiratory distress syndrome (ARDS) and sepsis are a leading cause of morbidity and mortality for both adults and children. Improvements in clinical care have improved outcomes but mortality remains ∼40% and significant morbidity persists for those patients with severe disease. Mechanistic studies of the underlying biological processes remain essential to identifying therapeutic targets. Furthermore, methods for identifying the underlying drivers of organ failure are key to treating and preventing tissue injury. In this review, we discuss the contribution of megakaryocytes (MKs) and platelets to the pathogenesis of systemic inflammatory syndromes. We explore the role of MKs and the new identification of extramedullary MKs during sepsis. We describe the alterations in the platelet transcriptome during sepsis. Lastly, we explore platelet function as defined by aggregation, activation and the formation of heterotypic aggregates. Much more work is necessary to explore the contribution of platelets to these heterogenous syndromes, but the foundation of platelets as key contributors to inflammation has been laid.
Collapse
Affiliation(s)
- Gabriel Leung
- Division of Pulmonary, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Elizabeth A Middleton
- Division of Pulmonary, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
12
|
Asquith NL, Becker IC, Scimone MT, Boccia T, Camacho V, Barrachina MN, Guo S, Freire D, Machlus K, Schulman S, Flaumenhaft R, Italiano JE. Targeting cargo to an unconventional secretory system within megakaryocytes allows the release of transgenic proteins from platelets. J Thromb Haemost 2024; 22:3235-3248. [PMID: 39122192 DOI: 10.1016/j.jtha.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Platelets are essential for hemostasis and thrombosis and play vital roles during metastatic cancer progression and infection. Hallmarks of platelet function are activation, cytoskeletal rearrangements, and the degranulation of their cellular contents upon stimulation. While α-granules and dense granules are the most studied platelet secretory granules, the dense tubular system (DTS) also functions as a secretory system for vascular thiol isomerases. However, how DTS cargo is packaged and transported from megakaryocytes (MKs) to platelets is poorly understood. OBJECTIVES To underpin the mechanisms responsible for DTS cargo transport and leverage those for therapeutic protein packaging into platelets. METHODS A retroviral expression system combined with immunofluorescence confocal microscopy was employed to track protein DTS cargo protein disulfide isomerase fused to enhanced green fluorescent protein (eGFP-PDI) during platelet production. Murine bone marrow transplantation models were used to determine the release of therapeutic proteins from platelets. RESULTS We demonstrated that the endoplasmic reticulum retrieval motif Lys-Asp-Glu-Leu (KDEL) located at the C-terminus of protein disulfide isomerase was essential for the regular transport of eGFP-PDI-containing granules. eGFP-PDIΔKDEL, in which the retrieval signal was deleted, was aberrantly packaged, and its expression was upregulated within clathrin-coated endosomes. Finally, we found that ectopic transgenic proteins, such as tissue factor pathway inhibitor and interleukin 2, can be packaged into MKs and proplatelets by adding a KDEL retrieval sequence. CONCLUSION Our data corroborate the DTS as a noncanonical secretory system in platelets and demonstrate that in vitro-generated MKs and platelets may be used as a delivery system for transgenic proteins during cellular therapy.
Collapse
Affiliation(s)
- Nathan L Asquith
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA. https://twitter.com/NathanAsquith1
| | - Isabelle C Becker
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Mark T Scimone
- Cellular Imaging Core, Neurobiology, Boston Children's Hospital, Boston, Massachusetts, USA; Life Sciences, Biotechnology, University of New Hampshire, Manchester, New Hampshire, USA
| | - Thais Boccia
- Harvard Medical School, Boston, Massachusetts, USA; Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Virginia Camacho
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - María N Barrachina
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Shihui Guo
- Harvard Medical School, Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Daniela Freire
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Kellie Machlus
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Sol Schulman
- Harvard Medical School, Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Robert Flaumenhaft
- Harvard Medical School, Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Joseph E Italiano
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
13
|
Livada AC, McGrath KE, Malloy MW, Li C, Ture SK, Kingsley PD, Koniski AD, Vit LA, Nolan KE, Mickelsen D, Monette GE, Maurya P, Palis J, Morrell CN. Long-lived lung megakaryocytes contribute to platelet recovery in thrombocytopenia models. J Clin Invest 2024; 134:e181111. [PMID: 39302653 PMCID: PMC11563682 DOI: 10.1172/jci181111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Lung megakaryocytes (Mks) are largely extravascular with an immune phenotype (1). Because bone marrow (BM) Mks are short lived, it has been assumed that extravascular lung Mks are constantly "seeded" from the BM. To investigate lung Mk origins and how origin affects their functions, we developed methods to specifically label lung Mks using CFSE dye and biotin delivered via the oropharyngeal route. Labeled lung Mks were present for up to 4 months, while BM Mks had a lifespan of less than 1 week. In a parabiosis model, lung Mks were partially replaced over 1 month from a circulating source. Unlike tissue-resident macrophages, using MDS1-Cre-ERT2 TdTomato mice, we found that lung Mks arose from hematopoietic stem cells. However, studies with FlkSwitch mTmG mice showed that lung Mks were derived from a Flt3-independent lineage that did not go through a multipotent progenitor. CFSE labeling to track lung Mk-derived platelets showed that approximately 10% of circulating platelets were derived from lung-resident Mks at steady state, but in sterile thrombocytopenia this was doubled (~20%). Lung-derived platelets were similarly increased in a malaria infection model (Plasmodium yoelii) typified by thrombocytopenia. These studies indicate that lung Mks arise from a Flt3- BM source, are long-lived, and contribute more platelets during thrombocytopenia.
Collapse
Affiliation(s)
- Alison C. Livada
- Aab Cardiovascular Research Institute
- Department of Pathology and Laboratory Medicine
| | | | | | - Chen Li
- Aab Cardiovascular Research Institute
| | | | | | | | | | | | | | | | | | - James Palis
- Department of Pathology and Laboratory Medicine
- Department of Pediatrics
| | - Craig N. Morrell
- Aab Cardiovascular Research Institute
- Department of Pathology and Laboratory Medicine
- Department of Microbiology and Immunology, and
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
14
|
Kwon M, Kim BS, Yoon S, Oh SO, Lee D. Hematopoietic Stem Cells and Their Niche in Bone Marrow. Int J Mol Sci 2024; 25:6837. [PMID: 38999948 PMCID: PMC11241602 DOI: 10.3390/ijms25136837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Extensive research has explored the functional correlation between stem cells and progenitor cells, particularly in blood. Hematopoietic stem cells (HSCs) can self-renew and regenerate tissues within the bone marrow, while stromal cells regulate tissue function. Recent studies have validated the role of mammalian stem cells within specific environments, providing initial empirical proof of this functional phenomenon. The interaction between bone and blood has always been vital to the function of the human body. It was initially proposed that during evolution, mammalian stem cells formed a complex relationship with the surrounding microenvironment, known as the niche. Researchers are currently debating the significance of molecular-level data to identify individual stromal cell types due to incomplete stromal cell mapping. Obtaining these data can help determine the specific activities of HSCs in bone marrow. This review summarizes key topics from previous studies on HSCs and their environment, discussing current and developing concepts related to HSCs and their niche in the bone marrow.
Collapse
Affiliation(s)
- Munju Kwon
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
15
|
Becker IC, Wilkie AR, Nikols E, Carminita E, Roweth HG, Tilburg J, Sciaudone AR, Noetzli LJ, Fatima F, Couldwell G, Ray A, Mogilner A, Machlus KR, Italiano JE. Cell cycle-dependent centrosome clustering precedes proplatelet formation. SCIENCE ADVANCES 2024; 10:eadl6153. [PMID: 38896608 PMCID: PMC11186502 DOI: 10.1126/sciadv.adl6153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Platelet-producing megakaryocytes (MKs) primarily reside in the bone marrow, where they duplicate their DNA content with each cell cycle resulting in polyploid cells with an intricate demarcation membrane system. While key elements of the cytoskeletal reorganizations during proplatelet formation have been identified, what initiates the release of platelets into vessel sinusoids remains largely elusive. Using a cell cycle indicator, we observed a unique phenomenon, during which amplified centrosomes in MKs underwent clustering following mitosis, closely followed by proplatelet formation, which exclusively occurred in G1 of interphase. Forced cell cycle arrest in G1 increased proplatelet formation not only in vitro but also in vivo following short-term starvation of mice. We identified that inhibition of the centrosomal protein kinesin family member C1 (KIFC1) impaired clustering and subsequent proplatelet formation, while KIFC1-deficient mice exhibited reduced platelet counts. In summary, we identified KIFC1- and cell cycle-mediated centrosome clustering as an important initiator of proplatelet formation from MKs.
Collapse
Affiliation(s)
- Isabelle C. Becker
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Adrian R. Wilkie
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Emma Nikols
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
| | - Estelle Carminita
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Harvey G. Roweth
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Brigham and Women’s Hospital, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Julia Tilburg
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | | | - Leila J. Noetzli
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Brigham and Women’s Hospital, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Farheen Fatima
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
| | | | - Anjana Ray
- Brigham and Women’s Hospital, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| | - Kellie R. Machlus
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Joseph E. Italiano
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
16
|
Kim H, Jarocha D, Johnson I, Ahn H, Hlinka N, French DL, Rauova L, Lee K, Poncz M. Studies of infused megakaryocytes into mice support a "catch-and-release" model of pulmonary-centric thrombopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597316. [PMID: 38895231 PMCID: PMC11185690 DOI: 10.1101/2024.06.04.597316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Many aspects of thrombopoiesis, the release of platelets from megakaryocytes (Mks), remain under debate, including where this process occurs. Murine lung in situ -microscopy studies suggested that a significant fraction of circulating platelets were released from lung-entrapped, marrow-derived Mks. We now confirm these in situ studies that endogenous mMks are entrapped in the lungs and show that intravenously infused in vitro -differentiated, mature murine (m) and human (h) Mks are similarly entrapped followed by shedding of their cytoplasm over ∼30 minutes with a peak number of released platelets occurring 1.5-4 hours later. However, while infused Mks from both species shed large intrapulmonary cytoplasmic fragments that underwent further processing into platelet-sized fragments, the two differed: many mMks escaped from and then recycled back to the lungs, while most hMks were enucleated upon first intrapulmonary passage. Infused immature hMks, inflammatory hMks, umbilical cord-blood-derived hMks and immortalized Mk progenitor cell (imMKCL)-derived hMks were also entrapped in the lung of recipient mice, and released their cytoplasm, but did so to different degrees. Intraarterial infused hMks resulted in few Mks being entrapped in tissues other than the lungs and was accompanied by a blunted and delayed rise in circulating human platelets. These studies demonstrate that the lung entraps and processes both circulating Mks and released large cytoplasmic fragments consistent with a recent lung/heart murine study and support a pulmonary-centric "catch-and-release" model of thrombopoiesis. Thus, thrombopoiesis is a drawn-out process with the majority of cytoplasmic processing derived from Mks occurring in the pulmonary bed. Key Points Infused in vitro -differentiated megakaryocytes synchronously release cytoplasmic fragments highly selectively in the pulmonary bed. Large, released megakaryocyte fragments recycle to the lungs, undergo further fission, terminally form platelets.
Collapse
|
17
|
Feely C, Kaushal N, D’Avino PP, Martin J. Modifying platelets at their birth: anti-thrombotic therapy without haemorrhage. Front Pharmacol 2024; 15:1343896. [PMID: 38562457 PMCID: PMC10982340 DOI: 10.3389/fphar.2024.1343896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Cardiovascular disease is a leading cause of death. The current approach to the prevention of arterial thrombosis in cardiovascular disease is dependent on the use of therapies which inhibit the activation of platelets. Predictably these are associated with an increased risk of haemorrhage which causes significant morbidity. The thrombotic potential of an activated platelet is modifiable; being determined before thrombopoiesis. Increased megakaryocyte ploidy is associated with larger and more active platelets carrying an increased risk of thrombosis. The reduction in the ploidy of megakaryocytes is therefore a novel area of therapeutic interest for reducing thrombosis. We propose a new therapeutic approach for the prevention and treatment of thrombosis by targeting the reduction in ploidy of megakaryocytes. We examine the role of a receptor mediated event causing megakaryocytes to increase ploidy, the potential for targeting the molecular mechanisms underpinning megakaryocyte endomitosis and the existence of two separate regulatory pathways to maintain haemostasis by altering the thrombotic potential of platelets as targets for novel therapeutic approaches producing haemostatically competent platelets which are not prothrombotic.
Collapse
Affiliation(s)
- Conor Feely
- Centre for Clinical Pharmacology, Institute of Health Informatics, University College London, London, United Kingdom
| | - Nitika Kaushal
- Centre for Clinical Pharmacology, Institute of Health Informatics, University College London, London, United Kingdom
| | - Pier Paolo D’Avino
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - John Martin
- Centre for Clinical Pharmacology, Institute of Health Informatics, University College London, London, United Kingdom
- Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
18
|
Thomas S, Kelliher S, Krishnan A. Heterogeneity of platelets and their responses. Res Pract Thromb Haemost 2024; 8:102356. [PMID: 38666061 PMCID: PMC11043642 DOI: 10.1016/j.rpth.2024.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 04/28/2024] Open
Abstract
There has been increasing recognition of heterogeneity in blood platelets and their responses, particularly in recent years, where next-generation technologies and advanced bioinformatic tools that interrogate "big data" have enabled large-scale studies of RNA and protein expression across a growing list of disease states. However, pioneering platelet biologists and clinicians were already hypothesizing upon and investigating heterogeneity in platelet (and megakaryocyte) activity and platelet metabolism and aggregation over half a century ago. Building on their foundational hypotheses, in particular Professor Marian A. Packham's pioneering work and a State of the Art lecture in her memoriam at the 2023 International Society on Thrombosis and Haemostasis Congress by Anandi Krishnan, this review outlines the key features that contribute to the heterogeneity of platelets between and within individuals. Starting with important epidemiologic factors, we move stepwise through successively smaller scales down to heterogeneity revealed by single-cell technologies in health and disease. We hope that this overview will urge future scientific and clinical studies to recognize and account for heterogeneity of platelets and aim to apply methods that capture that heterogeneity. Finally, we summarize other exciting new data presented on this topic at the 2023 International Society on Thrombosis and Haemostasis Congress.
Collapse
Affiliation(s)
- Sally Thomas
- Sheffield Teaching Hospitals, National Health Services, Sheffield, UK
| | - Sarah Kelliher
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Anandi Krishnan
- Stanford University School of Medicine, Stanford University, Stanford, California, USA
- Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
19
|
Malara A, Balduini A. Megakaryocytes in the lung: guests or ghosts? Blood 2024; 143:192-193. [PMID: 38236613 DOI: 10.1182/blood.2023022897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
|