1
|
Diamantidis MD, Ikonomou G, Argyrakouli I, Pantelidou D, Delicou S. Genetic Modifiers of Hemoglobin Expression from a Clinical Perspective in Hemoglobinopathy Patients with Beta Thalassemia and Sickle Cell Disease. Int J Mol Sci 2024; 25:11886. [PMID: 39595957 PMCID: PMC11593634 DOI: 10.3390/ijms252211886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Hemoglobinopathies, namely β-thalassemia and sickle cell disease (SCD), are hereditary diseases, characterized by molecular genetic aberrations in the beta chains of hemoglobin. These defects affect the normal production of hemoglobin with severe anemia due to less or no amount of beta globins in patients with β-thalassemia (quantitative disorder), while SCD is a serious disease in which a mutated form of hemoglobin distorts the red blood cells into a crescent shape at low oxygen levels (qualitative disorder). Despite the revolutionary progress in recent years with the approval of gene therapy and gene editing for specific patients, there is an unmet need for highlighting the mechanisms influencing hemoglobin production and for the development of novel drugs and targeted therapies. The identification of the transcription factors and other genetic modifiers of hemoglobin expression is of utmost importance for discovering novel therapeutic approaches for patients with hemoglobinopathies. The aim of this review is to describe these complex molecular mechanisms and pathways affecting hemoglobin expression and to highlight the relevant investigational approaches or pharmaceutical interventions focusing on restoring the hemoglobin normal function by linking the molecular background of the disease with the clinical perspective. All the associated drugs increasing the hemoglobin expression in patients with hemoglobinopathies, along with gene therapy and gene editing, are also discussed.
Collapse
Affiliation(s)
- Michael D. Diamantidis
- Department of Hematology, Thalassemia and Sickle Cell Disease Unit, General Hospital of Larissa, 41221 Larissa, Greece;
| | - Georgia Ikonomou
- Thalassemia and Sickle Cell Disease Prevention Unit, General Hospital of Larissa, 41221 Larissa, Greece;
| | - Ioanna Argyrakouli
- Department of Hematology, Thalassemia and Sickle Cell Disease Unit, General Hospital of Larissa, 41221 Larissa, Greece;
| | - Despoina Pantelidou
- Thalassemia and Sickle Cell Disease Unit, AHEPA University General Hospital, 41221 Thessaloniki, Greece;
| | - Sophia Delicou
- Center of Expertise in Hemoglobinopathies and Their Complications, Thalassemia and Sickle Cell Disease Unit, Hippokration General Hospital, 41221 Athens, Greece;
| |
Collapse
|
2
|
Sclafani S, Pecoraro A, Agrigento V, Troia A, Di Maggio R, Sacco M, Maggio A, D'Alcamo E, Di Marzo R. Study on Hydroxyurea Response in Hemoglobinopathies Patients Using Genetic Markers and Liquid Erythroid Cultures. Hematol Rep 2016; 8:6678. [PMID: 28053695 PMCID: PMC5178820 DOI: 10.4081/hr.2016.6678] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/11/2016] [Indexed: 12/22/2022] Open
Abstract
Increased expression of fetal hemoglobin (HbF) may ameliorate the clinical course of hemoglobinopathies. Hydroxyurea (HU) is the only inducer approved for the treatment of these diseases able to stimulate HbF production but patients' response is highly variable indicating the utility of the identification of pharmacogenomic biomarkers in order to predict pharmacological treatment efficacy. To date few studies to evaluate the role of genetic determinants in HU response have been conducted showing contradictory results. In this study we analyzed BCL11A, GATA-1, KLF-1 genes and γ-globin promoter in 60 alleles from 30 hemoglobinopathies patients under HU treatment to assess the role of these markers in HU response. We did not find any association between these genetic determinants and HU response. Before treatment started, the same patients were analyzed in vitro using liquid erythroid cultures in a test able to predict their response to HU. The results of our analysis confirm the absence of pharmacogenomic biomarker associated to HU response indicating that, the quantification of γ-globin mRNA fold increase remains the only method able to predict in vivo patients response to the drug.
Collapse
Affiliation(s)
- Serena Sclafani
- Department of Oncology and Hematology, U.O.C. Hematology for Rare Blood and of Hematopoietic Organs Diseases, A.O. Reunited Hospitals Villa Sofia-Cervello , Palermo, Italy
| | - Alice Pecoraro
- Department of Oncology and Hematology, U.O.C. Hematology for Rare Blood and of Hematopoietic Organs Diseases, A.O. Reunited Hospitals Villa Sofia-Cervello , Palermo, Italy
| | - Veronica Agrigento
- Department of Oncology and Hematology, U.O.C. Hematology for Rare Blood and of Hematopoietic Organs Diseases, A.O. Reunited Hospitals Villa Sofia-Cervello , Palermo, Italy
| | - Antonio Troia
- Department of Oncology and Hematology, U.O.C. Hematology for Rare Blood and of Hematopoietic Organs Diseases, A.O. Reunited Hospitals Villa Sofia-Cervello , Palermo, Italy
| | - Rosario Di Maggio
- Department of Oncology and Hematology, U.O.C. Hematology for Rare Blood and of Hematopoietic Organs Diseases, A.O. Reunited Hospitals Villa Sofia-Cervello , Palermo, Italy
| | - Massimiliano Sacco
- Department of Oncology and Hematology, U.O.C. Hematology for Rare Blood and of Hematopoietic Organs Diseases, A.O. Reunited Hospitals Villa Sofia-Cervello , Palermo, Italy
| | - Aurelio Maggio
- Department of Oncology and Hematology, U.O.C. Hematology for Rare Blood and of Hematopoietic Organs Diseases, A.O. Reunited Hospitals Villa Sofia-Cervello , Palermo, Italy
| | - Elena D'Alcamo
- Department of Oncology and Hematology, U.O.C. Hematology for Rare Blood and of Hematopoietic Organs Diseases, A.O. Reunited Hospitals Villa Sofia-Cervello , Palermo, Italy
| | - Rosalba Di Marzo
- Department of Oncology and Hematology, U.O.C. Hematology for Rare Blood and of Hematopoietic Organs Diseases, A.O. Reunited Hospitals Villa Sofia-Cervello , Palermo, Italy
| |
Collapse
|
3
|
Perrine SP, Pace BS, Faller DV. Targeted fetal hemoglobin induction for treatment of beta hemoglobinopathies. Hematol Oncol Clin North Am 2014; 28:233-48. [PMID: 24589264 DOI: 10.1016/j.hoc.2013.11.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fetal globin (gamma globin; HBG) is normally expressed during fetal life and prevents the clinical manifestations of beta hemoglobinopathies before birth. HBG genes are normally integrated in hematopoietic stem cells in all humans, and are at least partially amenable to reactivation. Inducing expression of fetal globin (HBG) gene expression to 60% to 70% of alpha globin synthesis produces a β-thalassemia trait phenotype, and reduces anemia. Tailoring combinations of therapeutics to patient subsets characterized for quantitative trait loci which modulate basal fetal hemoglobin and erythroid cell survival should provide effective amelioration of clinical symptoms in β-thalassemia and sickle cell disease.
Collapse
Affiliation(s)
- Susan P Perrine
- Hemoglobinopathy-Thalassemia Research Unit, Cancer Center, Department of Medicine, Pediatrics, Pharmacology and Experimental Therapeutics, Boston University School of Medicine, 72 East Concord Street, L-909, Boston, MA 02118, USA.
| | - Betty S Pace
- Department of Pediatrics and Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | - Douglas V Faller
- Cancer Center, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
4
|
Abstract
A number of pharmacological agents are currently available for the induction of the fetal hemoglobin (Hb F) to treat the patients with sickle cell disease and beta-thalassemia. In the present review, we summarized the investigation and development of these Hb F-inducing agents and introduced histone deacetylase inhibitors as the new strategy to induce Hb F to treat the hemoglobin disorders
Collapse
Affiliation(s)
- Hua Cao
- Division of Medical Genetics, University of Washington, Seattle 98195, USA.
| |
Collapse
|
5
|
Abstract
The level of fetal hemoglobin (HbF) modifies the severity of the common β-globin disorders. Knowledge of the normal mechanisms that repress HbF in the adult stage has remained limited until recently despite nearly 3 decades of molecular investigation, in part because of imperfect model systems. Recent studies have provided new insights into the developmental regulation of globin genes and identified specific transcription factors and epigenetic regulators responsible for physiologic silencing of HbF. Most prominent among these regulators is BCL11A, a transcriptional repressor that inhibits adult-stage HbF expression. KLF1 and c-Myb are additional critical HbF-regulating erythroid transcription factors more broadly involved in erythroid gene expression programs. Chromatin modifiers, including histone deacetylases and DNA methyltransferases, also play key roles in orchestrating appropriate globin gene expression. Taken together, these discoveries present novel therapeutic targets for further consideration. Although substantial hurdles remain, opportunities are now rich for the rational design of HbF inducers.
Collapse
|
6
|
Abstract
The cellular events that lead to terminal erythroid differentiation rely on the controlled interplay of extra- and intracellular regulatory factors. Their downstream effects are highly coordinated and result in the structural/morphologic and metabolic changes that uniquely characterize a maturing red blood cell. Erythroid Krüppel-like factor (EKLF/KLF1) is one of a very small number of intrinsic transcription factors that play a major role in regulating these events. This review covers 3 major aspects of erythropoiesis in which EKLF plays crucial functions: (1) at the megakaryocyte-erythroid progenitor stage, where it is involved in erythroid lineage commitment; (2) during the global expansion of erythroid gene expression in primitive and definitive lineages, where it plays a direct role in globin switching; and (3) during the terminal maturation of red cells, where it helps control exit from the cell cycle. We conclude by describing recent studies of mammalian EKLF/KLF1 mutations that lead to altered red cell phenotypes and disease.
Collapse
Affiliation(s)
- Miroslawa Siatecka
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW The developmental switch from fetal to adult hemoglobin has long fascinated biologists and attracted hematologists given its importance for patients with hemoglobin disorders. New discoveries have reinvigorated the field of globin gene regulation. These results hold promise for improved treatment of the major hemoglobinopathies. RECENT FINDINGS Both genome-wide association studies and traditional linkage studies have identified several genetic loci involved in silencing fetal hemoglobin. BCL11A is a potent silencer of fetal hemoglobin in both mouse and humans. It controls the beta-globin gene cluster in concert with other factors. KLF1, a vital erythroid transcription factor, activates BCL11A and assists in coordinating the switch from fetal to adult hemoglobin. A regulatory network of cell-intrinsic and cell-extrinsic factors maintains the epigenetic homeostasis of the beta-globin cluster and accounts for the precise lineage-specific and developmental stage-specific regulation of the globin genes. SUMMARY With an improved understanding of pathways involved in the switch from fetal to adult hemoglobin, new targets have emerged for the treatment of the common hemoglobin disorders, sickle cell anemia and beta-thalassemia.
Collapse
Affiliation(s)
- Daniel E Bauer
- Children's Hospital Boston and Dana-Farber Cancer Institute, USA
| | | |
Collapse
|
8
|
Sankaran VG, Xu J, Orkin SH. Advances in the understanding of haemoglobin switching. Br J Haematol 2010; 149:181-94. [PMID: 20201948 DOI: 10.1111/j.1365-2141.2010.08105.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The study of haemoglobin switching has represented a focus in haematology due in large part to the clinical relevance of the fetal to adult haemoglobin switch for developing targeted approaches to ameliorate the severity of the beta-haemoglobinopathies. Additionally, the process by which this switch occurs represents an important paradigm for developmental gene regulation. In this review, we provide an overview of both the embryonic primitive to definitive switch in haemoglobin expression, as well as the fetal to adult switch that is unique to humans and old world monkeys. We discuss the nature of these switches and models of their regulation. The factors that have been suggested to regulate this process are then discussed. With the increased understanding and discovery of molecular regulators of haemoglobin switching, such as BCL11A, new avenues of research may lead ultimately to novel therapeutic, mechanism-based approaches to fetal haemoglobin reactivation in patients.
Collapse
Affiliation(s)
- Vijay G Sankaran
- Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
9
|
Quadrini KJ, Gruzglin E, Bieker JJ. Non-random subcellular distribution of variant EKLF in erythroid cells. Exp Cell Res 2008; 314:1595-604. [PMID: 18329016 PMCID: PMC2358985 DOI: 10.1016/j.yexcr.2008.01.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/11/2008] [Accepted: 01/29/2008] [Indexed: 11/22/2022]
Abstract
EKLF protein plays a prominent role during erythroid development as a nuclear transcription factor. Not surprisingly, exogenous EKLF quickly localizes to the nucleus. However, using two different assays we have unexpectedly found that a substantial proportion of endogenous EKLF resides in the cytoplasm at steady state in all erythroid cells examined. While EKLF localization does not appear to change during either erythroid development or terminal differentiation, we find that the protein displays subtle yet distinct biochemical and functional differences depending on which subcellular compartment it is isolated from, with PEST sequences possibly playing a role in these differences. Localization is unaffected by inhibition of CRM1 activity and the two populations are not differentiated by stability. Heterokaryon assays demonstrate that EKLF is able to shuttle out of the nucleus although its nuclear re-entry is rapid. These studies suggest there is an unexplored role for EKLF in the cytoplasm that is separate from its well-characterized nuclear function.
Collapse
Affiliation(s)
- Karen J Quadrini
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
10
|
Manwani D, Galdass M, Bieker JJ. Altered regulation of beta-like globin genes by a redesigned erythroid transcription factor. Exp Hematol 2007; 35:39-47. [PMID: 17198872 PMCID: PMC1892846 DOI: 10.1016/j.exphem.2006.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 09/01/2006] [Accepted: 09/07/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Targeted regulation of beta-like globin genes was studied using designer zinc finger transcription factors containing the DNA binding domain of the red cell specific transcription factor erythroid Kruppel-like factor (EKLF) fused to repression domains. METHODS Globin gene expression was analyzed after introduction of the modified transcription factors into cell lines, embryonic stem cells and transgenic mice. RESULTS As would be predicted, when introduced transiently into cells these transcription factors were effective in repressing the adult beta-globin promoter CACCC element, which is the natural target for EKLF. In murine erythroleukemia cells repression of the adult beta-globin gene was accompanied by a reactivation of the endogenous embryonic betaH1-globin gene. Studies in differentiated embryonic stem cells and transgenic mice confirmed the reactivation of embryonic gene expression during development. CONCLUSION Our studies support a competition model for beta-globin gene expression and underscore the importance of EKLF in the embryonic/fetal-to-adult globin switch. They also demonstrate the feasibility of designer zinc finger transcription factors in the study of transcriptional control mechanisms at the beta-globin locus and as potential gene therapy agents for sickle cell disease and related hemoglobinopathies.
Collapse
Affiliation(s)
- Deepa Manwani
- Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
11
|
Hodge D, Coghill E, Keys J, Maguire T, Hartmann B, McDowall A, Weiss M, Grimmond S, Perkins A. A global role for EKLF in definitive and primitive erythropoiesis. Blood 2005; 107:3359-70. [PMID: 16380451 PMCID: PMC1895762 DOI: 10.1182/blood-2005-07-2888] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Erythroid Kruppel-like factor (EKLF, KLF1) plays an important role in definitive erythropoiesis and beta-globin gene regulation but failure to rectify lethal fetal anemia upon correction of globin chain imbalance suggested additional critical EKLF target genes. We employed expression profiling of EKLF-null fetal liver and EKLF-null erythroid cell lines containing an inducible EKLF-estrogen receptor (EKLF-ER) fusion construct to search for such targets. An overlapping list of EKLF-regulated genes from the 2 systems included alpha-hemoglobin stabilizing protein (AHSP), cytoskeletal proteins, hemesynthesis enzymes, transcription factors, and blood group antigens. One EKLF target gene, dematin, which encodes an erythrocyte cytoskeletal protein (band 4.9), contains several phylogenetically conserved consensus CACC motifs predicted to bind EKLF. Chromatin immunoprecipitation demonstrated in vivo EKLF occupancy at these sites and promoter reporter assays showed that EKLF activates gene transcription through these DNA elements. Furthermore, investigation of EKLF target genes in the yolk sac led to the discovery of unexpected additional defects in the embryonic red cell membrane and cytoskeleton. In short, EKLF regulates global erythroid gene expression that is critical for the development of primitive and definitive red cells.
Collapse
Affiliation(s)
- Denise Hodge
- Institute for Molecular Biosciences, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
In order to provide the appropriate level of oxygen transport to respiring tissues, we need to produce a molecular oxygen transporting system to supplement oxygen diffusion and solubility. This supplementation is provided by hemoglobin. The role of hemoglobin in providing oxygen transport from lung to tissues in the adult is well-documented and functional characteristics of the fetal hemoglobin, which provide placental oxygen exchange, are also well understood. However the characteristics of the three embryonic hemoglobins, which provide oxygen transport during the first three months of gestation, are not well recognized. This review seeks to describe the state of our understanding of the temporal control of the expression of these proteins and the oxygen binding characteristics of the individual protein molecules. The modulation of the oxygen binding properties of these proteins, by the various allosteric effectors, is described and the structural origins of these characteristics are probed.
Collapse
Affiliation(s)
- Thomas Brittain
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
13
|
Bulger M, Sawado T, Schübeler D, Groudine M. ChIPs of the beta-globin locus: unraveling gene regulation within an active domain. Curr Opin Genet Dev 2002; 12:170-7. [PMID: 11893490 DOI: 10.1016/s0959-437x(02)00283-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent studies of beta-globin gene expression have concentrated on the analysis of factor binding and chromatin structure within the endogenous locus. These studies have more precisely defined the extent and nature of the active chromosomal domain and the elements that organize it. Surprisingly, the beta-globin locus control region (LCR), although critical for high-level gene expression, plays little role in the overall architecture of the active locus. Analysis of the effects of targeted deletion of the beta-globin LCR, along with emerging knowledge of the behavior of the erythroid transcription factor NF-E2, leads to a new perspective on factor binding and LCR function.
Collapse
Affiliation(s)
- Michael Bulger
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|
14
|
Abstract
A partial understanding of the pathophysiology of sickle cell disease has suggested one means of treatment-increasing the distribution and concentration of fetal hemoglobin in sickle erythrocytes. Although this can be accomplished clinically with drugs like hydroxyurea, a complete understanding of the molecular and cellular basis of fetal hemoglobin regulation may suggest new and better ways of attaining this goal.
Collapse
Affiliation(s)
- M H Steinberg
- G.V. (Sonny) Montgomery Department of Veterans Affairs Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
15
|
Abstract
The erythroid cell-specific transcription factor erythroid Krüppel-like factor (EKLF) is an important activator of beta-globin gene expression. It achieves this by binding to the CACCC element at the beta-globin promoter via its zinc finger domain. The coactivators CBP and P300 interact with, acetylate, and enhance its activity, helping to explain its role as a transcription activator. Here we show that EKLF can also interact with the corepressors mSin3A and HDAC1 (histone deacetylase 1) through its zinc finger domain. When linked to a GAL4 DNA binding domain, full-length EKLF or its zinc finger domain alone can repress transcription in vivo. This repressive activity can be relieved by the HDAC inhibitor trichostatin A. Although recruitment of EKLF to a promoter is required to show repression, its zinc finger domain cannot bind directly to DNA and repress transcription simultaneously. In addition, the target promoter configuration is important for enabling EKLF to exhibit any repressive activity. These results suggest that EKLF may function in vivo as a transcription repressor and play a previously unsuspected additional role in regulating erythroid gene expression and differentiation.
Collapse
Affiliation(s)
- X Chen
- Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | |
Collapse
|
16
|
Pandya K, Donze D, Townes TM. Novel transactivation domain in erythroid Kruppel-like factor (EKLF). J Biol Chem 2001; 276:8239-43. [PMID: 11092887 DOI: 10.1074/jbc.m008457200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythroid Kruppel-like Factor (EKLF) is an erythroid-specific transcription factor that plays a critical role in gamma- to beta-globin gene switching during development. To identify essential domains required for EKLF transactivation function, we cotransfected a human erythroleukemia cell line (K562) with a locus control region gamma/Luc-beta/Cat reporter and an EKLF expression vector. In this assay EKLF mediates a 500-fold induction of beta/CAT expression compared with controls. To map essential transactivation domains, progressive NH(2)-terminal and internal deletion mutants of EKLF were constructed. All EKLF mutants were expressed at wild-type levels, localized to the nucleus, and bound DNA. When mutant EKLF proteins were tested for beta/CAT activation, a novel transactivation domain was identified. This novel domain, encompassing amino acids (aa) 140-358, is sufficient for maximal beta/CAT activation. An 85-amino acid subdomain within this region (aa 140-225) is essential for its activity. Interestingly, this central transactivation subdomain is functionally redundant with the amino-terminal domain (aa 1-139). Thus, EKLF possesses at least two potent transactivation domains that appear to function in a redundant manner.
Collapse
Affiliation(s)
- K Pandya
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
17
|
Tanimoto K, Liu Q, Grosveld F, Bungert J, Engel JD. Context-dependent EKLF responsiveness defines the developmental specificity of the human epsilon-globin gene in erythroid cells of YAC transgenic mice. Genes Dev 2000; 14:2778-94. [PMID: 11069894 PMCID: PMC317038 DOI: 10.1101/gad.822500] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We explored the mechanism of definitive-stage epsilon-globin transcriptional inactivity within a human beta-globin YAC expressed in transgenic mice. We focused on the globin CAC and CAAT promoter motifs, as previous laboratory and clinical studies indicated a pivotal role for these elements in globin gene activation. A high-affinity CAC-binding site for the erythroid krüppel-like factor (EKLF) was placed in the epsilon-globin promoter at a position corresponding to that in the adult beta-globin promoter, thereby simultaneously ablating a direct repeat (DR) element. This mutation led to EKLF-independent epsilon-globin transcription during definitive erythropoiesis. A second 4-bp substitution in the epsilon-globin CAAT sequence, which simultaneously disrupts a second DR element, further enhanced ectopic definitive erythroid activation of epsilon-globin transcription, which surprisingly became EKLF dependent. We finally examined factors in nuclear extracts prepared from embryonic or adult erythroid cells that bound these elements in vitro, and we identified a novel DR-binding protein (DRED) whose properties are consistent with those expected for a definitive-stage epsilon-globin repressor. We conclude that the suppression of epsilon-globin transcription during definitive erythropoiesis is mediated by the binding of a repressor that prevents EKLF from activating the epsilon-globin gene.
Collapse
Affiliation(s)
- K Tanimoto
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
The study of the beta globin gene has provided great insights into the mechanisms of gene regulation and expression. In this review, we consider the normal regulation and expression of the beta globin gene and illustrate how the various steps may be affected, providing a basis for understanding the molecular pathophysiology of beta thalassemia. Mutations causing beta thalassemia can be classified as beta0 or B+ according to whether they abolish or reduce the production of beta globin chains. The vast majority of beta thalassemia is caused by point mutations, mostly single base substitutions, within the gene or its immediate flanking sequences. Rarely, beta thalassemia is caused by major deletions of the beta globin cluster. All these mutations behave as alleles of the beta locus but in several families the beta thalassemia phenotype segregates independently of the beta globin complex, and are likely to be caused by mutations in trans-acting regulatory factors.
Collapse
Affiliation(s)
- P J Ho
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW Australia
| | | |
Collapse
|
19
|
Guy LG, Delvoye N, Wall L. Expression of a human beta-globin transgene in mice with the CACC motif and upstream sequences deleted from the promoter still depends on erythroid Krüppel-like factor. J Biol Chem 2000; 275:3675-80. [PMID: 10652365 DOI: 10.1074/jbc.275.5.3675] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mice in which the erythroid Krüppel-like Factor (EKLF) gene is inactivated die in fetal life due to down-regulation of the beta-globin gene. Results have suggested that EKLF functions through the proximal CACC motif of the beta-globin promoter. For example, natural mutations of this element that fail to bind EKLF give reduced gene expression and the ability of EKLF to activate reporter genes in co-transfection assays is dependent on an intact CACC. Here, removal of the CACC motif and upstream promoter sequences from the beta-globin gene resulted in reduced expression in transgenic mice. However, breeding onto an EKLF-/- background demonstrated that a CACC-less beta-globin transgene remains highly dependent on EKLF. Hence, although the beta-globin gene partly depends on the proximal CACC motif for expression, it is unlikely that the major mechanism of gene activation by EKLF is through this element. We also show that a lacZ reporter gene linked to the beta-globin promoter, with or without the CACC box present, is actually expressed higher in EKLF-/- fetuses than in wild type animals, suggesting that EKLF may be able to act as an inhibitor of transcription with certain transgene configurations.
Collapse
Affiliation(s)
- L G Guy
- Centre Hospitalier de l'Université de Montréal/Institut du Cancer de Montréal, Université de Montréal, Montreal, Quebec H2L 4M1, Canada
| | | | | |
Collapse
|
20
|
Gribnau J, Diderich K, Pruzina S, Calzolari R, Fraser P. Intergenic transcription and developmental remodeling of chromatin subdomains in the human beta-globin locus. Mol Cell 2000; 5:377-86. [PMID: 10882078 DOI: 10.1016/s1097-2765(00)80432-3] [Citation(s) in RCA: 284] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gene activation requires chromatin remodeling complexes, which hyperacetylate histones and enable factor access; however, the targeting mechanisms leading to the establishment and maintenance of large, hyperacetylated DNase-sensitive chromatin domains are unknown. Recent work has shown that histone acetyltransferases are associated with RNA-pol II complexes, suggesting that transcription of chromatin plays a role in chromatin modification. Here we show the human beta-globin locus is divided into three differentially activated chromatin subdomains. Large transcripts precisely delineate the active domains at key cell cycle points associated with chromatin transitions and remodeling. We identify an element that initiates these transcripts, located in a region required for chromatin activation. The results suggest that intergenic transcription is required for chromatin remodeling of chromosomal domains.
Collapse
Affiliation(s)
- J Gribnau
- Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- P J Ho
- Institute of Hematology, Royal Prince Alfred Hospital, Australia.
| |
Collapse
|
22
|
Abstract
Erythroid Kruppel like factor (EKLF) is the founding member of a family of transcription factors which are defined by the presence of three C-terminal C2H2-type zinc fingers. Since its discovery 6 years ago, the study of EKLF has been intense. In this review I will revisit the discovery of EKLF, and highlight recent advances in our understanding of how it interacts with other proteins to regulate erythroid gene transcription. The current knowledge of the biological role/s of EKLF in erythroid cell differentiation and globin gene switching are summarized.
Collapse
Affiliation(s)
- A Perkins
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
23
|
O'Neill D, Yang J, Erdjument-Bromage H, Bornschlegel K, Tempst P, Bank A. Tissue-specific and developmental stage-specific DNA binding by a mammalian SWI/SNF complex associated with human fetal-to-adult globin gene switching. Proc Natl Acad Sci U S A 1999; 96:349-54. [PMID: 9892636 PMCID: PMC15139 DOI: 10.1073/pnas.96.2.349] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SWI/SNF complexes in yeast and higher eukaryotes are thought to facilitate gene activation and transcription factor binding by disrupting repressive chromatin structures. Little is known, however, about how these complexes target specific genes for activation. We now have purified a specialized SWI/SNF-related complex (PYR complex) from murine erythroleukemia (MEL) cell nuclear extract that binds pyrimidine-rich elements at the human and murine beta-globin loci. PYR complex DNA-binding activity is restricted to definitive hematopoietic cells and is both DNA sequence- and length-dependent. Mass spectrometric identification of purified peptides and antibody supershift assays indicate that PYR complex contains at least four known mammalian SWI/SNF subunits: BAF57, INI1, BAF60a, and BAF170. PYR complex broadly footprints a 250-bp pyrimidine-rich element between the human fetal and adult beta-globin genes. A short intergenic deletion that removes this element from a human globin locus cosmid construct results in delayed human fetal-to-adult globin gene switching in transgenic mice. Taken together, the data suggest that PYR complex may act through this intergenic element to facilitate human fetal-to-adult globin gene switching, presumably by opening the locus in the region of the adult genes to permit the binding of beta-globin transcriptional activators.
Collapse
Affiliation(s)
- D O'Neill
- Department of Pathology, Columbia University College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|