1
|
Somay K, Albayrak Ö, Kızılırmak AB, Akan T, Üre ÜB, Akay OM, Ferhanoğlu B, Ateşoğlu EB. T cell subgroup analysis and T cell exhaustion after autologous stem cell transplantation in lymphoma patients. Transfus Apher Sci 2025; 64:104117. [PMID: 40222329 DOI: 10.1016/j.transci.2025.104117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Autologous stem cell transplantation (ASCT) is a common treatment option for relapsed/refractory (R/R) lymphomas and it is considered standard of care as primary consolidation therapy for some types of Non-Hodgkin Lymphomas (NHL). Although ASCT benefits patients by allowing cytoreduction with intensive chemotherapy and reconstituting with stem cells, the effects of immunological changes in T cell subgroups after ASCT are still poorly understood. OBJECTIVES We evaluated changes in frequencies of T cell subsets and T cells expressing some of the exhaustion markers (such as LAG-3 and PD-1) from peripheral blood samples before and after ASCT to investigate bone marrow reconstruction and whether exhaustion predicts relapse. STUDY DESIGN Blood samples were collected on the day before conditioning and at the 1st, 3rd, and 6th months post-ASCT. Flow cytometry analysis was conducted to examine T cell subgroup composition and exhaustion markers, including PD-1 and LAG-3. Additionally, functional analysis was performed using assays for IFN-g and TNF-a production. Furthermore, a CSFE proliferation assay was utilized to assess proliferation capacity. RESULTS In our data set, dominant cells post-transplantation were memory cells, as the naïve cell population did not recover for 6 months. Both single and combined expressions of LAG-3 and PD-1 were found to be high before transplantation, and decreased after transplantation. However, LAG-3 and PD-1 expression increased in the 3rd and 6th month after transplantation respectively. These changes were more evident for the relapsed patients when compared to non-relapsed patients within 3 months follow-up time. Notably, the expression of inhibitory receptors in the relapsed patients was significantly higher at the first month post-transplantation. CD107a+ cytotoxic T lymphocytes (CTL), IFN-g+, TNF-a.+ CTL and T helper lymphocyte (THL) populations significantly decreased in relapsed patients 3rd month after transplantation. Decreased proliferation capacities of CTLs and THLs were also observed in these patients. CONCLUSION These results suggest that increased surface PD-1 and LAG-3 expressions along with functional decline after 3 months of ASCT can be used as prognostic data about the relapse status of transplant patients.
Collapse
Affiliation(s)
- Kayra Somay
- Department of Internal Medicine, Koç University Hospital, Istanbul, Turkey
| | - Özgür Albayrak
- Koç University Research Center for Translational Medicine (KUTTAM) Koç University Hospital, Istanbul, Turkey.
| | - Ali Burak Kızılırmak
- Koç University Research Center for Translational Medicine (KUTTAM) Koç University Hospital, Istanbul, Turkey.
| | - Tuba Akan
- Department of Hematology, Koç University Hospital, Istanbul, Turkey.
| | - Ümit Barbaros Üre
- Department of Hematology, Koç University Hospital, Istanbul, Turkey.
| | - Olga Meltem Akay
- Department of Hematology, Koç University Hospital, Istanbul, Turkey.
| | | | | |
Collapse
|
2
|
Jarczak J, Bujko K, Brzeźniakiewicz-Janus K, Ratajczak M, Kucia M. Next-generation sequencing protocol of hematopoietic stem cells (HSCs). Step-by-step overview and troubleshooting guide. PLoS One 2025; 20:e0313009. [PMID: 39787063 PMCID: PMC11717189 DOI: 10.1371/journal.pone.0313009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/16/2024] [Indexed: 01/12/2025] Open
Abstract
Populations of very small embryonic-like stem cells (VSELs) (CD34+lin-CD45- and CD133+lin-CD45-), circulating in the peripheral blood of adults in small numbers, have been identified in several human tissues and together with the populations of hematopoietic stem cells (HSCs) (CD34+lin-CD45+) and CD133+lin-CD45+constitute a pool of cells with self-renewal and pluripotent stem cell characteristics. Using advanced cell staining and sorting strategies, we isolated populations of VSELs and HSCs for bulk RNA-Seq analysis to compare the transcriptomic profiles of both cell populations. Libraries were prepared from an extremely small number of cells; however, their good quality was preserved, and they met the criteria for sequencing. We present here a step-by-step NGS protocol for sequencing VSELs and HSC with a description of troubleshooting during library preparation and sequencing.
Collapse
Affiliation(s)
- Justyna Jarczak
- Laboratory of Regenerative Medicine at Medical University of Warsaw, Warsaw, Poland
| | - Kamila Bujko
- Laboratory of Regenerative Medicine at Medical University of Warsaw, Warsaw, Poland
| | | | - Mariusz Ratajczak
- Stem Cell Institute at Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States of America
| | - Magdalena Kucia
- Laboratory of Regenerative Medicine at Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Mohanraj L, Carter C, Liu J, Swift-Scanlan T. MicroRNA Profiles in Hematopoietic Stem Cell Transplant Recipients. Biol Res Nurs 2024; 26:559-568. [PMID: 38819871 DOI: 10.1177/10998004241257847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Background: Hematopoietic Stem Cell Transplant (HCT) is a potentially curative treatment for hematologic malignancies, including multiple myeloma. Biomarker investigation can guide identification of HCT recipients at-risk for poor outcomes. MicroRNAs (miRNAs) are a class of non-coding RNAs involved in the modulation and regulation of pathological processes and are emerging as prognostic and predictive biomarkers for multiple health conditions. This pilot study aimed to examine miRNA profiles associated with HCT-related risk factors and outcomes in patients undergoing autologous HCT. Methods: Patients eligible for autologous HCT were recruited and blood samples and HCT-related variables were collected. Differential expression analysis of miRNA was conducted on 24 patient samples to compare changes in miRNA profile in HCT eligible patients before and after transplant. Results: Unsupervised clustering of differentially expressed (p < .05) miRNAs pre- and post- HCT identified clusters of up- and down-regulated miRNAs. Four miRNAs (miR-125a-5p, miR-99b-5p, miR-382-5p, miR-145-5p) involved in hematopoiesis (differentiation of progenitor cells, granulocyte function, thrombopoiesis, and tumor suppression) were significantly downregulated post-HCT. Correlation analyses identified select miRNAs associated with risk factors (such as frailty, fatigue, cognitive decline) and quality of life pre- and post-HCT. Select miRNAs were correlated with platelet engraftment. Conclusion: Future studies should examine miRNA signatures in larger cohorts in association with HCT outcomes; and expand investigations in patients receiving allogeneic transplants. This will lead to identification of biomarkers for risk stratification of HCT recipients.
Collapse
Affiliation(s)
- Lathika Mohanraj
- Department of Adult Health and Nursing Systems, School of Nursing, Virginia Commonwealth University, Richmond, VA, USA
| | - Christiane Carter
- Bioinformatics Shared Resource, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jinze Liu
- Department of Biostatistics, School of Population Health, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
4
|
Satirer Ö, Henes JC, Döring M, Lesk T, Benseler S, Kuemmerle-Deschner JB. Autologous haematopoiesis stem cell transplantation (AHSCT) for treatment-refractory autoimmune diseases in children. RMD Open 2024; 10:e004381. [PMID: 39004431 PMCID: PMC11253738 DOI: 10.1136/rmdopen-2024-004381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
OBJECTIVES To evaluate the long-term effectiveness and safety of autologous haematopoiesis stem cell transplantation (AHSCT) for severe, refractory autoimmune diseases in paediatric patients. METHODS A single-centre study of consecutive children and adolescents with refractory autoimmune diseases undergoing AHSCT was performed. Demographics, clinical, laboratory features, pre-AHSCT medications, disease activity and functional status were captured. The primary outcome was progression-free survival, secondary outcomes included overall survival, disease-specific treatment responses, disease activity at the last follow-up and AHSCT safety. RESULTS The study included seven patients: two systemic sclerosis, one pansclerotic morphoea, one eosinophilic fasciitis, one juvenile dermatomyositis and two patients with systemic juvenile idiopathic arthritis; four women, three men median age at AHSCT of 10 years (7-19), median follow-up post-AHSCT of 17 years. Median progression-free survival and overall survival was 4.2 years (95% CI: 0.98 to 8.3) and 17 years (95% CI: 11.8 to 22.1), respectively. Progression-free survival rates at 1 and 2 years post-AHSCT were 100% and 77%, respectively. All children survived. All patients are in clinical remission, only four require ongoing immunotherapy. SAFETY Three experienced infections, including HHV6, Candida and Ralstonia sepsis; one developed a systemic inflammatory response syndrome; two new onset secondary autoimmune diseases including autoimmune haemolytic anaemia, Graves' disease and one was found to have a breast fibroadenoma. Treatment toxicity: one cyclophosphamide-associated transient renal failure and pericardial effusion, one patient with amenorrhoea/infertility. CONCLUSIONS AHSCT was an effective and safe approach for children and adolescents with treatment-refractory autoimmune diseases. The indication and timing of transplantation requires a careful consideration and a multidisciplinary approach.
Collapse
Affiliation(s)
- Özlem Satirer
- Department of Paediatrics and Autoinflammation reference Center Tuebingen (arcT), Universitatsklinikum Tubingen, Tubingen, Baden-Württemberg, Germany
| | - Joerg C Henes
- Centre for Interdisciplinary Clinical Immunology, Rheumatology and Auto-inflammatory Diseases and Department of Internal Medicine II (Oncology, Haematology, Immunology and Rheumatology), Universitatsklinikum Tubingen, Tubingen, Baden-Württemberg, Germany
| | - Michaela Döring
- Pediatric Hematology &Oncology, University of Tübingen, Tubingen, Baden-Württemberg, Germany
| | - Till Lesk
- Universitatsklinikum Tubingen, Tubingen, Baden-Württemberg, Germany
| | - Susanne Benseler
- Rheumatology, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Children's Health Ireland, Dublin, Dublin, Ireland
| | - Jasmin Beate Kuemmerle-Deschner
- Department of Paediatrics and Autoinflammation reference Center Tuebingen (arcT), Universitatsklinikum Tubingen, Tubingen, Baden-Württemberg, Germany
| |
Collapse
|
5
|
Parra-Ortega I, Nájera-Martínez N, Gaytán-Morales F, Castorena-Villa I, López-Martínez B, Ortiz-Navarrete V, Olvera-Gómez I. Enrichment of effector memory T cells in the CD4 and CD8 T cell compartment during chronic graft versus host disease in children. Transpl Immunol 2023; 81:101951. [PMID: 37939887 DOI: 10.1016/j.trim.2023.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND During allogeneic Hematopoietic stem cell transplantation (HSCT), frequent pathological scenarios include graft versus host disease (GVHD) and viral infections. We hypothesized if exogenous stimulus as alloantigen and viral antigens might impact on central and effector memory T cells in pediatric recipients. PATIENTS AND METHODS Subjects included 21 pediatric recipients and 20 healthy children (control group). Peripheral blood samples of patients were collected along the first 712 days post-HSCT. T cell phenotyping of naïve, central, and effector memory T cells (TCMs and TEMs, respectively) was conducted using flow cytometry. Viral nucleic acids were detected using real-time PCR. RESULTS T cell reconstitution was not reached after 1 year post-HSCT. Chronic GVHD was associated with increased numbers of naïve CD4 T cells (p < 0.05) as well as an increase in TEM and TCM cells of the CD4 (p < 0.0001 and p < 0.05, respectively) and CD8 T cell TEM (p < 0.0001). and TCM (p < 0.001) populations too. Moreover, BK and Epstein-Barr viruses were the main viral pathogens detected (<104 copies), which were associated with a decrease in all T cell compartments. CONCLUSION During chronic GVHD, alloantigen persistence generates TEM cell enrichment among CD4 and CD8 T cells, and viral infections are associated with deficient recovery of T cells after HSCT.
Collapse
Affiliation(s)
- Israel Parra-Ortega
- Hospital Infantil de México Federico Gómez, Clinical Laboratory Department, Mexico City, Mexico
| | - Noemí Nájera-Martínez
- Hospital Infantil de México Federico Gómez, Clinical Laboratory Department, Mexico City, Mexico
| | - Félix Gaytán-Morales
- Hospital Infantil de México Federico Gómez, Hematopoietic Stem Cell Transplantation Unit, Mexico City, Mexico
| | - Iván Castorena-Villa
- Hospital Infantil de México Federico Gómez, Hematopoietic Stem Cell Transplantation Unit, Mexico City, Mexico
| | - Briceida López-Martínez
- Hospital Infantil de México Federico Gómez, Sub-directorate of Auxilliary Services and Diagnosis, Mexico City, Mexico
| | | | - Irlanda Olvera-Gómez
- CICSA, Universidad Anáhuac, State of Mexico, Mexico; Immunology Laboratory, Hospital Nacional Homeopático, Mexico City, Mexico.
| |
Collapse
|
6
|
Louie RHY, Cai C, Samir J, Singh M, Deveson IW, Ferguson JM, Amos TG, McGuire HM, Gowrishankar K, Adikari T, Balderas R, Bonomi M, Ruella M, Bishop D, Gottlieb D, Blyth E, Micklethwaite K, Luciani F. CAR + and CAR - T cells share a differentiation trajectory into an NK-like subset after CD19 CAR T cell infusion in patients with B cell malignancies. Nat Commun 2023; 14:7767. [PMID: 38012187 PMCID: PMC10682404 DOI: 10.1038/s41467-023-43656-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy is effective in treating B cell malignancies, but factors influencing the persistence of functional CAR+ T cells, such as product composition, patients' lymphodepletion, and immune reconstitution, are not well understood. To shed light on this issue, here we conduct a single-cell multi-omics analysis of transcriptional, clonal, and phenotypic profiles from pre- to 1-month post-infusion of CAR+ and CAR- T cells from patients from a CARTELL study (ACTRN12617001579381) who received a donor-derived 4-1BB CAR product targeting CD19. Following infusion, CAR+ T cells and CAR- T cells shows similar differentiation profiles with clonally expanded populations across heterogeneous phenotypes, demonstrating clonal lineages and phenotypic plasticity. We validate these findings in 31 patients with large B cell lymphoma treated with CD19 CAR T therapy. For these patients, we identify using longitudinal mass-cytometry data an association between NK-like subsets and clinical outcomes at 6 months with both CAR+ and CAR- T cells. These results suggest that non-CAR-derived signals can provide information about patients' immune recovery and be used as correlate of clinically relevant parameters.
Collapse
Affiliation(s)
- Raymond Hall Yip Louie
- School of Computer Science and Engineering, UNSW Sydney, Sydney, NSW, Australia
- Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, NSW, Australia
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Curtis Cai
- Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, NSW, Australia
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Jerome Samir
- Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, NSW, Australia
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Mandeep Singh
- Garvan Institute for Medical Research, Sydney, NSW, Australia
| | - Ira W Deveson
- Garvan Institute for Medical Research, Sydney, NSW, Australia
| | | | - Timothy G Amos
- Garvan Institute for Medical Research, Sydney, NSW, Australia
| | - Helen Marie McGuire
- Ramaciotti Facility for Human Systems Biology, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Infection, Immunity and Inflammation Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Kavitha Gowrishankar
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Thiruni Adikari
- Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, NSW, Australia
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | | | - Martina Bonomi
- Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, NSW, Australia
- Department of Physics, University of Bologna, Bologna, Italy
| | - Marco Ruella
- Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - David Bishop
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - David Gottlieb
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Emily Blyth
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Kenneth Micklethwaite
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- NSW Health Pathology Blood Transplant and Cell Therapies Laboratory - ICPMR Westmead, Sydney, NSW, Australia
| | - Fabio Luciani
- Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, NSW, Australia.
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia.
- Garvan Institute for Medical Research, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Makos OL, D'Angelo CR. The shifting roles and toxicities of cellular therapies in B-cell malignancies. Transpl Infect Dis 2023; 25 Suppl 1:e14145. [PMID: 37676749 DOI: 10.1111/tid.14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
Cellular therapies provide a curative-intent option for patients with relapsedand refractory lymphomas. Current options including high dose chemotherapyfollowed by autologous or allogeneic hematopoietic stem cell transplantation or CD19 chimericantigen receptor T-cell (CART) therapy. The indication varies according to lymphoma sub-type and line oftherapy. The sequencing of these therapies and their use in second-line orlater settings to manage these diseases is undergoing significant changes, withCD19 CAR T becoming a preferred option for relapsed aggressive B-cell lymphoma.The mechanism of both therapies causes significant yet distinctlymphodepletion, infectious, and inflammatory toxicities. The resulting patternand timing of immune reconstitution helps guide risk-mitigating strategies,revaccination, and infectious prophylaxis. In this review, we discuss theindication, efficacy, toxicity and immune reconstitution of autologoushematopoietic stem cell transplantation and CAR T therapy for use in thetreatment of lymphoma.
Collapse
Affiliation(s)
- Olivia L Makos
- Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Christopher R D'Angelo
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
8
|
Farrugia D, Sultana E, Babic D, Grech M. Iatrogenic Kaposi's sarcoma from induction therapy for myeloma: to transplant or not to transplant? BMJ Case Rep 2023; 16:16/6/e251044. [PMID: 37263679 DOI: 10.1136/bcr-2022-251044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
We present the case of an HIV-negative man in his 50s who developed a generalised nodular rash while having first-line bortezomib-cyclophosphamide-dexamethasone chemotherapy for multiple myeloma. The rash was biopsied and proven to be Kaposi's sarcoma. The patient's treatment was interrupted at the sixth cycle of chemotherapy, by which time the rash had also spread to the oral mucosa and eyelid. The rash regressed spontaneously on stopping treatment. We were reluctant to restart myeloma treatment, but on the other hand, we wished to consolidate the very good partial response achieved. An autologous marrow transplant was done months later without any recurrence of his Kaposi's with the initiation of bortezomib maintenance. Bortezomib has putative activity against Kaposi's. The patient could benefit from imid-based (thalidomide, lenalidomide, pomalidomide) combination chemotherapy once his myeloma progresses or if there is a recurrence of Kaposi's sarcoma.
Collapse
Affiliation(s)
| | | | - Darko Babic
- Histopathology, Mater Dei Hospital, Msida, Malta
| | - Mark Grech
- Haematology, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
9
|
Diep J, Potter D, Mai J, Hsu D. Atypical haemolytic uremic syndrome with refractory multiorgan involvement and heterozygous CFHR1/CFHR3 gene deletion. BMC Nephrol 2023; 24:127. [PMID: 37147581 PMCID: PMC10161558 DOI: 10.1186/s12882-023-03153-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 03/28/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND We present this challenging case report of Atypical Haemolytic Uremic Syndrome (aHUS) presenting with multi-organ involvement in a patient and heterozygous CFHR1/CFHR3 gene variant, which was refractory to initial eculizumab therapy. CASE PRESENTATION A forty-three year old female presented with aHUS and had heterozygous disease-associated deletions in the complement genes CFHR1/CFHR3. She had progressive kidney failure and severe extra-renal manifestations including cardiomyopathy and haemorrhagic cystitis; as well as pulmonary, gastrointestinal and neurological involvement. The initial kidney biopsy revealed thrombotic microangiopathy (TMA) changes involving all glomeruli. Clinical improvement was initially seen during eculizumab initiation with suppressed CH50 level, but a new rhinovirus/enterovirus upper respiratory tract infection triggered further severe multi-organ disease activity. The extra-renal manifestations stabilised, then ultimately improved after a period of eculizumab dose intensification. However, the impact on dose intensification on this improvement is unclear. Despite the extra-renal clinical improvement, she ultimately progressed to end-stage kidney disease (ESKD), commencing peritoneal dialysis for three years before undergoing a successful uncomplicated cadaveric kidney transplant without prophylactic eculizumab. Two years after transplant, she has excellent transplant graft function without any further disease recurrence. CONCLUSIONS This case highlights the concept of extra-renal manifestations in aHUS initially resistant to eculizumab, which potentially responded to dose intensification. Whilst organ injuries are potentially reversible with timely targeted treatment, it appears that the kidneys are most vulnerable to injury.
Collapse
Affiliation(s)
- Jason Diep
- Department of Renal Medicine, Liverpool Hospital, Locked Bag 7103, Liverpool, BC NSW 1871, Australia.
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia.
| | - Daniela Potter
- Department of Renal Medicine, Liverpool Hospital, Locked Bag 7103, Liverpool, BC NSW 1871, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Jun Mai
- Department of Renal Medicine, Liverpool Hospital, Locked Bag 7103, Liverpool, BC NSW 1871, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Danny Hsu
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Haematology, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
10
|
Kim DJ, Jeong S, Kong SG, Lee S, Lim SN, Oh SY, Do YR, Lee WS, Lee MH, Bae SH, Kim SH, Kim MK, Lee HS. Incidence and risk factors of opportunistic infections after autologous stem cell transplantation: a nationwide, population-based cohort study in Korea. Sci Rep 2023; 13:2551. [PMID: 36781859 PMCID: PMC9925816 DOI: 10.1038/s41598-023-27465-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 01/02/2023] [Indexed: 02/15/2023] Open
Abstract
Several guidelines classify autologous stem cell transplantation (ASCT) as a low to intermediate risk group for infection. In a nationwide population-based study, using the Korean Health Insurance Review and Assessment Service database, patients with lymphoma and multiple myeloma (MM) who underwent ASCT from 2002 to 2016 were retrospectively analyzed. Cumulative incidence rates (CIRs) and risk factors of opportunistic infections were investigated. CIRs of fungal, Varicella zoster virus (VZV), cytomegalovirus (CMV), and Pneumocystis jirovecii infections in lymphoma were 7.9%, 16.0%, 7.4%, and 5.1%, respectively, and CIRs in MM were 6.3%, 19.1%, 4.2%, and 5.6%, respectively. Fungal infection was significantly higher in patients with previous infection (Hazard ratio (HR) 2.003, p = 0.005) in lymphoma. Incidence of CMV infection was significantly higher in patients with prior CMV infection: HR 4.920, p < 0.001 (lymphoma); HR 3.022, p = 0.030 (MM). VZV infection was significantly lower in patients receiving prophylaxis: HR 0.082, p < 0.001 (lymphoma); HR 0.096, p < 0.001 (MM). For P. jirovecii infection, busulfex and melphalan conditioning (HR 1.875, p = 0.032) and previous P. jirovecii infection (HR 4.810, p < 0.001) had a higher incidence in MM. Patients who underwent ASCT should receive VZV prophylaxis and prophylaxis for fungal and P. jirovecii may be considered in patients with previous same infection.
Collapse
Affiliation(s)
- Da Jung Kim
- Department of Internal Medicine, Kosin University College of Medicine, 34 Amnam-Dong, Seo-Gu, Busan, 49267, South Korea
| | - Seri Jeong
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, 07441, South Korea
| | - Seom Gim Kong
- Department of Pediatrics, Kosin University College of Medicine, Busan, 49267, Korea
| | - Sangjin Lee
- Graduate School, Department of Statistics, Pusan National University, Busan, 46241, Korea
| | - Sung-Nam Lim
- Department of Internal Medicine, Haeundae Paik Hospital, College of Medicine Inje University, Busan, 48108, Korea
| | - Sung Yong Oh
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, 49201, Korea
| | - Young Rok Do
- Division of Hematology-Oncology, Department of Medicine, Dongsan Medical Center, Keimyung University, Daegu, 41931, Korea
| | - Won Sik Lee
- Department of Internal Medicine, Busan Paik Hospital, College of Medicine Inje University, Busan, 47392, South Korea
| | - Mark Hong Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, 05030, South Korea
| | - Sung Hwa Bae
- Department of Internal Medicine, Daegu Catholic University Medical Center, Daegu, 42472, South Korea
| | - Se Hyung Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, South Korea
| | - Min Kyoung Kim
- Department of Hematology-Oncology, Yeungnam University Medical Center, Yeungnam University School of Medicine, Daegu, 42415, South Korea
| | - Ho Sup Lee
- Department of Internal Medicine, Kosin University College of Medicine, 34 Amnam-Dong, Seo-Gu, Busan, 49267, South Korea.
| | | |
Collapse
|
11
|
Porrata LF. Natural Killer Cells Are Key Host Immune Effector Cells Affecting Survival in Autologous Peripheral Blood Hematopoietic Stem Cell Transplantation. Cells 2022; 11:3469. [PMID: 36359863 PMCID: PMC9657161 DOI: 10.3390/cells11213469] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The infusion of autograft immune effector cells directly impacts the clinical outcomes of patients treated with autologous peripheral blood hematopoietic stem cell transplantation, suggesting the possibility of an autologous graft-versus tumor cells. Furthermore, the early recovery of immune effector cells also affects survival post-autologous peripheral blood hematopoietic stem cell transplantation. Natural killer cells are among the immune effector cells reported to be collected, infused, and recovered early post-autologous peripheral blood hematopoietic stem cell transplantation. In this review, I attempt to give an update on the role of natural killer cells regarding improving survival outcomes on patients treated with autologous peripheral blood hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Luis F Porrata
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
12
|
Saidakova EV. Lymphopenia and Mechanisms of T-Cell Regeneration. CELL AND TISSUE BIOLOGY 2022; 16:302-311. [PMID: 35967247 PMCID: PMC9358362 DOI: 10.1134/s1990519x2204006x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
Abstract
Chronic lymphopenia, in particular, T-lymphocyte deficiency, increases the risk of death from cancer, cardiovascular and respiratory diseases and serves as a risk factor for a severe course and poor outcome of infectious diseases such as COVID-19. The regeneration of T-lymphocytes is a complex multilevel process, many questions of which still remain unanswered. The present review considers two main pathways of increasing the T-cell number in lymphopenia: production in the thymus and homeostatic proliferation in the periphery. Literature data on the signals that regulate each pathway are summarized. Their contribution to the quantitative and qualitative restoration of the immune cell pool is analyzed. The features of CD4+ and CD8+ T-lymphocytes’ regeneration are considered.
Collapse
Affiliation(s)
- E. V. Saidakova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences—Branch of Perm Federal Research Center, Ural Branch, Russian Academy of Sciences, 614081 Perm, Russia
| |
Collapse
|
13
|
Keruakous AR, Asch A, Aljumaily R, Zhao D, Yuen C. Prognostic impact of natural killer cell recovery on minimal residual disease after autologous stem cell transplantation in multiple myeloma. Transpl Immunol 2022; 71:101544. [PMID: 35093506 PMCID: PMC10434759 DOI: 10.1016/j.trim.2022.101544] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Natural killer cells are a potent effector lymphocyte subset that can induce cytotoxicity without the need for antigen sensitization or presentation. NK cells are a tempting target -for immune therapy, monoclonal antibody, or genetic engineering-to enhance immune surveillance mechanisms against myeloma cells. MATERIALS AND METHODS We hypothesized an association between natural killer cell recovery after autologous stem cell transplantation (ASCT) and disease outcomes in multiple myeloma patients. We concluded a prospective study that started enrolling patients in January 2020 to identify the association between absolute NK cell count two to three after ASCT and disease outcomes after autologous stem cell transplantation in multiple myeloma using univariate and multivariate analysis. RESULTS Natural killer cell recovery was evaluated during the third month after ASCT, day +60 to +90 post-ASCT. Our patients had a mean NK cell count of 90.53, ranging from 14 to 282 Cell/μL (Std Dev 84.64 Cell/μL). The odds of having a minimal residual disease (MRD-positivity) among patients with partial remission before transplantation is four times higher than patients with very good partial response or better (95% confidence interval 0.45-35.79). Our patients were classified into two groups based on MRD status after ASCT, an MRD-negative group of eight participants and an MRD-positive group of seven participants. The mean absolute NK cell count was significantly higher in the MRD-negative cohort, 131.38 Cell/μL, versus 43.86 Cell/μL in the MRD-positive group (p = 0.049). CONCLUSION We conclude that for multiple myeloma patients treated with ASCT, high absolute NK cell counts two to three months after ASCT is an independent predictor for MRD negativity.
Collapse
Affiliation(s)
- Amany R Keruakous
- Georgia Cancer Center at Augusta University, Augusta, GA, United States of America.
| | - Adam Asch
- Department of Hematology/Oncology, University of Oklahoma, Oklahoma City, OK, United States of America
| | - Raid Aljumaily
- Department of Hematology/Oncology, University of Oklahoma, Oklahoma City, OK, United States of America
| | - Daniel Zhao
- Department of Biostatistics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Carrie Yuen
- Department of Hematology/Oncology, University of Oklahoma, Oklahoma City, OK, United States of America
| |
Collapse
|
14
|
de Koning C, Tao W, Lacna A, van Veghel K, Horwitz ME, Sanz G, Jagasia MH, Wagner JE, Stiff PJ, Hanna R, Cilloni D, Valcárcel D, Peled T, Galamidi Cohen E, Goshen U, Pandit A, Lindemans CA, Jan Boelens J, Nierkens S. Lymphoid and myeloid immune cell reconstitution after nicotinamide-expanded cord blood transplantation. Bone Marrow Transplant 2021; 56:2826-2833. [PMID: 34312498 PMCID: PMC8563413 DOI: 10.1038/s41409-021-01417-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Omidubicel (nicotinamide-expanded cord blood) is a potential alternative source for allogeneic hematopoietic cell transplantation (HCT) when an HLA-identical donor is lacking. A phase I/II trial with standalone omidubicel HCT showed rapid and robust neutrophil and platelet engraftment. In this study, we evaluated the immune reconstitution (IR) of patients receiving omidubicel grafts during the first 6 months post-transplant, as IR is critical for favorable outcomes of the procedure. Data was collected from the omidubicel phase I-II international, multicenter trial. The primary endpoint was the probability of achieving adequate CD4+ T-cell IR (CD4IR: > 50 × 106/L within 100 days). Secondary endpoints were the recovery of T-cells, natural killer (NK)-cells, B-cells, dendritic cells (DC), and monocytes as determined with multicolor flow cytometry. LOESS-regression curves and cumulative incidence plots were used for data description. Thirty-six omidubicel recipients (median 44; 13-63 years) were included, and IR data was available from 28 recipients. Of these patients, 90% achieved adequate CD4IR. Overall, IR was complete and consisted of T-cell, monocyte, DC, and notably fast NK- and B-cell reconstitution, compared to conventional grafts. Our data show that transplantation of adolescent and adult patients with omidubicel results in full and broad IR, which is comparable with IR after HCT with conventional graft sources.
Collapse
Affiliation(s)
- Coco de Koning
- University Medical Center Utrecht, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Weiyang Tao
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Amelia Lacna
- University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Guillermo Sanz
- Hospital Universitario y Politécnico la Fe, València, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | - Caroline A Lindemans
- University Medical Center Utrecht, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jaap Jan Boelens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stefan Nierkens
- University Medical Center Utrecht, Utrecht, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
15
|
Immune control of cytomegalovirus reactivation in stem cell transplantation. Blood 2021; 139:1277-1288. [PMID: 34166512 DOI: 10.1182/blood.2020010028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/22/2021] [Indexed: 11/20/2022] Open
Abstract
The reactivation of viruses from latency after allogeneic stem cell transplantation (SCT) continues to represent a major clinical challenge requiring sophisticated monitoring strategies in the context of prophylactic and/or pre-emptive antiviral drugs that are associated with significant expense, toxicity, and rates of failure. Accumulating evidence has demonstrated the association of polyfunctional virus-specific T-cells with protection from viral reactivation, affirmed by the ability of adoptively transferred virus-specific T-cells to prevent and treat reactivation and disease. The roles of innate cells (NK cells) in early viral surveillance, and dendritic cells in priming of T-cells have also been delineated. Most recently, a role for strain-specific humoral responses in preventing early cytomegalovirus (CMV) reactivation has been demonstrated in preclinical models. Despite these advances, many unknowns remain: what are the critical innate and adaptive responses over time, is the origin (e.g. recipient versus donor) and localization (e.g. in parenchymal tissue versus lymphoid organs) of these responses important, how does GVHD and the prevention/treatment thereof (e.g. high dose steroids) impact the functionality and relevance of a particular immune axis, do the immune parameters that control latency, reactivation and dissemination differ, and what is the impact of new antiviral drugs on the development of enduring antiviral immunity. Thus, whilst antiviral drugs have provided major improvements over the last two decades, understanding the immunological paradigms underpinning protective antiviral immunity after SCT offers the potential to generate non-toxic immune-based therapeutic approaches for lasting protection from viral reactivation.
Collapse
|
16
|
Minnie SA, Hill GR. Autologous Stem Cell Transplantation for Myeloma: Cytoreduction or an Immunotherapy? Front Immunol 2021; 12:651288. [PMID: 33777050 PMCID: PMC7994609 DOI: 10.3389/fimmu.2021.651288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/19/2021] [Indexed: 12/22/2022] Open
Abstract
The incidence of multiple myeloma (MM), a bone marrow (BM) resident hematological malignancy, is increasing globally. The disease has substantial morbidity and mortality and remains largely incurable. Clinical studies show that autologous stem cell transplantation (ASCT) remains efficacious in eligible patients, providing a progression free survival (PFS) benefit beyond novel therapies alone. Conventionally, improved PFS after ASCT is attributed to cytoreduction from myeloablative chemotherapy. However, ASCT results in immune effects beyond cytoreduction, including inflammation, lymphodepletion, T cell priming via immunogenic cell death, and disruption of the tumor BM microenvironment. In fact, a small subset of patients achieve very long-term control of disease post-ASCT, akin to that seen in the context of immune-mediated graft-vs.-myeloma effects after allogeneic SCT. These clinical observations coupled with recent definitive studies in mice demonstrating that progression after ASCT represents immune escape as a consequence of T cell exhaustion, highlight the potential for new immunotherapy maintenance strategies to prevent myeloma progression following consolidation with ASCT.
Collapse
Affiliation(s)
- Simone A Minnie
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Division of Medical Oncology, University of Washington, Seattle, WA, United States
| |
Collapse
|
17
|
Cardozo-Ojeda EF, Duke ER, Peterson CW, Reeves DB, Mayer BT, Kiem HP, Schiffer JT. Thresholds for post-rebound SHIV control after CCR5 gene-edited autologous hematopoietic cell transplantation. eLife 2021; 10:e57646. [PMID: 33432929 PMCID: PMC7803377 DOI: 10.7554/elife.57646] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 12/27/2020] [Indexed: 01/10/2023] Open
Abstract
Autologous, CCR5 gene-edited hematopoietic stem and progenitor cell (HSPC) transplantation is a promising strategy for achieving HIV remission. However, only a fraction of HSPCs can be edited ex vivo to provide protection against infection. To project the thresholds of CCR5-edition necessary for HIV remission, we developed a mathematical model that recapitulates blood T cell reconstitution and plasma simian-HIV (SHIV) dynamics from SHIV-1157ipd3N4-infected pig-tailed macaques that underwent autologous transplantation with CCR5 gene editing. The model predicts that viral control can be obtained following analytical treatment interruption (ATI) when: (1) transplanted HSPCs are at least fivefold higher than residual endogenous HSPCs after total body irradiation and (2) the fraction of protected HSPCs in the transplant achieves a threshold (76-94%) sufficient to overcome transplantation-dependent loss of SHIV immunity. Under these conditions, if ATI is withheld until transplanted gene-modified cells engraft and reconstitute to a steady state, spontaneous viral control is projected to occur.
Collapse
Affiliation(s)
| | - Elizabeth R Duke
- Vaccine and Infectious Disease Division, University of WashingtonSeattleUnited States
- Department of Medicine, University of WashingtonSeattleUnited States
| | - Christopher W Peterson
- Department of Medicine, University of WashingtonSeattleUnited States
- Clinical Research Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Daniel B Reeves
- Vaccine and Infectious Disease Division, University of WashingtonSeattleUnited States
| | - Bryan T Mayer
- Vaccine and Infectious Disease Division, University of WashingtonSeattleUnited States
| | - Hans-Peter Kiem
- Department of Medicine, University of WashingtonSeattleUnited States
- Clinical Research Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Department of Pathology, University of WashingtonSeattleUnited States
| | - Joshua T Schiffer
- Vaccine and Infectious Disease Division, University of WashingtonSeattleUnited States
- Department of Medicine, University of WashingtonSeattleUnited States
- Clinical Research Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
18
|
Gernert M, Tony HP, Schwaneck EC, Fröhlich M, Schmalzing M. Low B cell counts as risk factor for infectious complications in systemic sclerosis after autologous hematopoietic stem cell transplantation. Arthritis Res Ther 2020; 22:183. [PMID: 32771029 PMCID: PMC7414656 DOI: 10.1186/s13075-020-02255-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/18/2020] [Indexed: 09/24/2023] Open
Abstract
Background Autologous hematopoietic stem cell transplantation (aHSCT) is a treatment option for a selected group of systemic sclerosis (SSc) patients with good available evidence but can be associated with considerable morbidity and mortality. The aim of this study was to describe infectious complications and distinct immune reconstitution patterns after aHSCT and to detect risk factors in lymphocyte subsets, which are associated with an elevated rate of infections after aHSCT. Methods Seventeen patients with SSc were included in this single-center retrospective cohort study. Clinical and laboratory data was collected before and for 12 months after aHSCT, including immunophenotyping of peripheral whole blood by fluorescence-activated cell sorting. Results Cytomegalovirus (CMV) reactivations were common in CMV-IgG-positive patients (50%) and needed treatment. Mycotic infections occurred in 17.6%. One patient died (resulting in a mortality of 5.9%) due to pneumonia with consecutive sepsis. All patients showed decreased T helper cells (CD3+/CD4+) and within the B cell compartment decreased post-switched memory B cells (CD19+/CD27+/IgD−) and elevated naïve B cells (CD19+/CD27−/IgD+) until 12 months after aHSCT. Patients who developed infections had significantly lower B cells before aHSCT than patients who did not develop infections. Conclusion After aHSCT, monitoring for infectious complications, especially for CMV reactivations, is crucial as the reconstitution of the immune system takes longer than 12 months. Low peripheral B cells might be a risk factor for an elevated infection rate.
Collapse
Affiliation(s)
- Michael Gernert
- Department of Medicine II, Rheumatology and Clinical Immunology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany.
| | - Hans-Peter Tony
- Department of Medicine II, Rheumatology and Clinical Immunology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Eva Christina Schwaneck
- Department of Medicine II, Rheumatology and Clinical Immunology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Matthias Fröhlich
- Department of Medicine II, Rheumatology and Clinical Immunology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Marc Schmalzing
- Department of Medicine II, Rheumatology and Clinical Immunology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| |
Collapse
|
19
|
Effectiveness and Cost-Effectiveness of Prophylactic Voriconazole and Fluconazole Regarding Prevention of Post-hematopoietic Stem Cell Transplantation Invasive Fungal Infection and Its Related Death: A Single Center Experience. Indian J Hematol Blood Transfus 2020; 36:680-689. [PMID: 33100710 DOI: 10.1007/s12288-020-01259-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/28/2020] [Indexed: 01/21/2023] Open
Abstract
Purpose Analyzing effectiveness and cost-effectiveness of voriconazole versus fluconazole prophylaxis in hematopoietic stem cell transplantation (HSCT). Methods The research included 70 patients; 34 undergoing allogeneic HSCT and 36 undergoing autologous stem cell transplantation (ASCT), alternated to receive either voriconazole or fluconazole prophylaxis for 180 days on a 1:1 basis. Patients were monitored for occurrence of invasive fungal infections (IFI), IFI-related death (IRD) and total death events. Cost-effectiveness of both agents in both groups was also assessed. Results Antifungal prophylactic drug had no impact on incidence of IFI and IRD in both allogeneic HSCT and ASCT (P = .452 and P = 1.000; P = .457 and P = .146 respectively). An insignificant difference occurred among patients receiving voriconazole or fluconazole regarding overall survival (OS) and fungal infection-free survival (FFS) in both groups (P = .705 and P = .879; P = .713 and P = .681 respectively). Regarding cost-effectiveness, voriconazole dominated fluconazole regarding prevention of IFI and IRD but was less costly/less effective regarding prevention of total death events and gaining life years in the allogeneic HSCT setting. In the ASCT setting, voriconazole was not cost-effective regarding avoidance of IFI and IRD and was dominated by fluconazole regarding avoidance of total death events and gaining life years. Conclusions Voriconazole does not differ from fluconazole regarding its efficacy in prevention of IFI and IRD and does not improve OS and FFS in both allogeneic HSCT and ASCT settings. Voriconazole is cost-effective regarding protection from IFI and IRD in allogeneic HSCT but not cost-effective in ASCT.
Collapse
|
20
|
Rundgren IM, Ersvær E, Ahmed AB, Ryningen A, Bruserud Ø. Circulating monocyte subsets in multiple myeloma patients receiving autologous stem cell transplantation - a study of the preconditioning status and the course until posttransplant reconstitution for a consecutive group of patients. BMC Immunol 2019; 20:39. [PMID: 31703617 PMCID: PMC6842166 DOI: 10.1186/s12865-019-0323-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/22/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Induction therapy of multiple myeloma patients prior to autologous stem cell transplantation has changed from conventional chemotherapy to treatment based on proteasome inhibitors or immunomodulatory drugs. We used flow cytometry to analyze total monocyte and monocyte subset (classical, intermediate and non-classical monocytes) peripheral blood levels before and following auto-transplantation for a consecutive group of myeloma patients who had received the presently used induction therapy. RESULTS The patients showed normal total monocyte concentrations after induction/stem cell mobilization, but the concentrations of classical monocytes were increased compared with healthy controls. Melphalan conditioning reduced the levels of total CD14+ as well as classical and non-classical monocytes, whereas intermediate monocytes were not affected. Thus, melphalan has a non-random effect on monocyte subsets. Melphalan had a stronger effect on total and classical monocyte concentrations for those patients who had received induction therapy including immunomodulatory drugs. Total monocytes and monocyte subset concentrations decreased during the period of pancytopenia, but monocyte reconstitution occurred before hematopoietic reconstitution. However, the fractions of various monocyte subsets varied considerably between patients. CONCLUSIONS The total level of circulating monocytes is normalized early after auto-transplantation for multiple myeloma, but pre- and post-transplant levels of various monocyte subsets show considerable variation between patients.
Collapse
Affiliation(s)
- Ida Marie Rundgren
- Department of Biomedical Laboratory Scientist Education and Chemical Engineering Faculty of Engineering and Natural Sciences, Western Norway University of Applied Sciences, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Elisabeth Ersvær
- Department of Biomedical Laboratory Scientist Education and Chemical Engineering Faculty of Engineering and Natural Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Aymen Bushra Ahmed
- Section for Hematology, Department of Medicine, Haukeland University Hospital, N-5021, Bergen, Norway
| | - Anita Ryningen
- Department of Biomedical Laboratory Scientist Education and Chemical Engineering Faculty of Engineering and Natural Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, Bergen, Norway. .,Section for Hematology, Department of Medicine, Haukeland University Hospital, N-5021, Bergen, Norway.
| |
Collapse
|
21
|
Wiberg A, Olsson-Strömberg U, Herman S, Kultima K, Burman J. Profound but Transient Changes in the Inflammatory Milieu of the Blood During Autologous Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2019; 26:50-57. [PMID: 31525494 DOI: 10.1016/j.bbmt.2019.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/28/2019] [Accepted: 09/10/2019] [Indexed: 12/29/2022]
Abstract
Little is known about the inflammatory milieu in the blood during autologous hematopoietic stem cell transplantation (AHSCT) and how it is affected by the stem cell mobilization, collection, and reinfusion and conditioning regimen. In this study, we analyzed 92 proteins connected to inflammation at 10 time points during and after AHSCT in 16 patients with multiple sclerosis (MS). Serum from 29 patients with newly diagnosed MS and 15 healthy controls were included for comparative analysis. There were no significant differences in inflammatory serum protein levels between patients with newly diagnosed MS and healthy controls, but 29 out of 73 detectable proteins were significantly altered between at least 2 adjacent sampling time points during AHSCT. The predominant changes occurred after the conditioning regimen had been administered, whereas stem cell mobilization, collection, and reinfusion appeared to have less impact. Two distinct response patterns could be discerned, likely representing loss of basal cytokine production and homeostasis. The analyzed serum proteins gradually returned to baseline levels after treatment, with no remaining differences at 3 months after AHSCT. We conclude that treatment with AHSCT has a major but transient impact on the inflammatory milieu of peripheral blood.
Collapse
Affiliation(s)
- Anna Wiberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Ulla Olsson-Strömberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden; Division of Hematology, Uppsala University Hospital, Uppsala, Sweden
| | - Stephanie Herman
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Joachim Burman
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Fuller R, Strauss D, Steinberg A, Rana M, Keyzner A, Dunn D, Jacobs SE. A lymphoma patient with Cytomegalovirus retinitis and post‐autologous hematopoietic cell transplantation immune reconstitution uveitis: A case report and review of the literature. Transpl Infect Dis 2019; 21:e13099. [DOI: 10.1111/tid.13099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/22/2019] [Accepted: 04/14/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Risa Fuller
- Department of Medicine, Division of Infectious Disease Icahn School of Medicine at Mount Sinai New York New York
| | | | - Amir Steinberg
- Tisch Cancer Institute Icahn School of Medicine at Mount Sinai New York New York
| | - Meenakshi Rana
- Department of Medicine, Division of Infectious Disease Icahn School of Medicine at Mount Sinai New York New York
| | - Alla Keyzner
- Tisch Cancer Institute Icahn School of Medicine at Mount Sinai New York New York
| | - Dallas Dunn
- Department of Medicine, Division of Infectious Disease Icahn School of Medicine at Mount Sinai New York New York
| | - Samantha E. Jacobs
- Department of Medicine, Division of Infectious Disease Icahn School of Medicine at Mount Sinai New York New York
| |
Collapse
|
23
|
Immune checkpoint blockade and its combination therapy with small-molecule inhibitors for cancer treatment. Biochim Biophys Acta Rev Cancer 2018; 1871:199-224. [PMID: 30605718 DOI: 10.1016/j.bbcan.2018.12.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 02/05/2023]
Abstract
Initially understood for its physiological maintenance of self-tolerance, the immune checkpoint molecule has recently been recognized as a promising anti-cancer target. There has been considerable interest in the biology and the action mechanism of the immune checkpoint therapy, and their incorporation with other therapeutic regimens. Recently the small-molecule inhibitor (SMI) has been identified as an attractive combination partner for immune checkpoint inhibitors (ICIs) and is becoming a novel direction for the field of combination drug design. In this review, we provide a systematic discussion of the biology and function of major immune checkpoint molecules, and their interactions with corresponding targeting agents. With both preclinical studies and clinical trials, we especially highlight the ICI + SMI combination, with its recent advances as well as its application challenges.
Collapse
|
24
|
Richardson PG, Laubach J, Gandolfi S, Facon T, Weisel K, O’Gorman P. Maintenance and continuous therapy for multiple myeloma. Expert Rev Anticancer Ther 2018; 18:751-764. [DOI: 10.1080/14737140.2018.1490181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Paul G. Richardson
- Department of Hematology and Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jacob Laubach
- Department of Hematology and Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sara Gandolfi
- Department of Hematology and Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Thierry Facon
- Department of Haematology, Service des Maladies du Sang, Hôpital Claude Huriez, Lille, France
| | - Katja Weisel
- Department of Hematology and Oncology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, University College Dublin, Dublin, Ireland
| |
Collapse
|
25
|
Jung SH, Lee HJ, Lee YK, Yang DH, Kim HJ, Rhee JH, Emmrich F, Lee JJ. A phase I clinical study of autologous dendritic cell therapy in patients with relapsed or refractory multiple myeloma. Oncotarget 2018; 8:41538-41548. [PMID: 28088784 PMCID: PMC5522196 DOI: 10.18632/oncotarget.14582] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 01/03/2017] [Indexed: 11/25/2022] Open
Abstract
Cellular immunotherapy is emerging as a potential immunotherapeutic modality in multiple myeloma (MM). We have developed potent immunotherapeutic agent (VAX-DC/MM) generated by dendritic cells (DCs) loaded with autologous myeloma cells irradiated with ultraviolet B. In this study, we evaluated the safety and efficacy of VAX-DC/MM in patients with relapsed or refractory MM. This trial enrolled relapsed or refractory MM patients who had received both thalidomide- and bortezomib-based therapies. Patients received the intradermal VAX-DC/MM injection every week for 4 weeks. Patients were treated with 5 × 106 or 10 × 106 cells, with nine patients treated at a higher dose. The median time from diagnosis to VAX-DC/MM therapy was 56.6 months (range, 28.5–130.5). Patients had received a median of five prior treatments, and 75% had received autologous stem cell transplantation. VAX-DC therapy was well-tolerated, and the most frequent adverse events were local reactions at the injection site and infusion-related reactions. In seven of nine patients who received 10×106 cells, an immunological response (77.8%) was observed by interferon-gamma ELISPOT assay or a mixed lymphocyte reaction assay for T-cell proliferation. The clinical benefit rate was 66.7% including one (11.1%) with minor response and five (55.6%) with stable disease; three (33.3%) patients showed disease progression. In conclusion, VAX-DC/MM therapy was well-tolerated, and had disease-stabilizing activity in heavily pretreated MM cases. Further studies are needed to increase the efficacy of VAX-DC/MM in patients with MM.
Collapse
Affiliation(s)
- Sung-Hoon Jung
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyun-Ju Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Youn-Kyung Lee
- Research Institute, Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea
| | - Deok-Hwan Yang
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Joon Haeng Rhee
- Research Institute, Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea.,Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Frank Emmrich
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Je-Jung Lee
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Research Institute, Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea
| |
Collapse
|
26
|
Staffas A, Burgos da Silva M, Slingerland AE, Lazrak A, Bare CJ, Holman CD, Docampo MD, Shono Y, Durham B, Pickard AJ, Cross JR, Stein-Thoeringer C, Velardi E, Tsai JJ, Jahn L, Jay H, Lieberman S, Smith OM, Pamer EG, Peled JU, Cohen DE, Jenq RR, van den Brink MRM. Nutritional Support from the Intestinal Microbiota Improves Hematopoietic Reconstitution after Bone Marrow Transplantation in Mice. Cell Host Microbe 2018; 23:447-457.e4. [PMID: 29576480 PMCID: PMC5897172 DOI: 10.1016/j.chom.2018.03.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/30/2018] [Accepted: 02/23/2018] [Indexed: 12/16/2022]
Abstract
Bone marrow transplantation (BMT) offers curative potential for patients with high-risk hematologic malignancies, but the post-transplantation period is characterized by profound immunodeficiency. Recent studies indicate that the intestinal microbiota not only regulates mucosal immunity, but can also contribute to systemic immunity and hematopoiesis. Using antibiotic-mediated microbiota depletion in a syngeneic BMT mouse model, here we describe a role for the intestinal flora in hematopoietic recovery after BMT. Depletion of the intestinal microbiota resulted in impaired recovery of lymphocyte and neutrophil counts, while recovery of the hematopoietic stem and progenitor compartments and the erythroid lineage were largely unaffected. Depletion of the intestinal microbiota also reduced dietary energy uptake and visceral fat stores. Caloric supplementation through sucrose in the drinking water improved post-BMT hematopoietic recovery in mice with a depleted intestinal flora. Taken together, we show that the intestinal microbiota contribute to post-BMT hematopoietic reconstitution in mice through improved dietary energy uptake.
Collapse
Affiliation(s)
- Anna Staffas
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marina Burgos da Silva
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ann E Slingerland
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Amina Lazrak
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Curtis J Bare
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Corey D Holman
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Melissa D Docampo
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, USA
| | - Yusuke Shono
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Benjamin Durham
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Amanda J Pickard
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christoph Stein-Thoeringer
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Enrico Velardi
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jennifer J Tsai
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lorenz Jahn
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hillary Jay
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sophie Lieberman
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Odette M Smith
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric G Pamer
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA; Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Lucille Castori Center for Microbes, Inflammation, and Cancer, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan U Peled
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA; Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David E Cohen
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Robert R Jenq
- Departments of Genomic Medicine and Stem Cell Transplantation Cellular Therapy, Division of Cancer Medicine, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marcel R M van den Brink
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA; Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
27
|
Tackling Cancer Resistance by Immunotherapy: Updated Clinical Impact and Safety of PD-1/PD-L1 Inhibitors. Cancers (Basel) 2018; 10:cancers10020032. [PMID: 29370105 PMCID: PMC5836064 DOI: 10.3390/cancers10020032] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer therapy has been constantly evolving with the hope of finding the most effective agents with the least toxic effects to eradicate tumors. Cancer immunotherapy is currently among the most promising options, fulfilling this hope in a wide range of tumors. Immunotherapy aims to activate immunity to fight cancer in a very specific and targeted manner; however, some abnormal immune reactions known as immune-related adverse events (IRAEs) might occur. Therefore, many researchers are aiming to define the most proper protocols for managing these complications without interfering with the anticancer effect. One of these targeted approaches is the inhibition of the interaction between the checkpoint protein, programmed death-receptor 1 (PD-1), and its ligand, programmed death-ligand 1 (PD-L1), via a class of antibodies known as PD-1/PD-L1 inhibitors. These antibodies achieved prodigious success in a wide range of malignancies, including those where optimal treatment is not yet fully identified. In this review, we have critically explored and discussed the outcome of the latest PD-1 and PD-L1 inhibitor studies in different malignancies compared to standard chemotherapeutic alternatives with a special focus on the clinical efficacy and safety. The approval of the clinical applications of nivolumab, pembrolizumab, atezolizumab, avelumab, and durvalumab in the last few years clearly highlights the hopeful future of PD-1/PD-L1 inhibitors for cancer patients. These promising results of PD-1/PD-L1 inhibitors have encouraged many ongoing preclinical and clinical trials to explore the extent of antitumor activity, clinical efficacy and safety as well as to extend their applications.
Collapse
|
28
|
Immune Reconstitution Following Autologous Stem Cell Transplantation in Patients with High-Risk Neuroblastoma at the Time of Immunotherapy. Biol Blood Marrow Transplant 2017; 24:452-459. [PMID: 29191664 DOI: 10.1016/j.bbmt.2017.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/11/2017] [Indexed: 12/25/2022]
Abstract
Outcomes for patients with high-risk neuroblastoma (HR-NBL) are significantly improved with the addition of immunotherapy (dinutuximab + cytokines) following autologous hematopoietic stem cell transplantation (auto-HSCT). We hypothesized that the immune system is not fully reconstituted at the initiation of immunotherapy. To test this hypothesis, we evaluated hematologic and immune subsets in 34 patients with HR-NBL before and after auto-HSCT. We found that absolute T, B, and NK cell counts at the time of immunotherapy were below normal in 80% of patients. Patients with residual disease at the time of transplantation had significantly lower absolute lymphocyte counts (ALC; P = .008), lower CD16+ cell counts (P = .009), and an abnormal ratio of cytokine-releasing to cytotoxic NK cells at the time of dinutuximab treatment. In addition, the preparative regimen used for auto-HSCT predicted immune recovery. Finally, higher total white blood cell count (P = .013) and ALC (P = .013) at 3 months after completion of therapy were measured in patients who remained in remission compared with those who relapsed. Our results indicate that most patients with HR-NBL do not have full immune reconstitution at the time of dinutuximab treatment after auto-HSCT, and that immune recovery may correlate with disease-related outcomes in patients with high-risk disease.
Collapse
|
29
|
Ghosh A, Politikos I, Perales MA. Stop and go: hematopoietic cell transplantation in the era of chimeric antigen receptor T cells and checkpoint inhibitors. Curr Opin Oncol 2017; 29:474-483. [PMID: 28872470 PMCID: PMC5806704 DOI: 10.1097/cco.0000000000000408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW For several decades, hematopoietic cell transplantation (HCT) has been considered the standard curative therapy for many patients with hematological malignancies. In addition to the cytotoxic effects of the chemotherapy and radiation used in the conditioning regimen, the benefits of HCT are derived from a reset of the immune system and harnessing the ability of donor T cells to eliminate malignant cells. With the dawn of the era of immunotherapies in the form of checkpoint inhibitors and chimeric antigen receptor (CAR) T cells, the role of HCT has evolved. RECENT FINDINGS Immunotherapy with checkpoint inhibitors is increasingly being used for relapsed Hodgkin and non-Hodgkin lymphoma after autologous HCT. Checkpoint inhibitors are also being tested after allogeneic HCT with observable benefits in treating hematological malignancies, but with a potential risk of increased graft versus host disease and transplant-related mortality. Immunotherapy with Cluster of differentiation 19 CAR T cells are powerful options with aggressive B-cell malignancies both for therapy and as induction leading to allogeneic HCT. SUMMARY Although immunotherapies with checkpoint inhibition and CAR T cells are increasingly being used to treat hematological malignancies, HCT remains a standard of care for most of the diseases with the best chance of cure. Combination of these therapies with HCT has the potential to more effectively treat hematological malignancies.
Collapse
Affiliation(s)
- Arnab Ghosh
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Ioannis Politikos
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
30
|
Shallis RM, Terry CM, Lim SH. The multi-faceted potential of CD38 antibody targeting in multiple myeloma. Cancer Immunol Immunother 2017; 66:697-703. [PMID: 28341874 PMCID: PMC11029060 DOI: 10.1007/s00262-017-1990-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 03/16/2017] [Indexed: 10/19/2022]
Abstract
CD38, an adenine dinucleotide phosphate (ADP) ribose cyclase and a cyclic ADP ribose hydrolase, is widely expressed on the surface of multiple myeloma (MM) cells. It is known to play a pivotal role in the downstream pathways that mediate MM cell growth, signal transduction, and adhesion. The clinical use of CD38 monoclonal antibodies (MoAbs), such as daratumumab, either as monotherapy or in combination with other anti-MM agents, has produced impressive results in patients who have failed standard MM therapy. CD38 MoAbs exhibit several cytotoxic mechanisms on MM cells. In addition to the classical effector mechanisms associated with antibody therapy, CD38 MoAbs induce MM apoptosis and clonal T-cell expansion. Here, we summarize the results of some pivotal clinical studies using a human CD38 MoAb, daratumumab, in patients with MM, discuss the anti-MM effector mechanisms induced by CD38 MoAbs, and review the potential tumor antigens that may be suitable targets for immunotherapy of MM. Finally, we present a paradigm of immunotherapy for MM patients using CD38 MoAbs followed by GM-CSF and an immune checkpoint inhibitor in patients who have undergone high dose chemotherapy and autologous stem cell transplant. CD38 MoAbs have emerged as a novel and ultimately very promising immunotherapeutic agent for MM because of its ability to induce MM cytotoxicity through both arms of the adaptive immune responses.
Collapse
Affiliation(s)
- Rory M Shallis
- Division of Hematology and Oncology, Rhode Island Hospital/Brown University Warren Alpert Medical School, Room 140, APC Building, 593 Eddy Street, Providence, RI, 02903, USA
| | - Christopher M Terry
- Division of Hematology and Oncology, Rhode Island Hospital/Brown University Warren Alpert Medical School, Room 140, APC Building, 593 Eddy Street, Providence, RI, 02903, USA
| | - Seah H Lim
- Division of Hematology and Oncology, Rhode Island Hospital/Brown University Warren Alpert Medical School, Room 140, APC Building, 593 Eddy Street, Providence, RI, 02903, USA.
| |
Collapse
|
31
|
The role of anti-PD-1 and anti-PD-L1 agents in the treatment of diffuse large B-cell lymphoma: The future is now. Crit Rev Oncol Hematol 2017; 113:52-62. [PMID: 28427522 DOI: 10.1016/j.critrevonc.2017.02.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 11/23/2022] Open
Abstract
Immune checkpoints inhibitors have been incorporated into standard treatment protocols for advanced solid tumors. The aim of T-cell-based immune therapy in cancer has been to generate durable clinical benefits for patients, paired with enhanced side effect profiles. The beneficial antitumoral activity of programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) has been thoroughly demonstrated in certain metastatic malignancies (e.g. melanoma, non-small cell lung cancer, renal cell carcinoma); however, the therapeutic role in lymphoid cancers is complex. Nonetheless, the striking clinical activity seen in early clinical trials of various subtypes of relapsed lymphoma have paved the way for these exciting innovative therapeutic alternatives in these tumors. In this article we assess the literature on the role of the PD-1/PD-L1 pathway in Diffuse Large B-cell lymphoma (DLBCL), and describe future strategies involving these new anticancer agents in this lymphoid neoplasm.
Collapse
|
32
|
Karmali R, Gordon LI. Molecular Subtyping in Diffuse Large B Cell Lymphoma: Closer to an Approach of Precision Therapy. Curr Treat Options Oncol 2017; 18:11. [DOI: 10.1007/s11864-017-0449-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Alatrash G, Daver N, Mittendorf EA. Targeting Immune Checkpoints in Hematologic Malignancies. Pharmacol Rev 2016; 68:1014-1025. [PMID: 27664133 PMCID: PMC11060433 DOI: 10.1124/pr.116.012682] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The use of antibodies that target immune checkpoint molecules on the surface of T-lymphocytes and/or tumor cells has revolutionized our approach to cancer therapy. Cytotoxic-T-lymphocyte antigen (CTLA-4) and programmed cell death protein 1 (PD-1) are the two most commonly targeted immune checkpoint molecules. Although the role of antibodies that target CTLA-4 and PD-1 has been established in solid tumor malignancies and Food and Drug Administration approved for melanoma and non-small cell lung cancer, there remains a desperate need to incorporate immune checkpoint inhibition in hematologic malignancies. Unlike solid tumors, a number of considerations must be addressed to appropriately employ immune checkpoint inhibition in hematologic malignancies. For example, hematologic malignancies frequently obliterate the bone marrow and lymph nodes, which are critical immune organs that must be restored for appropriate response to immune checkpoint inhibition. On the other hand, hematologic malignancies are the quintessential immune responsive tumor type, as proven by the success of allogeneic stem cell transplantation (allo-SCT) in hematologic malignancies. Also, sharing an immune cell lineage, malignant hematologic cells often express immune checkpoint molecules that are absent in solid tumor cells, thereby offering direct targets for immune checkpoint inhibition. A number of clinical trials have demonstrated the potential for immune checkpoint inhibition in hematologic malignancies before and after allo-SCT. The ongoing clinical studies and complimentary immune correlatives are providing a growing body of knowledge regarding the role of immune checkpoint inhibition in hematologic malignancies, which will likely become part of the standard of care for hematologic malignancies.
Collapse
Affiliation(s)
- Gheath Alatrash
- Departments of Stem Cell Transplantation and Cellular Therapy (G.A., E.A.M.), Leukemia (N.D.), and Breast Surgical (E.A.M.) Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naval Daver
- Departments of Stem Cell Transplantation and Cellular Therapy (G.A., E.A.M.), Leukemia (N.D.), and Breast Surgical (E.A.M.) Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth A Mittendorf
- Departments of Stem Cell Transplantation and Cellular Therapy (G.A., E.A.M.), Leukemia (N.D.), and Breast Surgical (E.A.M.) Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
34
|
Tsirigotis P, Savani BN, Nagler A. Programmed death-1 immune checkpoint blockade in the treatment of hematological malignancies. Ann Med 2016; 48:428-439. [PMID: 27224873 DOI: 10.1080/07853890.2016.1186827] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The use of tumor-specific monoclonal antibodies (MAbs) has revolutionize the field of cancer immunotherapy. Although treatment of malignant diseases with MAbs is promising, many patients fail to respond or relapse after an initial response. Both solid tumors and hematological malignancies develop mechanisms that enable them to evade the host immune system by usurping immune checkpoint pathways such as PD-1, PD-2, PDL-1, or PDL-2 (programmed cell death protein-1 or 2 and PD-Ligand 1 or 2), which are expressed on activated T cells and on T-regulatory, B cells, natural killers, monocytes, and dendritic cells. One of the most exciting anticancer development in recent years has been the immune checkpoint blockade therapy by using MAbs against immune checkpoint receptor and/or ligands. Anti-PD1 antibodies have been tested in clinical studies that included patients with hematological malignancies and showed remarkable efficacy in Hodgkin lymphoma (HL). In our review, we will focus on the effect of PD-1 activation on hematological malignancies and its role as a therapeutic target. Key messages The programmed death 1 (PD1) immune checkpoint is an important homeostatic mechanism of the immune system that helps in preventing autoimmunity and uncontrolled inflammation in cases of chronic infections. However, PD1 pathway is also operated by a wide variety of malignancies and represents one of the most important mechanisms by which tumor cells escape from the surveillance of the immune system. Blocking of immune checkpoints by the use of monoclonal antibodies opened a new era in the field of cancer immunotherapy. Results from clinical trials are promising, and currently, this approach has been proven effective and safe in patients with solid tumors and hematological malignancies.
Collapse
Affiliation(s)
- Panagiotis Tsirigotis
- a Second Department of Internal Medicine , National and Kapodistrian University of Athens , Athens , Greece
| | - Bipin N Savani
- b Department of Hematology, Vanderbilt University Medical Center , Nashville , TN , USA
| | - Arnon Nagler
- c Hematology Division , Chaim Sheba Medical Center , Tel Hashomer , Israel
| |
Collapse
|
35
|
Hawley TS, Linsley PS, Hawley RG. Co-expression of B7–1 with Interleukin-12 Enhances Vaccine-induced Antitumour Immunity in Experimental Myeloma. Hematology 2016; 3:365-74. [DOI: 10.1080/10245332.1998.11746410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Teresa S. Hawley
- Oncology Gene Therapy Program, The Toronto Hospital, Toronto, Ontario, Canada
| | - Peter S. Linsley
- Bristol-Meyers Squibb Pharmaceutical Research Institute, Seattle, Washington, USA
| | - Robert G. Hawley
- Oncology Gene Therapy Program, The Toronto Hospital, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Abramowski P, Krasemann S, Ernst T, Lange C, Ittrich H, Schweizer M, Zander AR, Martin R, Fehse B. Mesenchymal Stromal/Stem Cells Do Not Ameliorate Experimental Autoimmune Encephalomyelitis and Are Not Detectable in the Central Nervous System of Transplanted Mice. Stem Cells Dev 2016; 25:1134-48. [PMID: 27250994 DOI: 10.1089/scd.2016.0020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) constitute progenitor cells that can be isolated from different tissues. Based on their immunomodulatory and neuroprotective functions, MSC-based cell-therapy approaches have been suggested to antagonize inflammatory activity and neuronal damage associated with autoimmune disease of the central nervous system (CNS), for example, multiple sclerosis (MS). Intravenous MSC transplantation was reported to ameliorate experimental autoimmune encephalomyelitis (EAE), the murine model of MS, within days after transplantation. However, systemic distribution patterns and fate of MSCs after administration, especially their potential to migrate into inflammatory lesions within the CNS, remain to be elucidated. This question has of recent become particularly important, since therapeutic infusion of MSCs is now being tested in clinical trials with MS-affected patients. Here, we made use of the established EAE mouse model to investigate migration and therapeutic efficacy of murine bone marrow-derived MSCs. Applying a variety of techniques, including magnetic resonance imaging, immunohistochemistry, fluorescence in-situ hybridization, and quantitative polymerase chain reaction we found no evidence for immediate migration of infused MSC into the CNS of treated mice. Moreover, in contrast to other studies, transplanted MSCs did not ameliorate EAE. In conclusion, our data does not provide substantiation for a relevant migration of infused MSCs into the CNS of EAE mice supporting the hypothesis that potential therapeutic efficacy could be based on systemic effects. Evaluation of possible mechanisms underlying the observed discrepancies in MSC treatment outcomes between different EAE models demands further studies.
Collapse
Affiliation(s)
- Pierre Abramowski
- 1 Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf , Hamburg, Germany .,2 Institute for Neuroimmunology and Clinical Multiple Sclerosis Research (INIMS), ZMNH, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Susanne Krasemann
- 3 Institute for Neuropathology, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Thomas Ernst
- 4 Diagnostic and Interventional Radiology Department and Clinic, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Claudia Lange
- 1 Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Harald Ittrich
- 4 Diagnostic and Interventional Radiology Department and Clinic, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Michaela Schweizer
- 5 Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Axel R Zander
- 6 Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Roland Martin
- 2 Institute for Neuroimmunology and Clinical Multiple Sclerosis Research (INIMS), ZMNH, University Medical Center Hamburg-Eppendorf , Hamburg, Germany .,7 Neuroimmunology and MS Research, Department of Neurology, University Hospital Zurich , Zurich, Switzerland
| | - Boris Fehse
- 1 Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| |
Collapse
|
37
|
Perales MA, Sauter CS, Armand P. Reprint of: Fast Cars and No Brakes: Autologous Stem Cell Transplantation as a Platform for Novel Immunotherapies. Biol Blood Marrow Transplant 2016; 22:S9-S14. [PMID: 26899275 DOI: 10.1016/j.bbmt.2016.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 10/14/2015] [Indexed: 11/24/2022]
Abstract
Autologous stem cell transplantation (ASCT) is indicated in a number of hematologic malignancies, including multiple myeloma, non-Hodgkin lymphoma, and Hodgkin lymphoma. Relapse, however, remains 1 of the main causes of post-ASCT failure, and several strategies are being investigated to decrease the risk of relapse of progression. Recent advances in the treatment of hematological malignancies have included adoptive transfer of genetically modified T cells that express chimeric antigen receptors or T cell receptors, as well the use of checkpoint inhibitors. Early clinical results in non-transplantation patients have been very promising. This review will focus on the use of gene-modified T cells and checkpoint inhibitors in stem cell transplantation.
Collapse
Affiliation(s)
- Miguel-Angel Perales
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York.
| | - Craig S Sauter
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Philippe Armand
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
38
|
Thiant S, Moutuou MM, Leboeuf D, Guimond M. Homeostatic cytokines in immune reconstitution and graft-versus-host disease. Cytokine 2016; 82:24-32. [PMID: 26795458 DOI: 10.1016/j.cyto.2016.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 12/15/2022]
Abstract
For numerous patients, allogeneic stem cell transplantation (SCT) is the only therapeutic option that could potentially cure their disease. Despite significant progress made in clinical management of allogeneic SCT, acute graft-versus-host disease (aGVHD) remains the second cause of death after disease recurrence. aGVHD is highly immunosuppressive and the adverse effect of allogeneic SCT on T cell regeneration is typically more important than the levels of immunosuppression normally seen after autologous SCT. In these patients, immune reconstitution often takes several years to occur and restoring immunocompetence after allogeneic SCT represents an important challenge, principally because clinical options are limited and current methods used to accelerate immune reconstitution are associated with increased GVHD. Interleukin-7 and IL-15 are both under clinical investigation and demonstrate the greatest potential on peripheral T cells regeneration in mice and humans. However, awareness has been raised about the use of IL-7 and IL-15 after allogeneic SCT with regards to potential adverse effects on aGVHD. In this review, we will discuss about recent progress made in lymphocyte regeneration, the critical role played by IL-7 and IL-15 in T cell homeostasis and how these cytokines could be used to improve immune reconstitution after allogeneic SCT.
Collapse
Affiliation(s)
- Stéphanie Thiant
- Maisonneuve-Rosemont Research Center, Montreal, Quebec, Canada; Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec, Canada
| | - Moutuaata M Moutuou
- Maisonneuve-Rosemont Research Center, Montreal, Quebec, Canada; Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec, Canada
| | - Dominique Leboeuf
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec, Canada
| | - Martin Guimond
- Maisonneuve-Rosemont Research Center, Montreal, Quebec, Canada; Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
39
|
Wichert S, Pettersson Å, Hellmark T, Johansson Å, Hansson M. Phagocyte function decreases after high-dose treatment with melphalan and autologous stem cell transplantation in patients with multiple myeloma. Exp Hematol 2016; 44:342-351.e5. [PMID: 26774385 DOI: 10.1016/j.exphem.2016.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/19/2015] [Accepted: 01/06/2016] [Indexed: 11/28/2022]
Abstract
High-dose melphalan with autologous hematopoietic stem cell transplantation (ASCT) is the standard of care for younger patients with newly diagnosed multiple myeloma and is aimed at achieving as deep and complete a response as possible after various combinations of induction therapy. However, it is frequently associated with infectious complications. This study investigated the effects of high-dose treatment with autologous stem cell support on patients' innate immunity, with a focus on subpopulations and functioning of recently released polymorphonuclear leukocytes (PMNs) and monocytes in peripheral blood. Flow cytometry-based analysis was used to measure the degree of PMN maturation and activation, before and after ASCT and compared with healthy controls. After high-dose treatment and ASCT, a smaller proportion of patients' PMNs had the capacity for oxidative burst. Moreover, patients' PMNs, both before and after ASCT, had a reduced capacity for phagocytosis. Eosinophils, which recently have been suggested to play a role in promoting malignant plasma cell proliferation, were markedly reduced after ASCT, with slow regeneration. HLA-DR expression by monocytes was significantly depressed after ASCT, a characteristic often attributed to monocytic myeloid-derived suppressor cells. Our results suggest that several aspects of phagocytic function are impaired for at least 20 days after ASCT.
Collapse
Affiliation(s)
- Stina Wichert
- Department of Hematology, Skåne University Hospital and Lund University, Lund, Sweden.
| | - Åsa Pettersson
- Department of Nephrology, Clinical Sciences in Lund, Lund University, Lund, Sweden
| | - Thomas Hellmark
- Department of Nephrology, Clinical Sciences in Lund, Lund University, Lund, Sweden
| | - Åsa Johansson
- Department of Hematology, Skåne University Hospital and Lund University, Lund, Sweden; Clinical Immunology and Transfusion Medicine, University and Regional Laboratories Region Skåne, Lund, Sweden
| | - Markus Hansson
- Department of Hematology, Skåne University Hospital and Lund University, Lund, Sweden
| |
Collapse
|
40
|
Goyal S, Kim S, Chen ISY, Chou T. Mechanisms of blood homeostasis: lineage tracking and a neutral model of cell populations in rhesus macaques. BMC Biol 2015; 13:85. [PMID: 26486451 PMCID: PMC4615871 DOI: 10.1186/s12915-015-0191-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/12/2015] [Indexed: 12/19/2022] Open
Abstract
Background How a potentially diverse population of hematopoietic stem cells (HSCs) differentiates and proliferates to supply more than 1011 mature blood cells every day in humans remains a key biological question. We investigated this process by quantitatively analyzing the clonal structure of peripheral blood that is generated by a population of transplanted lentivirus-marked HSCs in myeloablated rhesus macaques. Each transplanted HSC generates a clonal lineage of cells in the peripheral blood that is then detected and quantified through deep sequencing of the viral vector integration sites (VIS) common within each lineage. This approach allowed us to observe, over a period of 4-12 years, hundreds of distinct clonal lineages. Results While the distinct clone sizes varied by three orders of magnitude, we found that collectively, they form a steady-state clone size-distribution with a distinctive shape. Steady-state solutions of our model show that the predicted clone size-distribution is sensitive to only two combinations of parameters. By fitting the measured clone size-distributions to our mechanistic model, we estimate both the effective HSC differentiation rate and the number of active HSCs. Conclusions Our concise mathematical model shows how slow HSC differentiation followed by fast progenitor growth can be responsible for the observed broad clone size-distribution. Although all cells are assumed to be statistically identical, analogous to a neutral theory for the different clone lineages, our mathematical approach captures the intrinsic variability in the times to HSC differentiation after transplantation. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0191-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sidhartha Goyal
- Department of Physics, University of Toronto, St George Campus, Toronto, Canada
| | - Sanggu Kim
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, USA
| | - Irvin S Y Chen
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, USA.,UCLA AIDS Institute and Department of Medicine, UCLA, Los Angeles, USA
| | - Tom Chou
- Departments of Biomathematics and Mathematics, UCLA, Los Angeles, USA.
| |
Collapse
|
41
|
Fast Cars and No Brakes: Autologous Stem Cell Transplantation as a Platform for Novel Immunotherapies. Biol Blood Marrow Transplant 2015; 22:17-22. [PMID: 26485445 DOI: 10.1016/j.bbmt.2015.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 10/14/2015] [Indexed: 01/21/2023]
Abstract
Autologous stem cell transplantation (ASCT) is indicated in a number of hematologic malignancies, including multiple myeloma, non-Hodgkin lymphoma, and Hodgkin lymphoma. Relapse, however, remains 1 of the main causes of post-ASCT failure, and several strategies are being investigated to decrease the risk of relapse of progression. Recent advances in the treatment of hematological malignancies have included adoptive transfer of genetically modified T cells that express chimeric antigen receptors or T cell receptors, as well the use of checkpoint inhibitors. Early clinical results in nontransplantation patients have been very promising. This review will focus on the use of gene-modified T cells and checkpoint inhibitors in stem cell transplantation.
Collapse
|
42
|
Boosting humoral and cellular immunity to pneumococcus by vaccination before and just after autologous transplant for myeloma. Bone Marrow Transplant 2015; 51:291-4. [PMID: 26457911 DOI: 10.1038/bmt.2015.239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
43
|
Induction of tolerance and prolongation of islet allograft survival by syngeneic hematopoietic stem cell transplantation in mice. Transpl Immunol 2015; 33:130-9. [DOI: 10.1016/j.trim.2015.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 12/29/2022]
|
44
|
de Koning C, Plantinga M, Besseling P, Boelens JJ, Nierkens S. Immune Reconstitution after Allogeneic Hematopoietic Cell Transplantation in Children. Biol Blood Marrow Transplant 2015; 22:195-206. [PMID: 26341398 DOI: 10.1016/j.bbmt.2015.08.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/25/2015] [Indexed: 12/14/2022]
Abstract
Allogeneic (allo) hematopoietic cell transplantation (HCT) has evolved into a potent curative treatment option for a variety of malignant and nonmalignant diseases. The occurrence of complications and mortality after allo-HCT is, however, still high and is strongly associated with immune reconstitution (IR). Therefore, detailed information on IR through immunomonitoring is crucial to improve survival chances after HCT. To date, information about the reconstituting immune system after allo-HCT in pediatric patients is mostly derived from routine standard-of-care measurements. More profound knowledge on IR may provide tools to better predict and modulate adverse reactions and, subsequently, improve survival chances. Here, we provide an overview of IR (eg, immune cell subsets and circulating chemokines/cytokines) after allo-HCT in children, taking into account different cell sources and serotherapy, and discuss strategies to enhance immunomonitoring. We conclude that available IR data after allo-HCT contain limited information on immune cell families (mostly only generic T, B, and NK cells), which would improve with more detailed information on reconstituting cell subsets or effector cell functionality at earlier time points (<1 month). In addition, secretome data (eg, multiplex cytokine/chemokine profiles) could add to the understanding of IR mechanisms and cell functionality and may even provide (early) biomarkers for individual disease outcome, such as viral reactivity, graft-versus-host disease, or graft-versus-leukemia. The present data and suggestions for more detailed, standardized, and harmonized immunomonitoring in future (pediatric) allo-HCT studies will pave the path to "precision transplantation:" an individualized HCT approach (including conditioning), based on detailed information on IR and biomarkers, aiming to reduce transplantation related mortality and relapse, and subsequently improve survival chances.
Collapse
Affiliation(s)
- Coco de Koning
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Maud Plantinga
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Paul Besseling
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jaap Jan Boelens
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands; Pediatric Blood and Marrow Transplantation Program, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Stefan Nierkens
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
45
|
Post-autologous transplant maintenance therapies in lymphoid malignancies: are we there yet? Bone Marrow Transplant 2015; 50:1393-404. [DOI: 10.1038/bmt.2015.184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 06/30/2015] [Accepted: 07/06/2015] [Indexed: 12/16/2022]
|
46
|
McCann KJ, Godeseth R, Chudley L, Mander A, Di Genova G, Lloyd-Evans P, Kerr JP, Malykh VB, Jenner MW, Orchard KH, Stevenson FK, Ottensmeier CH. Idiotypic DNA vaccination for the treatment of multiple myeloma: safety and immunogenicity in a phase I clinical study. Cancer Immunol Immunother 2015; 64:1021-32. [PMID: 25982371 PMCID: PMC4506484 DOI: 10.1007/s00262-015-1703-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/21/2015] [Indexed: 11/26/2022]
Abstract
We report on the safety and immunogenicity of idiotypic DNA vaccination in a phase I, non-randomised, open-label study in patients with multiple myeloma. The study used DNA fusion gene vaccines encoding patient-specific single chain variable fragment, or idiotype (Id), linked to fragment C (FrC) of tetanus toxin. Patients in complete or partial response following high-dose chemotherapy and autologous stem cell transplant were vaccinated intramuscularly with 1 mg DNA on six occasions, beginning at least 6 months post-transplant; follow-up was to week 52. Fourteen patients were enrolled on study and completed vaccinations. Idiotypic DNA vaccines were well tolerated with vaccine-related adverse events limited to low-grade constitutional symptoms. FrC- and Id-specific T-cell responses were detected by ex vivo ELISPOT in 9/14 and 3/14 patients, respectively. A boost of pre-existing anti-FrC antibody (Ab) was detected by ELISA in 8/14 patients, whilst anti-Id Ab was generated in 1/13 patients. Overall, four patients (29 %) made an immune response to FrC and Id, with six patients (43 %) responding to FrC alone. Over the 52-week study period, serum paraprotein was undetectable, decreased or remained stable for ten patients (71 %), whilst ongoing CR/PR was maintained for 11 patients (79 %). The median time to progression was 38.0 months for 13/14 patients. Overall survival was 64 % after a median follow-up of 85.6 months.
Collapse
Affiliation(s)
- Katy J McCann
- Experimental Cancer Medicine Centre Southampton and Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Somers Cancer Research Building, Mailpoint 824, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Novel Immunologic Approaches in Lymphoma: Unleashing the Brakes on the Immune System. Curr Oncol Rep 2015; 17:30. [DOI: 10.1007/s11912-015-0456-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Immune checkpoint blockade in hematologic malignancies. Blood 2015; 125:3393-400. [PMID: 25833961 DOI: 10.1182/blood-2015-02-567453] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/25/2015] [Indexed: 02/07/2023] Open
Abstract
Therapeutic blockade of immune checkpoint pathways, in particular cytotoxic T-lymphocyte associated protein 4 and programmed-death 1 (PD-1), has become a paradigm-shifting treatment in solid tumor oncology. Hematologic malignancies (HMs), many of which are known to have clinically exploitable immune sensitivity, are a natural target for this type of treatment. Several clinical trials of checkpoint blockade have been conducted in HM, with preliminary results suggesting the therapeutic usefulness of this approach across several tumor types. In particular, the results of PD-1 blockade in Hodgkin lymphoma (HL) are remarkable, and raise hope that it may alter the treatment landscape in this disease. However, numerous questions remain about the optimal role of checkpoint blockade both in HL and beyond. Those questions are the focus of this review, in the hope that, if we are at the dawn of a new day in HM immunotherapy, we may begin to envision its morning.
Collapse
|
49
|
Lendvai N, Cohen AD, Cho HJ. Beyond consolidation: auto-SCT and immunotherapy for plasma cell myeloma. Bone Marrow Transplant 2015; 50:770-80. [PMID: 25751647 DOI: 10.1038/bmt.2015.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 12/31/2014] [Indexed: 12/15/2022]
Abstract
Autologous hematopoietic cell transplantation (auto-HCT) is the standard consolidation therapy for plasma cell myeloma patients following induction therapy. Auto-HCT improves disease-free survival (DFS), but is generally not curative. The allogeneic HCT experience demonstrated that T-cell immunotherapy can confer long-term DFS. Preclinical and clinical data indicate that myeloma-associated Ags elicit humoral and cellular immune responses (IRs) in myeloma patients. These findings strongly suggest that the immunotherapeutic strategies, including immune checkpoint inhibitors, therapeutic cancer vaccines and adoptive cellular therapies, are promising avenues of clinical research that may be most applicable in the minimal residual disease state following auto-HCT. These strategies are designed to prime or augment antimyeloma IRs and promote a 'host-vs-myeloma' effect that may result in durable DFS. Innovative clinical trials investigating immune checkpoint inhibitors and cancer vaccines have demonstrated that robust immunity against myeloma-associated Ags can be elicited in the setting of auto-HCT. A diverse array of immunotherapeutic strategies have entered clinical trials in myeloma, including PD-1/PD-L1 inhibitors, DC/myeloma cell fusion vaccines and adoptive chimeric Ag receptor T-cell therapy, and further investigation of combinations of immunologic and pharmaceutical agents are expected in the near future. In this review, we will discuss the preclinical data supporting immunotherapy in auto-HCT for myeloma, clinical investigation of these strategies and the future prospects of immunotherapy in pursuit of the goal of curative therapy.
Collapse
Affiliation(s)
- N Lendvai
- 1] Myeloma Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA [2] Department of Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - A D Cohen
- Division of Hematology/Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - H J Cho
- Multiple Myeloma Service, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
50
|
Lu X, Ding ZC, Cao Y, Liu C, Habtetsion T, Yu M, Lemos H, Salman H, Xu H, Mellor AL, Zhou G. Alkylating agent melphalan augments the efficacy of adoptive immunotherapy using tumor-specific CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:2011-21. [PMID: 25560408 DOI: 10.4049/jimmunol.1401894] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In recent years, the immune-potentiating effects of some widely used chemotherapeutic agents have been increasingly appreciated. This provides a rationale for combining conventional chemotherapy with immunotherapy strategies to achieve durable therapeutic benefits. Previous studies have implicated the immunomodulatory effects of melphalan, an alkylating agent commonly used to treat multiple myeloma, but the underlying mechanisms remain obscure. In the present study, we investigated the impact of melphalan on endogenous immune cells as well as adoptively transferred tumor-specific CD4(+) T cells in tumor-bearing mice. We showed that melphalan treatment resulted in a rapid burst of inflammatory cytokines and chemokines during the cellular recovery phase after melphalan-induced myelodepletion and leukodepletion. After melphalan treatment, tumor cells exhibited characteristics of immunogenic cell death, including membrane translocation of the endoplasmic reticulum-resident calreticulin and extracellular release of high-mobility group box 1. Additionally, there was enhanced tumor Ag uptake by dendritic cells in the tumor-draining lymph node. Consistent with these immunomodulatory effects, melphalan treatment of tumor-bearing mice led to the activation of the endogenous CD8(+) T cells and, more importantly, effectively drove the clonal expansion and effector differentiation of adoptively transferred tumor-specific CD4(+) T cells. Notably, the combination of melphalan and CD4(+) T cell adoptive cell therapy was more efficacious than either treatment alone in prolonging the survival of mice with advanced B cell lymphomas or colorectal tumors. These findings provide mechanistic insights into melphalan's immunostimulatory effects and demonstrate the therapeutic potential of combining melphalan with adoptive cell therapy utilizing antitumor CD4(+) T cells.
Collapse
Affiliation(s)
- Xiaoyun Lu
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Division of Digestive Endoscopy, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Zhi-Chun Ding
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Yang Cao
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Chufeng Liu
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Department of Orthodontics, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Tsadik Habtetsion
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Miao Yu
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Henrique Lemos
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Huda Salman
- Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; and
| | - Hongyan Xu
- Department of Biostatistics and Epidemiology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Andrew L Mellor
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; and
| | - Gang Zhou
- Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; and
| |
Collapse
|