1
|
Yoshida K. PKCdelta signaling: mechanisms of DNA damage response and apoptosis. Cell Signal 2007; 19:892-901. [PMID: 17336499 DOI: 10.1016/j.cellsig.2007.01.027] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 01/19/2007] [Accepted: 01/19/2007] [Indexed: 01/02/2023]
Abstract
The cellular response to genotoxic stress that damages DNA includes cell cycle arrest, activation of DNA repair, and in the event of irreparable damage, induction of apoptosis. However, the signals that determine cell fate, that is, survival or apoptosis, are largely unknown. The delta isoform of protein kinase C (PKCdelta) has been implicated in many important cellular processes, including regulation of apoptotic cell death. The available information supports a model in which certain sensors of DNA lesions activate PKCdelta. This activation is triggered in part by tyrosine phosphorylation of PKCdelta by c-Abl tyrosine kinase. PKCdelta is further proteolytically activated by caspase-3. The cleaved catalytic fragment of PKCdelta translocates to the nucleus and induces apoptosis. Importantly, accumulating data have revealed the nuclear targets for PKCdelta in the induction of apoptosis. A pro-apoptotic function of activated PKCdelta is mediated by at least several downstream effectors known to be associated with the elicitation of apoptosis. Recent findings also demonstrated that PKCdelta is involved in cell cycle-specific activation and induction of apoptotic cell death. Moreover, previous studies have shown that PKCdelta regulates transcription by phosphorylating various transcription factors, including the p53 tumor suppressor that is critical for cell cycle arrest and apoptosis in response to DNA damage. These findings collectively support a pivotal role for PKCdelta in the induction of apoptosis with significant impact. This review is focused on the current views regarding the regulation of cell fate by PKCdelta signaling in response to DNA damage.
Collapse
Affiliation(s)
- Kiyotsugu Yoshida
- Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
2
|
Henzing AJ, Dodson H, Reid JM, Kaufmann SH, Baxter RL, Earnshaw WC. Synthesis of novel caspase inhibitors for characterization of the active caspase proteome in vitro and in vivo. J Med Chem 2006; 49:7636-45. [PMID: 17181147 PMCID: PMC2564993 DOI: 10.1021/jm060385h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Caspases are cysteine proteases that are essential for cytokine maturation and apoptosis. To facilitate the dissection of caspase function in vitro and in vivo, we have synthesized irreversible caspase inhibitors with biotin attached via linker arms of various lengths (12a-d) and a 2,4-dinitrophenyl labeled inhibitor (13). Affinity labeling of apoptotic extracts followed by blotting reveals that these affinity probes detect active caspases. Using the strong affinity of avidin for biotin, we have isolated affinity-labeled caspase 6 from apoptotic cytosolic extracts of cells overexpressing procaspase 6 by treatment with 12c, which contains biotin attached to the N(epsilon)-lysine of the inhibitor by a 22.5 A linker arm, followed by affinity purification on monomeric avidin-sepharose beads. Compound 13 has proven sufficiently cell permeable to rescue cells from apoptotic execution. These novel caspase inhibitors should provide powerful probes for the study of the active caspase proteome during apoptosis both in vitro and in vivo.
Collapse
Affiliation(s)
- Alexander J. Henzing
- The Wellcome Trust Centre for Cell Biology, ICMB, Swann Building, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JR, United Kingdom
| | - Helen Dodson
- The Wellcome Trust Centre for Cell Biology, ICMB, Swann Building, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JR, United Kingdom
| | - Joel M. Reid
- Departments of Oncology, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Scott H. Kaufmann
- Departments of Oncology, Mayo Clinic College of Medicine, Rochester, MN 55905
- Departments of Molecular Pharmacology, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Robert L. Baxter
- School of Chemistry, Joseph Black Building, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, United Kingdom
| | - William C. Earnshaw
- The Wellcome Trust Centre for Cell Biology, ICMB, Swann Building, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JR, United Kingdom
| |
Collapse
|
3
|
Kim JE, Tannenbaum SR. S-Nitrosation regulates the activation of endogenous procaspase-9 in HT-29 human colon carcinoma cells. J Biol Chem 2003; 279:9758-64. [PMID: 14701803 DOI: 10.1074/jbc.m312722200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide-mediated signals have been suggested to regulate the activity of caspases negatively, yet literature has provided little direct evidence. We show in this paper that cytokines and nitric-oxide synthase (NOS) inhibitors regulate S-nitrosation of an initiator caspase, procaspase-9, in a human colon adenocarcinoma cell line, HT-29. A NOS inhibitor, N(G)-methyl-l-arginine, enhanced the tumor necrosis factor-alpha (TNF-alpha)-induced cleavage of procaspase-9, procaspase-3, and poly-(ADP-ribose) polymerase, as well as the level of apoptosis. N(G)-Methyl-l-arginine, however, did not affect the cleavage of procaspase-8. These results suggest that nitric oxide regulates the cleavage of procaspase-9 and its downstream proteins and, subsequently, apoptosis in HT-29 cells. Labeling S-nitrosated cysteines with a biotin tag enabled us to reveal S-nitrosation of endogenous procaspase-9 that was immunoprecipitated from the HT-29 cell extracts. Furthermore, the treatment with TNF-alpha, as well as NOS inhibitors, decreased interferon-gamma-induced S-nitrosation in procaspase-9. Our results show that S-nitrosation of endogenous procaspase-9 occurs in the HT-29 cells under normal conditions and that denitrosation of procaspase-9 enhances its cleavage and consequent apoptosis. We, therefore, suggest that S-nitrosation regulates activation of endogenous procaspase-9 in HT-29 cells.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
4
|
Grabarek J, Darzynkiewicz Z. In situ activation of caspases and serine proteases during apoptosis detected by affinity labeling their enzyme active centers with fluorochrome-tagged inhibitors. Exp Hematol 2002; 30:982-9. [PMID: 12225789 DOI: 10.1016/s0301-472x(02)00886-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Activation of caspases is the key event of apoptosis. To detect this event in situ we applied fluorochrome-labeled inhibitors of caspases (FLICA) as affinity labels of active centers of these enzymes. The FLICA are fluorescein- or sulforhodamine-conjugated peptide-fluoromethyl ketones that covalently, with 1:1 stoichiometry, bind to enzymatic centers of caspases; the specificity is provided by the peptide sequence of amino acids. Similarly, we applied fluorescent inhibitors of serine proteases (FLISP) to detect active sites of the latter enzymes. Exposure of live cells to FLICA of FLISP led to uptake of these ligands and their binding to activated caspases or active sites of serine proteases; the unbound reagents were removed by cell rinse. Only cells undergoing apoptosis were labeled with FLISP or FLICA. Intracellular binding sites of FLICA are consistent with known localization of caspases. Covalent binding of FLICA or FLISP allowed us to identify the labeled proteins by immunoblotting: the proteins that bound individual FLICAs had molecular weight between 17 and 22 kDa, which corresponds to large subunits of the caspases; two proteins reacting with FLISP were about 57 and 60 kDa, which suggests that they are novel enzymes. Detection of caspases or serine proteases activation can be combined with other markers of apoptosis or cell cycle for multiparametric analysis by flow or laser scanning cytometry. Being caspase inhibitors, FLICA arrest the process of apoptosis and prevent cell disintegration. The stathmo-apoptotic assay was developed, therefore, to obtain cumulative apoptotic index over a long period of time and estimate a rate of cell entry into apoptosis for cell populations.
Collapse
Affiliation(s)
- Jerzy Grabarek
- Brander Cancer Research Institute at New York Medical College, Valhalla, NY, USA
| | | |
Collapse
|
5
|
Blass M, Kronfeld I, Kazimirsky G, Blumberg PM, Brodie C. Tyrosine phosphorylation of protein kinase Cdelta is essential for its apoptotic effect in response to etoposide. Mol Cell Biol 2002; 22:182-95. [PMID: 11739733 PMCID: PMC134204 DOI: 10.1128/mcb.22.1.182-195.2002] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein kinase Cdelta (PKCdelta) is involved in the apoptosis of various cells in response to diverse stimuli. In this study, we characterized the role of PKCdelta in the apoptosis of C6 glioma cells in response to etoposide. We found that etoposide induced apoptosis in the C6 cells within 24 to 48 h and arrested the cells in the G(1)/S phase of the cell cycle. Overexpression of PKCdelta increased the apoptotic effect induced by etoposide, whereas the PKCdelta selective inhibitor rottlerin and the PKCdelta dominant-negative mutant K376R reduced this effect compared to control cells. Etoposide-induced tyrosine phosphorylation of PKCdelta and its translocation to the nucleus within 3 h was followed by caspase-dependent cleavage of the enzyme. Using PKC chimeras, we found that both the regulatory and catalytic domains of PKCdelta were necessary for its apoptotic effect. The role of tyrosine phosphorylation of PKCdelta in the effects of etoposide was examined using cells overexpressing a PKCdelta mutant in which five tyrosine residues were mutated to phenylalanine (PKCdelta5). These cells exhibited decreased apoptosis in response to etoposide compared to cells overexpressing PKCdelta. Likewise, activation of caspase 3 and the cleavage of the PKCdelta5 mutant were significantly lower in cells overexpressing PKCdelta5. Using mutants of PKCdelta altered at individual tyrosine residues, we identified tyrosine 64 and tyrosine 187 as important phosphorylation sites in the apoptotic effect induced by etoposide. Our results suggest a role of PKCdelta in the apoptosis induced by etoposide and implicate tyrosine phosphorylation of PKCdelta as an important regulator of this effect.
Collapse
Affiliation(s)
- Michal Blass
- Gonda (Goldschmied) Medical Diagnosis Research Center, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | |
Collapse
|
6
|
Diana F, Sgarra R, Manfioletti G, Rustighi A, Poletto D, Sciortino MT, Mastino A, Giancotti V. A link between apoptosis and degree of phosphorylation of high mobility group A1a protein in leukemic cells. J Biol Chem 2001; 276:11354-61. [PMID: 11145960 DOI: 10.1074/jbc.m009521200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear phosphoprotein HMGA1a, high mobility group A1a, (previously HMGI) has been investigated during apoptosis. A change in the degree of phosphorylation of HMGA1a has been observed during apoptosis induced in four leukemic cell lines (HL60, K562, NB4, and U937) by drugs (etoposide, camptothecin) or herpes simplex virus type-1. Both hyper-phosphorylation and de-phosphorylation of HMGA1a have been ascertained by liquid chromatography-mass spectrometry. Hyper-phosphorylation (at least five phosphate groups/HMGA1a molecule) occurs at the early apoptotic stages and is probably related to HMGA1a displacement from DNA and chromatin release from the nuclear scaffold. De-phosphorylation (one phosphate or no phosphate groups/HMGA1a molecule) accompanies the later formation of highly condensed chromatin in the apoptotic bodies. We report for the first time a direct link between the degree of phosphorylation of HMGA1a protein and apoptosis according to a process that involves the entire amount of HMGA1a present in the cells and, consequently, whole chromatin. At the same time we report that variously phosphorylated forms of HMGA1a protein are also mono-methylated.
Collapse
Affiliation(s)
- F Diana
- Dipartimento di Biochimica, Biofisica e Chimica delle Macromolecole, Università di Trieste, 34127 Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Recent studies have suggested that variations in levels of caspases, a family of intracellular cysteine proteases, can profoundly affect the ability of cells to undergo apoptosis. In this study, immunoblotting was used to examine levels of apoptotic protease activating factor-1 (Apaf-1) and procaspases-2, -3, -7, -8, and -9 in bone marrow samples (at least 80% leukemia) harvested before chemotherapy from adults with newly diagnosed acute myelogenous leukemia (AML, 42 patients) and acute lymphocytic leukemia (ALL, 18 patients). Levels of each of these polypeptides varied over a more than 10-fold range between specimens. In AML samples, expression of procaspase-2 correlated with levels of Apaf-1 (Rs = 0.52, P < .02), procaspase-3 (Rs = 0.56,P < .006) and procaspase-8 (Rs = 0.64, P < .002). In ALL samples, expression of procaspases-7 and -9 was highly correlated (Rs = 0.90,P < .003). Levels of these polypeptides did not correlate with prognostic factors or response to induction chemotherapy. In further studies, 16 paired samples (13 AML, 3 ALL), the first harvested before induction therapy and the second harvested at the time of leukemia regrowth, were also examined. There were no systematic alterations in levels of Apaf-1 or procaspases at relapse compared with diagnosis. These results indicate that levels of initiator caspases vary widely among different leukemia specimens but cast doubt on the hypothesis that this variation is a major determinant of drug sensitivity for acute leukemia in the clinical setting.
Collapse
|
8
|
Tullai JW, Cummins PM, Pabon A, Roberts JL, Lopingco MC, Shrimpton CN, Smith AI, Martignetti JA, Ferro ES, Glucksman MJ. The neuropeptide processing enzyme EC 3.4.24.15 is modulated by protein kinase A phosphorylation. J Biol Chem 2000; 275:36514-22. [PMID: 10969067 DOI: 10.1074/jbc.m001843200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metalloendopeptidase EC (EP24.15) is a neuropeptide-metabolizing enzyme expressed predominantly in brain, pituitary, and testis, and is implicated in several physiological processes and diseases. Multiple putative phosphorylation sites in the primary sequence led us to investigate whether phosphorylation effects the specificity and/or the kinetics of substrate cleavage. Only protein kinase A (PKA) treatment resulted in serine phosphorylation with a stoichiometry of 1.11 +/- 0.12 mol of phosphate/mol of recombinant rat EP24.15. Mutation analysis of each putative PKA site, in vitro phosphorylation, and phosphopeptide mapping indicated serine 644 as the phosphorylation site. Phosphorylation effects on catalytic activity were assessed using physiological (GnRH, GnRH(1-9), bradykinin, and neurotensin) and fluorimetric (MCA-PLGPDL-Dnp and orthoaminobenzoyl-GGFLRRV-Dnp-edn) substrates. The most dramatic change upon PKA phosphorylation was a substrate-specific, 7-fold increase in both K(m) and k(cat) for GnRH. In both rat PC12 and mouse AtT-20 cells, EP24.15 was serine-phosphorylated, and EP24.15 phosphate incorporation was enhanced by forskolin treatment, and attenuated by H89, consistent with PKA-mediated phosphorylation. Cloning of the full-length mouse EP24.15 cDNA revealed 96.7% amino acid identity to the rat sequence, and conservation at serine 644, consistent with its putative functional role. Therefore, PKA phosphorylation is suggested to play a regulatory role in EP24.15 enzyme activity.
Collapse
Affiliation(s)
- J W Tullai
- Fishberg Research Center for Neurobiology and Departments of Human Genetics and Pediatrics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Talanian RV, Brady KD, Cryns VL. Caspases as targets for anti-inflammatory and anti-apoptotic drug discovery. J Med Chem 2000; 43:3351-71. [PMID: 10978183 DOI: 10.1021/jm000060f] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- R V Talanian
- BASF Bioresearch Corporation, 100 Research Drive, Worcester, Massachusetts 01605, USA.
| | | | | |
Collapse
|
10
|
Shain KH, Landowski TH, Buyuksal I, Cantor AB, Dalton WS. Clonal variability in CD95 expression is the major determinant in Fas-medicated, but not chemotherapy-medicated apoptosis in the RPMI 8226 multiple myeloma cell line. Leukemia 2000; 14:830-40. [PMID: 10803514 DOI: 10.1038/sj.leu.2401776] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CD95 (Fas/APO-1) is a member of the TNFR superfamily that induces apoptosis following cross-linking with its cognate ligand, CD95L (FasL/APO-1L) or agonist antibody. The human myeloma cell line, RPMI 8226, has limited sensitivity to CD95-mediated apoptosis, with a maximum of 65% of the population responding. To determine the source of the limited sensitivity to CD95-mediated apoptosis, we isolated multiple clones from the RPMI-8226 cell line by limiting dilution. Analysis of these clones demonstrated that sensitivity to CD95-mediated cell death directly correlated with CD95 expression. Clones with high levels of CD95 expression had greater than 90% cell death, whereas cells with low levels of expression had less than 10% cell death. In contrast, no correlative differences were identified for other members of the DISC complex, or for members of the anti-apoptotic Bcl-2 family. We further examined the sensitivity of the 8226 clones to various cytotoxic agents. Although modest clonal variability was demonstrated in response to the chemotherapeutic drugs, doxorubicin, etoposide (VP-16), and vincristine, there was no correlation between CD95 function and sensitivity to chemotherapeutic drugs. These results indicate that in this cell line, receptor expression is rate limiting in CD95-mediated apoptosis, whereas CD95 expression was not a determinant in drug-induced programmed cell death.
Collapse
Affiliation(s)
- K H Shain
- Clinical Investigations Program, H Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa 33612, USA
| | | | | | | | | |
Collapse
|
11
|
Mesner PW, Bible KC, Martins LM, Kottke TJ, Srinivasula SM, Svingen PA, Chilcote TJ, Basi GS, Tung JS, Krajewski S, Reed JC, Alnemri ES, Earnshaw WC, Kaufmann SH. Characterization of caspase processing and activation in HL-60 cell cytosol under cell-free conditions. Nucleotide requirement and inhibitor profile. J Biol Chem 1999; 274:22635-45. [PMID: 10428844 DOI: 10.1074/jbc.274.32.22635] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The present studies compared caspase activation under cell-free conditions in vitro and in etoposide-treated HL-60 leukemia cells in situ. Immunoblotting revealed that incubation of HL-60 cytosol at 30 degrees C in the presence of cytochrome c and ATP (or dATP) resulted in activation of procaspases-3, -6, and -7 but not -2 and -8. Although similar selectivity was observed in intact cells, affinity labeling revealed that the active caspase species generated in vitro and in situ differed in charge and abundance. ATP and dATP levels in intact HL-60 cells were higher than required for caspase activation in vitro and did not change before caspase activation in situ. Replacement of ATP with the poorly hydrolyzable analogs 5'-adenylyl methylenediphosphate, 5'-adenylyl imidodiphosphate, or 5'-adenylyl-O-(3-thiotriphos-phate) slowed caspase activation in vitro, suggesting that ATP hydrolysis is required. Caspase activation in vitro was insensitive to phosphatase and kinase inhibitors (okadaic acid, staurosporine, and genistein) but was inhibited by Zn(2+), aurintricarboxylic acid, and various protease inhibitors, including 3,4-dichloroisocoumarin, N(alpha)-p-tosyl-L-phenylalanine chloromethyl ketone, N(alpha)-p-tosyl-L-lysine chloromethyl ketone, and N-(N(alpha)-benzyloxycarbonylphenylalanyl)alanine fluoromethyl ketone, each of which inhibited recombinant caspases-3, -6, -7, and -9. Experiments with anti-neoepitope antiserum confirmed that these agents inhibited caspase-9 activation. Collectively, these results suggest that caspase-9 activation requires nucleotide hydrolysis and is inhibited by agents previously thought to affect apoptosis by other means.
Collapse
Affiliation(s)
- P W Mesner
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55901, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Samejima K, Svingen PA, Basi GS, Kottke T, Mesner PW, Stewart L, Durrieu F, Poirier GG, Alnemri ES, Champoux JJ, Kaufmann SH, Earnshaw WC. Caspase-mediated cleavage of DNA topoisomerase I at unconventional sites during apoptosis. J Biol Chem 1999; 274:4335-40. [PMID: 9933635 DOI: 10.1074/jbc.274.7.4335] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that topoisomerase I is cleaved late during apoptosis, but have not identified the proteases responsible or examined the functional consequences of this cleavage. Here, we have shown that treatment of purified topoisomerase I with caspase-3 resulted in cleavage at DDVD146 downward arrowY and EEED170 downward arrowG, whereas treatment with caspase-6 resulted in cleavage at PEDD123 downward arrowG and EEED170 downward arrowG. After treatment of Jurkat T lymphocytic leukemia cells with anti-Fas antibody or A549 lung cancer cells with topotecan, etoposide, or paclitaxel, the topoisomerase I fragment comigrated with the product that resulted from caspase-3 cleavage at DDVD146 downward arrowY. In contrast, two discrete topoisomerase I fragments that appeared to result from cleavage at DDVD146 downward arrowY and EEED170 downward arrowG were observed after treatment of MDA-MB-468 breast cancer cells with paclitaxel. Topoisomerase I cleavage did not occur in apoptotic MCF-7 cells, which lack caspase-3. Cell fractionation and band depletion studies with the topoisomerase I poison topotecan revealed that the topoisomerase I fragment remains in proximity to the chromatin and retains the ability to bind to and cleave DNA. These observations indicate that topoisomerase I is a substrate of caspase-3 and possibly caspase-6, but is cleaved at sequences that differ from those ordinarily preferred by these enzymes, thereby providing a potential explanation why topoisomerase I cleavage lags behind that of classical caspase substrates such as poly(ADP-ribose) polymerase and lamin B1.
Collapse
Affiliation(s)
- K Samejima
- Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|