1
|
Kao HW, Kuo MC, Ou CW, Huang TY, Chang H, Lin TL, Hung YS, Wu JH, Shih LY. Clonal dynamics of chronic myelomonocytic leukemia progression: paired-sample comparison. J Pathol 2025; 265:437-447. [PMID: 39905935 DOI: 10.1002/path.6396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/08/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025]
Abstract
This study investigated the clonal evolution of chronic myelomonocytic leukemia (CMML) progression to secondary acute myeloid leukemia (sAML) by next-generation sequencing and pyrosequencing for variant allele frequency (VAF) of gene mutations and SNP microarray for copy neutral loss of heterozygosity (CN-LOH) in 38 paired samples from CMML/sAML patients of Taiwanese origin. The median interval between CMML and sAML samples collection was 14.9 months (1.0-89.6). RUNX1 (57%), TET2 (46%), SRSF2 (37%), and ASXL1 (28%) mutations were frequent at CMML diagnosis. Baseline VAF in epigenetic regulator genes was high (>35%) in 83% of mutational events at the CMML phase, remained stable in 78% (VAF changes <10%), and increased in 20% (increased VAF > 10%) during progression to sAML. Transcription factor genes showed high VAF (>35%) in 51% at the CMML phase, and stable VAF in 60% during progression. VAF of spliceosome genes was high (>35%) in 70% at CMML phase, and stable in 61% during progression. Activated signaling genes exhibited acquisition or loss during progression. TET2 mutations were often founding clones, and SRSF2, ASXL1, DNMT3A, EZH2, or spliceosome genes also acted as ancestral mutations. RUNX1 mutations were typically later events and occasionally ancestral hits or germline mutations. Acquisition of cytogenetic changes, signaling pathways genes (PTPN11, FLT3, NRAS, CBL), or AML-defined genes (NPM1, CEBPA, CBFB::MYH11) by linear or branching evolution occurred during sAML progression. CN-LOH was noted in EZH2, CBL, TET2, and DNMT3A genes. CEBPA mutation and concurrent biallelic TET2 with NRAS mutations at CMML diagnosis were risk factors for time to AML progression and overall survival. A characteristic ASXL1MT/RUNX1MT/SpliceosomeMT/signalingWT genetic profile was associated with monocyte counts of 0.5-1.0 × 109/l. This study highlights the complexity and heterogeneity of dynamic changes in clonal architecture during CMML progression, emphasizing its importance in pathogenesis, phenotype, risk stratification, and therapeutic strategy. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Humans
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/pathology
- Male
- Female
- Aged
- Mutation
- Disease Progression
- Middle Aged
- Aged, 80 and over
- Clonal Evolution/genetics
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Loss of Heterozygosity
- High-Throughput Nucleotide Sequencing
- Core Binding Factor Alpha 2 Subunit/genetics
- Polymorphism, Single Nucleotide
- Biomarkers, Tumor/genetics
- Adult
- Taiwan
- Gene Frequency
- Genetic Predisposition to Disease
- DNA-Binding Proteins
- Dioxygenases
Collapse
Affiliation(s)
- Hsiao-Wen Kao
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ming-Chung Kuo
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Che-Wei Ou
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan
| | - Ting-Yu Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hung Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tung-Liang Lin
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Shin Hung
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jin-Hou Wu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
2
|
Ozturk K, Panwala R, Sheen J, Ford K, Jayne N, Portell A, Zhang DE, Hutter S, Haferlach T, Ideker T, Mali P, Carter H. Interface-guided phenotyping of coding variants in the transcription factor RUNX1. Cell Rep 2024; 43:114436. [PMID: 38968069 PMCID: PMC11345852 DOI: 10.1016/j.celrep.2024.114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/15/2024] [Accepted: 06/19/2024] [Indexed: 07/07/2024] Open
Abstract
Single-gene missense mutations remain challenging to interpret. Here, we deploy scalable functional screening by sequencing (SEUSS), a Perturb-seq method, to generate mutations at protein interfaces of RUNX1 and quantify their effect on activities of downstream cellular programs. We evaluate single-cell RNA profiles of 115 mutations in myelogenous leukemia cells and categorize them into three functionally distinct groups, wild-type (WT)-like, loss-of-function (LoF)-like, and hypomorphic, that we validate in orthogonal assays. LoF-like variants dominate the DNA-binding site and are recurrent in cancer; however, recurrence alone does not predict functional impact. Hypomorphic variants share characteristics with LoF-like but favor protein interactions, promoting gene expression indicative of nerve growth factor (NGF) response and cytokine recruitment of neutrophils. Accessible DNA near differentially expressed genes frequently contains RUNX1-binding motifs. Finally, we reclassify 16 variants of uncertain significance and train a classifier to predict 103 more. Our work demonstrates the potential of targeting protein interactions to better define the landscape of phenotypes reachable by missense mutations.
Collapse
Affiliation(s)
- Kivilcim Ozturk
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Rebecca Panwala
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Jeanna Sheen
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kyle Ford
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Nathan Jayne
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Andrew Portell
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Dong-Er Zhang
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Stephan Hutter
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Torsten Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Trey Ideker
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
In Pursuit of Genetic Prognostic Factors and Treatment Approaches in Secondary Acute Myeloid Leukemia—A Narrative Review of Current Knowledge. J Clin Med 2022; 11:jcm11154283. [PMID: 35893374 PMCID: PMC9332027 DOI: 10.3390/jcm11154283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Secondary acute myeloid leukemia can be divided into two categories: AML evolving from the antecedent hematological condition (AHD-AML) and therapy related AML (t-AML). AHD-AML can evolve from hematological conditions such as myelodysplastic syndromes, myeloproliferative neoplasms, MDS/MPN overlap syndromes, Fanconi anemia, and aplastic anemia. Leukemic transformation occurs as a consequence of the clonal evolution—a process of the acquisition of mutations in clones, while previous mutations are also passed on, leading to somatic mutations accumulation. Compared de novo AML, secondary AML is generally associated with poorer response to chemotherapy and poorer prognosis. The therapeutic options for patients with s-AML have been confirmed to be limited, as s-AML has often been analyzed either both with de novo AML or completely excluded from clinical trials. The treatment of s-AML was not in any way different than de novo AML, until, that is, the introduction of CPX-351—liposomal daunorubicin and cytarabine. CPX-351 significantly improved the overall survival and progression free survival in elderly patients with s-AML. The only definitive treatment in s-AML at this time is allogeneic hematopoietic cell transplantation. A better understanding of the genetics and epigenetics of s-AML would allow us to determine precise biologic drivers leading to leukogenesis and thus help to apply a targeted treatment, improving prognosis.
Collapse
|
4
|
Li Y, Yang W, Devidas M, Winter SS, Kesserwan C, Yang W, Dunsmore KP, Smith C, Qian M, Zhao X, Zhang R, Gastier-Foster JM, Raetz EA, Carroll WL, Li C, Liu PP, Rabin KR, Sanda T, Mullighan CG, Nichols KE, Evans WE, Pui CH, Hunger SP, Teachey DT, Relling MV, Loh ML, Yang JJ. Germline RUNX1 variation and predisposition to childhood acute lymphoblastic leukemia. J Clin Invest 2021; 131:147898. [PMID: 34166225 PMCID: PMC8409579 DOI: 10.1172/jci147898] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/22/2021] [Indexed: 12/31/2022] Open
Abstract
Genetic alterations in the RUNX1 gene are associated with benign and malignant blood disorders, particularly of megakaryocyte and myeloid lineages. The role of RUNX1 in acute lymphoblastic leukemia (ALL) is less clear, particularly how germline genetic variation influences the predisposition to this type of leukemia. Sequencing 4,836 children with B-ALL and 1,354 cases of T-ALL, we identified 31 and 18 germline RUNX1 variants, respectively. RUNX1 variants in B-ALL consistently showed minimal damaging effects. By contrast, 6 T-ALL-related variants result in drastic loss of RUNX1 activity as a transcription activator in vitro. Ectopic expression of dominant-negative RUNX1 variants in human CD34+ cells repressed differentiation into erythroid, megakaryocytes, and T cells, while promoting myeloid cell development. Chromatin immunoprecipitation sequencing of T-ALL models showed distinctive patterns of RUNX1 binding by variant proteins. Further whole genome sequencing identified JAK3 mutation as the most frequent somatic genomic abnormality in T-ALL with germline RUNX1 variants. Co-introduction of RUNX1 variant and JAK3 mutation in hematopoietic stem and progenitor cells in mice gave rise to T-ALL with early T-cell precursor phenotype. Taken together, these results indicated that RUNX1 is an important predisposition gene for T-ALL and pointed to novel biology of RUNX1-mediated leukemogenesis in the lymphoid lineages.
Collapse
Affiliation(s)
- Yizhen Li
- Department of Pharmaceutical Sciences and
| | | | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Stuart S. Winter
- Children’s Minnesota Research Institute, Children’s Minnesota, Minneapolis, Minnesota, USA
| | - Chimene Kesserwan
- Center for Cancer Research, Genetics Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Kimberly P. Dunsmore
- Children’s Hematology and Oncology, Carilion Clinic and Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | | | - Maoxiang Qian
- Institute of Pediatrics and Department of Hematology and Oncology, Children’s Hospital of Fudan University, Institutes of Biomedical Sciences, Shanghai, China
| | - Xujie Zhao
- Department of Pharmaceutical Sciences and
| | | | | | - Elizabeth A. Raetz
- Division of Pediatric Hematology and Oncology, Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - William L. Carroll
- Division of Pediatric Hematology and Oncology, Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA
| | - Chunliang Li
- Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Paul P. Liu
- Oncogenesis and Development Section, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Karen R. Rabin
- Texas Children’s Cancer and Hematology Centers, Baylor College of Medicine, Houston, Texas, USA
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, and
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | - William E. Evans
- Department of Pharmaceutical Sciences and
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ching-Hon Pui
- Department of Oncology, and
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Stephen P. Hunger
- Department of Pediatrics and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David T. Teachey
- Department of Pediatrics and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mary V. Relling
- Department of Pharmaceutical Sciences and
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Mignon L. Loh
- Department of Pediatrics, Benioff Children’s Hospital and the Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Jun J. Yang
- Department of Pharmaceutical Sciences and
- Department of Oncology, and
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
5
|
Dannenmann B, Klimiankou M, Oswald B, Solovyeva A, Mardan J, Nasri M, Ritter M, Zahabi A, Arreba-Tutusaus P, Mir P, Stein F, Kandabarau S, Lachmann N, Moritz T, Morishima T, Konantz M, Lengerke C, Ripperger T, Steinemann D, Erlacher M, Niemeyer CM, Zeidler C, Welte K, Skokowa J. iPSC modeling of stage-specific leukemogenesis reveals BAALC as a key oncogene in severe congenital neutropenia. Cell Stem Cell 2021; 28:906-922.e6. [PMID: 33894142 DOI: 10.1016/j.stem.2021.03.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 01/15/2021] [Accepted: 03/30/2021] [Indexed: 01/26/2023]
Abstract
Severe congenital neutropenia (CN) is a pre-leukemic bone marrow failure syndrome that can evolve to acute myeloid leukemia (AML). Mutations in CSF3R and RUNX1 are frequently observed in CN patients, although how they drive the transition from CN to AML (CN/AML) is unclear. Here we establish a model of stepwise leukemogenesis in CN/AML using CRISPR-Cas9 gene editing of CN patient-derived iPSCs. We identified BAALC upregulation and resultant phosphorylation of MK2a as a key leukemogenic event. BAALC deletion or treatment with CMPD1, a selective inhibitor of MK2a phosphorylation, blocked proliferation and induced differentiation of primary CN/AML blasts and CN/AML iPSC-derived hematopoietic stem and progenitor cells (HSPCs) without affecting healthy donor or CN iPSC-derived HSPCs. Beyond detailing a useful method for future investigation of stepwise leukemogenesis, this study suggests that targeting BAALC and/or MK2a phosphorylation may prevent leukemogenic transformation or eliminate AML blasts in CN/AML and RUNX1 mutant BAALC(hi) de novo AML.
Collapse
Affiliation(s)
- Benjamin Dannenmann
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany
| | - Maksim Klimiankou
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany
| | - Benedikt Oswald
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany
| | - Anna Solovyeva
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany
| | - Jehan Mardan
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany
| | - Masoud Nasri
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany
| | - Malte Ritter
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany
| | - Azadeh Zahabi
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany
| | - Patricia Arreba-Tutusaus
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany
| | - Perihan Mir
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany
| | - Frederic Stein
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany
| | - Siarhei Kandabarau
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology (IKP), 70376 Stuttgart, Germany
| | - Nico Lachmann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Thomas Moritz
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Tatsuya Morishima
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany
| | - Martina Konantz
- Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Claudia Lengerke
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany; Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Tim Ripperger
- Institute of Human Genetics, Hannover Medical School, 30625 Hannover, Germany
| | - Doris Steinemann
- Institute of Human Genetics, Hannover Medical School, 30625 Hannover, Germany
| | - Miriam Erlacher
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, 79106 Freiburg, Germany; German Cancer Consortium (DKTK), 79106 Freiburg, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Charlotte M Niemeyer
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, 79106 Freiburg, Germany; German Cancer Consortium (DKTK), 79106 Freiburg, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Cornelia Zeidler
- Department of Oncology, Hematology, Immunology and Bone Marrow Transplantation, Hannover Medical School, 39625 Hannover, Germany
| | - Karl Welte
- University Children's Hospital Tuebingen, 72074 Tuebingen, Germany
| | - Julia Skokowa
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany.
| |
Collapse
|
6
|
George TI, Bajel A. Diagnosis of rare subtypes of acute myeloid leukaemia and related neoplasms. Pathology 2021; 53:312-327. [PMID: 33676766 DOI: 10.1016/j.pathol.2021.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
The diagnosis of acute myeloid leukaemia and related neoplasms in adults is challenging as this requires the integration of clinical findings, morphology, immunophenotype, cytogenetics, and molecular genetic findings. Lack of familiarity with rare subtypes of acute leukaemia hinders the diagnosis. In this review, we will describe diagnostic findings of several rare acute myeloid leukaemias and related neoplasms that primarily occur in adults including information on presentation, morphology, immunophenotype, genetics, differential diagnosis, and prognosis. Leukaemias discussed include blastic plasmacytoid dendritic cell neoplasm, acute myeloid leukaemia with t(6;9) (p23;q34.1); DEK-NUP214, acute myeloid leukaemia with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM, acute myeloid leukaemia with BCR-ABL1, acute leukaemias of ambiguous lineage, acute myeloid leukaemia with mutated RUNX1, pure erythroid leukaemia, acute panmyelosis with myelofibrosis, and acute basophilic leukaemia. Case studies with morphological features of the nine subtypes of acute myeloid leukaemia and related neoplasms have been included, and additional evidence available since publication of the 2016 World Health Organization Classification has been added to each subtype.
Collapse
Affiliation(s)
- Tracy I George
- University of Utah School of Medicine, Department of Pathology, Salt Lake City, UT, USA.
| | - Ashish Bajel
- Clinical Haematology, Peter MacCallum Cancer Centre, The Royal Melbourne Hospital, Melbourne, Vic, Australia
| |
Collapse
|
7
|
Accurate germline RUNX1 variant interpretation and its clinical significance. Blood Adv 2021; 4:6199-6203. [PMID: 33351114 DOI: 10.1182/bloodadvances.2020003304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
|
8
|
Stengel A, Kern W, Meggendorfer M, Haferlach T, Haferlach C. RUNX1 mutations in MDS, s-AML, and de novo AML: differences in accompanying genetic alterations and outcome. Leuk Lymphoma 2020; 60:1334-1336. [PMID: 30997874 DOI: 10.1080/10428194.2018.1522439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Anna Stengel
- a MLL Munich Leukemia Laboratory , Munich , Germany
| | | | | | | | | |
Collapse
|
9
|
Nguyen L, Zhang X, Roberts E, Yun S, McGraw K, Abraham I, Song J, Braswell D, Qin D, Sallman DA, Lancet JE, List AF, Moscinski LC, Padron E, Zhang L. Comparison of mutational profiles and clinical outcomes in patients with acute myeloid leukemia with mutated RUNX1 versus acute myeloid leukemia with myelodysplasia-related changes with mutated RUNX1. Leuk Lymphoma 2020; 61:1395-1405. [PMID: 32091281 DOI: 10.1080/10428194.2020.1723016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Studies comparing the prognostic role of RUNX1 mutations (RUNX1mut) in acute myeloid leukemia (AML) and acute myeloid leukemia-with myelodysplasia-related changes (AML-MRC) are limited. Our study examines the genetic profile of 118 RUNX1mut AML patients including 57 AML with RUNX1mut and 61 AML-MRC with RUNX1mut and 100 AML, NOS patients with wild type RUNX1 (RUNX1wt). Results revealed that AML-MRC patients with RUNX1mut had shorter median overall survival (OS) (11 ± 3.3 months) when compared to AML with RUNX1mut (19 ± 7.1 months) and AML, NOS with RUNX1wt (not reached) (p = .001). The most common concurrent mutations observed in AML-MRC with RUNX1mut patients were DNMT3A, SRSF2, ASXL1, and IDH2 while in AML with RUNX1mut patients were ASXL1, SRSF2, TET2, IDH2, and DNMT3A. ASXL1 and TET2 mutations appeared to adversely affect OS in AML-MRC, but not in AML with RUNX1mut. Concurrent RUNX1/DNMT3A mutations, in contrast had negative impact on OS in AML with RUNX1mut, but not in AML-MRC with RUNX1mut.
Collapse
Affiliation(s)
- Lynh Nguyen
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Pathology, James A. Haley Veterans' Hospital, Tampa, FL, USA.,Department of Pathology, Morsani College of Medicine, The University of South Florida, Tampa, FL, USA
| | - Xiaohui Zhang
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Evans Roberts
- Department of Pathology, Morsani College of Medicine, The University of South Florida, Tampa, FL, USA
| | - Seongseok Yun
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kathy McGraw
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ivo Abraham
- Center for Health Outcomes and PharmacoEconomic Research, University of Arizona, Tucson, AZ, USA
| | - Jinming Song
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Diana Braswell
- Department of Pathology, Morsani College of Medicine, The University of South Florida, Tampa, FL, USA
| | - Dahui Qin
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - David A Sallman
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jeffrey E Lancet
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alan F List
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Lynn C Moscinski
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eric Padron
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ling Zhang
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
10
|
OGAWA S. Genetic basis of myelodysplastic syndromes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:107-121. [PMID: 32161209 PMCID: PMC7167367 DOI: 10.2183/pjab.96.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/15/2020] [Indexed: 05/06/2023]
Abstract
During the past decade, substantial progress has been made in the field of the genetics of myelodysplastic syndromes (MDS). These comprise a group of chronic myeloid neoplasms with abnormal cell morphology and progression to acute myeloid leukemia (AML), where revolutionary sequencing technologies have played a major role. Through extensive sequencing of a large number of MDS genomes, a comprehensive registry of driver mutations involved in the pathogenesis of MDS has been revealed, along with their impacts on clinical phenotype and prognosis. The most frequently affected molecules are involved in DNA methylations, chromatin modification, RNA splicing, transcription, signal transduction, cohesin regulation, and DNA repair. These mutations show strong positive and negative correlations with each other, suggesting the presence of functional interactions between mutations, which dictate disease progression. Because these mutations are associated with disease phenotype, drug response, and clinical outcomes, it is essential to be familiar with MDS genetics not only for better understanding of MDS pathogenesis but also for management of patients.
Collapse
Affiliation(s)
- Seishi OGAWA
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Wu F, Song T, Yao Y, Song Y. Thermodynamic investigation of DNA-binding affinity of wild-type and mutant transcription factor RUNX1. PLoS One 2019; 14:e0216203. [PMID: 31048839 PMCID: PMC6497270 DOI: 10.1371/journal.pone.0216203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/16/2019] [Indexed: 11/29/2022] Open
Abstract
Transcription factor RUNX1 and its binding partner CBFβ play a critical role in gene regulation for hematopoiesis. Mutations of RUNX1 cause ~10% of acute myeloid leukemia (AML) with a particularly poor prognosis. The current paradigm for the leukemogenesis is that insufficient activity of wild-type (WT) RUNX1 impairs hematopoietic differentiation. The majority of mutant RUNX1 proteins lose the DNA-binding affinity and inhibit WT RUNX1 by depletion of CBFβ. Here, isothermal titration calorimetry (ITC) was used to quantitatively study the interactions of WT and three clinical mutant RUNX1, CBFβ and DNA. Our data show that the binding of RUNX1 to DNA is enthalpy-driven, and the affinity decreases in the order of WT > S114L > R139Q >> K83E, which support previous observations and conclusion. To find potentially beneficial RUNX1 mutations that could increase the overall RUNX1 activity, K83R and H179K mutations of RUNX1 were designed, using structure-based computational modeling, and found to possess significantly higher DNA-binding affinities than does WT RUNX1. K83R and H179K mutant RUNX1 could therefore be protein-based RUNX1 activators.
Collapse
Affiliation(s)
- Fangrui Wu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tidie Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yuan Yao
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
12
|
Bellissimo DC, Speck NA. RUNX1 Mutations in Inherited and Sporadic Leukemia. Front Cell Dev Biol 2017; 5:111. [PMID: 29326930 PMCID: PMC5742424 DOI: 10.3389/fcell.2017.00111] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022] Open
Abstract
RUNX1 is a recurrently mutated gene in sporadic myelodysplastic syndrome and leukemia. Inherited mutations in RUNX1 cause familial platelet disorder with predisposition to acute myeloid leukemia (FPD/AML). In sporadic AML, mutations in RUNX1 are usually secondary events, whereas in FPD/AML they are initiating events. Here we will describe mutations in RUNX1 in sporadic AML and in FPD/AML, discuss the mechanisms by which inherited mutations in RUNX1 could elevate the risk of AML in FPD/AML individuals, and speculate on why mutations in RUNX1 are rarely, if ever, the first event in sporadic AML.
Collapse
Affiliation(s)
- Dana C Bellissimo
- Department of Cell and Developmental Biology, Perelman School of Medicine, Abramson Family Cancer Research Institute, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nancy A Speck
- Department of Cell and Developmental Biology, Perelman School of Medicine, Abramson Family Cancer Research Institute, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
13
|
Stengel A, Kern W, Meggendorfer M, Nadarajah N, Perglerovà K, Haferlach T, Haferlach C. Number of RUNX1 mutations, wild-type allele loss and additional mutations impact on prognosis in adult RUNX1-mutated AML. Leukemia 2017; 32:295-302. [DOI: 10.1038/leu.2017.239] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/22/2017] [Accepted: 07/17/2017] [Indexed: 12/23/2022]
|
14
|
Abstract
RUNX1 is a member of the core-binding factor family of transcription factors and is indispensable for the establishment of definitive hematopoiesis in vertebrates. RUNX1 is one of the most frequently mutated genes in a variety of hematological malignancies. Germ line mutations in RUNX1 cause familial platelet disorder with associated myeloid malignancies. Somatic mutations and chromosomal rearrangements involving RUNX1 are frequently observed in myelodysplastic syndrome and leukemias of myeloid and lymphoid lineages, that is, acute myeloid leukemia, acute lymphoblastic leukemia, and chronic myelomonocytic leukemia. More recent studies suggest that the wild-type RUNX1 is required for growth and survival of certain types of leukemia cells. The purpose of this review is to discuss the current status of our understanding about the role of RUNX1 in hematological malignancies.
Collapse
|
15
|
Clinical Relevance of RUNX1 and CBFB Alterations in Acute Myeloid Leukemia and Other Hematological Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:175-199. [PMID: 28299658 DOI: 10.1007/978-981-10-3233-2_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The translocation t(8;21), leading to a fusion between the RUNX1 gene and the RUNX1T1 locus, was the first chromosomal translocation identified in cancer. Since the first description of this balanced rearrangement in a patient with acute myeloid leukemia (AML) in 1973, RUNX1 translocations and point mutations have been found in various myeloid and lymphoid neoplasms. In this chapter, we summarize the currently available data on the clinical relevance of core binding factor gene alterations in hematological disorders. In the first section, we discuss the prognostic implications of the core binding factor translocations RUNX1-RUNX1T1 and CBFB-MYH11 in AML patients. We provide an overview of the cooperating genetic events in patients with CBF-rearranged AML and their clinical implications, and review current treatment approaches for CBF AML and the utility of minimal residual disease monitoring. In the next sections, we summarize the available data on rare RUNX1 rearrangements in various hematologic neoplasms and the role of RUNX1 translocations in therapy-related myeloid neoplasia. The final three sections of the chapter cover the spectrum and clinical significance of RUNX1 point mutations in AML and myelodysplastic syndromes, in familial platelet disorder with associated myeloid malignancy, and in acute lymphoblastic leukemia.
Collapse
|
16
|
RUNX1 and CBFβ Mutations and Activities of Their Wild-Type Alleles in AML. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:265-282. [DOI: 10.1007/978-981-10-3233-2_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Mutations of myelodysplastic syndromes (MDS): An update. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 769:47-62. [DOI: 10.1016/j.mrrev.2016.04.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/11/2016] [Indexed: 01/08/2023]
|
18
|
Gaidzik VI, Teleanu V, Papaemmanuil E, Weber D, Paschka P, Hahn J, Wallrabenstein T, Kolbinger B, Köhne CH, Horst HA, Brossart P, Held G, Kündgen A, Ringhoffer M, Götze K, Rummel M, Gerstung M, Campbell P, Kraus JM, Kestler HA, Thol F, Heuser M, Schlegelberger B, Ganser A, Bullinger L, Schlenk RF, Döhner K, Döhner H. RUNX1 mutations in acute myeloid leukemia are associated with distinct clinico-pathologic and genetic features. Leukemia 2016; 30:2160-2168. [DOI: 10.1038/leu.2016.126] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/13/2016] [Accepted: 04/21/2016] [Indexed: 12/16/2022]
|
19
|
Kitamura T, Watanabe-Okochi N, Enomoto Y, Nakahara F, Oki T, Komeno Y, Kato N, Doki N, Uchida T, Kagiyama Y, Togami K, Kawabata KC, Nishimura K, Hayashi Y, Nagase R, Saika M, Fukushima T, Asada S, Fujino T, Izawa Y, Horikawa S, Fukuyama T, Tanaka Y, Ono R, Goyama S, Nosaka T, Kitaura J, Inoue D. Novel working hypothesis for pathogenesis of hematological malignancies: combination of mutations-induced cellular phenotypes determines the disease (cMIP-DD). J Biochem 2015; 159:17-25. [PMID: 26590301 DOI: 10.1093/jb/mvv114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 10/22/2015] [Indexed: 11/12/2022] Open
Abstract
Recent progress in high-speed sequencing technology has revealed that tumors harbor novel mutations in a variety of genes including those for molecules involved in epigenetics and splicing, some of which were not categorized to previously thought malignancy-related genes. However, despite thorough identification of mutations in solid tumors and hematological malignancies, how these mutations induce cell transformation still remains elusive. In addition, each tumor usually contains multiple mutations or sometimes consists of multiple clones, which makes functional analysis difficult. Fifteen years ago, it was proposed that combination of two types of mutations induce acute leukemia; Class I mutations induce cell growth or inhibit apoptosis while class II mutations block differentiation, co-operating in inducing acute leukemia. This notion has been proven using a variety of mouse models, however most of recently found mutations are not typical class I/II mutations. Although some novel mutations have been found to functionally work as class I or II mutation in leukemogenesis, the classical class I/II theory seems to be too simple to explain the whole story. We here overview the molecular basis of hematological malignancies based on clinical and experimental results, and propose a new working hypothesis for leukemogenesis.
Collapse
Affiliation(s)
- Toshio Kitamura
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Naoko Watanabe-Okochi
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yutaka Enomoto
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Fumio Nakahara
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Toshihiko Oki
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yukiko Komeno
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Naoko Kato
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Noriko Doki
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomoyuki Uchida
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yuki Kagiyama
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Katsuhiro Togami
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kimihito C Kawabata
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Koutarou Nishimura
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yasutaka Hayashi
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Reina Nagase
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Makoto Saika
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tsuyoshi Fukushima
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shuhei Asada
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Takeshi Fujino
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yuto Izawa
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Sayuri Horikawa
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomofusa Fukuyama
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yosuke Tanaka
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ryoichi Ono
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Susumu Goyama
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tetsuya Nosaka
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Jiro Kitaura
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Daichi Inoue
- Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
20
|
Mizutani S, Yoshida T, Zhao X, Nimer SD, Taniwaki M, Okuda T. Loss of RUNX1/AML1 arginine-methylation impairs peripheral T cell homeostasis. Br J Haematol 2015; 170:859-73. [PMID: 26010396 DOI: 10.1111/bjh.13499] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/11/2015] [Indexed: 01/15/2023]
Abstract
RUNX1 (previously termed AML1) is a frequent target of human leukaemia-associated gene aberrations, and it encodes the DNA-binding subunit of the Core-Binding Factor transcription factor complex. RUNX1 expression is essential for the initiation of definitive haematopoiesis, for steady-state thrombopoiesis, and for normal lymphocytes development. Recent studies revealed that protein arginine methyltransferase 1 (PRMT1), which accounts for the majority of the type I PRMT activity in cells, methylates two arginine residues in RUNX1 (R206 and R210), and these modifications inhibit corepressor-binding to RUNX1 thereby enhancing its transcriptional activity. In order to elucidate the biological significance of these methylations, we established novel knock-in mouse lines with non-methylable, double arginine-to-lysine (RTAMR-to-KTAMK) mutations in RUNX1. Homozygous Runx1(KTAMK) (/) (KTAMK) mice are born alive and appear normal during adulthood. However, Runx1(KTAMK) (/) (KTAMK) mice showed a reduction in CD3(+) T lymphoid cells and a decrease in CD4(+) T cells in peripheral lymphoid organs, in comparison to their wild-type littermates, leading to a reduction in the CD4(+) to CD8(+) T-cell ratio. These findings suggest that arginine-methylation of RUNX1 in the RTAMR-motif is dispensable for the development of definitive haematopoiesis and for steady-state platelet production, however this modification affects the role of RUNX1 in the maintenance of the peripheral CD4(+) T-cell population.
Collapse
Affiliation(s)
- Shinsuke Mizutani
- Department of Biochemistry and Molecular Biology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan.,Division of Haematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tatsushi Yoshida
- Department of Biochemistry and Molecular Biology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Xinyang Zhao
- Department of Biochemistry & Molecular Genetics, University of Alabama, Birmingham, AL, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Masafumi Taniwaki
- Division of Haematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tsukasa Okuda
- Department of Biochemistry and Molecular Biology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
21
|
Tsai SC, Shih LY, Liang ST, Huang YJ, Kuo MC, Huang CF, Shih YS, Lin TH, Chiu MC, Liang DC. Biological Activities of RUNX1 Mutants Predict Secondary Acute Leukemia Transformation from Chronic Myelomonocytic Leukemia and Myelodysplastic Syndromes. Clin Cancer Res 2015; 21:3541-51. [PMID: 25840971 DOI: 10.1158/1078-0432.ccr-14-2203] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 03/30/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Transcription factor RUNX1 is essential for normal hematopoiesis. High mutation frequencies of RUNX1 gene in chronic myelomonocytic leukemia (CMML) and myelodysplastic syndromes (MDS) have been described, whereas the biologic significances of the mutations were not investigated. Here, we aimed to correlate the biologic activities of the RUNX1 mutants with the clinical outcomes of patients. EXPERIMENTAL DESIGN We examined the mutational status of RUNX1 in 143 MDS and 84 CMML patients. Then, we studied the DNA and CBFβ binding abilities of all the RUNX1 mutants identified by using electrophoretic mobility shift assay and co-immunoprecipitation assay, and also determined their activities on target C-FMS gene induction by Western blotting and luciferase reporter assay. Using luciferase reporter assay, the relative biologic activities of each RUNX1 mutant could be quantified and correlated with the patient outcomes by statistical analyses. RESULTS We observed that most RUNX1 mutants had reduced abilities in DNA binding, CBFβ heterodimerization, and C-FMS gene induction. The relative biologic activities of RUNX1 mutants were grouped into high- and low-activity mutations. Correlation of the activities of RUNX1 mutants with the clinical outcomes revealed that patients harboring lower activities of RUNX1 mutants had a higher risk and shorter time to secondary acute myeloid leukemia transformation in MDS and CMML. In multivariate analysis, low RUNX1 activity remained an independent predictor for secondary acute myeloid leukemia-free survival in MDS patients. CONCLUSIONS The biologic activity rather than the mutational status of RUNX1 might be an indicator in predicting outcome of patients with MDS and CMML.
Collapse
Affiliation(s)
- Shu-Chun Tsai
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan. College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Sung-Tzu Liang
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Ying-Jung Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Ming-Chung Kuo
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan. College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chein-Fuang Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yu-Shu Shih
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Tung-Huei Lin
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Ming-Chun Chiu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Der-Cherng Liang
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
22
|
Zhang L, Padron E, Lancet J. The molecular basis and clinical significance of genetic mutations identified in myelodysplastic syndromes. Leuk Res 2015; 39:6-17. [DOI: 10.1016/j.leukres.2014.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/25/2014] [Indexed: 01/07/2023]
|
23
|
Posttranslational modifications of RUNX1 as potential anticancer targets. Oncogene 2014; 34:3483-92. [PMID: 25263451 DOI: 10.1038/onc.2014.305] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 12/31/2022]
Abstract
The transcription factor RUNX1 is a master regulator of hematopoiesis. Disruption of RUNX1 activity has been implicated in the development of hematopoietic neoplasms. Recent studies also highlight the importance of RUNX1 in solid tumors both as a tumor promoter and a suppressor. Given its central role in cancer development, RUNX1 is an excellent candidate for targeted therapy. A potential strategy to target RUNX1 is through modulation of its posttranslational modifications (PTMs). Numerous studies have shown that RUNX1 activity is regulated by PTMs, including phosphorylation, acetylation, methylation and ubiquitination. These PTMs regulate RUNX1 activity either positively or negatively by altering RUNX1-mediated transcription, promoting protein degradation and affecting protein interactions. In this review, we first summarize the available data on the context- and dosage-dependent roles of RUNX1 in various types of neoplasms. We then provide a comprehensive overview of RUNX1 PTMs from biochemical and biologic perspectives. Finally, we discuss how aberrant PTMs of RUNX1 might contribute to tumorigenesis and also strategies to develop anticancer therapies targeting RUNX1 PTMs.
Collapse
|
24
|
Expressional changes of genes and miRNA in common megakaryocyte-erythroid progenitors from lower-risk myelodysplastic syndrome. Int J Hematol 2014; 100:361-9. [PMID: 25056847 DOI: 10.1007/s12185-014-1639-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
Abstract
Myelodysplastic syndrome (MDS) is a stem cell tumor characterized by dysplastic features and ineffective hematopoiesis in the early phase and leukemic progression in the late phase. Speculating that differences in the expression of genes and microRNA (miRNA) in control and MDS-derived erythroid progenitors may cause ineffective erythropoiesis, we sorted common megakaryocyte-erythroid progenitors (MEPs) in bone marrow cells from three lower-risk MDS patients, and compared expression levels of genes and miRNA with those from controls. In apoptosis-related pathways, the expression of some pro-apoptotic genes, such as cell death-inducing DFFA-like effector A, caspase 5, and Fas ligand, was elevated in MDS-derived MEPs, while those of anti-apoptotic CD40 and tumor necrosis factor were lower. In hematopoiesis-regulating pathways, RUNX1 and ETV6 genes showed reduced expression. Expression profiling revealed that three and 35 miRNAs were significantly up- and down-regulated in MDS-derived MEPs. MIR9 exhibited robust expression in MEPs and CD71+GlyA+ erythroid cells derived from one of the three patients. Interestingly, overexpression of MIR9 inhibited the accumulation of hemoglobin in UT-7/GM cells. Some of these alterations in gene and miRNA expression may contribute to the pathogenesis of ineffective hematopoiesis in lower-risk MDS and provide molecular markers for sub-classification and making a prognosis.
Collapse
|
25
|
Sakurai M, Kunimoto H, Watanabe N, Fukuchi Y, Yuasa S, Yamazaki S, Nishimura T, Sadahira K, Fukuda K, Okano H, Nakauchi H, Morita Y, Matsumura I, Kudo K, Ito E, Ebihara Y, Tsuji K, Harada Y, Harada H, Okamoto S, Nakajima H. Impaired hematopoietic differentiation of RUNX1-mutated induced pluripotent stem cells derived from FPD/AML patients. Leukemia 2014; 28:2344-54. [DOI: 10.1038/leu.2014.136] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 03/30/2014] [Accepted: 04/09/2014] [Indexed: 01/10/2023]
|
26
|
Yamamoto K, Tsuzuki S, Minami Y, Yamamoto Y, Abe A, Ohshima K, Seto M, Naoe T. Functionally deregulated AML1/RUNX1 cooperates with BCR-ABL to induce a blastic phase-like phenotype of chronic myelogenous leukemia in mice. PLoS One 2013; 8:e74864. [PMID: 24098673 PMCID: PMC3787010 DOI: 10.1371/journal.pone.0074864] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/07/2013] [Indexed: 11/18/2022] Open
Abstract
Patients in the chronic phase (CP) of chronic myelogenous leukemia (CML) have been treated successfully following the advent of ABL kinase inhibitors, but once they progress to the blast crisis (BC) phase the prognosis becomes dismal. Although mechanisms underlying the progression are largely unknown, recent studies revealed the presence of alterations of key molecules for hematopoiesis, such as AML1/RUNX1. Our analysis of 13 BC cases revealed that three cases had AML1 mutations and the transcript levels of wild-type (wt.) AML1 were elevated in BC compared with CP. Functional analysis of representative AML1 mutants using mouse hematopoietic cells revealed the possible contribution of some, but not all, mutants for the BC-phenotype. Specifically, K83Q and R139G, but neither R80C nor D171N mutants, conferred upon BCR-ABL-expressing cells a growth advantage over BCR-ABL-alone control cells in cytokine-free culture, and the cells thus grown killed mice upon intravenous transfer. Unexpectedly, wt.AML1 behaved similarly to K83Q and R139G mutants. In a bone marrow transplantation assay, K83Q and wt.AML1s induced the emergence of blast-like cells. The overall findings suggest the roles of altered functions of AML1 imposed by some, but not all, mutants, and the elevated expression of wt.AML1 for the disease progression of CML.
Collapse
MESH Headings
- Animals
- Blast Crisis/metabolism
- Blast Crisis/pathology
- Blotting, Western
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- DNA Mutational Analysis
- DNA Primers/genetics
- Flow Cytometry
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mice, Inbred C57BL
- Mutation, Missense/genetics
- Phenotype
- Plasmids/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
Collapse
Affiliation(s)
- Kiyoko Yamamoto
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinobu Tsuzuki
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
- * E-mail:
| | - Yosuke Minami
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukiya Yamamoto
- Department of Hematology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Akihiro Abe
- Department of Hematology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Koichi Ohshima
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Masao Seto
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Tomoki Naoe
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
27
|
RUNX Family Participates in the Regulation of p53-Dependent DNA Damage Response. Int J Genomics 2013; 2013:271347. [PMID: 24078903 PMCID: PMC3775453 DOI: 10.1155/2013/271347] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/01/2013] [Indexed: 11/24/2022] Open
Abstract
A proper DNA damage response (DDR), which monitors and maintains the genomic integrity, has been considered to be a critical barrier against genetic alterations to prevent tumor
initiation and progression. The representative tumor suppressor p53 plays an important role in the regulation of DNA damage response. When cells receive DNA damage, p53 is quickly activated
and induces cell cycle arrest and/or apoptotic cell death through transactivating its target genes implicated in the promotion of cell cycle arrest and/or apoptotic cell death such as
p21WAF1, BAX, and PUMA. Accumulating evidence strongly suggests that DNA damage-mediated activation as well as induction of p53
is regulated by posttranslational modifications and also by protein-protein interaction. Loss of p53 activity confers growth advantage and ensures survival in cancer cells by inhibiting apoptotic
response required for tumor suppression. RUNX family, which is composed of RUNX1, RUNX2, and RUNX3, is a sequence-specific transcription factor and is closely involved in a
variety of cellular processes including development, differentiation, and/or tumorigenesis. In this review, we describe a background of p53 and a functional collaboration between
p53 and RUNX family in response to DNA damage.
Collapse
|
28
|
Goyama S, Schibler J, Cunningham L, Zhang Y, Rao Y, Nishimoto N, Nakagawa M, Olsson A, Wunderlich M, Link KA, Mizukawa B, Grimes HL, Kurokawa M, Liu PP, Huang G, Mulloy JC. Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells. J Clin Invest 2013; 123:3876-88. [PMID: 23979164 DOI: 10.1172/jci68557] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 06/20/2013] [Indexed: 12/12/2022] Open
Abstract
RUNX1 is generally considered a tumor suppressor in myeloid neoplasms. Inactivating RUNX1 mutations have frequently been found in patients with myelodysplastic syndrome (MDS) and cytogenetically normal acute myeloid leukemia (AML). However, no somatic RUNX1 alteration was found in AMLs with leukemogenic fusion proteins, such as core-binding factor (CBF) leukemia and MLL fusion leukemia, raising the possibility that RUNX1 could actually promote the growth of these leukemia cells. Using normal human cord blood cells and those expressing leukemogenic fusion proteins, we discovered a dual role of RUNX1 in myeloid leukemogenesis. RUNX1 overexpression inhibited the growth of normal cord blood cells by inducing myeloid differentiation, whereas a certain level of RUNX1 activity was required for the growth of AML1-ETO and MLL-AF9 cells. Using a mouse genetic model, we also showed that the combined loss of Runx1/Cbfb inhibited leukemia development induced by MLL-AF9. RUNX2 could compensate for the loss of RUNX1. The survival effect of RUNX1 was mediated by BCL2 in MLL fusion leukemia. Our study unveiled an unexpected prosurvival role for RUNX1 in myeloid leukemogenesis. Inhibiting RUNX1 activity rather than enhancing it could be a promising therapeutic strategy for AMLs with leukemogenic fusion proteins.
Collapse
Affiliation(s)
- Susumu Goyama
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kulasekararaj AG, Mohamedali AM, Mufti GJ. Recent advances in understanding the molecular pathogenesis of myelodysplastic syndromes. Br J Haematol 2013; 162:587-605. [PMID: 23869491 DOI: 10.1111/bjh.12435] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The advent of novel genomic sequencing technologies has aided the identification of somatically acquired genetic abnormalities up to 80% of myelodysplastic syndrome (MDS) patients. Novel recurrent genetic mutations in pathways such as RNA splicing, DNA methylation and histone modification and cohesion complexes, underscore the molecular heterogeneity seen in this clinically varied disease. Functional studies to establish a causative link between genomic aberrations and MDS biogenesis are still in their infancy. The deluge of this molecular information, once validated on a larger cohort, will be incorporated into prognostic systems and clinical practise, and also hopefully aid in MDS therapeutics, especially in guiding targeted therapy.
Collapse
Affiliation(s)
- Austin G Kulasekararaj
- Department of Haematological Medicine, King's College London School of Medicine, London, UK
| | | | | |
Collapse
|
30
|
Shimizu K, Yamagata K, Kurokawa M, Mizutani S, Tsunematsu Y, Kitabayashi I. Roles of AML1/RUNX1 in T-cell malignancy induced by loss of p53. Cancer Sci 2013; 104:1033-8. [PMID: 23679839 DOI: 10.1111/cas.12199] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 05/01/2013] [Accepted: 05/01/2013] [Indexed: 11/30/2022] Open
Abstract
AML1/RUNX1 is a frequent target of chromosome translocations and mutations in myeloid and B-cell leukemias, and upregulation of AML1 is also observed in some cases of T-cell leukemias and lymphomas. This study shows that the incidence of thymic lymphoma in p53-null mice is less frequent in the Aml1(+/-) than in the Aml1(+/+) background. AML1 is upregulated in p53-null mouse bone-marrow cells and embryonic fibroblasts. In the steady state, p53 binds to and inhibits the distal AML1 promoter. When the cells are exposed to stresses, p53 is released from the distal AML1 promoter, resulting in upregulation of AML1. Overexpression of AML1 stimulates T-lymphocyte proliferation. These results suggest that upregulation of AML1 induced by loss of p53 promotes lymphoid-cell proliferation, thereby inducing lymphoma development.
Collapse
Affiliation(s)
- Kimiko Shimizu
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Chimge NO, Frenkel B. The RUNX family in breast cancer: relationships with estrogen signaling. Oncogene 2013; 32:2121-30. [PMID: 23045283 PMCID: PMC5770236 DOI: 10.1038/onc.2012.328] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/20/2012] [Accepted: 06/20/2012] [Indexed: 12/22/2022]
Abstract
The three RUNX family members are lineage specific master regulators, which also have important, context-dependent roles in carcinogenesis as either tumor suppressors or oncogenes. Here we review evidence for such roles in breast cancer (BCa). RUNX1, the predominant RUNX family member in breast epithelial cells, has a tumor suppressor role reflected by many somatic mutations found in primary tumor biopsies. The classical tumor suppressor gene RUNX3 does not consist of such a mutation hot spot, but it too seems to inhibit BCa; it is often inactivated in human BCa tumors and its haploinsufficiency in mice leads to spontaneous BCa development. The tumor suppressor activities of RUNX1 and RUNX3 are mediated in part by antagonism of estrogen signaling, a feature recently attributed to RUNX2 as well. Paradoxically, however RUNX2, a master osteoblast regulator, has been implicated in various aspects of metastasis in general and bone metastasis in particular. Reciprocating the anti-estrogenic tumor suppressor activity of RUNX proteins, inhibition of RUNX2 by estrogens may help explain their context-dependent anti-metastatic roles. Such roles are reserved to non-osseous metastasis, because ERα is associated with increased, not decreased skeletal dissemination of BCa cells. Finally, based on diverse expression patterns in BCa subtypes, the successful use of future RUNX-based therapies will most likely require careful patient selection.
Collapse
Affiliation(s)
- N-O Chimge
- Department of Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - B Frenkel
- Departments of Orthopaedic Surgery and Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
32
|
A role for RUNX1 in hematopoiesis and myeloid leukemia. Int J Hematol 2013; 97:726-34. [PMID: 23613270 DOI: 10.1007/s12185-013-1347-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/28/2022]
Abstract
Since its discovery from a translocation in leukemias, the runt-related transcription factor 1/acute myelogenous leukemia-1 (RUNX1/AML1), which is widely expressed in hematopoietic cells, has been extensively studied. Many lines of evidence have shown that RUNX1 plays a critical role in regulating the development and precise maintenance of mammalian hematopoiesis. Studies using knockout mice have shown the importance of RUNX1 in a wide variety of hematopoietic cells, including hematopoietic stem cells and megakaryocytes. Recently, target molecular processes of RUNX1 in normal and malignant hematopoiesis have been revealed. Although RUNX1 is not required for the maintenance of hematopoietic stem cells, it is required for the homeostasis of hematopoietic stem and progenitor cells, and expansion of hematopoietic stem and progenitor cells due to RUNX1 deletion may be an important cause of human leukemias. Molecular abnormalities cooperating with loss of RUNX1 have also been identified. These findings may lead to a further understanding of human leukemias, and suggest novel molecular targeted therapies in the near future.
Collapse
|
33
|
Palomo L, Zamora L, Xicoy B, Cortés M, Cabezón M, Torrent A, Feliu E, Millá F, Ribera JM. Chronic myelomonocytic leukemia diagnosed by means of mutational analysis in a patient with persistent monocytosis and tuberculosis. Leuk Lymphoma 2013; 54:2297-8. [DOI: 10.3109/10428194.2013.767458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Wu MX, Ustyugova IV, Han L, Akilov OE. Immediate early response gene X-1, a potential prognostic biomarker in cancers. Expert Opin Ther Targets 2013; 17:593-606. [PMID: 23379921 DOI: 10.1517/14728222.2013.768234] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The immediate early response gene X-1 (IEX-1) plays a pivotal role in the regulation of cell apoptosis, proliferation, differentiation and metabolism. Deregulation of IEX-1 expression has been confirmed in multiple cancers in humans, in association with either poor or better prognosis depending on the type and progression stages of the cancer. AREAS COVERED This review summarizes clinical studies of altered IEX-1 expression in ovarian, pancreatic, blood, breast and colorectal cancers, lymphoma and myeloma. The authors also outline the current understandings of the complex functions of IEX-1 gained from studies with animal models and tumor cell lines so as to help us comprehend the significance of the clinical findings. EXPERT OPINION IEX-1 holds great promise to be a valuable biomarker, either alone or in combination with other genes, for monitoring progression of some cancers. IEX-1 expression is highly sensitive to environmental cues and distinct between normal and cancer cells. However, use of IEX-1 as a biomarker remains a significant challenge because too little is understood about the mechanism underlying the diverse activities of IEX-1 and a standardized clinical assay for IEX-1 detection and validation of clinical results across different studies are still critically lacking.
Collapse
Affiliation(s)
- Mei X Wu
- Massachusetts General Hospital and Harvard Medical School, Wellman Center for Photomedicine, Department of Dermatology , Edwards 222, 50 Blossom Street, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
35
|
Kikuchi S, Kobune M, Iyama S, Sato T, Murase K, Kawano Y, Takada K, Ono K, Kaneko Y, Miyanishi K, Sato Y, Hayashi T, Takimoto R, Kato J. Improvement of iron-mediated oxidative DNA damage in patients with transfusion-dependent myelodysplastic syndrome by treatment with deferasirox. Free Radic Biol Med 2012; 53:643-8. [PMID: 22705364 DOI: 10.1016/j.freeradbiomed.2012.06.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/31/2012] [Accepted: 06/05/2012] [Indexed: 12/11/2022]
Abstract
Myelodysplastic syndrome (MDS) is characterized by dysplastic and ineffective hematopoiesis, peripheral blood cytopenias, and a risk of leukemic transformation. Most MDS patients eventually require red blood cell (RBC) transfusions for anemia and consequently develop iron overload. Excess free iron in cells catalyzes generation of reactive oxygen species that cause oxidative stress, including oxidative DNA damage. However, it is uncertain how iron-mediated oxidative stress affects the pathophysiology of MDS. This study included MDS patients who visited our university hospital and affiliated hospitals (n=43). Among them, 13 patients received iron chelation therapy when their serum ferritin (SF) level was greater than 1000 ng/mL or they required more than 20 RBC transfusions (or 100 mL/kg of RBC). We prospectively analyzed 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in peripheral blood mononuclear cells (PBMC) obtained from MDS patients before and after iron chelator, deferasirox, administration. We showed that the 8-OHdG levels in MDS patients were significantly higher than those in healthy volunteers and were positively correlated with SF and chromosomal abnormalities. Importantly, the 8-OHdG levels in PBMC of MDS patients significantly decreased after deferasirox administration, suggesting that iron chelation reduced oxidative DNA damage. Thus, excess iron could contribute to the pathophysiology of MDS and iron chelation therapy could improve the oxidative DNA damage in MDS patients.
Collapse
Affiliation(s)
- Shohei Kikuchi
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yoshimi M, Goyama S, Kawazu M, Nakagawa M, Ichikawa M, Imai Y, Kumano K, Asai T, Mulloy JC, Kraft AS, Takahashi T, Shirafuji N, Kurokawa M. Multiple phosphorylation sites are important for RUNX1 activity in early hematopoiesis and T-cell differentiation. Eur J Immunol 2012; 42:1044-50. [PMID: 22531928 DOI: 10.1002/eji.201040746] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
RUNX1 is essential for definitive hematopoiesis and T-cell differentiation. It has been shown that RUNX1 is phosphorylated at specific serine and threonine residues by several kinase families. However, it remains unclear whether RUNX1 phosphorylation is absolutely required for its biological functions. Here, we evaluated hematopoietic activities of RUNX1 mutants with serine (S)/threonine (T) to alanine (A), aspartic acid (D), or glutamic acid (E) mutations at phosphorylation sites using primary culture systems. Consistent with the results of knockin mice, RUNX1-2A, carrying two phospho-deficient mutations at S276 and S293, retained hematopoietic activity. RUNX1-4A, carrying four mutations at S276, S293, T300, and S303, showed impaired T-cell differentiation activity, but retained the ability to rescue the defective early hematopoiesis of Runx1-deficient cells. Notably, RUNX1-5A, carrying five mutations at S276, S293, T300, S303, and S462, completely lost its hematopoietic activity. In contrast, the phospho-mimic proteins RUNX1-4D/E and RUNX1-5D/E exhibited normal function. Our study identifies multiple phosphorylation sites that are indispensable for RUNX1 activity in hematopoiesis.
Collapse
Affiliation(s)
- Mayumi Yoshimi
- Department of Hematology & Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Acute myeloid leukemia with t(7;21)(q11.2;q22) expresses a novel, reversed-sequence RUNX1–DTX2 chimera. Int J Hematol 2012; 96:268-73. [DOI: 10.1007/s12185-012-1112-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 10/28/2022]
|
38
|
Kikuchi S, Kobune M, Iyama S, Sato T, Murase K, Kawano Y, Takada K, Ono K, Hayashi T, Miyanishi K, Sato Y, Takimoto R, Kato J. Prognostic significance of serum ferritin level at diagnosis in myelodysplastic syndrome. Int J Hematol 2012; 95:527-34. [DOI: 10.1007/s12185-012-1048-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 12/13/2022]
|
39
|
Functional features of RUNX1 mutants in acute transformation of chronic myeloid leukemia and their contribution to inducing murine full-blown leukemia. Blood 2012; 119:2873-82. [PMID: 22318203 DOI: 10.1182/blood-2011-08-370981] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The BCR-ABL fusion protein generated by t(9;22)(q34;q11) in chronic myeloid leukemia (CML) plays an essential role in the pathogenesis of the myeloproliferative disorder status at the chronic phase of the disease, but progression from the chronic phase to blast crisis (BC) is believed to require additional mutations. To explore the underlying mechanisms for BC, which is characterized by a blockage of blood cell differentiation, we screened several genes crucial to hematopoiesis and identified 10 types of mutations in RUNX1 among 11 of 85 (12.9%) patients with acute transformation of CML. Most of the mutations occurred in the runt homology domain, including H78Q, W79C, R139G, D171G, R174Q, L71fs-ter94, and V91fs-ter94. Further studies indicated that RUNX1 mutants not only exhibited decreased transactivation activity but also had an inhibitory effect on the WT RUNX1. To investigate the leukemogenic effect of mutated RUNX1, H78Q and V91fs-ter94 were transduced into 32D cells or BCR-ABL-harboring murine cells, respectively. Consistent with the myeloblastic features of advanced CML patients with RUNX1 mutations, H78Q and V91fs-ter94 disturbed myeloid differentiation and induced a BC or accelerated phase-like phenotype in mice. These results suggest that RUNX1 abnormalities may promote acute myeloid leukemic transformation in a subset of CML patients.
Collapse
|
40
|
|
41
|
AML1/RUNX1 functions as a cytoplasmic attenuator of NF-κB signaling in the repression of myeloid tumors. Blood 2011; 118:6626-37. [PMID: 22021368 DOI: 10.1182/blood-2010-12-326710] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Functional deregulation of transcription factors has been found in many types of tumors. Transcription factor AML1/RUNX1 is one of the most frequent targets of chromosomal abnormalities in human leukemia and altered function of AML1 is closely associated with malignant transformation of hematopoietic cells. However, the molecular basis and therapeutic targets of AML1-related leukemia are still elusive. Here, we explored immediate target pathways of AML1 by in vitro synchronous inactivation in hematopoietic cells. We found that AML1 inhibits NF-κB signaling through interaction with IκB kinase complex in the cytoplasm. Remarkably, AML1 mutants found in myeloid tumors lack the ability to inhibit NF-κB signaling, and human cases with AML1-related leukemia exhibits distinctly activated NF-κB signaling. Furthermore, inhibition of NF-κB signaling in leukemic cells with mutated AML1 efficiently blocks their growth and development of leukemia. These findings reveal a novel role for AML1 as a cytoplasmic attenuator of NF-κB signaling and indicate that NF-κB signaling is one of the promising therapeutic targets of hematologic malignancies with AML1 abnormality.
Collapse
|
42
|
Migas A, Savva N, Mishkova O, Aleinikova OV. AML1/RUNX1 gene point mutations in childhood myeloid malignancies. Pediatr Blood Cancer 2011; 57:583-7. [PMID: 21294243 DOI: 10.1002/pbc.22980] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 11/22/2010] [Indexed: 01/31/2023]
Abstract
BACKGROUND Currently, it is widely accepted that one of the crucial players in adult leukemic transformation is the RUNX1 gene. However, there is little data available regarding whether mutations in this gene also contribute to pediatric leukemia, especially in childhood myeloid malignancies. Therefore we made a decision to screen patients with pediatric myeloid neoplasias for the presence of RUNX1 mutations in their samples. PROCEDURES Patients (n = 238) with diagnoses of de novo acute myeloid leukemia (AML) (n = 198), de novo myelodisplastic syndrome (MDS) (n = 16), therapy-related AML (n = 9), juvenile myelomonocytic leukemia (JMML) (n = 15) were included in this study. All patients were Belarusians between the ages of 0 and 18 years. RESULTS The frequency of RUNX1 point mutations in the total group of patients with de novo AML was 3% and de novo MDS was 15%. Cooperation of point mutations in the RUNX1 and NRAS genes, and the cytogenetic abnormality, -7/7q-, was demonstrated in children with therapy-related AML. RUNX1 point mutations predominate in those de novo AML and MDS patients with a normal karyotype in leukemic cells. Frequency of RUNX1 point mutations was about 4% in a group of children with de novo AML aged 0-14 years diagnosed during the period of 1998-2009. CONCLUSION During the course of this investigation, valuable data were obtained concerning RUNX1 gene mutation frequencies in different clinical, morphological, and cytogenetic groups of patients with myeloid malignancies, and its cooperation with other molecular aberrations.
Collapse
Affiliation(s)
- Alexandr Migas
- Belarusian Research Center for Pediatric Oncology and Hematology, Minsk, Belarus.
| | | | | | | |
Collapse
|
43
|
Loss of AML1/Runx1 accelerates the development of MLL-ENL leukemia through down-regulation of p19ARF. Blood 2011; 118:2541-50. [PMID: 21757616 DOI: 10.1182/blood-2010-10-315440] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Dysfunction of AML1/Runx1, a transcription factor, plays a crucial role in the development of many types of leukemia. Additional events are often required for AML1 dysfunction to induce full-blown leukemia; however, a mechanistic basis of their cooperation is still elusive. Here, we investigated the effect of AML1 deficiency on the development of MLL-ENL leukemia in mice. Aml1 excised bone marrow cells lead to MLL-ENL leukemia with shorter duration than Aml1 intact cells in vivo. Although the number of MLL-ENL leukemia-initiating cells is not affected by loss of AML1, the proliferation of leukemic cells is enhanced in Aml1-excised MLL-ENL leukemic mice. We found that the enhanced proliferation is the result of repression of p19(ARF) that is directly regulated by AML1 in MLL-ENL leukemic cells. We also found that down-regulation of p19(ARF) induces the accelerated onset of MLL-ENL leukemia, suggesting that p19(ARF) is a major target of AML1 in MLL-ENL leukemia. These results provide a new insight into a role for AML1 in the progression of leukemia.
Collapse
|
44
|
RUNX1 mutations are frequent in de novo AML with noncomplex karyotype and confer an unfavorable prognosis. Blood 2011; 117:2348-57. [DOI: 10.1182/blood-2009-11-255976] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Analyses of 164 RUNX1 mutations (RUNX1mut) in 147 of 449 patients (32.7%) with normal karyotype or noncomplex chromosomal imbalances were performed. RUNX1mut were most frequent in acute myeloid leukemia French-American-British classification M0 (65.2%) followed by M2 (32.4%) and M1 (30.2%). Considering cytogenetics, RUNX1mut were most frequent in cases with +13 (27 of 30, 90%), whereas frequencies were similar in other cytogenetic groups (26%-36%). The molecular genetic markers most frequently associated with RUNX1mut were partial tandem duplication in the MLL gene (19.7%), internal tandem duplication in the FLT3 gene (FLT3-ITD; 16.3%), and NRAS mutations (9.5%). Patients with RUNX1mut had shorter overall and event-free survival compared with RUNX1 wild-type cases (median, 378 days vs not reached, P = .003; and median, 285 vs 450 days, P = .003, respectively). In addition, it was shown that the adverse effect of RUNX1 was independent of the adverse effect of FLT3-ITD as well as of the high frequency of prognostically favorable NPM1mut and CEBPAmut in the RUNX1wt group. No effect of the type or localization of the individual RUNX1 mutations was observed. Multivariate analysis showed independent prognostic relevance for overall survival for RUNX1mut (P = .029), FLT3-ITD (P = .003), age (P < .001), and white blood cell count (P < .002).
Collapse
|
45
|
Harada Y, Harada H. Molecular mechanisms that produce secondary MDS/AML byRUNX1/AML1point mutations. J Cell Biochem 2011; 112:425-32. [DOI: 10.1002/jcb.22974] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Spirin PV, Baskaran D, Orlova NN, Rulina AV, Nikitenko NA, Chernolovskaya EL, Zenkova MA, Vlassov VV, Rubtsov PM, Chumakov PM, Stocking C, Prassolov VS. Downregulation of activated leukemic oncogenes AML1-ETO and RUNX1(K83N) expression with RNA-interference. Mol Biol 2010. [DOI: 10.1134/s0026893310050146] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Nolte F, Hofmann WK. Molecular mechanisms involved in the progression of myelodysplastic syndrome. Future Oncol 2010; 6:445-55. [PMID: 20222800 DOI: 10.2217/fon.09.175] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of diseases characterized by ineffective hematopoiesis presenting with peripheral cytopenias in combination with a hyperplastic bone marrow. MDS patients have an increased risk of disease evolution to acute leukemia. Strong efforts have been made to gain further insights into the pathobiology of MDS. Development and progression of MDS to acute myeloid leukemia is suggested to be a multistep alteration to hematopoietic stem cells consisting of class I and class II alterations: the former targeting genes that are involved in signal transduction (e.g., FLT3, RAS and KIT), whereas the latter affect transcription factors (e.g., RUNX, RARA, EVI1 and WT1). These alterations consist of not only genomic mutations but also epigenetic aberrations, which can lead to reversible gene silencing. However, whether numerical and structural alterations of chromosomes and/or single genes or epigenetic changes represent the initiating event or, more likely, secondary events remains part of the discussion. Accumulation of such defects may finally cause the leukemic transformation of MDS.
Collapse
Affiliation(s)
- Florian Nolte
- Department of Hematology & Oncology, University Hospital Mannheim, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
| | - Wolf-K Hofmann
- Department of Hematology & Oncology, University Hospital Mannheim, Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany
| |
Collapse
|
48
|
Kumano K, Kurokawa M. The role of Runx1/AML1 and Evi-1 in the regulation of hematopoietic stem cells. J Cell Physiol 2009; 222:282-5. [PMID: 19847803 DOI: 10.1002/jcp.21953] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lineage-specific transcription factors must be precisely regulated during stem cell self-renewal and lineage commitment decisions. The role of specific transcription factors in hematopoietic stem cell (HSC) fate decisions has derived largely from genetic strategies, primarily gene-targeting and transgenic or retroviral overexpression experiments. From the previous experimental results, several transcription factors have been found to play critical roles in HSC physiology. Among them, we focus two transcription factors, Runx1/AML1 and Evi-1, in this review. During embryogenesis, both Runx1 and Evi-1 are essential for HSCs whereas in the adult, Runx1 and Evi-1 regulate HSCs negatively and positively, respectively.
Collapse
Affiliation(s)
- Keiki Kumano
- Department of Cell Therapy and Transplantation Medicine, University of Tokyo Hospital, Tokyo, Japan
| | | |
Collapse
|
49
|
Heinrichs S, Kulkarni RV, Bueso-Ramos CE, Levine RL, Loh ML, Li C, Neuberg D, Kornblau SM, Issa JP, Gilliland DG, Garcia-Manero G, Kantarjian HM, Estey EH, Look AT. Accurate detection of uniparental disomy and microdeletions by SNP array analysis in myelodysplastic syndromes with normal cytogenetics. Leukemia 2009; 23:1605-13. [PMID: 19387468 PMCID: PMC2950785 DOI: 10.1038/leu.2009.82] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 02/23/2009] [Accepted: 03/09/2009] [Indexed: 12/14/2022]
Abstract
Progress in the management of patients with myelodysplastic syndromes (MDS) has been hampered by the inability to detect cytogenetic abnormalities in 40-60% of cases. We prospectively analyzed matched pairs of bone marrow and buccal cell (normal) DNA samples from 51 MDS patients by single nucleotide polymorphism (SNP) arrays, and identified somatically acquired clonal genomic abnormalities in 21 patients (41%). Among the 33 patients with normal bone marrow cell karyotypes, 5 (15%) had clonal, somatically acquired aberrations by SNP array analysis, including 4 with segmental uniparental disomies (UPD) and 1 with three separate microdeletions. Each abnormality was detected more readily in CD34+ cells than in unselected bone marrow cells. Paired analysis of bone marrow and buccal cell DNA from each patient was necessary to distinguish true clonal genomic abnormalities from inherited copy number variations and regions with apparent loss of heterozygosity. UPDs affecting chromosome 7q were identified in two patients who had a rapidly deteriorating clinical course despite a low-risk International Prognostic Scoring System score. Further studies of larger numbers of patients will be needed to determine whether 7q UPD detected by SNP array analysis will identify higher risk MDS patients at diagnosis, analogous to those with 7q cytogenetic abnormalities.
Collapse
Affiliation(s)
- Stefan Heinrichs
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA (USA)
| | - Rima V. Kulkarni
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA (USA)
| | - Carlos E. Bueso-Ramos
- Department of Hematopathology, M.D. Anderson Cancer Center, University of Texas, Houston, TX (USA)
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY (USA)
| | - Mignon L. Loh
- Department of Pediatrics, University of California, San Francisco, CA (USA)
| | - Cheng Li
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (USA)
| | - Donna Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA (USA)
| | - Steven M. Kornblau
- Department of Stem Cell Transplantation Cellular Therapy, M.D. Anderson Cancer Center, University of Texas, Houston, TX (USA)
| | - Jean-Pierre Issa
- Department of Leukemia, M.D. Anderson Cancer Center, University of Texas, Houston, TX (USA)
| | - D. Gary Gilliland
- Department of Medicine, Brigham & Women's Hospital, Boston, MA (USA)
| | | | - Hagop M. Kantarjian
- Department of Leukemia, M.D. Anderson Cancer Center, University of Texas, Houston, TX (USA)
| | - Elihu H. Estey
- Division of Hematology, University of Washington Medical Center, and Fred Hutchinson Cancer Research Center, Seattle, WA (USA)
| | - A. Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA (USA)
| |
Collapse
|
50
|
Pfeilstöcker M, Karlic H, Nösslinger T, Sperr W, Stauder R, Krieger O, Valent P. Myelodysplastic syndromes, aging, and age: Correlations, common mechanisms, and clinical implications. Leuk Lymphoma 2009; 48:1900-9. [DOI: 10.1080/10428190701534382] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|