1
|
Xiao L, Zhao Y, Yang M, Luan G, Du T, Deng S, Jia X. A promising nucleic acid therapy drug: DNAzymes and its delivery system. Front Mol Biosci 2023; 10:1270101. [PMID: 37753371 PMCID: PMC10518456 DOI: 10.3389/fmolb.2023.1270101] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Based on the development of nucleic acid therapeutic drugs, DNAzymes obtained through in vitro selection technology in 1994 are gradually being sought. DNAzymes are single-stranded DNA molecules with catalytic function, which specifically cleave RNA under the action of metal ions. Various in vivo and in vitro models have recently demonstrated that DNAzymes can target related genes in cancer, cardiovascular disease, bacterial and viral infection, and central nervous system disease. Compared with other nucleic acid therapy drugs, DNAzymes have gained more attention due to their excellent cutting efficiency, high stability, and low cost. Here, We first briefly reviewed the development and characteristics of DNAzymes, then discussed disease-targeting inhibition model of DNAzymes, hoping to provide new insights and ways for disease treatment. Finally, DNAzymes were still subject to some restrictions in practical applications, including low cell uptake efficiency, nuclease degradation and interference from other biological matrices. We discussed the latest delivery strategy of DNAzymes, among which lipid nanoparticles have recently received widespread attention due to the successful delivery of the COVID-19 mRNA vaccine, which provides the possibility for the subsequent clinical application of DNAzymes. In addition, the future development of DNAzymes was prospected.
Collapse
Affiliation(s)
- Lang Xiao
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yan Zhao
- Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Meng Yang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Guangxin Luan
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Ting Du
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Shanshan Deng
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xu Jia
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
2
|
De Vos N, Hofmans M, Lammens T, De Wilde B, Van Roy N, De Moerloose B. Targeted therapy in juvenile myelomonocytic leukemia: Where are we now? Pediatr Blood Cancer 2022; 69:e29930. [PMID: 36094370 DOI: 10.1002/pbc.29930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/07/2022]
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare and aggressive clonal neoplasm of early childhood, classified as an overlap myeloproliferative/myelodysplastic neoplasm by the World Health Organization. In 90% of the patients with JMML, typical initiating mutations in the canonical Ras pathway genes NF1, PTPN11, NRAS, KRAS, and CBL can be identified. Hematopoietic stem cell transplantation (HSCT) currently is the established standard of care in most patients, although long-term survival is still only 50-60%. Given the limited therapeutic options and the important morbidity and mortality associated with HSCT, new therapeutic approaches are urgently needed. Hyperactivation of the Ras pathway as disease mechanism in JMML lends itself to the use of targeted therapy. Targeted therapy could play an important role in the future treatment of patients with JMML. This review presents a comprehensive overview of targeted therapies already developed and evaluated in vitro and in vivo in patients with JMML.
Collapse
Affiliation(s)
- Nele De Vos
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University, Ghent, Belgium
| | - Mattias Hofmans
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Tim Lammens
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bram De Wilde
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Nadine Van Roy
- Cancer Research Institute Ghent, Ghent, Belgium.,Center for Medical Genetics Ghent, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Barbara De Moerloose
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Lange A, Jaskula E, Lange J, Dworacki G, Nowak D, Simiczyjew A, Mordak-Domagala M, Sedzimirska M. The sorafenib anti-relapse effect after alloHSCT is associated with heightened alloreactivity and accumulation of CD8+PD-1+ (CD279+) lymphocytes in marrow. PLoS One 2018; 13:e0190525. [PMID: 29304116 PMCID: PMC5755786 DOI: 10.1371/journal.pone.0190525] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/15/2017] [Indexed: 12/21/2022] Open
Abstract
We studied three FLT3 ITD acute myeloid leukemia (AML) patients who relapsed after allogeneic haematopoietic stem cell transplantation (alloHSCT) and received multikinase inhibitor (MKI) sorafenib as part of salvage therapy. MKI was given to block the effect of FLT3 ITD mutation which powers proliferation of blast cells. However, the known facts that sorafenib is more effective in patents post alloHSCT suggested that this MKI can augment the immune system surveillance on leukaemia. In the present study, we investigated in depth the effect of sorafenib on the alloreactivity seen post-transplant including that on leukaemia. The patients (i) responded to the treatment with cessation of blasts which lasted 1, 17 and 42+ months, (ii) developed skin lesions with CD3+ cell invasion of the epidermis, (iii) had marrow infiltrated with CD8+ lymphocytes which co-expressed PD-1 (programmed cell death protein 1 receptor, CD279) in higher proportions than those in the blood (163±32 x103 cells/μl vs 38±8 x103 cells/μl, p<0.001). The Lymphoprep fraction of marrow cells investigated for the expression of genes involved in lymphocyte activation showed in the patients with long lasting complete remission (CR) a similar pattern characterized by (i) a low expression of nitric oxide synthase 2 (NOS2) and colony stimulating factor 2 (CSF2) as well as that of angiopoietin-like 4 (ANGPTL4) (supporting the immune response and anti-angiogenic) genes, and (ii) higher expression of fibroblast growth factor 1 (FGF1) and collagen type IV alpha 3 chain (COL4A3) as well as toll like receptor 9 (TLR9) and interleukin-12 (IL-12) (pro-inflammatory expression profile) genes as compared with the normal individual. The positive effect in one patient hardly justified the presence of unwanted effects (progressive chronic graft-versus-host disease (cGvHD) and avascular necrosis of the femur), which were in contrast negligible in the other patient. The anti-leukemic and unwanted effects of sorafenib do not rely on each other.
Collapse
Affiliation(s)
- Andrzej Lange
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- Lower Silesian Center for Cellular Transplantation with National Bone Marrow Donor Registry, Wroclaw, Poland
- * E-mail:
| | - Emilia Jaskula
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- Lower Silesian Center for Cellular Transplantation with National Bone Marrow Donor Registry, Wroclaw, Poland
| | - Janusz Lange
- Lower Silesian Center for Cellular Transplantation with National Bone Marrow Donor Registry, Wroclaw, Poland
| | - Grzegorz Dworacki
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Monika Mordak-Domagala
- Lower Silesian Center for Cellular Transplantation with National Bone Marrow Donor Registry, Wroclaw, Poland
| | - Mariola Sedzimirska
- Lower Silesian Center for Cellular Transplantation with National Bone Marrow Donor Registry, Wroclaw, Poland
| |
Collapse
|
4
|
Flotho C, Sommer S, Lübbert M. DNA-hypomethylating agents as epigenetic therapy before and after allogeneic hematopoietic stem cell transplantation in myelodysplastic syndromes and juvenile myelomonocytic leukemia. Semin Cancer Biol 2017; 51:68-79. [PMID: 29129488 DOI: 10.1016/j.semcancer.2017.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 11/15/2022]
Abstract
Myelodysplastic syndrome (MDS) is a clonal bone marrow disorder, typically of older adults, which is characterized by ineffective hematopoiesis, peripheral blood cytopenias and risk of progression to acute myeloid leukemia. Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasm occurring in young children. The common denominator of these malignant myeloid disorders is the limited benefit of conventional chemotherapy and a particular responsiveness to epigenetic therapy with the DNA-hypomethylating agents 5-azacytidine (azacitidine) or decitabine. However, hypomethylating therapy does not eradicate the malignant clone in MDS or JMML and allogeneic hematopoietic stem cell transplantation (HSCT) remains the only curative treatment option. An emerging concept with intriguing potential is the combination of hypomethylating therapy and HSCT. Possible advantages include disease control with good tolerability during donor search and HSCT preparation, improved antitumoral alloimmunity, and reduced risk of relapse even with non-myeloablative regimens. Herein we review the current role of pre- and post-transplant therapy with hypomethylating agents in MDS and JMML.
Collapse
Affiliation(s)
- Christian Flotho
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Sebastian Sommer
- Department of Hematology-Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Lübbert
- Department of Hematology-Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
5
|
|
6
|
Choi J, Polcher A, Joas A. Systematic literature review on Parkinson's disease and Childhood Leukaemia and mode of actions for pesticides. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Fokina AA, Stetsenko DA, François JC. DNA enzymes as potential therapeutics: towards clinical application of 10-23 DNAzymes. Expert Opin Biol Ther 2015; 15:689-711. [PMID: 25772532 DOI: 10.1517/14712598.2015.1025048] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Ongoing studies on the inhibition of gene expression at the mRNA level have identified several types of specific inhibitors such as antisense oligonucleotides, small interfering RNA, ribozymes and DNAzymes (Dz). After its discovery in 1997, the 10-23 Dz (which can cleave RNA efficiently and site-specifically, has flexible design, is independent from cell mechanisms, does not require expensive chemical modifications for effective use in vivo) has been employed to downregulate a range of therapeutically important genes. Recently, 10-23 Dzs have taken their first steps into clinical trials. AREAS COVERED This review focuses predominantly on Dz applications as potential antiviral, antibacterial, anti-cancer and anti-inflammatory agents as well as for the treatment of cardiovascular disease and diseases of CNS, summarizing results of their clinical trials up to the present day. EXPERT OPINION In comparison with antisense oligonucleotides and small interfering RNAs, Dzs do not usually show off-target effects due to their high specificity and lack of immunogenicity in vivo. As more results of clinical trials carried out so far are gradually becoming available, Dzs may turn out to be safe and well-tolerated therapeutics in humans. Therefore, there is a good chance that we may witness a deoxyribozyme drug reaching the clinic in the near future.
Collapse
Affiliation(s)
- Alesya A Fokina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences , 8 Lavrentiev Avenue, Novosibirsk 630090 , Russia
| | | | | |
Collapse
|
8
|
Therapeutic potential of siRNA and DNAzymes in cancer. Tumour Biol 2014; 35:9505-21. [PMID: 25149153 DOI: 10.1007/s13277-014-2477-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/07/2014] [Indexed: 02/07/2023] Open
Abstract
Cancer is characterized by uncontrolled cell growth, invasion, and metastasis and possess threat to humans worldwide. The scientific community is facing numerous challenges despite several efforts to cure cancer. Though a number of studies were done earlier, the molecular mechanism of cancer progression is not completely understood. Currently available treatments like surgery resection, adjuvant chemotherapy, and radiotherapy are not completely effective in curing all the cancers. Recent advances in the antisense technology provide a powerful tool to investigate various cancer pathways and target them. Small interfering RNAs (siRNAs) could be effective in downregulating the cancer-associated genes, but their in vivo delivery is the main obstacle. DNA enzymes (DNAzymes) have great potential in the treatment of cancer due to high selectivity and significant catalytic efficiency. In this review, we are focusing on antisense molecules such as siRNA and DNAzymes in cancer therapeutics development. This review also describes the challenges and approaches to overcome obstacles involved in using siRNA and DNAzymes in the treatment of cancers.
Collapse
|
9
|
Molecular targets for the treatment of juvenile myelomonocytic leukemia. Adv Hematol 2011; 2012:308252. [PMID: 22162691 PMCID: PMC3226315 DOI: 10.1155/2012/308252] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/13/2011] [Accepted: 08/11/2011] [Indexed: 01/23/2023] Open
Abstract
Significant advances in our understanding of the genetic defects and the pathogenesis of juvenile myelomonocytic leukemia (JMML) have been achieved in the last several years. The information gathered tremendously helps us in designing molecular targeted therapies for this otherwise fatal disease. Various approaches are being investigated to target defective pathways/molecules in this disease. However, effective therapy is still lacking. Development of specific target-based drugs for JMML remains a big challenge and represents a promising direction in this field.
Collapse
|
10
|
Overcoming self-tolerance to tumour cells. Methods Mol Biol 2010. [PMID: 20387167 DOI: 10.1007/978-1-60761-657-3_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Over the past decade, immunotherapy has emerged as a promising alternative form of cancer treatment with the potential to eradicate tumour metastasis. However, its curative potential is in general limited by peripheral tolerance mechanisms and the elimination of self-reactive T cells via thymic negative selection. Unlike infectious challenges, tumour cells arise endogenously, and therefore the majority of tumour antigens are recognized as self. Under appropriate conditions, however, tumour reacting T cells can be activated through a mechanism of molecular mimicry, which involves the recognition of cross reactive foreign antigens mimicking tumour antigens. Moreover, dendritic cells can be reprogrammed by RNA interference to present self-antigens and activate anti-tumour T cells. This review highlights some of the strategies used to break self-tolerance against solid and blood tumour cells. Also, the possibility of reprogramming DC and/or lymphocyte functions using small interfering RNAi (siRNA) is discussed.
Collapse
|
11
|
Sioud M. Does our current understanding of immune tolerance, autoimmunity, and immunosuppressive mechanisms facilitate the design of efficient cancer vaccines? Scand J Immunol 2009; 70:516-25. [PMID: 19906192 DOI: 10.1111/j.1365-3083.2009.02326.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The therapeutic use of the immune system to attack cancer cells has been a longstanding vision among tumour immunologists. However, most human tumours are poorly immunogenic and are able to invade the host immune system. Although these obstacles are clearly critical to cancer vaccine development, the induction of a strong anti-tumour immune response may rely on the activation of high affinity T cells through a molecular mimicry mechanism which involves cross-reactive recognition of foreign antigens mimicking the structure of tumour proteins. Taking into account the disparity in HLA molecules needed to present shared antigens; in late 1990s Stauss et al. described the possibility of generating allorestricted high affinity cytotoxic T cells against synthetic self-peptides bound to non-self-MHC molecules. In addition to the strategies indicated above, the inhibition of the immunosuppressive mechanisms associated with tumour invasion of the immune system using RNA interference also offers a new approach to vaccine design. This review highlights the problem of immune tolerance, the induction of autoreactive T cells, and describes strategies to enhance tumour immunity.
Collapse
Affiliation(s)
- M Sioud
- Department of Immunology, The Norwegian Radium Hospital, Institute for Cancer Research, Oslo, Norway.
| |
Collapse
|
12
|
Chan RJ, Cooper T, Kratz CP, Weiss B, Loh ML. Juvenile myelomonocytic leukemia: a report from the 2nd International JMML Symposium. Leuk Res 2009; 33:355-62. [PMID: 18954903 PMCID: PMC2692866 DOI: 10.1016/j.leukres.2008.08.022] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 08/15/2008] [Accepted: 08/19/2008] [Indexed: 02/02/2023]
Abstract
Juvenile myelomonocytic leukemia (JMML) is an aggressive childhood myeloproliferative disorder characterized by the overproduction of myelomonocytic cells. JMML incidence approaches 1.2/million persons in the United States (Cancer Incidence and Survival Among Children and Adolescents: United States SEER Program 1975-1995). Although rare, JMML is innately informative as the molecular genetics of this disease implicates hyperactive Ras as an essential initiating event. Given that Ras is one of the most frequently mutated oncogenes in human cancer, findings from this disease are applicable to more genetically diverse and complex adult leukemias. The JMML Foundation (www.jmmlfoundation.org) was founded by parent advocates dedicated to finding a cure for this disease. They work to bring investigators together in a collaborative manner. This article summarizes key presentations from The Second International JMML Symposium, on 7-8 December 2007 in Atlanta, GA. A list of all participants is in Supplementary Table.
Collapse
Affiliation(s)
- Rebecca J. Chan
- Departments of Pediatrics, the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Todd Cooper
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christian P. Kratz
- Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Brian Weiss
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mignon L. Loh
- Department of Pediatrics, University of California, San Francisco, CA, USA
| |
Collapse
|
13
|
|
14
|
Koike K, Matsuda K. Recent advances in the pathogenesis and management of juvenile myelomonocytic leukaemia. Br J Haematol 2008; 141:567-75. [PMID: 18422786 DOI: 10.1111/j.1365-2141.2008.07104.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kenichi Koike
- Department of Paediatrics, Shinshu University School of Medicine, Matsumoto, Japan.
| | | |
Collapse
|
15
|
Kurreck J. The Role of Backbone Modifications in Oligonucleotide-Based Strategies. THERAPEUTIC OLIGONUCLEOTIDES 2008. [DOI: 10.1039/9781847558275-00001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jens Kurreck
- Institute for Chemistry and Biochemistry, Free University Berlin Thielallee 63 14195 Berlin Germany and Institute of Industrial Genetics, University of Stuttgart Allmandring 31 70569 Stuttgart Germany
| |
Collapse
|
16
|
Seifert G, Taube T, Paal K, von Einsiedel HG, Wellmann S, Henze G, Seeger K, Schroff M, Wittig B. Brief communication: stability and catalytic activity of novel circular DNAzymes. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 25:785-93. [PMID: 16898416 DOI: 10.1080/15257770600726075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
UNLABELLED DNAzymes represent a new generation of catalytic nucleic acids for specific RNA targeting in order to inhibit protein translation from the specifically cleaved mRNA. The 10-23 DNAzyme was found to hydrolyze RNA in a sequence-specific manner both in vitro and in vivo. Although single-stranded DNAzymes may represent the most effective nucleic acid drug to date, they are nevertheless sensitive to nuclease degradation and require modifications for in vivo application. However, previously used stabilization of DNAzymes by site-specific phosphorothioate (PT) modifications reduces the catalytic activity, and the PTO displays toxic side effects when applied in vivo. Thus, improving the stability of DNAzymes without reducing their catalytic activity is essential if the potential of these compounds should be realized in vivo. RESULTS The Circozyme was tested targeting the mRNA of the most common genetic rearrangement in pediatric acute lymphoblastic leukemia TEL/AML1 (ETV6/RUNX1). The Circozyme exhibits a stability comparable to PTO-modified DNAzymes without reduction of catalytic activity and specificity and may represent a promising tool for DNAzyme in vivo applications. CONCLUSION The inclusion of the catalytic site and the specific mRNA binding sequence of the DNAzyme into a circular loop-stem-loop structure (Circozyme) of approximately 70 bases presented here represents a new effective possibility of DNAzyme stabilization.
Collapse
Affiliation(s)
- Georg Seifert
- Charité Universitätsmedizin Berlin, Otto-Heubner Center for Pediatric and Adolescent Medicine (OHC), Department of Pediatric Oncology/Hematology, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The discovery that nucleic acids mediated the inhibition of gene expression in a sequence-specific manner has provided the scientific community with a potentially important tool to analyse gene function and validate drug targets. Selective inhibition of gene expression by ribozymes and small interfering RNAs (siRNAs) is being explored for potential therapeutics against viral infections, inflammatory disorders, haematological diseases and cancer. In order to be used as pharmaceutical drugs, chemical modifications are necessary to increase their stability in vivo. However, such modifications should not affect either the ribozyme cleavage activity or the incorporation of the siRNAs into the RNA interference (RNAi) targeting complex and subsequent mRNA cleavage. To attain stability, ribozymes and siRNAs must also overcome several other problems, including accessibility to target messenger RNAs (mRNAs), efficient delivery to target cells and unwanted non-specific effects.
Collapse
Affiliation(s)
- M Sioud
- Institute for Cancer Research, Department of Immunology, Molecular Medicine Group, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway.
| |
Collapse
|
18
|
Nakamura Y, Ito M, Yamamoto T, Yan XY, Yagasaki H, Kamachi Y, Kudo K, Kojima S. Engraftment of NOD/SCID/gammacnull mice with multilineage neoplastic cells from patients with juvenile myelomonocytic leukaemia. Br J Haematol 2005; 130:51-7. [PMID: 15982344 DOI: 10.1111/j.1365-2141.2005.05578.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several lines of evidence indicate the clonal nature of juvenile myelomonocytic leukaemia (JMML), involving myeloid, erythroid, megakaryocyte and B-lymphoid lineages. However, it is unclear whether the T-lymphocyte lineage is involved. We demonstrated that cells from six patients with JMML repopulated in non-obese diabetic/severe combined immunodeficient/gammac(null) mice and differentiated into granulocytes, monocytes, erythrocytes, B lymphocytes, T lymphocytes and natural killer cells. The percentage of human CD45 antigen-positive cells ranged from 41% to 73% in the murine bone marrow 12 weeks after transplantation. To examine the involvement of lymphocyte subpopulations, we purified human CD3(+), CD19(+) and CD56(+) cells from murine bone marrow cells transplanted from a patient with monosomy 7. Fluorescence in situ hybridization (FISH) showed the clonal marker in 96-100% of purified CD3(+), CD19(+) and CD56(+) subpopulations. These findings support the concept that JMML originates in transplantable multilineage haematopoietic stem cells. This novel murine xenotransplant model should be useful for investigating the nature of stem cells and testing new therapies for patients with JMML.
Collapse
Affiliation(s)
- Yoichi Nakamura
- Department of Paediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW This review focuses on the non-receptor Src-homology 2 domain-containing protein tyrosine phosphatase SHP-2 and its role in signal transduction, hematopoiesis, and leukemogenesis. Specifically, we discuss the role of inherited and somatic mutations that result in SHP-2 gain-of-function in human disease, including myeloid malignancies. RECENT FINDINGS Up-regulation of RAS signaling is a major perturbation that drives the aberrant growth of malignant myeloid cells. Leukemia-associated SHP-2 mutations define a novel type of molecular events resulting in hyperactive RAS function. SUMMARY SHP-2 plays an important role in intracellular signaling elicited by growth factors, hormones, and cytokines, and it is required during development and hematopoiesis. Gain of function mutations in PTPN11, the gene encoding SHP-2, is observed in Noonan syndrome and related development disorders, as well as in myeloid malignancies. Fully characterizing the incidence and spectrum of PTPN11 mutations in hematologic malignancies, and in other forms of cancer, is an area of active investigation.
Collapse
Affiliation(s)
- Marco Tartaglia
- Dipartimento di Biologia Cellulare e Neuroscienze, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | |
Collapse
|
20
|
Abstract
Juvenile myelomonocytic leukemia is an aggressive neoplasia of early childhood. Only allogeneic stem cell transplantation (SCT) offers long-term cure. In the absence of an HLA-matched family donor, early SCT from an unrelated donor is the treatment of choice for most children. With clear evidence of a graft-versus-leukemia effect and a high post-transplant relapse rate, the outcome of SCT depends, in part, on the management of immunosuppression during the procedure. The impact of pretransplant cytoreductive treatment, such as intensive chemotherapy, splenectomy, or 13-cis retinoic acid, is unclear. Hypersensitivity for granulocyte-macrophage colony-stimulating factor and pathologic activation of the Ras/MAPK pathway play an important role in the pathophysiology of juvenile myelomonocytic leukemia and provide the opportunity for several novel therapeutic approaches.
Collapse
Affiliation(s)
- Charlotte Marie Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany.
| | | |
Collapse
|
21
|
Schubert S, Gül DC, Grunert HP, Zeichhardt H, Erdmann VA, Kurreck J. RNA cleaving '10-23' DNAzymes with enhanced stability and activity. Nucleic Acids Res 2004; 31:5982-92. [PMID: 14530446 PMCID: PMC219472 DOI: 10.1093/nar/gkg791] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
'10-23' DNAzymes can be used to cleave any target RNA in a sequence-specific manner. For applications in vivo, they have to be stabilised against nucleolytic attack by the introduction of modified nucleotides without obstructing cleavage activity. In this study, we optimise the design of a DNAzyme targeting the 5'-non-translated region of the human rhinovirus 14, a common cold virus, with regard to its kinetic properties and its stability against nucleases. We compare a large number of DNAzymes against the same target site that are stabilised by the use of a 3'-3'-inverted thymidine, phosphorothioate linkages, 2'-O-methyl RNA and locked nucleic acids, respectively. Both cleavage activity and nuclease stability were significantly enhanced by optimisation of arm length and content of modified nucleotides. Furthermore, we introduced modified nucleotides into the catalytic core to enhance stability against endonucleolytic degradation without abolishing catalytic activity. Our findings enabled us to establish a design for DNAzymes containing nucleotide modifications both in the binding arms and in the catalytic core, yielding a species with up to 10-fold enhanced activity and significantly elevated stability against nucleolytic cleavage. When transferring the design to a DNAzyme against a different target, only a slight modification was necessary to retain activity.
Collapse
Affiliation(s)
- Steffen Schubert
- Free University Berlin, Institute of Chemistry (Biochemistry), Thielallee 63, D-14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
The classification of myeloid neoplasms now includes CMPD, mixed CMPD/ MDS, MDS, and acute myeloid leukemias. CMPD and CMPD/MDS, both clonal stem cell diseases, share myeloproliferative features, including typical hypercellular marrows, organomegaly, and cell lineage maturation. The CMPD generally differ by which myeloid cell lineage dominates hematopoiesis, and the main diseases include CML, PV, ET, and CIM. The mixed CMPD/MDS disorders also show dysplastic features and variable amounts of effective hematopoiesis; these disorders include CMML, JMML, and atypical CML. Given the overlap in morphology among these diseases, correlation with clinical, hematologic, and cytogenetic/molecular genetic findings is imperative for precise classification.
Collapse
Affiliation(s)
- Tracy I George
- Department of Pathology, Stanford University Medical Center, 300 Pasteur Drive, Room H1501B, Stanford, CA 94305-5627, USA.
| | | |
Collapse
|
23
|
Abstract
Juvenile myelomonocytic leukemia is an aggressive neoplasia of early childhood. Only allogeneic stem cell transplantation (SCT) offers a long-term cure. In the absence of an HLA-matched family donor, early SCT from an unrelated donor will be the treatment of choice for most children. With clear evidence of a graft-versus-leukemia effect and a high post-transplant relapse rate, outcome of SCT will depend, in part, on the management of immunosuppression during the procedure. The impact of pretransplant cytoreductive treatment, such as intensive chemotherapy, splenectomy, or 13-cis retinoic acid, is unclear. Hypersensitivity for granulocyte-macrophage colony-stimulating factor and pathologic activation of the Ras/MAPK pathway play an important role in the pathophysiology of juvenile myelomonocytic leukemia and will provide the opportunity for several novel therapy approaches.
Collapse
Affiliation(s)
- Charlotte Marie Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany.
| | | |
Collapse
|
24
|
Arceci RJ, Longley BJ, Emanuel PD. Atypical cellular disorders. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2002; 2002:297-314. [PMID: 12446429 DOI: 10.1182/asheducation-2002.1.297] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Atypical cellular disorders are commonly considered part of the gray zone linking oncology to hematology and immunology. Although these disorders are relatively uncommon, they often represent significant clinical problems, provide an opportunity to understand basic disease mechanisms, and serve as model systems for the development of novel targeted therapies. This chapter focuses on such disorders. In Section I, Dr. Arceci discusses the pathogenesis of Langerhans cell histiocytosis (LCH) in terms of the hypothesis that this disorder represents an atypical myeloproliferative syndrome. The clinical manifestations and treatment of LCH in children and adults is discussed along with possible future therapeutic approaches based upon biological considerations. In Section II, Dr. Longley considers the molecular changes in the c-Kit receptor that form the basis of mastocytosis. Based on the location and function of c-Kit mutations, he develops a paradigm for the development of specific, targeted therapies. In Section III, Dr. Emanuel provides a review of the "mixed myeloproliferative and myelodysplastic disorders," including novel therapeutic approaches based on aberrant pathogenetic mechanisms. Taken together, these chapters should provide an overview of the biological basis for these disorders, their clinical manifestations, and new therapeutic approaches.
Collapse
Affiliation(s)
- Robert J Arceci
- Div. of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | | | | |
Collapse
|