1
|
Chen Y, Zhu J, Wang S, Li M, Sun X, Liu S, Wang Y, Li R, Zhang G. Modular Nano-Antigen Display Platform for Pigs Induces Potent Immune Responses. ACS NANO 2024; 18:29152-29177. [PMID: 39387806 DOI: 10.1021/acsnano.4c10725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Multivalent presentation of antigens using nanoparticles (NPs) as a platform is an effective strategy to enhance the immunogenicity of subunit vaccines and thus induce a high level of organismal immune response. Our previous results showed that pre-existing porcine circovirus type 2 (PCV2) antibodies could increase the antibody levels of nanoparticle vaccines carried in PCV2 VLPs. Here, we have established a generalized nanoantigen display platform, Cap-Cat virus-like particles (VLPs). By combining PCV2 VLPs with the modular linker element SpyTag003/SpyCatcher003 system, four porcine-derived viral protective antigens with different sizes and multimeric structures: the PRRSV B-cell epitope, the PEDV COE monomer, the CSFV E2 dimer, and the SIV HA trimer were efficiently demonstrated to elicit a strong immune response in mice. Crucially, the modification of antigens by the Cap-Cat VLPs platform enhanced the Th2 response and improved the Th1 response. The use of the platform demonstrates that HA antigen protects against lethal attacks by influenza viruses and reduces viral load in the lungs. We have demonstrated that the Cap-Cat VLPs platform demonstrates that antigens enhance the immune response by improving the processes of DC uptake, transport, lymph node (LN) localization, and immune cell activation. This "plug-and-display" assembly strategy facilitates the use of the Cap-Cat VLPs nanoantigen display platform for more applications and thus facilitates the development of more efficient, general-purpose porcine subunit vaccines.
Collapse
Affiliation(s)
- Yilan Chen
- School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jiahong Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Siqiao Wang
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Minghui Li
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xueke Sun
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Siyuan Liu
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yanan Wang
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruiqi Li
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Gaiping Zhang
- School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
- Longhu Laboratory, Zhengzhou 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
2
|
Zheng H, Zhao H, Xiong H, Awais MM, Zeng S, Sun J. Bioproduction and immunogenic evaluation of SARS-CoV-2 prototype vaccine in silkworm BmN cells. Int J Biol Macromol 2024; 276:134027. [PMID: 39033889 DOI: 10.1016/j.ijbiomac.2024.134027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
COVID-19, caused by the novel coronavirus SARS-CoV-2, has presented a significant challenge to global health, security, and the economy. Vaccination is considered a crucial measure in preventing virus transmission. The silkworm bioreactor has gained widespread usage in antigen presentation, monoclonal antibody preparation, and subunit vaccine development due to its safety, efficiency, convenience, and cost-effectiveness. In this study, we employed silkworm BmN cells and the silkworm MultiBac multigene co-expression system to successfully produce two prototype vaccines: a recombinant baculovirus vector vaccine (NPV) co-displaying the SARS-CoV-2 virus capsid protein and a capsid protein virus-like particle (VLP) vaccine. Following the purification of these vaccines, we immunized BALB/c mice to evaluate their immunogenicity. Our results demonstrated that both VLP and NPV prototype vaccines effectively elicited robust immune responses in mice. However, when equal inoculation doses between groups were compared, the recombinant NPV vaccine exhibited significantly higher serum antibody titers and increased expression of spleen cytokines and lymphocyte immune regulatory factors compared to the VLP group. These results suggested an increased immune efficacy of the recombinant NPV vaccine. Conversely, the VLP prototype vaccine displayed more pronounced effects on lymphocyte cell differentiation induction. This study successfully constructed two distinct morphological recombinant vaccine models and systematically elucidated their differences in humoral immune response and lymphocyte differentiation rate. Furthermore, it has fully harnessed the immense potential of silkworm bioreactors for vaccine research and development, providing valuable technical insights for studying mutated viruses like coronaviruses.
Collapse
Affiliation(s)
- Hao Zheng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hengfeng Zhao
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Haifan Xiong
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Mian Muhammad Awais
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Songrong Zeng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
3
|
Wang J, Xie T, Ullah I, Mi Y, Li X, Gong Y, He P, Liu Y, Li F, Li J, Lu Z, Zhu B. A VLP-Based Vaccine Displaying HBHA and MTP Antigens of Mycobacterium tuberculosis Induces Protective Immune Responses in M. tuberculosis H37Ra Infected Mice. Vaccines (Basel) 2023; 11:941. [PMID: 37243045 PMCID: PMC10224509 DOI: 10.3390/vaccines11050941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Heparin-binding hemagglutinin (HBHA) and M. tuberculosis pili (MTP) are important antigens on the surface of Mycobacterium tuberculosis. To display these antigens effectively, the fusion protein HBHA-MTP with a molecular weight of 20 kD (L20) was inserted into the receptor-binding hemagglutinin (HA) fragment of influenza virus and was expressed along with matrix protein M1 in Sf9 insect cells to generate influenza virus-like particles (LV20 in short). The results showed that the insertion of L20 into the envelope of the influenza virus did not affect the self-assembly and morphology of LV20 VLPs. The expression of L20 was successfully verified by transmission electron microscopy. Importantly, it did not interfere with the immunogenicity reactivity of LV20 VLPs. We demonstrated that LV20 combined with the adjuvant composed of DDA and Poly I: C (DP) elicited significantly higher antigen-specific antibodies and CD4+/CD8+ T cell responses than PBS and BCG vaccination in mice. It suggests that the insect cell expression system is an excellent protein production system, and LV20 VLPs could be a novel tuberculosis vaccine candidate for further evaluation.
Collapse
Affiliation(s)
- Juan Wang
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.W.); (T.X.); (Y.M.); (Y.G.); (F.L.)
| | - Tao Xie
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.W.); (T.X.); (Y.M.); (Y.G.); (F.L.)
| | - Inayat Ullah
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.W.); (T.X.); (Y.M.); (Y.G.); (F.L.)
| | - Youjun Mi
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.W.); (T.X.); (Y.M.); (Y.G.); (F.L.)
- Institute of Pathogenic Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Li
- Respiratory Department of Lanzhou Pulmonary Hospital, Lanzhou 730000, China
| | - Yang Gong
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.W.); (T.X.); (Y.M.); (Y.G.); (F.L.)
| | - Pu He
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.W.); (T.X.); (Y.M.); (Y.G.); (F.L.)
| | - Yuqi Liu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.W.); (T.X.); (Y.M.); (Y.G.); (F.L.)
| | - Fei Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.W.); (T.X.); (Y.M.); (Y.G.); (F.L.)
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China;
| | - Zengjun Lu
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| | - Bingdong Zhu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.W.); (T.X.); (Y.M.); (Y.G.); (F.L.)
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Olson E, Ceccarelli T, Raghavan M. Endo-lysosomal assembly variations among human leukocyte antigen class I (HLA class I) allotypes. eLife 2023; 12:e79144. [PMID: 36722462 PMCID: PMC9917446 DOI: 10.7554/elife.79144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 01/13/2023] [Indexed: 02/02/2023] Open
Abstract
The extreme polymorphisms of human leukocyte antigen class I (HLA class I) proteins enable the presentation of diverse peptides to cytotoxic T lymphocytes. The canonical endoplasmic reticulum (ER) HLA class I assembly pathway enables presentation of cytosolic peptides, but effective intracellular surveillance requires multi-compartmental antigen sampling. Endo-lysosomes are generally sites of HLA class II assembly, but human monocytes and monocyte-derived dendritic cells (moDCs) also contain significant reserves of endo-lysosomal HLA class I molecules. We hypothesized variable influences of HLA class I polymorphisms upon outcomes of endo-lysosomal trafficking, as the stabilities and peptide occupancies of cell surface HLA class I molecules are variable. Consistent with this model, when the endo-lysosomal pH of moDCs is disrupted, HLA-B allotypes display varying propensities for reductions in surface expression, with HLA-B*08:01 or HLA-B*35:01 being among the most resistant or sensitive, respectively, among eight tested HLA-B allotypes. Perturbations of moDC endo-lysosomal pH result in accumulation of HLA-B*35:01 in LAMP1+ compartments and increase HLA-B*35:01 peptide receptivity. These findings reveal the intersection of the vacuolar cross-presentation pathway with a constitutive assembly pathway for some HLA-B allotypes. Notably, cross-presentation of epitopes derived from two soluble antigens was also more efficient for B*35:01 compared to B*08:01, even when matched for T cell response sensitivity, and more affected by cathepsin inhibition. Thus, HLA class I polymorphisms dictate the degree of endo-lysosomal assembly, which can supplement ER assembly for constitutive HLA class I expression and increase the efficiency of cross-presentation.
Collapse
Affiliation(s)
- Eli Olson
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan-Ann ArborAnn ArborUnited States
- Graduate Program in Immunology, Michigan Medicine, University of Michigan-Ann ArborAnn ArborUnited States
| | - Theadora Ceccarelli
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan-Ann ArborAnn ArborUnited States
| | - Malini Raghavan
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan-Ann ArborAnn ArborUnited States
- Graduate Program in Immunology, Michigan Medicine, University of Michigan-Ann ArborAnn ArborUnited States
| |
Collapse
|
5
|
Tischer-Zimmermann S, Bonifacius A, Santamorena MM, Mausberg P, Stoll S, Döring M, Kalinke U, Blasczyk R, Maecker-Kolhoff B, Eiz-Vesper B. Reinforcement of cell-mediated immunity driven by tumor-associated Epstein-Barr virus (EBV)-specific T cells during targeted B-cell therapy with rituximab. Front Immunol 2023; 14:878953. [PMID: 37033971 PMCID: PMC10079996 DOI: 10.3389/fimmu.2023.878953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction In immunocompromised patients, Epstein-Barr virus (EBV) infection or reactivation is associated with increased morbidity and mortality, including the development of B-cell lymphomas. The first-line treatment consists of reduction of immunosuppression and administration of rituximab (anti-CD20 antibody). Furthermore, the presence of EBV-specific T cells against latent EBV proteins is crucial for the control of EBV-associated diseases. Therefore, in addition to effective treatment strategies, appropriate monitoring of T cells of high-risk patients is of great importance for improving clinical outcome. In this study, we hypothesized that rituximab-mediated lysis of malignant EBV-infected B cells leads to the release and presentation of EBV-associated antigens and results in an augmentation of EBV-specific effector memory T-cell responses. Methods EBV-infected B lymphoblastoid cell lines (B-LCLs) were used as a model for EBV-associated lymphomas, which are capable of expressing latency stage II and III EBV proteins present in all known EBV-positive malignant cells. Rituximab was administered to obtain cell lysates containing EBV antigens (ACEBV). Efficiency of cross-presentation of EBV-antigen by B-LCLs compared to cross-presentation by professional antigen presenting cells (APCs) such as dendritic cells (DCs) and B cells was investigated by in vitro T-cell immunoassays. Deep T-cell profiling of the tumor-reactive EBV-specific T cells in terms of activation, exhaustion, target cell killing, and cytokine profile was performed, assessing the expression of T-cell differentiation and activation markers as well as regulatory and cytotoxic molecules by interferon-γ (IFN-γ) EliSpot assay, multicolor flow cytometry, and multiplex analyses. Results By inhibiting parts of the cross-presentation pathway, B-LCLs were shown to cross-present obtained exogenous ACEBV-derived antigens mainly through major histocompatibility complex (MHC) class I molecules. This mechanism is comparable to that for DCs and B cells and resulted in a strong EBV-specific CD8+ cytotoxic T-cell response. Stimulation with ACEBV-loaded APCs also led to the activation of CD4+ T helper cells, suggesting that longer peptide fragments are processed via the classical MHC class II pathway. In addition, B-LCLs were also found to be able to take up exogenous antigens from surrounding cells by endocytosis leading to induction of EBV-specific T-cell responses although to a much lesser extent than cross-presentation of ACEBV-derived antigens. Increased expression of activation markers CD25, CD71 and CD137 were detected on EBV-specific T cells stimulated with ACEBV-loaded APCs, which showed high proliferative and cytotoxic capacity as indicated by enhanced EBV-specific frequencies and increased secretion levels of cytotoxic effector molecules (e.g. IFN-γ, granzyme B, perforin, and granulysin). Expression of the regulatory proteins PD-1 and Tim-3 was induced but had no negative impact on effector T-cell functions. Conclusion In this study, we showed for the first time that rituximab-mediated lysis of EBV-infected tumor cells can efficiently boost EBV-specific endogenous effector memory T-cell responses through cross-presentation of EBV-derived antigens. This promotes the restoration of antiviral cellular immunity and presents an efficient mechanism to improve the treatment of CD20+ EBV-associated malignancies. This effect is also conceivable for other therapeutic antibodies or even for therapeutically applied unmodified or genetically modified T cells, which lead to the release of tumor antigens after specific cell lysis.
Collapse
Affiliation(s)
- Sabine Tischer-Zimmermann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Maria Michela Santamorena
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Philip Mausberg
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Sven Stoll
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Marius Döring
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between The Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between The Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Britta Maecker-Kolhoff
- Department of Paediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
- *Correspondence: Britta Eiz-Vesper,
| |
Collapse
|
6
|
Nanoscale organization of the MHC I peptide-loading complex in human dendritic cells. Cell Mol Life Sci 2022; 79:477. [PMID: 35947215 PMCID: PMC9365725 DOI: 10.1007/s00018-022-04472-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/04/2022] [Accepted: 07/05/2022] [Indexed: 11/03/2022]
Abstract
Dendritic cells (DCs) translate local innate immune responses into long-lasting adaptive immunity by priming antigen-specific T cells. Accordingly, there is an ample interest in exploiting DCs for therapeutic purposes, e.g., in personalized immunotherapies. Despite recent advances in elucidating molecular pathways of antigen processing, in DCs the exact spatial organization of the underlying processes is largely unknown. Here, we unraveled the nanoscale organization of the transporter associated with antigen processing (TAP)-dependent peptide-loading machinery in human monocyte-derived DCs (moDC). We detected an unexpected accumulation of MHC I peptide-loading complexes (PLCs) and TAP-dependent peptide compartmentalization in protrusions of activated DCs. Using single-molecule localization microscopy we revealed that PLCs display homogeneously sized assemblies, independent of the DC activation status or cellular localization. Our data indicate that moDCs show augmentation of subcellular PLC density during DC maturation. We observed a twofold density increase in the cell body, while an even fourfold accumulation was detected in the tips of the protrusions at the mature DC stage in comparison to immature DCs. In these tip regions, PLC assemblies are found along highly compressed tubular ER networks. These findings provide novel insights into nanoscale organization of the antigen presentation machinery, and open new perspectives on the T cell stimulatory capacity of DCs.
Collapse
|
7
|
Mantel I, Sadiq BA, Blander JM. Spotlight on TAP and its vital role in antigen presentation and cross-presentation. Mol Immunol 2022; 142:105-119. [PMID: 34973498 PMCID: PMC9241385 DOI: 10.1016/j.molimm.2021.12.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/18/2021] [Accepted: 12/16/2021] [Indexed: 02/03/2023]
Abstract
In the late 1980s and early 1990s, the hunt for a transporter molecule ostensibly responsible for the translocation of peptides across the endoplasmic reticulum (ER) membrane yielded the successful discovery of transporter associated with antigen processing (TAP) protein. TAP is a heterodimer complex comprised of TAP1 and TAP2, which utilizes ATP to transport cytosolic peptides into the ER across its membrane. In the ER, together with other components it forms the peptide loading complex (PLC), which directs loading of high affinity peptides onto nascent major histocompatibility complex class I (MHC-I) molecules that are then transported to the cell surface for presentation to CD8+ T cells. TAP also plays a crucial role in transporting peptides into phagosomes and endosomes during cross-presentation in dendritic cells (DCs). Because of the critical role that TAP plays in both classical MHC-I presentation and cross-presentation, its expression and function are often compromised by numerous types of cancers and viruses to evade recognition by cytotoxic CD8 T cells. Here we review the discovery and function of TAP with a major focus on its role in cross-presentation in DCs. We discuss a recently described emergency route of noncanonical cross-presentation that is mobilized in DCs upon TAP blockade to restore CD8 T cell cross-priming. We also discuss the various strategies employed by cancer cells and viruses to target TAP expression or function to evade immunosurveillance - along with some strategies by which the repertoire of peptides presented by cells which downregulate TAP can be targeted as a therapeutic strategy to mobilize a TAP-independent CD8 T cell response. Lastly, we discuss TAP polymorphisms and the role of TAP in inherited disorders.
Collapse
Affiliation(s)
- Ian Mantel
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, 10021, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, 10021, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA
| | - Barzan A Sadiq
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, 10021, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, 10021, USA
| | - J Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, 10021, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, 10021, USA; Department of Microbiology and Immunology, New York, NY, 10021, USA; Sandra and Edward Meyer Cancer Center, New York, NY, 10021, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA.
| |
Collapse
|
8
|
Bošnjak B, Do KTH, Förster R, Hammerschmidt SI. Imaging dendritic cell functions. Immunol Rev 2021; 306:137-163. [PMID: 34859450 DOI: 10.1111/imr.13050] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022]
Abstract
Dendritic cells (DCs) are crucial for the appropriate initiation of adaptive immune responses. During inflammation, DCs capture antigens, mature, and migrate to lymphoid tissues to present foreign material to naïve T cells. These cells get activated and differentiate either into pathogen-specific cytotoxic CD8+ T cells that destroy infected cells or into CD4+ T helper cells that, among other effector functions, orchestrate antibody production by B cells. DC-mediated antigen presentation is equally important in non-inflammatory conditions. Here, DCs mediate induction of tolerance by presenting self-antigens or harmless environmental antigens and induce differentiation of regulatory T cells or inactivation of self-reactive immune cells. Detailed insights into the biology of DCs are, therefore, crucial for the development of novel vaccines as well as the prevention of autoimmune diseases. As in many other life science areas, our understanding of DC biology would be extremely restricted without bioimaging, a compilation of methods that visualize biological processes. Spatiotemporal tracking of DCs relies on various imaging tools, which not only enable insights into their positioning and migration within tissues or entire organs but also allow visualization of subcellular and molecular processes. This review aims to provide an overview of the imaging toolbox and to provide examples of diverse imaging techniques used to obtain fundamental insights into DC biology.
Collapse
Affiliation(s)
- Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kim Thi Hoang Do
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155) Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Hannover, Germany
| | | |
Collapse
|
9
|
Light control of the peptide-loading complex synchronizes antigen translocation and MHC I trafficking. Commun Biol 2021; 4:430. [PMID: 33785857 PMCID: PMC8010092 DOI: 10.1038/s42003-021-01890-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Antigen presentation via major histocompatibility complex class I (MHC I) molecules is essential to mount an adaptive immune response against pathogens and cancerous cells. To this end, the transporter associated with antigen processing (TAP) delivers snippets of the cellular proteome, resulting from proteasomal degradation, into the ER lumen. After peptide loading and editing by the peptide-loading complex (PLC), stable peptide-MHC I complexes are released for cell surface presentation. Since the process of MHC I trafficking is poorly defined, we established an approach to control antigen presentation by introduction of a photo-caged amino acid in the catalytic ATP-binding site of TAP. By optical control, we initiate TAP-dependent antigen translocation, thus providing new insights into TAP function within the PLC and MHC I trafficking in living cells. Moreover, this versatile approach has the potential to be applied in the study of other cellular pathways controlled by P-loop ATP/GTPases. Brunnberg et al. establish a protocol that enables them to optically control translocation of the transporter associated with antigen processing (TAP), which plays a role in delivering proteasomal degradation products into the ER lumen. Their versatile approach provides insights into TAP function in the context of peptide-loading complex and stable peptide-MHC I complex trafficking in living cells, but has the potential to be applied to the investigation of other pathways.
Collapse
|
10
|
Nooraei S, Bahrulolum H, Hoseini ZS, Katalani C, Hajizade A, Easton AJ, Ahmadian G. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnology 2021; 19:59. [PMID: 33632278 PMCID: PMC7905985 DOI: 10.1186/s12951-021-00806-7] [Citation(s) in RCA: 429] [Impact Index Per Article: 107.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Virus-like particles (VLPs) are virus-derived structures made up of one or more different molecules with the ability to self-assemble, mimicking the form and size of a virus particle but lacking the genetic material so they are not capable of infecting the host cell. Expression and self-assembly of the viral structural proteins can take place in various living or cell-free expression systems after which the viral structures can be assembled and reconstructed. VLPs are gaining in popularity in the field of preventive medicine and to date, a wide range of VLP-based candidate vaccines have been developed for immunization against various infectious agents, the latest of which is the vaccine against SARS-CoV-2, the efficacy of which is being evaluated. VLPs are highly immunogenic and are able to elicit both the antibody- and cell-mediated immune responses by pathways different from those elicited by conventional inactivated viral vaccines. However, there are still many challenges to this surface display system that need to be addressed in the future. VLPs that are classified as subunit vaccines are subdivided into enveloped and non- enveloped subtypes both of which are discussed in this review article. VLPs have also recently received attention for their successful applications in targeted drug delivery and for use in gene therapy. The development of more effective and targeted forms of VLP by modification of the surface of the particles in such a way that they can be introduced into specific cells or tissues or increase their half-life in the host is likely to expand their use in the future. Recent advances in the production and fabrication of VLPs including the exploration of different types of expression systems for their development, as well as their applications as vaccines in the prevention of infectious diseases and cancers resulting from their interaction with, and mechanism of activation of, the humoral and cellular immune systems are discussed in this review.
Collapse
Affiliation(s)
- Saghi Nooraei
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Howra Bahrulolum
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Zakieh Sadat Hoseini
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Camellia Katalani
- Sari Agriculture Science and Natural Resource University (SANRU), Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari, Iran
| | - Abbas Hajizade
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Andrew J Easton
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, UK.
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran.
| |
Collapse
|
11
|
Zepeda-Cervantes J, Ramírez-Jarquín JO, Vaca L. Interaction Between Virus-Like Particles (VLPs) and Pattern Recognition Receptors (PRRs) From Dendritic Cells (DCs): Toward Better Engineering of VLPs. Front Immunol 2020; 11:1100. [PMID: 32582186 PMCID: PMC7297083 DOI: 10.3389/fimmu.2020.01100] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Virus-like particles (VLPs) have been shown to be strong activators of dendritic cells (DCs). DCs are the most potent antigen presenting cells (APCs) and their activation prompts the priming of immunity mediators based on B and T cells. The first step for the activation of DCs is the binding of VLPs to pattern recognition receptors (PRRs) on the surface of DCs, followed by VLP internalization. Like wild-type viruses, VLPs use specific PRRs from the DC; however, these recognition interactions between VLPs and PRRs from DCs have not been thoroughly reviewed. In this review, we focused on the interaction between proteins that form VLPs and PRRs from DCs. Several proteins that form VLP contain glycosylations that allow the direct interaction with PRRs sensing carbohydrates, prompting DC maturation and leading to the development of strong adaptive immune responses. We also discussed how the knowledge of the molecular interaction between VLPs and PRRs from DCs can lead to the smart design of VLPs, whether based on the fusion of foreign epitopes or their chemical conjugation, as well as other modifications that have been shown to induce a stronger adaptive immune response and protection against infectious pathogens of importance in human and veterinary medicine. Finally, we address the use of VLPs as tools against cancer and allergic diseases.
Collapse
Affiliation(s)
- Jesús Zepeda-Cervantes
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Josué Orlando Ramírez-Jarquín
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
12
|
Olson E, Geng J, Raghavan M. Polymorphisms of HLA-B: influences on assembly and immunity. Curr Opin Immunol 2020; 64:137-145. [PMID: 32619904 PMCID: PMC7772265 DOI: 10.1016/j.coi.2020.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/22/2020] [Indexed: 01/07/2023]
Abstract
The major histocompatibility class I (MHC-I) complex functions in innate and adaptive immunity, mediating surveillance of the subcellular environment. In humans, MHC-I heavy chains are encoded by three genes: the human leukocyte antigen (HLA)-A, HLA-B, and HLA-C. These genes are highly polymorphic, which results in the expression, typically, of six different HLA class I (HLA-I) proteins on the cell surface, and the presentation of diverse peptide antigens to CD8+ T cells for broad surveillance against many pathogenic conditions. Recent studies of HLA-B allotypes show that the polymorphisms, not surprisingly, also significantly impact protein folding and assembly pathways. The use of non-canonical assembly routes and the generation of non-canonical HLA-B conformers has consequences for immune receptor interactions and disease therapies.
Collapse
Affiliation(s)
- Eli Olson
- Graduate Program in Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jie Geng
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Malini Raghavan
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|