1
|
Liu Q, Xu F, Guo J, Xu F, Huang X, Chen J, Jin J, Zhou L, He Q, Wu D, Song L, Zhang Z, Guo C, Su J, Zhang Y, Yan M, Chang C, Li X, Wu L. Significance of Mutation Spots and Concurrent Gene Mutations on Prognosis and Clinical Outcomes in Myelodysplastic Syndromes With SF3B1 Mutation. Cancer Med 2025; 14:e70930. [PMID: 40342275 PMCID: PMC12060130 DOI: 10.1002/cam4.70930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/15/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025] Open
Abstract
PURPOSE To investigate the clinical characteristics and prognosis of mutation spots and concomitant gene mutations in myelodysplastic syndromes (MDS) with SF3B1 mutation (SF3B1mut). PATIENTS AND METHODS Patients diagnosed with MDS at Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital from October 2008 to November 2023 were enrolled in this study. SF3B1mut was identified by next-generation sequencing (NGS). RESULTS One hundred and seven (8.7%) cases harbored the SF3B1 mutation. The most frequent SF3B1mut, noted in 47.66% of all patients, was the hotspot K700E. K666 and R625 were observed in 24.30% and 9.35%, respectively. Two less frequent mutation subtypes accounted for 5.61% of H662 and 4.67% of E622. Patients with the K666 mutation showed more severe thrombocytopenia (p = 0.032), significantly lower NK cell percentage (p = 0.001), and the Th1/Th2 ratio (p = 0.018) in the bone marrow (BM). The overall survival (OS) in patients with E622 and H662 mutations was significantly longer than that of patients with the R625 mutation (p = 0.045) and the K666 mutation (p = 0.010). Multi-variance analysis showed the SF3B1 mutation involving the K666 hotspot independently predicted overall survival in MDS (HR 2.094, p = 0.050). Notably, most (11/13, 84.6%) of concomitant TP53 mutations were mono-hit, which did not affect the survival of patients in our cohort. CONCLUSIONS SF3B1mut patients with specific mutation spots and concomitant gene mutations showed distinct clinical features and prognosis. Consequently, a comprehensive study of specific subtypes is of great significance for improving the prognosis of patients with SF3B1 mutations.
Collapse
Affiliation(s)
- Qi Liu
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fanhuan Xu
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Juan Guo
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Feng Xu
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xinhui Huang
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jianan Chen
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiacheng Jin
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Liyu Zhou
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of HematologyShanghai Eighth People's HospitalShanghaiChina
| | - Qi He
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Dong Wu
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Luxi Song
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zheng Zhang
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Cha Guo
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiying Su
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yumei Zhang
- Department of HematologyShanghai Eighth People's HospitalShanghaiChina
| | - Meng Yan
- Department of HematologyShanghai Eighth People's HospitalShanghaiChina
| | - Chunkang Chang
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiao Li
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lingyun Wu
- Department of HematologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of HematologyShanghai Eighth People's HospitalShanghaiChina
| |
Collapse
|
2
|
Bak-Gordon P, Manley JL. SF3B1: from core splicing factor to oncogenic driver. RNA (NEW YORK, N.Y.) 2025; 31:314-332. [PMID: 39773890 PMCID: PMC11874996 DOI: 10.1261/rna.080368.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Highly recurrent somatic mutations in the gene encoding the core splicing factor SF3B1 are drivers of multiple cancer types. SF3B1 is a scaffold protein that orchestrates multivalent protein-protein interactions within the spliceosome that are essential for recognizing the branchsite (BS) and selecting the 3' splice site during the earliest stage of pre-mRNA splicing. In this review, we first describe the molecular mechanism by which multiple oncogenic SF3B1 mutations disrupt splicing. This involves perturbation of an early spliceosomal trimeric protein complex necessary for accurate BS recognition in a subset of introns, which leads to activation of upstream branchpoints and selection of cryptic 3' splice sites. We next discuss how specific transcripts affected by aberrant splicing in SF3B1-mutant cells contribute to the initiation and progression of cancer. Finally, we highlight the prognostic value and disease phenotypes of different cancer-associated SF3B1 mutations, which is critical for developing new targeted therapeutics against SF3B1-mutant cancers still lacking in the clinic.
Collapse
Affiliation(s)
- Pedro Bak-Gordon
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
3
|
Oster HS, Van de Loosdrecht AA, Mittelman M. Diagnosis of myelodysplastic syndromes: the classic and the novel. Haematologica 2025; 110:300-311. [PMID: 39445407 PMCID: PMC11788627 DOI: 10.3324/haematol.2023.284937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
The myelodysplastic syndromes (MDS) are a heterogenous group of clonal bone marrow (BM) stem cell myeloid neoplasms, characterized by BM dysplasia, macrocytic anemia or cytopenia with a tendency for leukemic transformation. The suspicion of MDS is raised by a typical but not specific clinical picture and routine laboratory findings, but the gold standard for the diagnosis of MDS is still BM examination with the presence of uni-or multi-lineage dysplasia and blast percentage, together with exclusion of other reasons. Cytogenetics is also a part of the diagnostic process. Flow cytometry and genetics are helpful but are not always mandatory for the diagnosis of MDS. This review summarizes the current steps in the diagnostic approach for a patient suspected of having MDS. We also describe new concepts that use non-invasive diagnostic technologies, especially digital methods as well as peripheral blood genetics. The hope is that one day these will mature, be introduced into clinical practice, and perhaps in many cases even replace the invasive BM biopsy.
Collapse
Affiliation(s)
- Howard S Oster
- Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv University School of Medicine
| | - Arjan A Van de Loosdrecht
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam
| | - Moshe Mittelman
- Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv University School of Medicine.
| |
Collapse
|
4
|
Bernard E, Hasserjian RP, Greenberg PL, Arango Ossa JE, Creignou M, Tuechler H, Gutierrez-Abril J, Domenico D, Medina-Martinez JS, Levine M, Liosis K, Farnoud N, Sirenko M, Jädersten M, Germing U, Sanz G, van de Loosdrecht AA, Nannya Y, Kosmider O, Follo MY, Thol F, Zamora L, Pinheiro RF, Pellagatti A, Elias HK, Haase D, Ganster C, Ades L, Tobiasson M, Palomo L, Della Porta MG, Fenaux P, Belickova M, Savona MR, Klimek VM, Santos FPS, Boultwood J, Kotsianidis I, Santini V, Solé F, Platzbecker U, Heuser M, Valent P, Finelli C, Voso MT, Shih LY, Fontenay M, Jansen JH, Cervera J, Gattermann N, Ebert BL, Bejar R, Malcovati L, Ogawa S, Cazzola M, Hellström-Lindberg E, Papaemmanuil E. Molecular taxonomy of myelodysplastic syndromes and its clinical implications. Blood 2024; 144:1617-1632. [PMID: 38958467 PMCID: PMC11487646 DOI: 10.1182/blood.2023023727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/13/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
ABSTRACT Myelodysplastic syndromes (MDS) are clonal hematologic disorders characterized by morphologic abnormalities of myeloid cells and peripheral cytopenias. Although genetic abnormalities underlie the pathogenesis of these disorders and their heterogeneity, current classifications of MDS rely predominantly on morphology. We performed genomic profiling of 3233 patients with MDS or related disorders to delineate molecular subtypes and define their clinical implications. Gene mutations, copy-number alterations, and copy-neutral loss of heterozygosity were derived from targeted sequencing of a 152-gene panel, with abnormalities identified in 91%, 43%, and 11% of patients, respectively. We characterized 16 molecular groups, encompassing 86% of patients, using information from 21 genes, 6 cytogenetic events, and loss of heterozygosity at the TP53 and TET2 loci. Two residual groups defined by negative findings (molecularly not otherwise specified, absence of recurrent drivers) comprised 14% of patients. The groups varied in size from 0.5% to 14% of patients and were associated with distinct clinical phenotypes and outcomes. The median bone marrow (BM) blast percentage across groups ranged from 1.5% to 10%, and the median overall survival ranged from 0.9 to 8.2 years. We validated 5 well-characterized entities, added further evidence to support 3 previously reported subsets, and described 8 novel groups. The prognostic influence of BM blasts depended on the genetic subtypes. Within genetic subgroups, therapy-related MDS and myelodysplastic/myeloproliferative neoplasms had comparable clinical and outcome profiles to primary MDS. In conclusion, genetically-derived subgroups of MDS are clinically relevant and might inform future classification schemas and translational therapeutic research.
Collapse
Affiliation(s)
- Elsa Bernard
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Computational Oncology, UMR 981, Gustave Roussy, Villejuif, France
| | | | - Peter L. Greenberg
- Division of Hematology, Stanford University Cancer Institute, Stanford, CA
| | - Juan E. Arango Ossa
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Maria Creignou
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Jesus Gutierrez-Abril
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Dylan Domenico
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Juan S. Medina-Martinez
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Max Levine
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Konstantinos Liosis
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Noushin Farnoud
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Maria Sirenko
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Martin Jädersten
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ulrich Germing
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - Guillermo Sanz
- Department of Hematology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red Cáncer, Instituto de Salud Carlos III, Madrid, Spain
| | - Arjan A. van de Loosdrecht
- Department of Hematology, Amsterdam University Medical Center, Vrije University Medical Center, Amsterdam, The Netherlands
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Olivier Kosmider
- Department of Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin and Université de Paris, Université Paris Descartes, Paris, France
| | - Matilde Y. Follo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Felicitas Thol
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Lurdes Zamora
- Hematology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Barcelona, Spain
- Myelodysplastic Syndromes Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Ronald F. Pinheiro
- Drug Research and Development Center, Federal University of Ceara, Ceara, Brazil
| | - Andrea Pellagatti
- Radcliffe Department of Medicine, Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford, United KIngdom
| | - Harold K. Elias
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Detlef Haase
- Clinics of Hematology and Medical Oncology, University Medical Center, Göttingen, Germany
| | - Christina Ganster
- Clinics of Hematology and Medical Oncology, University Medical Center, Göttingen, Germany
| | - Lionel Ades
- Department of Hematology, Hôpital St Louis, and Paris University, Paris, France
| | - Magnus Tobiasson
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Laura Palomo
- Hematology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Barcelona, Spain
- Myelodysplastic Syndromes Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Matteo Giovanni Della Porta
- Department of Biomedical Sciences, Humanitas Clinical and Research Center and Humanitas University, Milan, Italy
| | - Pierre Fenaux
- Department of Hematology, Hôpital St Louis, and Paris University, Paris, France
| | - Monika Belickova
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Michael R. Savona
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Virginia M. Klimek
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Fabio P. S. Santos
- Oncology-Hematology Center, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Jacqueline Boultwood
- Radcliffe Department of Medicine, Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford, United KIngdom
| | - Ioannis Kotsianidis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Valeria Santini
- Myelodysplastic Syndromes Unit, Department of Experimental and Clinical Medicine, Hematology, Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | - Francesc Solé
- Myelodysplastic Syndromes Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Uwe Platzbecker
- Medical Clinic and Policlinic 1, Hematology and Cellular Therapy, University of Leipzig, Leipzig, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Peter Valent
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine I, Ludwig Boltzmann Institute for Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Carlo Finelli
- Institute of Hematology Seràgnoli, Istituti di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maria Teresa Voso
- Myelodysplastic Syndromes Cooperative Group Gruppo Laziale Mielo-displasie (GROM-L), Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Lee-Yung Shih
- Division of Hematology, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan City, Taiwan
| | - Michaela Fontenay
- Department of Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin and Université de Paris, Université Paris Descartes, Paris, France
| | - Joop H. Jansen
- Laboratory of Hematology, Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - José Cervera
- Department of Hematology and Genetics Unit, University Hospital La Fe, Valencia, Spain
| | - Norbert Gattermann
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - Benjamin L. Ebert
- Department of Medical Oncology and Howard Hughes Medical Institute, Dana-Farber Cancer Center, Boston, MA
| | - Rafael Bejar
- University of California San Diego Moores Cancer Center, La Jolla, CA
| | - Luca Malcovati
- Department of Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Mario Cazzola
- Department of Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Eva Hellström-Lindberg
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Elli Papaemmanuil
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
5
|
Mestre J, Chaparro L, Manzanares A, Xicoy B, Zamora L, Sole F, Calvete O. Beyond myeloid neoplasms germline guidelines: Validation of the thresholds criteria in the search of germline predisposition variants. EJHAEM 2024; 5:1021-1027. [PMID: 39415912 PMCID: PMC11474399 DOI: 10.1002/jha2.1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024]
Abstract
Introduction Germline predisposition to myeloid neoplasms can be suspected in patients younger than 50 years or when harboring mutations with a variant allele frequency (VAF) higher than 30% for point mutations in specific genes. To investigate the VAF thresholds' accuracy we have explored the prevalence of germline variants below the 30% VAF threshold. Methods A total of 40 variants with VAF lower than 30% in bone marrow samples of myeloid neoplasm patients were selected and studied in CD3+ cells. Results All the selected variants were not found in CD3+ cells except one variant in the SF3B1 gene. However, the whole series was found somatic. Selected variants were also evaluated with our previously studied series of 52 variants with VAF higher than 30%. Conclusion Our study suggests that variants with VAF below 30% are strong somatic candidates but the variants with VAF higher than 30% cannot be considered of germline origin.
Collapse
Affiliation(s)
- Julia Mestre
- MDS GroupJosep Carreras Leukaemia Research Institute, ICO‐Hospital Germans Trias i Pujol, Universitat Autònoma de BarcelonaBadalonaSpain
- Facultat de BiociènciesUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Lorea Chaparro
- MDS GroupJosep Carreras Leukaemia Research Institute, ICO‐Hospital Germans Trias i Pujol, Universitat Autònoma de BarcelonaBadalonaSpain
| | - Ana Manzanares
- MDS GroupJosep Carreras Leukaemia Research Institute, ICO‐Hospital Germans Trias i Pujol, Universitat Autònoma de BarcelonaBadalonaSpain
| | - Blanca Xicoy
- Department of HematologyICO‐IJC‐Hospital Germans Trias i Pujol, UABBadalonaCataloniaSpain
| | - Lurdes Zamora
- Department of HematologyICO‐IJC‐Hospital Germans Trias i Pujol, UABBadalonaCataloniaSpain
| | - Francesc Sole
- MDS GroupJosep Carreras Leukaemia Research Institute, ICO‐Hospital Germans Trias i Pujol, Universitat Autònoma de BarcelonaBadalonaSpain
- Facultat de BiociènciesUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Oriol Calvete
- MDS GroupJosep Carreras Leukaemia Research Institute, ICO‐Hospital Germans Trias i Pujol, Universitat Autònoma de BarcelonaBadalonaSpain
| |
Collapse
|
6
|
Oster HS, Mittelman M. How we diagnose Myelodysplastic syndromes. Front Oncol 2024; 14:1415101. [PMID: 39346739 PMCID: PMC11427428 DOI: 10.3389/fonc.2024.1415101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024] Open
Abstract
The Myelodysplastic syndromes (MDS) are a heterogenous group of clonal bone marrow (BM) stem cell myeloid neoplasms, characterized by ineffective hematopoiesis that results in dysplasia in hematopoietic cells and peripheral cytopenias, especially anemia, and a propensity to leukemic transformation. The suspicion of MDS is raised by a typical but not specific clinical picture and routine laboratory findings, but the gold standard for MDS diagnosis is still BM examination with the presence of uni-or multi-lineage dysplasia and increased blast percentage, together with exclusion of other reasons. Cytogenetics is also an essential part of the diagnostic and prognostic processes. Flow cytometry and full genetic characterization are helpful but not mandatory for MDS diagnosis. This review summarizes the current steps of diagnostic approach for a patient suspected of having MDS. We also express our hopes that within the near future, non-invasive technologies, especially digital and peripheral blood genetics, will mature and be introduced into practice.
Collapse
Affiliation(s)
- Howard S Oster
- Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv University School of Medicine, Tel Aviv, Israel
| | - Moshe Mittelman
- Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv University School of Medicine, Tel Aviv, Israel
| |
Collapse
|
7
|
Chaudhry S, Beckedorff F, Jasdanwala SS, Totiger TM, Affer M, Lawal AE, Montoya S, Tamiro F, Tonini O, Chirino A, Adams A, Sondhi AK, Noudali S, Cornista AM, Nicholls M, Afaghani J, Robayo P, Bilbao D, Nimer SD, Rodríguez JA, Bhatt S, Wang E, Taylor J. Altered RNA export by SF3B1 mutants confers sensitivity to nuclear export inhibition. Leukemia 2024; 38:1894-1905. [PMID: 38997434 PMCID: PMC11347370 DOI: 10.1038/s41375-024-02328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
SF3B1 mutations frequently occur in cancer yet lack targeted therapies. Clinical trials of XPO1 inhibitors, selinexor and eltanexor, in high-risk myelodysplastic neoplasms (MDS) revealed responders were enriched with SF3B1 mutations. Given that XPO1 (Exportin-1) is a nuclear exporter responsible for the export of proteins and multiple RNA species, this led to the hypothesis that SF3B1-mutant cells are sensitive to XPO1 inhibition, potentially due to altered splicing. Subsequent RNA sequencing after XPO1 inhibition in SF3B1 wildtype and mutant cells showed increased nuclear retention of RNA transcripts and increased alternative splicing in the SF3B1 mutant cells particularly of genes that impact apoptotic pathways. To identify novel drug combinations that synergize with XPO1 inhibition, a forward genetic screen was performed with eltanexor treatment implicating anti-apoptotic targets BCL2 and BCLXL, which were validated by functional testing in vitro and in vivo. These targets were tested in vivo using Sf3b1K700E conditional knock-in mice, which showed that the combination of eltanexor and venetoclax (BCL2 inhibitor) had a preferential sensitivity for SF3B1 mutant cells without excessive toxicity. In this study, we unveil the mechanisms underlying sensitization to XPO1 inhibition in SF3B1-mutant MDS and preclinically rationalize the combination of eltanexor and venetoclax for high-risk MDS.
Collapse
Affiliation(s)
- Sana Chaudhry
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Felipe Beckedorff
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shaista Shabbir Jasdanwala
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore, Singapore
| | - Tulasigeri M Totiger
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maurizio Affer
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Skye Montoya
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Francesco Tamiro
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Olivia Tonini
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alexandra Chirino
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrew Adams
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anya K Sondhi
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephen Noudali
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alyssa Mauri Cornista
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Miah Nicholls
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jumana Afaghani
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Paola Robayo
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jose Antonio Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Shruti Bhatt
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore, Singapore
| | - Eric Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Justin Taylor
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
8
|
Choi IY, Ling JP, Zhang J, Helmenstine E, Walter W, Tsakiroglou P, Bergman RE, Philippe C, Manley JL, Rouault-Pierre K, Li B, Wiseman DH, Batta K, Ouseph M, Bernard E, Dubner B, Li X, Haferlach T, Koget A, Fazal S, Jain T, Gocke CD, DeZern AE, Dalton WB. The E592K variant of SF3B1 creates unique RNA missplicing and associates with high-risk MDS without ring sideroblasts. Blood Adv 2024; 8:3961-3971. [PMID: 38759096 PMCID: PMC11331715 DOI: 10.1182/bloodadvances.2023011260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 05/19/2024] Open
Abstract
ABSTRACT Among the most common genetic alterations in myelodysplastic syndromes (MDS) are mutations in the spliceosome gene SF3B1. Such mutations induce specific RNA missplicing events, directly promote ring sideroblast (RS) formation, and generally associate with a more favorable prognosis. However, not all SF3B1 mutations are the same, and little is known about how distinct hotspots influence disease. Here, we report that the E592K variant of SF3B1 associates with high-risk disease features in MDS, including a lack of RS, increased myeloblasts, a distinct comutation pattern, and a lack of favorable survival seen with other SF3B1 mutations. Moreover, compared with other hot spot SF3B1 mutations, E592K induces a unique RNA missplicing pattern, retains an interaction with the splicing factor SUGP1, and preserves normal RNA splicing of the sideroblastic anemia genes TMEM14C and ABCB7. These data have implications for our understanding of the functional diversity of spliceosome mutations, as well as the pathobiology, classification, prognosis, and management of SF3B1-mutant MDS.
Collapse
Affiliation(s)
- In Young Choi
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jonathan P. Ling
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD
| | - Jian Zhang
- Department of Biological Sciences, Columbia University, New York, NY
| | - Eric Helmenstine
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Panagiotis Tsakiroglou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Riley E. Bergman
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and The Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Céline Philippe
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - James L. Manley
- Department of Biological Sciences, Columbia University, New York, NY
| | | | - Bing Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- MDS and MPN Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Daniel H. Wiseman
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
- Department of Haematology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Kiran Batta
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
- Department of Haematology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Madhu Ouseph
- Division of Pathology & Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Elsa Bernard
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Benjamin Dubner
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Xiao Li
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | - Anna Koget
- Division of Hematology and Cellular Therapy, Allegheny Health Network Cancer Institute, Pittsburgh, PA
| | - Salman Fazal
- Division of Hematology and Cellular Therapy, Allegheny Health Network Cancer Institute, Pittsburgh, PA
| | - Tania Jain
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christopher D. Gocke
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Amy E. DeZern
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - William Brian Dalton
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
9
|
Jing Q, Zhou C, Zhang J, Zhang P, Wu Y, Zhou J, Tong X, Li Y, Du J, Wang Y. Role of reactive oxygen species in myelodysplastic syndromes. Cell Mol Biol Lett 2024; 29:53. [PMID: 38616283 PMCID: PMC11017617 DOI: 10.1186/s11658-024-00570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Reactive oxygen species (ROS) serve as typical metabolic byproducts of aerobic life and play a pivotal role in redox reactions and signal transduction pathways. Contingent upon their concentration, ROS production not only initiates or stimulates tumorigenesis but also causes oxidative stress (OS) and triggers cellular apoptosis. Mounting literature supports the view that ROS are closely interwoven with the pathogenesis of a cluster of diseases, particularly those involving cell proliferation and differentiation, such as myelodysplastic syndromes (MDS) and chronic/acute myeloid leukemia (CML/AML). OS caused by excessive ROS at physiological levels is likely to affect the functions of hematopoietic stem cells, such as cell growth and self-renewal, which may contribute to defective hematopoiesis. We review herein the eminent role of ROS in the hematological niche and their profound influence on the progress of MDS. We also highlight that targeting ROS is a practical and reliable tactic for MDS therapy.
Collapse
Affiliation(s)
- Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- HEALTH BioMed Research & Development Center, Health BioMed Co., Ltd, Ningbo, 315803, Zhejiang, China
| | - Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Junyu Zhang
- Department of Hematology, Lishui Central Hospital, Lishui, 323000, Zhejiang, China
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Junyu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Xiangmin Tong
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
10
|
Loghavi S, Kanagal-Shamanna R, Khoury JD, Medeiros LJ, Naresh KN, Nejati R, Patnaik MM. Fifth Edition of the World Health Classification of Tumors of the Hematopoietic and Lymphoid Tissue: Myeloid Neoplasms. Mod Pathol 2024; 37:100397. [PMID: 38043791 DOI: 10.1016/j.modpat.2023.100397] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
In this manuscript, we review myeloid neoplasms in the fifth edition of the World Health Organization classification of hematolymphoid tumors (WHO-HEM5), focusing on changes from the revised fourth edition (WHO-HEM4R). Disease types and subtypes have expanded compared with WHO-HEM4R, mainly because of the expansion in genomic knowledge of these diseases. The revised classification is based on a multidisciplinary approach including input from a large body of pathologists, clinicians, and geneticists. The revised classification follows a hierarchical structure allowing usage of family (class)-level definitions where the defining diagnostic criteria are partially met or a complete investigational workup has not been possible. Overall, the WHO-HEM5 revisions to the classification of myeloid neoplasms include major updates and revisions with increased emphasis on genetic and molecular drivers of disease. The most notable changes have been applied to the sections of acute myeloid leukemia and myelodysplastic neoplasms (previously referred to as myelodysplastic syndrome) with incorporation of novel, disease-defining genetic changes. In this review we focus on highlighting the updates in the classification of myeloid neoplasms, providing a comparison with WHO-HEM4R, and offering guidance on how the new classification can be applied to the diagnosis of myeloid neoplasms in routine practice.
Collapse
Affiliation(s)
- Sanam Loghavi
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas.
| | | | - Joseph D Khoury
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska
| | - L Jeffrey Medeiros
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas
| | - Kikkeri N Naresh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, DC; Section of Pathology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, DC
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Minnesota
| |
Collapse
|
11
|
Kanagal-Shamanna R, Beck DB, Calvo KR. Clonal Hematopoiesis, Inflammation, and Hematologic Malignancy. ANNUAL REVIEW OF PATHOLOGY 2024; 19:479-506. [PMID: 37832948 DOI: 10.1146/annurev-pathmechdis-051222-122724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Somatic or acquired mutations are postzygotic genetic variations that can occur within any tissue. These mutations accumulate during aging and have classically been linked to malignant processes. Tremendous advancements over the past years have led to a deeper understanding of the role of somatic mutations in benign and malignant age-related diseases. Here, we review the somatic mutations that accumulate in the blood and their connection to disease states, with a particular focus on inflammatory diseases and myelodysplastic syndrome. We include a definition of clonal hematopoiesis (CH) and an overview of the origins and implications of these mutations. In addition, we emphasize somatic disorders with overlapping inflammation and hematologic disease beyond CH, including paroxysmal nocturnal hemoglobinuria and aplastic anemia, focusing on VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. Finally, we provide a practical view of the implications of somatic mutations in clinical hematology, pathology, and beyond.
Collapse
Affiliation(s)
- Rashmi Kanagal-Shamanna
- Department of Hematopathology and Molecular Diagnostics, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David B Beck
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA;
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Cabrerizo Granados D, Barbosa I, Baliakas P, Hellström-Lindberg E, Lundin V. The clinical phenotype of germline RUNX1 mutations in relation to the accompanying somatic variants and RUNX1 isoform expression. Genes Chromosomes Cancer 2023; 62:672-677. [PMID: 37303296 DOI: 10.1002/gcc.23184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023] Open
Abstract
Germline RUNX1 mutations lead to familial platelet disorder with associated myeloid malignancy (FPDMM), characterized by thrombocytopenia, abnormal bleeding, and an elevated risk of developing myelodysplastic neoplasia (MDS) and acute myeloid leukemia (AML) at young age. However, it is not known why or how germline carriers of RUNX1 mutations have a particular propensity to develop myeloid hematologic malignancies, but the acquisition and composition of somatic mutations are believed to initiate and determine disease progression. We present a novel family pedigree that shares a common germline RUNX1R204* variant and exhibits a spectrum of somatic mutations and related myeloid malignancies (MM). RUNX1 mutations are associated with inferior clinical outcome; however, the proband of this family developed MDS with ring sideroblasts (MDS-RS), classified as a low-risk MDS subgroup. His relatively indolent clinical course is likely due to a specific somatic mutation in the SF3B1 gene. While the three main RUNX1 isoforms have been ascribed various roles in normal hematopoiesis, they are now being increasingly recognized as involved in myeloid disease. We investigated the RUNX1 transcript isoform patterns in the proband and his sister, who carries the same germline RUNX1R204* variant, and has FPDMM but no MM. We demonstrate a RUNX1a increase in MDS-RS, as previously reported in MM. Interestingly, we identify a striking unbalance of RUNX1b and -c in FPDMM. In conclusion, this report reinforces the relevance of somatic variants on the clinical phenotypic heterogeneity in families with germline RUNX1 deficiency and investigates a potential new role for RUNX1 isoform disequilibrium as a mechanism for development of MM.
Collapse
Affiliation(s)
- David Cabrerizo Granados
- Center for Hematology and Regenerative Medicine, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Indira Barbosa
- Center for Hematology and Regenerative Medicine, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Eva Hellström-Lindberg
- Center for Hematology and Regenerative Medicine, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Vanessa Lundin
- Center for Hematology and Regenerative Medicine, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Temaj G, Chichiarelli S, Saha S, Telkoparan-Akillilar P, Nuhii N, Hadziselimovic R, Saso L. An intricate rewiring of cancer metabolism via alternative splicing. Biochem Pharmacol 2023; 217:115848. [PMID: 37813165 DOI: 10.1016/j.bcp.2023.115848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
All human genes undergo alternative splicing leading to the diversity of the proteins. However, in some cases, abnormal regulation of alternative splicing can result in diseases that trigger defects in metabolism, reduced apoptosis, increased proliferation, and progression in almost all tumor types. Metabolic dysregulations and immune dysfunctions are crucial factors in cancer. In this respect, alternative splicing in tumors could be a potential target for therapeutic cancer strategies. Dysregulation of alternative splicing during mRNA maturation promotes carcinogenesis and drug resistance in many cancer types. Alternative splicing (changing the target mRNA 3'UTR binding site) can result in a protein with altered drug affinity, ultimately leading to drug resistance.. Here, we will highlight the function of various alternative splicing factors, how it regulates the reprogramming of cancer cell metabolism, and their contribution to tumor initiation and proliferation. Also, we will discuss emerging therapeutics for treating tumors via abnormal alternative splicing. Finally, we will discuss the challenges associated with these therapeutic strategies for clinical applications.
Collapse
Affiliation(s)
- Gazmend Temaj
- Faculty of Pharmacy, College UBT, 10000 Prishtina, Kosovo
| | - Silvia Chichiarelli
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy.
| | - Sarmistha Saha
- Department of Biotechnology, GLA University, Mathura 00185, Uttar Pradesh, India
| | | | - Nexhibe Nuhii
- Department of Pharmacy, Faculty of Medical Sciences, State University of Tetovo, 1200 Tetovo, Macedonia
| | - Rifat Hadziselimovic
- Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", La Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
14
|
Badar T, Madanat YF, Zeidan AM. Updates on risk stratification and management of lower-risk myelodysplastic syndromes/neoplasms. Future Oncol 2023; 19:1877-1889. [PMID: 37750305 DOI: 10.2217/fon-2023-0454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
The majority of lower-risk myelodysplastic syndromes/neoplasms patients present with anemia. Historically, these patients were treated with erythropoiesis-stimulating agents (ESA), with modest responses. A subset of these patients with del(5q) may do better with lenalidomide. Recently, in randomized trials, luspatercept has shown better responses compared with ESAs in treatment-naive patients and imetelstat in patients refractory to ESAs. Other evaluated novel compounds (fostamatinib, H3B-880, roxadustat, pyruvate kinase receptor activator) have not yet shown meaningful efficacy. More needs to be done to improve outcomes; in pursuance of this, participation in clinical trials evaluating novel therapies should be encouraged. While lower-risk myelodysplastic syndromes/neoplasms tend to have an indolent course, a subset of them has a dismal prognosis. Improving prognostication and serial monitoring will help in identifying high-risk patients for appropriate management.
Collapse
Affiliation(s)
- Talha Badar
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yazan F Madanat
- Division of Hematology & Medical Oncology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Leukemia Program, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine & Yale Cancer Center, New Haven, CT 06510, USA
| |
Collapse
|
15
|
Simon J, Perez-Rivas LG, Zhao Y, Chasseloup F, Lasolle H, Cortet C, Descotes F, Villa C, Baussart B, Burman P, Maiter D, von Selzam V, Rotermund R, Flitsch J, Thorsteinsdottir J, Jouanneau E, Buchfelder M, Chanson P, Raverot G, Theodoropoulou M. Prevalence and clinical correlations of SF3B1 variants in lactotroph tumours. Eur J Endocrinol 2023; 189:372-378. [PMID: 37721395 DOI: 10.1093/ejendo/lvad114] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/30/2023] [Accepted: 07/24/2023] [Indexed: 09/19/2023]
Abstract
OBJECTIVE A somatic mutational hotspot in the SF3B1 gene was reported in lactotroph tumours. The aim of our study was to examine the prevalence of driver SF3B1 variants in a multicentre independent cohort of patients with lactotroph tumours and correlate with clinical data. DESIGN AND METHODS This was a retrospective, multicentre study involving 282 patients with lactotroph tumours (including 6 metastatic lactotroph tumours) from 8 European centres. We screened SF3B1 exon 14 hotspot for somatic variants using Sanger sequencing and correlated with clinicopathological data. RESULTS We detected SF3B1 variants in seven patients with lactotroph tumours: c.1874G > A (p.Arg625His) (n = 4, 3 of which metastatic) and a previously undescribed in pituitary tumours variant c.1873C > T (p.Arg625Cys) (n = 3 aggressive pituitary tumours). In two metastatic lactotroph tumours with tissue available, the variant was detected in both primary tumour and metastasis. The overall prevalence of likely pathogenic SF3B1 variants in lactotroph tumours was 2.5%, but when we considered only metastatic cases, it reached the 50%. SF3B1 variants correlated with significantly larger tumour size; higher Ki67 proliferation index; multiple treatments, including radiotherapy and chemotherapy; increased disease-specific death; and shorter postoperative survival. CONCLUSIONS SF3B1 variants are uncommon in lactotroph tumours but may be frequent in metastatic lactotroph tumours. When present, they associate with aggressive tumour behaviour and worse clinical outcome.
Collapse
Affiliation(s)
- Julia Simon
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU München, Munich 80336, Germany
| | | | - Yining Zhao
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Fanny Chasseloup
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, Le Kremlin-Bicêtre 94275, France
| | - Helene Lasolle
- Endocrinology Department, Reference Center for Rare Pituitary Diseases HYPO, Claude Bernard Lyon 1 University, "Groupement Hospitalier Est" Hospices Civils de Lyon, Bron 69500, France
| | | | - Francoise Descotes
- Service de Biochimie Biologie Moléculaire, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Bénite Cedex 69495, France
| | - Chiara Villa
- Neuropathology Department, Pitié-Salpêtrière University Hospital, AP-HP, Sorbonne Université and Université Paris Cité, CNRS UMR8104, INSERM U1016, Institut Cochin, Paris 75014, France
| | - Bertrand Baussart
- Department of Neurosurgery, Assistance Publique-Hopitaux de Paris, Pitié-Salpetrière University Hospital and Université Paris Cité, CNRS UMR8104, INSERM U1016, Institut Cochin, Paris 75014, France
| | - Pia Burman
- Department of Endocrinology, Skåne University Hospital, Lund University, Malmö 214 28, Sweden
| | - Dominique Maiter
- Department of Endocrinology and Nutrition, UCLouvain Cliniques Universitaires Saint-Luc, Bruxelles 1200, Belgium
| | - Vivian von Selzam
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU München, Munich 80336, Germany
| | - Roman Rotermund
- Department of Neurosurgery, Division of Pituitary Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Jörg Flitsch
- Department of Neurosurgery, Division of Pituitary Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Jun Thorsteinsdottir
- Neurochirurgische Klinik und Poliklinik, LMU Klinikum, LMU München, Munich 81377, Germany
| | - Emmanuel Jouanneau
- Pituitary and Skull Base Neurosurgical Department, Reference Center for Rare Pituitary Diseases HYPO, "Groupement Hospitalier Est" Hospices Civils de Lyon, "Claude Bernard" Lyon 1 University, Hôpital Pierre Wertheimer, Lyon, Bron 69677, France
| | - Michael Buchfelder
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Philippe Chanson
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, Le Kremlin-Bicêtre 94275, France
| | - Gerald Raverot
- Endocrinology Department, Reference Center for Rare Pituitary Diseases HYPO, Claude Bernard Lyon 1 University, "Groupement Hospitalier Est" Hospices Civils de Lyon, Bron 69500, France
| | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU München, Munich 80336, Germany
| |
Collapse
|
16
|
Randall MP, DeZern AE. The Management of Low-Risk Myelodysplastic Syndromes-Current Standards and Recent Advances. Cancer J 2023; 29:152-159. [PMID: 37195771 DOI: 10.1097/ppo.0000000000000655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
ABSTRACT The myelodysplastic syndromes (MDSs) are a heterogeneous group of hematologic neoplasms with varied natural histories and prognoses. Specific to this review, treatment of low-risk MDS most often focuses on improving quality of life by correcting cytopenias, as opposed to urgent disease modification to avoid acute myeloid leukemia. These treatments include transfusion support with iron chelation when necessary, growth factors including novel maturation agents such as luspatercept, lenalidomide for del(5q) disease, and, increasingly, low-dose hypomethylating agents. Recent advances in the understanding of the genetic lesions that drive MDS have prompted a reassessment of how low-risk disease is defined and helped to identify a subset of low-risk MDS patients who may benefit from a more aggressive treatment paradigm, including hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Michael P Randall
- From the Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Amy E DeZern
- Division of Hematologic Malignancies, The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
17
|
Choi IY, Ling J, Zhang J, Helmenstine E, Walter W, Bergman R, Philippe C, Manley J, Rouault-Pierre K, Li B, Wiseman D, Ouseph M, Bernard E, Li X, Haferlach T, Fazal S, Jain T, Gocke C, DeZern A, Dalton WB. The E592K variant of SF3B1 creates unique RNA missplicing and associates with high-risk MDS without ring sideroblasts. RESEARCH SQUARE 2023:rs.3.rs-2802265. [PMID: 37090662 PMCID: PMC10120771 DOI: 10.21203/rs.3.rs-2802265/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Among the most common genetic alterations in the myelodysplastic syndromes (MDS) are mutations in the spliceosome gene SF3B1. Such mutations induce specific RNA missplicing events, directly promote ring sideroblast (RS) formation, generally associate with more favorable prognosis, and serve as a predictive biomarker of response to luspatercept. However, not all SF3B1 mutations are the same, and here we report that the E592K variant of SF3B1 associates with high-risk disease features in MDS, including a lack of RS, increased myeloblasts, a distinct co-mutation pattern, and decreased survival. Moreover, in contrast to canonical SF3B1 mutations, E592K induces a unique RNA missplicing pattern, retains an interaction with the splicing factor SUGP1, and preserves normal RNA splicing of the sideroblastic anemia genes TMEM14C and ABCB7. These data expand our knowledge of the functional diversity of spliceosome mutations, and they suggest that patients with E592K should be approached differently from low-risk, luspatercept-responsive MDS patients with ring sideroblasts and canonical SF3B1 mutations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bing Li
- Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | | | | | | | - Xiao Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
| | | | | | - Tania Jain
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University
| | | | - Amy DeZern
- Johns Hopkins University School of Medicine
| | | |
Collapse
|
18
|
Zavras PD, Sinanidis I, Tsakiroglou P, Karantanos T. Understanding the Continuum between High-Risk Myelodysplastic Syndrome and Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:5018. [PMID: 36902450 PMCID: PMC10002503 DOI: 10.3390/ijms24055018] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Myelodysplastic syndrome (MDS) is a clonal hematopoietic neoplasm characterized by bone marrow dysplasia, failure of hematopoiesis and variable risk of progression to acute myeloid leukemia (AML). Recent large-scale studies have demonstrated that distinct molecular abnormalities detected at earlier stages of MDS alter disease biology and predict progression to AML. Consistently, various studies analyzing these diseases at the single-cell level have identified specific patterns of progression strongly associated with genomic alterations. These pre-clinical results have solidified the conclusion that high-risk MDS and AML arising from MDS or AML with MDS-related changes (AML-MRC) represent a continuum of the same disease. AML-MRC is distinguished from de novo AML by the presence of certain chromosomal abnormalities, such as deletion of 5q, 7/7q, 20q and complex karyotype and somatic mutations, which are also present in MDS and carry crucial prognostic implications. Recent changes in the classification and prognostication of MDS and AML by the International Consensus Classification (ICC) and the World Health Organization (WHO) reflect these advances. Finally, a better understanding of the biology of high-risk MDS and the mechanisms of disease progression have led to the introduction of novel therapeutic approaches, such as the addition of venetoclax to hypomethylating agents and, more recently, triplet therapies and agents targeting specific mutations, including FLT3 and IDH1/2. In this review, we analyze the pre-clinical data supporting that high-risk MDS and AML-MRC share the same genetic abnormalities and represent a continuum, describe the recent changes in the classification of these neoplasms and summarize the advances in the management of patients with these neoplasms.
Collapse
Affiliation(s)
| | | | | | - Theodoros Karantanos
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| |
Collapse
|
19
|
Abolhasani S, Hejazian SS, Karpisheh V, Khodakarami A, Mohammadi H, Gholizadeh Navashenaq J, Hojjat-Farsangi M, Jadidi-Niaragh F. The role of SF3B1 and NOTCH1 in the pathogenesis of leukemia. IUBMB Life 2023; 75:257-278. [PMID: 35848163 DOI: 10.1002/iub.2660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/18/2022] [Indexed: 11/09/2022]
Abstract
The discovery of new genes/pathways improves our knowledge of cancer pathogenesis and presents novel potential therapeutic options. For instance, splicing factor 3b subunit 1 (SF3B1) and NOTCH1 genetic alterations have been identified at a high frequency in hematological malignancies, such as leukemia, and may be related to the prognosis of involved patients because they change the nature of malignancies in different ways like mediating therapeutic resistance; therefore, studying these gene/pathways is essential. This review aims to discuss SF3B1 and NOTCH1 roles in the pathogenesis of various types of leukemia and the therapeutic potential of targeting these genes or their mutations to provide a foundation for leukemia treatment.
Collapse
Affiliation(s)
- Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Khodakarami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.,The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Mian SA, Philippe C, Maniati E, Protopapa P, Bergot T, Piganeau M, Nemkov T, Bella DD, Morales V, Finch AJ, D’Alessandro A, Bianchi K, Wang J, Gallipoli P, Kordasti S, Kubasch AS, Cross M, Platzbecker U, Wiseman DH, Bonnet D, Bernard DG, Gribben JG, Rouault-Pierre K. Vitamin B5 and succinyl-CoA improve ineffective erythropoiesis in SF3B1-mutated myelodysplasia. Sci Transl Med 2023; 15:eabn5135. [PMID: 36857430 PMCID: PMC7614516 DOI: 10.1126/scitranslmed.abn5135] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/08/2023] [Indexed: 03/03/2023]
Abstract
Patients with myelodysplastic syndrome and ring sideroblasts (MDS-RS) present with symptomatic anemia due to ineffective erythropoiesis that impedes their quality of life and increases morbidity. More than 80% of patients with MDS-RS harbor splicing factor 3B subunit 1 (SF3B1) mutations, the founder aberration driving MDS-RS disease. Here, we report how mis-splicing of coenzyme A synthase (COASY), induced by mutations in SF3B1, affects heme biosynthesis and erythropoiesis. Our data revealed that COASY was up-regulated during normal erythroid differentiation, and its silencing prevented the formation of erythroid colonies, impeded erythroid differentiation, and precluded heme accumulation. In patients with MDS-RS, loss of protein due to COASY mis-splicing led to depletion of both CoA and succinyl-CoA. Supplementation with COASY substrate (vitamin B5) rescued CoA and succinyl-CoA concentrations in SF3B1mut cells and mended erythropoiesis differentiation defects in MDS-RS primary patient cells. Our findings reveal a key role of the COASY pathway in erythroid maturation and identify upstream and downstream metabolites of COASY as a potential treatment for anemia in patients with MDS-RS.
Collapse
Affiliation(s)
- Syed A Mian
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Céline Philippe
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Eleni Maniati
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Pantelitsa Protopapa
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Tiffany Bergot
- University of Brest, Inserm, EFS, UMR1078, GGB, 29238 Brest, France
| | | | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Doriana Di Bella
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Valle Morales
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Andrew J Finch
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katiuscia Bianchi
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Jun Wang
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Paolo Gallipoli
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Shahram Kordasti
- System Cancer Immunology, Comprehensive Cancer Centre, King's College London, London WC2R 2LS, United Kingdom
| | - Anne Sophie Kubasch
- Department of Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, 04103 Leipzig, Germany
| | - Michael Cross
- Department of Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, 04103 Leipzig, Germany
| | - Uwe Platzbecker
- Department of Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, 04103 Leipzig, Germany
| | - Daniel H Wiseman
- Division of Cancer Sciences, The University of Manchester, Manchester M20 4GJ, UK
| | | | - Delphine G Bernard
- University of Brest, Inserm, EFS, UMR1078, GGB, 29238 Brest, France
- Centre de Ressources Biologiques du CHRU de Brest, 29238 Brest, France
| | - John G Gribben
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Kevin Rouault-Pierre
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| |
Collapse
|
21
|
Abstract
Dysregulated RNA splicing is a molecular feature that characterizes almost all tumour types. Cancer-associated splicing alterations arise from both recurrent mutations and altered expression of trans-acting factors governing splicing catalysis and regulation. Cancer-associated splicing dysregulation can promote tumorigenesis via diverse mechanisms, contributing to increased cell proliferation, decreased apoptosis, enhanced migration and metastatic potential, resistance to chemotherapy and evasion of immune surveillance. Recent studies have identified specific cancer-associated isoforms that play critical roles in cancer cell transformation and growth and demonstrated the therapeutic benefits of correcting or otherwise antagonizing such cancer-associated mRNA isoforms. Clinical-grade small molecules that modulate or inhibit RNA splicing have similarly been developed as promising anticancer therapeutics. Here, we review splicing alterations characteristic of cancer cell transcriptomes, dysregulated splicing's contributions to tumour initiation and progression, and existing and emerging approaches for targeting splicing for cancer therapy. Finally, we discuss the outstanding questions and challenges that must be addressed to translate these findings into the clinic.
Collapse
Affiliation(s)
- Robert K Bradley
- Computational Biology Program, Public Health Sciences Division and Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
| |
Collapse
|
22
|
Zuo Z, Medeiros LJ, Garces S, Routbort MJ, Ok CY, Loghavi S, Kanagal-Shamanna R, Jelloul FZ, Garcia-Manero G, Chien KS, Patel KP, Luthra R, Yin CC. Concurrent Mutations in SF3B1 and PHF6 in Myeloid Neoplasms. BIOLOGY 2022; 12:biology12010013. [PMID: 36671709 PMCID: PMC9855138 DOI: 10.3390/biology12010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
It has been reported that gene mutations in SF3B1 and PHF6 are mutually exclusive. However, this observation has never been rigorously assessed. We report the clinicopathologic and molecular genetic features of 21 cases of myeloid neoplasms with double mutations in SF3B1 and PHF6, including 9 (43%) with myelodysplastic syndrome, 5 (24%) with acute myeloid leukemia, 4 (19%) with myeloproliferative neoplasms, and 3 (14%) with myelodysplastic/myeloproliferative neoplasms. Multilineage dysplasia with ring sideroblasts, increased blasts, and myelofibrosis are common morphologic findings. All cases but one had diploid or non-complex karyotypes. SF3B1 mutations were detected in the first analysis of all the patients. PHF6 mutations occurred either concurrently with SF3B1 mutations or in subsequent follow-up samples and are associated with disease progression and impending death in most cases. Most cases had co-mutations, the most common being ASXL1, RUNX1, TET2, and NRAS. With a median follow-up of 39 months (range, 3-155), 17 (81%) patients died, 3 were in complete remission, and 1 had persistent myelodysplastic syndrome. The median overall survival was 51 months. In summary, concurrent mutations in SF3B1 and PHF6 are rare, but they do exist in a variety of myeloid neoplasms, with roles as early initiating events and in disease progression, respectively.
Collapse
Affiliation(s)
- Zhuang Zuo
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (Z.Z.); (C.C.Y.)
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sofia Garces
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mark J. Routbort
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chi Young Ok
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fatima Zahra Jelloul
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kelly S. Chien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Keyur P. Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rajyalakshmi Luthra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - C. Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (Z.Z.); (C.C.Y.)
| |
Collapse
|
23
|
Loscocco GG, Guglielmelli P, Mannelli F, Mora B, Mannarelli C, Rotunno G, Pancani F, Maccari C, Bartalucci N, Romagnoli S, Coltro G, Passamonti F, Vannucchi AM. SF3B1 mutations in primary and secondary myelofibrosis: clinical, molecular and prognostic correlates. Am J Hematol 2022; 97:E347-E349. [PMID: 35796725 DOI: 10.1002/ajh.26648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Giuseppe G Loscocco
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy.,Doctorate School GenOMec, University of Siena, Siena, Italy
| | - Paola Guglielmelli
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Francesco Mannelli
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Barbara Mora
- Hematology Unit, Department of Medicine and Surgery, University of Insubria, ASST Sette Laghi-Ospedale di Circolo, Italy
| | - Carmela Mannarelli
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Giada Rotunno
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Fabiana Pancani
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Chiara Maccari
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Niccolò Bartalucci
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Simone Romagnoli
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Giacomo Coltro
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Francesco Passamonti
- Hematology Unit, Department of Medicine and Surgery, University of Insubria, ASST Sette Laghi-Ospedale di Circolo, Italy
| | - Alessandro M Vannucchi
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| |
Collapse
|
24
|
Douet-Guilbert N, Soubise B, Bernard DG, Troadec MB. Cytogenetic and Genetic Abnormalities with Diagnostic Value in Myelodysplastic Syndromes (MDS): Focus on the Pre-Messenger RNA Splicing Process. Diagnostics (Basel) 2022; 12:1658. [PMID: 35885562 PMCID: PMC9320363 DOI: 10.3390/diagnostics12071658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/19/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are considered to be diseases associated with splicing defects. A large number of genes involved in the pre-messenger RNA splicing process are mutated in MDS. Deletion of 5q and 7q are of diagnostic value, and those chromosome regions bear the numbers of splicing genes potentially deleted in del(5q) and del(7q)/-7 MDS. In this review, we present the splicing genes already known or suspected to be implicated in MDS pathogenesis. First, we focus on the splicing genes located on chromosome 5 (HNRNPA0, RBM27, RBM22, SLU7, DDX41), chromosome 7 (LUC7L2), and on the SF3B1 gene since both chromosome aberrations and the SF3B1 mutation are the only genetic abnormalities in splicing genes with clear diagnostic values. Then, we present and discuss other splicing genes that are showing a prognostic interest (SRSF2, U2AF1, ZRSR2, U2AF2, and PRPF8). Finally, we discuss the haploinsufficiency of splicing genes, especially from chromosomes 5 and 7, the important amplifier process of splicing defects, and the cumulative and synergistic effect of splicing genes defects in the MDS pathogenesis. At the time, when many authors suggest including the sequencing of some splicing genes to improve the diagnosis and the prognosis of MDS, a better understanding of these cooperative defects is needed.
Collapse
Grants
- comités 16, 22, 29, 35, 56, 41 and 85 Ligue Régionale contre le cancer (comités 16, 22, 29, 35, 56, 41 and 85)
- 2021-2022 Association Halte au Cancer
- 2020-2022 Association Gaétan Saleün
- 2020-2022 Association connaître et combattre la myélodysplasie
- 2021-2022 le Collectif Agora de Guilers
- 2021-2023 Association Fondation de l'Avenir
- 2021-2023 fonds INNOVEO Brest
Collapse
Affiliation(s)
- Nathalie Douet-Guilbert
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- CHRU Brest, Centre de Ressources Biologiques, Site Cytogénétique, F-29200 Brest, France
| | - Benoît Soubise
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
| | - Delphine G. Bernard
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- CHRU Brest, Centre de Ressources Biologiques, Site Cytogénétique, F-29200 Brest, France
| | - Marie-Bérengère Troadec
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- CHRU Brest, Centre de Ressources Biologiques, Site Cytogénétique, F-29200 Brest, France
| |
Collapse
|
25
|
Stanley RF, Abdel-Wahab O. Dysregulation and therapeutic targeting of RNA splicing in cancer. NATURE CANCER 2022; 3:536-546. [PMID: 35624337 PMCID: PMC9551392 DOI: 10.1038/s43018-022-00384-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/22/2022] [Indexed: 05/15/2023]
Abstract
High-throughput sequencing and functional characterization of the cancer transcriptome have uncovered cancer-specific dysregulation of RNA splicing across a variety of cancers. Alterations in the cancer genome and dysregulation of RNA splicing factors lead to missplicing, splicing alteration-dependent gene expression and, in some cases, generation of novel splicing-derived proteins. Here, we review recent advances in our understanding of aberrant splicing in cancer pathogenesis and present strategies to harness cancer-specific aberrant splicing for therapeutic intent.
Collapse
Affiliation(s)
- Robert F Stanley
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
26
|
Glycolysis Dependency as a Hallmark of SF3B1-Mutated Cells. Cancers (Basel) 2022; 14:cancers14092113. [PMID: 35565242 PMCID: PMC9101609 DOI: 10.3390/cancers14092113] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Cancer-associated SF3B1 mutations result in aberrant transcripts whose fate remains unknown. We aimed to investigate the functional consequences of these splice aberrations. Our results show that SF3B1 mutation alters the translation of transcripts encoding proteins involved in metabolism, which triggers a metabolic switch toward an increased glucose uptake. Consequently, SF3B1-mutated cells are more sensitive to glycolysis inhibition than SF3B1 wild-type cells. Abstract SF3B1 mutations are recurrent in cancer and result in aberrant splicing of a previously defined set of genes. Here, we investigated the fate of aberrant transcripts induced by mutant SF3B1 and the related functional consequences. We first demonstrate that mutant SF3B1 does not alter global nascent protein synthesis, suggesting target-dependent consequences. Polysome profiling revealed that 35% of aberrantly spliced transcripts are more translated than their corresponding canonically spliced transcripts. This mostly occurs in genes with enriched metabolic functions. Furthermore, LC-MS/MS analysis showed that mutant SF3B1 impacts the abundance of proteins involved in metabolism. Functional metabolic characterization revealed that mutant SF3B1 decreases mitochondrial respiration and promotes glycolysis to compensate for defective mitochondrial metabolism. Hence, mutant SF3B1 induces glycolysis dependency, which sensitizes cells to glycolysis inhibition. Overall, we provide evidence of the oncogenic involvement of mutant SF3B1 in uveal melanoma through a metabolic switch to glycolysis, revealing vulnerability to glycolysis inhibitors as a promising therapeutic strategy.
Collapse
|
27
|
Petiti J, Itri F, Signorino E, Frolli A, Fava C, Armenio M, Marini S, Giugliano E, Lo Iacono M, Saglio G, Cilloni D. Detection of SF3B1 p.Lys700Glu Mutation by PNA-PCR Clamping in Myelodysplastic Syndromes and Myeloproliferative Neoplasms. J Clin Med 2022; 11:jcm11051267. [PMID: 35268357 PMCID: PMC8911290 DOI: 10.3390/jcm11051267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/08/2022] [Accepted: 02/23/2022] [Indexed: 01/25/2023] Open
Abstract
Mutations in SF3B1 are found in 20% of myelodysplastic syndromes and 5–10% of myeloproliferative neoplasms, where they are considered important for diagnosis and therapy decisions. Sanger sequencing and NGS are the currently available methods to identify SF3B1 mutations, but both are time-consuming and expensive techniques that are not practicable in most small-/medium-sized laboratories. To identify the most frequent SF3B1 mutation, p.Lys700Glu, we developed a novel fast and cheap assay based on PNA-PCR clamping. After setting the optimal PCR conditions, the limit of detection of PNA-PCR clamping was evaluated, and the method allowed up to 0.1% of mutated SF3B1 to be identified. Successively, PNA-PCR clamping and Sanger sequencing were used to blind test 90 DNA from patients affected by myelodysplastic syndromes and myeloproliferative neoplasms for the SF3B1 p.Lys700Glu mutation. PNA-PCR clamping and Sanger sequencing congruently identified 75 negative and 13 positive patients. Two patients identified as positive by PNA-PCR clamping were missed by Sanger analysis. The discordant samples were analyzed by NGS, which confirmed the PNA-PCR clamping result, indicating that these samples contained the SF3B1 p.Lys700Glu mutation. This approach could easily increase the characterization of myelodysplastic syndromes and myeloproliferative neoplasms in small-/medium-sized laboratories, and guide patients towards more appropriate therapy.
Collapse
Affiliation(s)
- Jessica Petiti
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.I.); (E.S.); (A.F.); (C.F.); (G.S.); (D.C.)
- Correspondence: (J.P.); (M.L.I.); Tel.: +39-011-670-5480 (J.P.); +39-011-670-5489 (M.L.I.)
| | - Federico Itri
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.I.); (E.S.); (A.F.); (C.F.); (G.S.); (D.C.)
| | - Elisabetta Signorino
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.I.); (E.S.); (A.F.); (C.F.); (G.S.); (D.C.)
| | - Antonio Frolli
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.I.); (E.S.); (A.F.); (C.F.); (G.S.); (D.C.)
| | - Carmen Fava
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.I.); (E.S.); (A.F.); (C.F.); (G.S.); (D.C.)
| | - Marco Armenio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy;
| | - Silvia Marini
- Division of Internal Medicine and Hematology, San Luigi Gonzaga Hospital, 10043 Orbassano, Italy; (S.M.); (E.G.)
| | - Emilia Giugliano
- Division of Internal Medicine and Hematology, San Luigi Gonzaga Hospital, 10043 Orbassano, Italy; (S.M.); (E.G.)
| | - Marco Lo Iacono
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.I.); (E.S.); (A.F.); (C.F.); (G.S.); (D.C.)
- Correspondence: (J.P.); (M.L.I.); Tel.: +39-011-670-5480 (J.P.); +39-011-670-5489 (M.L.I.)
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.I.); (E.S.); (A.F.); (C.F.); (G.S.); (D.C.)
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.I.); (E.S.); (A.F.); (C.F.); (G.S.); (D.C.)
| |
Collapse
|
28
|
Abstract
INTRODUCTION Risk stratification is crucial to the appropriate management of many diseases, but in patients with myelodysplastic syndromes (MDS), for whom expected survival can vary greatly, accurate disease prognostication is especially important. This is further supported by a relative lack of therapies in MDS, and thus we must prognosticate carefully and accurately. Currently, patients with MDS are often grouped into higher-risk (HR) versus lower-risk (LR) disease using clinical prognostic scoring systems, but these systems have limitations. AREAS COVERED The authors reviewed the literature on diagnostics, prognostics, therapeutics and outcomes in MDS. Factors such as disease etiology, specific clinical characteristics, or molecular genetic information not captured in the international prognostic scoring system revised IPSS-R can alter risk stratification, and identify a subset of LR-MDS patients who actually behave more like HR-MDS. EXPERT OPINION This review will describe the current identification and management of patients with LR MDS disease whose condition is likely to behave in a less favorable manner than predicted by the IPSS-R. The authors comment on clinical and molecular features which are believe to upstage a patient from lower to higher risk disease.
Collapse
Affiliation(s)
- Amy E DeZern
- Division of Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - William Brian Dalton
- Division of Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
29
|
DeZern AE. Lower risk but high risk. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:428-434. [PMID: 34889376 PMCID: PMC8791100 DOI: 10.1182/hematology.2021000277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Risk stratification is crucial to the appropriate management of most cancers, but in patients with myelodysplastic syndromes (MDS), for whom expected survival can vary from a few months to more than a decade, accurate disease prognostication is especially important. Currently, patients with MDS are often grouped into higher-risk (HR) vs lower-risk (LR) disease using clinical prognostic scoring systems, but these systems have limitations. Factors such as molecular genetic information or disease characteristics not captured in the International Prognostic Scoring System-Revised (IPSS-R) can alter risk stratification and identify a subset of patients with LR-MDS who actually behave more like those with HR-MDS. This review describes the current identification and management of patients with LR-MDS whose condition is likely to behave in a less favorable manner than predicted by the IPSS-R.
Collapse
Affiliation(s)
- Amy E. DeZern
- Correspondence Amy E. DeZern, Division of Hematologic Malignancies, Sidney Kimmel Cancer Center at Johns Hopkins, 1650 Orleans St, CRBI Room 3M87, Baltimore, MD 21287-0013; e-mail:
| |
Collapse
|
30
|
Zhang B, Ding Z, Li L, Xie LK, Fan YJ, Xu YZ. Two oppositely-charged sf3b1 mutations cause defective development, impaired immune response, and aberrant selection of intronic branch sites in Drosophila. PLoS Genet 2021; 17:e1009861. [PMID: 34723968 PMCID: PMC8559932 DOI: 10.1371/journal.pgen.1009861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
SF3B1 mutations occur in many cancers, and the highly conserved His662 residue is one of the hotspot mutation sites. To address effects on splicing and development, we constructed strains carrying point mutations at the corresponding residue His698 in Drosophila using the CRISPR-Cas9 technique. Two mutations, H698D and H698R, were selected due to their frequent presence in patients and notable opposite charges. Both the sf3b1-H698D and–H698R mutant flies exhibit developmental defects, including less egg-laying, decreased hatching rates, delayed morphogenesis and shorter lifespans. Interestingly, the H698D mutant has decreased resistance to fungal infection, while the H698R mutant shows impaired climbing ability. Consistent with these phenotypes, further analysis of RNA-seq data finds altered expression of immune response genes and changed alternative splicing of muscle and neural-related genes in the two mutants, respectively. Expression of Mef2-RB, an isoform of Mef2 gene that was downregulated due to splicing changes caused by H698R, partly rescues the climbing defects of the sf3b1-H698R mutant. Lariat sequencing reveals that the two sf3b1-H698 mutations cause aberrant selection of multiple intronic branch sites, with the H698R mutant using far upstream branch sites in the changed alternative splicing events. This study provides in vivo evidence from Drosophila that elucidates how these SF3B1 hotspot mutations alter splicing and their consequences in development and in the immune system. In the past decade, one of the important findings in the RNA splicing field has been that somatic SF3B1 mutations widely occur in many cancers. Including R625, H662, K666, K700 and E902, there are five hotspot mutation sites in the highly conserved HEAT repeats of SF3B1. Several kinds of H662 mutations have been found widely in MDS, AML, CLL and breast cancers; however, it remains unclear how these H662 mutations alter splicing and whether they have in vivo effects on development. To address these questions, in this manuscript, we first summarized the H662 mutations in human diseases and constructed two corresponding Drosophila mutant strains, sf3b1-H698D and -H698R using CRISPR-Cas9. Analyses of these two fly strains find that the two oppositely charged Sf3b1-H698 mutants are defective in development. In addition, one mutant has decreased climbing ability, whereas the other mutant has impaired immune response. Further RNA-seq allows us to find responsible genes in each mutant strain, and lariat sequencing reveals that both mutations cause aberrant selection of the intronic branch sites. Our findings provide the first in vivo evidence that Sf3b1 mutations result in defective development, and also reveal a molecular mechanism of these hotspot histidine mutations that enhance the use of cryptic branch sites to alter splicing. Importantly, we demonstrate that the H698R mutant prefers to use far upstream branch sites.
Collapse
Affiliation(s)
- Bei Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences; Shanghai, China
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei, China
| | - Zhan Ding
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences; Shanghai, China
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei, China
| | - Liang Li
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences; Shanghai, China
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei, China
| | - Ling-Kun Xie
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei, China
| | - Yu-Jie Fan
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei, China
| | - Yong-Zhen Xu
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei, China
- * E-mail:
| |
Collapse
|
31
|
Schwind S, Jentzsch M, Kubasch AS, Metzeler KH, Platzbecker U. Myelodysplastic syndromes: Biological and therapeutic consequences of the evolving molecular aberrations landscape. Neoplasia 2021; 23:1101-1109. [PMID: 34601234 PMCID: PMC8495032 DOI: 10.1016/j.neo.2021.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/02/2021] [Indexed: 11/29/2022]
Abstract
Myelodysplastic syndromes (MDS) are clonal hematopoietic disorders with heterogeneous presentation, ranging from indolent disease courses to aggressive diseases similar to acute myeloid leukemia (AML). Approximately 90% of MDS patients harbor recurrent mutations , which – with the exception of mutated SF3B1 –have not (yet) been included into the diagnostic criteria or risk stratification for MDS. Accumulating evidence suggests their utility for diagnostic workup, treatment indication and prognosis. Subsequently, in patients with unexplained cytopenia or dysplasia identification of these mutations may lead to earlier diagnosis. The acquisition and expansion of additional driver mutations usually antecedes further disease progression to higher risk MDS or secondary AML and thus, can be clinically helpful to detect individuals that may benefit from aggressive treatment approaches. Here, we review our current understanding of somatic gene mutations, gene expression patterns and flow cytometry regarding their relevance for disease evolution from pre-neoplastic states to MDS and potentially AML.
Collapse
Affiliation(s)
- Sebastian Schwind
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany
| | - Madlen Jentzsch
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany
| | - Anne Sophie Kubasch
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany
| | - Klaus H Metzeler
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany
| | - Uwe Platzbecker
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany; German MDS Study Group (G-MDS), Leipzig, Germany; European Myelodysplastic Syndromes Cooperative Group, Leipzig, Germany.
| |
Collapse
|
32
|
Kanagal-Shamanna R, Montalban-Bravo G, Sasaki K, Darbaniyan F, Jabbour E, Bueso-Ramos C, Wei Y, Chien K, Kadia T, Ravandi F, Borthakur G, Soltysiak KA, Routbort M, Patel K, Pierce S, Medeiros LJ, Kantarjian HM, Garcia-Manero G. Only SF3B1 mutation involving K700E independently predicts overall survival in myelodysplastic syndromes. Cancer 2021; 127:3552-3565. [PMID: 34161603 PMCID: PMC10015977 DOI: 10.1002/cncr.33745] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/14/2021] [Accepted: 05/11/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND SF3B1 mutations (SF3B1mut ) in myelodysplastic syndromes (MDS) frequently involve codon K700E and have a favorable prognosis. The prognostic effect of non-K700E SF3B1mut is uncertain. METHODS The authors analyzed the clinicopathological features and outcomes of a single-institution series of 94 treatment-naive SF3B1mut MDS patients (18%) and 415 treatment-naive SF3B1wt MDS patients and explored the differences between K700E and non-K700E SF3B1mut MDS. RESULTS Fifty-five patients (59%) carried K700E. Recurrent non-K700E mutations (39 [41%]) included R625, H662, and K666. Compared with SF3B1mut K700E patients, non-K700E patients had a lower median absolute neutrophil count (1.8 vs 2.4; P = .005) and were frequently "high" according to the Revised International Prognostic Scoring System (19% vs 4%; P = .031). Non-K700E MDS was associated frequently with RUNX1 (26% vs 7%; P = .012) and exclusively with BCOR, IDH2, and SRSF2 mutations. A splicing analysis showed the differential distribution of alternatively spliced events and gene expression profiles between K700 and non-K700E MDS patients. The majority (at least 80%) of SF3B1mut K700E, SF3B1mut non-K700E, and SF3B1wt patients were treated with hypomethylating agents. Over a median follow-up of 16 months, SF3B1mut had superior overall survival (OS) in comparison with SF3B1wt in all MDS patients (not reached vs 25.2 months; P = .0003), in patients with low-grade MDS, and in patients with myelodysplastic syndromes with ring sideroblasts (MDS-RS). Compared with SF3B1wt , SF3B1mut K700E had superior outcomes in all MDS (median OS, 25 months vs not reached; P = .0001), in low-grade MDS (median OS, 41.3 months vs not reached; P = .0015), and in MDS-RS (median OS, 22.3 months vs not reached; P = .0001), but no significant difference was seen between non-K700E and SF3B1wt MDS. By multivariable analysis, the absence of SF3B1mut K700E mutations was independently associated with the prognosis. CONCLUSIONS This study highlights the importance of the SF3B1 mutation subtype in MDS risk assessment. LAY SUMMARY Myelodysplastic syndromes (MDS) with SF3B1 mutations are regarded as having a favorable prognosis by both the World Health Organization and the International Working Group for the Prognosis of Myelodysplastic Syndromes. However, this article shows that only MDS patients with SF3B1 K700E mutations have a favorable prognosis (and not MDS patients with SF3B1 mutations involving other codons). This has important implications for refining future MDS subclassification and risk assessment criteria.
Collapse
Affiliation(s)
- Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Faezeh Darbaniyan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carlos Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yue Wei
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kelly Chien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tapan Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kelly A Soltysiak
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark Routbort
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keyur Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherry Pierce
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | |
Collapse
|
33
|
Venable ER, Chen D, Chen CP, Bessonen KR, Nguyen PL, Oliveira JL, Reichard KK, Hoyer JD, Althoff SD, Roh DJ, Miller MA, Begna K, Patnaik MM, Litzow MR, Al-Kali A, Viswanatha DS, He R. Pathologic Spectrum and Molecular Landscape of Myeloid Disorders Harboring SF3B1 Mutations. Am J Clin Pathol 2021; 156:679-690. [PMID: 33978189 PMCID: PMC8427737 DOI: 10.1093/ajcp/aqab010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Objectives SF3B1 mutations are the most common mutations in myelodysplastic syndromes (MDS). The International Working Group for the Prognosis of MDS (IWG-PM) recently proposed SF3B1-mutant MDS (SF3B1-mut-MDS) as a distinct disease subtype. We evaluated the spectrum and molecular landscape of SF3B1-mutated myeloid disorders and assessed the prognostication in MDS harboring SF3B1 mutations (MDS-SF3B1). Methods Cases were selected by retrospective review. Clinical course and laboratory and clinical findings were collected by chart review. SF3B1-mut-MDS was classified following IWG-PM criteria. Results SF3B1 mutations were identified in 75 of 955 patients, encompassing a full spectrum of myeloid disorders. In MDS-SF3B1, Revised International Prognostic Scoring System (IPSS-R) score greater than 3 and transcription factor (TF) comutations were adverse prognostic markers by both univariate and multivariate analyses. We confirmed the favorable outcome of IWG-PM-defined SF3B1-mut-MDS. Interestingly, it did not show sharp prognostic differentiation within MDS-SF3B1. Conclusions SF3B1 mutations occur in the full spectrum of myeloid disorders. We independently validated the favorable prognostication of IWG-PM-defined SF3B1-mut-MDS. However it may not provide sharp prognostication within MDS-SF3B1 where IPSS-R and TF comutations were prognostic-informative. Larger cohort studies are warranted to verify these findings and refine MDS-SF3B1 prognostication.
Collapse
Affiliation(s)
- Elise R Venable
- Division of Hematopathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Dong Chen
- Division of Hematopathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Constance P Chen
- College of Science, University of Notre Dame, Notre Dame, IN, USA
| | - Kurt R Bessonen
- Division of Hematopathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Phuong L Nguyen
- Division of Hematopathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jennifer L Oliveira
- Division of Hematopathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Kaaren K Reichard
- Division of Hematopathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - James D Hoyer
- Division of Hematopathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Simon D Althoff
- Division of Hematopathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Dana J Roh
- Division of Hematopathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mechelle A Miller
- Division of Hematopathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Kebede Begna
- Division of Hematology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mrinal M Patnaik
- Division of Hematology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mark R Litzow
- Division of Hematology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Aref Al-Kali
- Division of Hematology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - David S Viswanatha
- Division of Hematopathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Rong He
- Division of Hematopathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
34
|
Splicing factor mutations in hematologic malignancies. Blood 2021; 138:599-612. [PMID: 34157091 DOI: 10.1182/blood.2019004260] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022] Open
Abstract
Mutations in genes encoding RNA splicing factors were discovered nearly ten years ago and are now understood to be amongst the most recurrent genetic abnormalities in patients with all forms of myeloid neoplasms and several types of lymphoproliferative disorders as well as subjects with clonal hematopoiesis. These discoveries implicate aberrant RNA splicing, the process by which precursor RNA is converted into mature messenger RNA, in the development of clonal hematopoietic conditions. Both the protein as well as the RNA components of the splicing machinery are affected by mutations at highly specific residues and a number of these mutations alter splicing in a manner distinct from loss of function. Importantly, cells bearing these mutations have now been shown to generate mRNA species with novel aberrant sequences, some of which may be critical to disease pathogenesis and/or novel targets for therapy. These findings have opened new avenues of research to understand biological pathways disrupted by altered splicing. In parallel, multiple studies have revealed that cells bearing change-of-function mutation in splicing factors are preferentially sensitized to any further genetic or chemical perturbations of the splicing machinery. These discoveries are now being pursued in several early phase clinical trials using molecules with diverse mechanisms of action. Here we review the molecular effects of splicing factor mutations on splicing, mechanisms by which these mutations drive clonal transformation of hematopoietic cells, and the development of new therapeutics targeting these genetic subsets of hematopoietic malignancies.
Collapse
|
35
|
Impact of splicing mutations in acute myeloid leukemia treated with hypomethylating agents combined with venetoclax. Blood Adv 2021; 5:2173-2183. [PMID: 33885753 DOI: 10.1182/bloodadvances.2020004173] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/17/2021] [Indexed: 01/05/2023] Open
Abstract
Spliceosome mutations (SRSF2, SF3B1, U2AF1, ZRSR2), are encountered in ∼50% of secondary acute myeloid leukemia cases (sAML) and define a molecular subgroup with outcomes similar to sAML in de novo AML patients treated with intensive chemotherapy. Outcomes in patients with spliceosome mutations treated with hypomethylating agents in combination with venetoclax (HMA+VEN) remains unknown. The primary objective was to compare outcomes in patients with spliceosome mutations vs wild-type patients treated with HMA+VEN. Secondary objectives included analysis of the mutational landscape of the spliceosome cohort and assessing the impact of co-occurring mutations. We performed a retrospective cohort analysis of patients treated with HMA+VEN-based regimens at The University of Texas MD Anderson Cancer Center. A total of 119 patients (spliceosome mutated n = 39 [SRSF2, n = 24; SF3B1, n = 8; U2AF1, n = 7]; wild-type, n = 80) were included. Similar responses were observed between spliceosome and wild-type cohorts for composite complete response (CRc; 79% vs 75%, P = .65), and measurable residual disease-negative CRc (48% vs 60%, P = .34). Median overall survival for spliceosome vs wild-type patients was 35 vs 14 months (P = .58), and was not reached; 35 months and 8 months for patients with SRSF2, SF3B1, and U2AF1 mutations, respectively. IDH2 mutations were enriched in patients with SRSF2 mutations and associated with favorable outcomes (1- and 2-year overall survival [OS] of 100% and 88%). RAS mutations were enriched in patients with U2AF1 mutations and associated with inferior outcomes (median OS, 8 months). Comparable outcomes were observed between patients with vs without spliceosome mutations treated with HMA+VEN regimens, with specific co-mutation pairs demonstrating favorable outcomes.
Collapse
|
36
|
Duetz C, Westers TM, in ’t Hout FEM, Cremers EMP, Alhan C, Venniker‐Punt B, Visser‐Wisselaar HA, Chitu DA, de Graaf AO, Smit L, Jansen JH, van de Loosdrecht AA. Distinct bone marrow immunophenotypic features define the splicing factor 3B subunit 1 (SF3B1)-mutant myelodysplastic syndromes subtype. Br J Haematol 2021; 193:798-803. [PMID: 33765355 PMCID: PMC8252736 DOI: 10.1111/bjh.17414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/23/2021] [Indexed: 01/28/2023]
Abstract
Splicing factor 3B subunit 1 (SF3B1) mutations define a distinct myelodysplastic syndromes (MDS) patient group with a relatively favourable disease course and high response rates to luspatercept. Few data are available on bone marrow phenotype beyond ring sideroblasts in this subgroup of patients with MDS. In the present study, we identified immunophenotypic erythroid, myelomonocyte and progenitor features associated with SF3B1 mutations. In addition, we illustrate that SF3B1-mutation type is associated with distinct immunophenotypic features, and show the impact of co-occurrence of a SF3B1 mutation and a deletion of chromosome 5q on bone marrow immunophenotype. These genotype-phenotype associations and phenotypic subtypes within SF3B1-MDS provide leads that may further refine prognostication and therapeutic strategies for this particular MDS subgroup.
Collapse
Affiliation(s)
- Carolien Duetz
- Department of HematologyCancer Center AmsterdamAmsterdam UMC, Location VUmcAmsterdamthe Netherlands
| | - Theresia M. Westers
- Department of HematologyCancer Center AmsterdamAmsterdam UMC, Location VUmcAmsterdamthe Netherlands
| | - Florentien E. M. in ’t Hout
- Laboratory of HematologyDepartment of Laboratory MedicineRadboud University Medical CentreNijmegenthe Netherlands
| | - Eline M. P. Cremers
- Department of HematologyMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Canan Alhan
- Department of HematologyCancer Center AmsterdamAmsterdam UMC, Location VUmcAmsterdamthe Netherlands
| | - Bianca Venniker‐Punt
- Department of HematologyCancer Center AmsterdamAmsterdam UMC, Location VUmcAmsterdamthe Netherlands
| | | | - Dana A. Chitu
- Department of HematologyHOVON Data CenterErasmus MC Cancer InstituteRotterdamthe Netherlands
| | - Aniek O. de Graaf
- Laboratory of HematologyDepartment of Laboratory MedicineRadboud University Medical CentreNijmegenthe Netherlands
| | - Linda Smit
- Department of HematologyCancer Center AmsterdamAmsterdam UMC, Location VUmcAmsterdamthe Netherlands
| | - Joop H. Jansen
- Laboratory of HematologyDepartment of Laboratory MedicineRadboud University Medical CentreNijmegenthe Netherlands
| | | |
Collapse
|
37
|
Canbezdi C, Tarin M, Houy A, Bellanger D, Popova T, Stern MH, Roman-Roman S, Alsafadi S. Functional and conformational impact of cancer-associated SF3B1 mutations depends on the position and the charge of amino acid substitution. Comput Struct Biotechnol J 2021; 19:1361-1370. [PMID: 33777335 PMCID: PMC7960499 DOI: 10.1016/j.csbj.2021.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 11/18/2022] Open
Abstract
The hotspot mutations of SF3B1, the most frequently mutated splicing gene in cancers, contribute to oncogenesis by corrupting the mRNA splicing. Further SF3B1 mutations have been reported in cancers but their consequences remain unclear. Here, we screened for SF3B1 mutations in the vicinity of the hotspot region in tumors. We then performed in-silico prediction of the functional outcome followed by in-cellulo modelling of different SF3B1 mutants. We show that cancer-associated SF3B1 mutations present varying functional consequences that are loosely predicted by the in-silico algorithms. Analysis of the tertiary structure of SF3B1 mutants revealed that the resulting splicing errors may be due to a conformational change in SF3B1 N-terminal region, which mediates binding with other splicing factors. Our study demonstrates a varying functional impact of SF3B1 mutations according to the mutated codon and the amino acid substitution, implying unequal pathogenic and prognostic potentials of SF3B1 mutations in cancers.
Collapse
Affiliation(s)
- Christine Canbezdi
- Institut Curie, PSL Research University, Uveal Melanoma Group, Translational Research Department, Paris, France
| | - Malcy Tarin
- Institut Curie, PSL Research University, Uveal Melanoma Group, Translational Research Department, Paris, France
| | - Alexandre Houy
- Institut Curie, PSL Research University, INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Paris, France
| | - Dorine Bellanger
- Institut Curie, PSL Research University, INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Paris, France
- University of Tours, INSERM UMR1069, Tours, France
| | - Tatiana Popova
- Institut Curie, PSL Research University, INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Paris, France
| | - Marc-Henri Stern
- Institut Curie, PSL Research University, INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Paris, France
| | - Sergio Roman-Roman
- Institut Curie, PSL Research University, Uveal Melanoma Group, Translational Research Department, Paris, France
| | - Samar Alsafadi
- Institut Curie, PSL Research University, Uveal Melanoma Group, Translational Research Department, Paris, France
| |
Collapse
|
38
|
Pellagatti A, Boultwood J. SF3B1 mutant myelodysplastic syndrome: Recent advances. Adv Biol Regul 2020; 79:100776. [PMID: 33358369 DOI: 10.1016/j.jbior.2020.100776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
The myelodysplastic syndromes (MDS) are common myeloid malignancies. Mutations in genes encoding different components of the spliceosome occur in more than half of all MDS patients. SF3B1 is the most frequently mutated splicing factor gene in MDS, and there is a strong association between SF3B1 mutations and the presence of ring sideroblasts in the bone marrow of MDS patients. It has been recently proposed that SF3B1 mutant MDS should be recognized as a distinct nosologic entity. Splicing factor mutations cause aberrant pre-mRNA splicing of many target genes, some of which have been shown to impact on hematopoiesis in functional studies. Emerging data show that some of the downstream effects of different mutated splicing factors converge on common cellular processes, such as hyperactivation of NF-κB signaling and increased R-loops. The aberrantly spliced target genes and the dysregulated pathways and cellular processes associated with splicing factor mutations provided the rationale for new potential therapeutic approaches to target MDS cells with mutations of SF3B1 and other splicing factors.
Collapse
Affiliation(s)
- Andrea Pellagatti
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, And NIHR Oxford BRC Haematology Theme, Oxford, UK.
| | - Jacqueline Boultwood
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, And NIHR Oxford BRC Haematology Theme, Oxford, UK.
| |
Collapse
|
39
|
Affiliation(s)
- Mario Cazzola
- From Fondazione IRCCS Policlinico San Matteo and the University of Pavia, Pavia, Italy
| |
Collapse
|
40
|
Taylor J, Mi X, North K, Binder M, Penson A, Lasho T, Knorr K, Haddadin M, Liu B, Pangallo J, Benbarche S, Wiseman D, Tefferi A, Halene S, Liang Y, Patnaik MM, Bradley RK, Abdel-Wahab O. Single-cell genomics reveals the genetic and molecular bases for escape from mutational epistasis in myeloid neoplasms. Blood 2020; 136:1477-1486. [PMID: 32640014 PMCID: PMC7515689 DOI: 10.1182/blood.2020006868] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Large-scale sequencing studies of hematologic malignancies have revealed notable epistasis among high-frequency mutations. One of the most striking examples of epistasis occurs for mutations in RNA splicing factors. These lesions are among the most common alterations in myeloid neoplasms and generally occur in a mutually exclusive manner, a finding attributed to their synthetic lethal interactions and/or convergent effects. Curiously, however, patients with multiple-concomitant splicing factor mutations have been observed, challenging our understanding of one of the most common examples of epistasis in hematologic malignancies. In this study, we performed bulk and single-cell analyses of patients with myeloid malignancy who were harboring ≥2 splicing factor mutations, to understand the frequency and basis for the coexistence of these mutations. Although mutations in splicing factors were strongly mutually exclusive across 4231 patients (q < .001), 0.85% harbored 2 concomitant bona fide splicing factor mutations, ∼50% of which were present in the same individual cells. However, the distribution of mutations in patients with double mutations deviated from that in those with single mutations, with selection against the most common alleles, SF3B1K700E and SRSF2P95H/L/R, and selection for less common alleles, such as SF3B1 non-K700E mutations, rare amino acid substitutions at SRSF2P95, and combined U2AF1S34/Q157 mutations. SF3B1 and SRSF2 alleles enriched in those with double-mutations had reduced effects on RNA splicing and/or binding compared with the most common alleles. Moreover, dual U2AF1 mutations occurred in cis with preservation of the wild-type allele. These data highlight allele-specific differences as critical in regulating the molecular effects of splicing factor mutations as well as their cooccurrences/exclusivities with one another.
Collapse
Affiliation(s)
- Justin Taylor
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
- University of Miami Miller School of Medicine, Miami, FL
| | - Xiaoli Mi
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Khrystyna North
- Division of Public Health Sciences and
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Genome Sciences, University of Washington, Seattle, WA
| | | | - Alexander Penson
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | - Katherine Knorr
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Michael Haddadin
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Bo Liu
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Joseph Pangallo
- Division of Public Health Sciences and
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Salima Benbarche
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Daniel Wiseman
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine and
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT; and
| | - Yang Liang
- State Key Laboratory of Oncology in South China, Department of Hematologic Oncology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Peoples Republic of China
| | | | - Robert K Bradley
- Division of Public Health Sciences and
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
41
|
|
42
|
The biological function and clinical significance of SF3B1 mutations in cancer. Biomark Res 2020; 8:38. [PMID: 32905346 PMCID: PMC7469106 DOI: 10.1186/s40364-020-00220-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Spliceosome mutations have become the most interesting mutations detected in human cancer in recent years. The spliceosome, a large, dynamic multimegadalton small nuclear ribonucleoprotein composed of small nuclear RNAs associated with proteins, is responsible for removing introns from precursor mRNA (premRNA) and generating mature, spliced mRNAs. SF3B1 is the largest subunit of the spliceosome factor 3b (SF3B) complex, which is a core component of spliceosomes. Recurrent somatic mutations in SF3B1 have been detected in human cancers, including hematological malignancies and solid tumors, and indicated to be related to patient prognosis. This review summarizes the research progress of SF3B1 mutations in cancer, including SF3B1 mutations in the HEAT domain, the multiple roles and aberrant splicing events of SF3B1 mutations in the pathogenesis of tumors, and changes in mutated cancer cells regarding sensitivity to SF3B small-molecule inhibitors. In addition, the potential of SF3B1 or its mutations to serve as biomarkers or therapeutic targets in cancer is discussed. The accumulated knowledge about SF3B1 mutations in cancer provides critical insight into the integral role the SF3B1 protein plays in mRNA splicing and suggests new targets for anticancer therapy.
Collapse
|