1
|
Kline GM, Boinon L, Guerrero A, Kutseikin S, Cruz G, Williams MP, Paxman RJ, Balch WE, Kelly JW, Mu T, Wiseman RL. Phenylhydrazone-based Endoplasmic Reticulum Proteostasis Regulator Compounds with Enhanced Biological Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.646800. [PMID: 40236048 PMCID: PMC11996566 DOI: 10.1101/2025.04.04.646800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Pharmacological enhancement of endoplasmic reticulum (ER) proteostasis is an attractive strategy to mitigate pathology linked to etiologically-diverse protein misfolding diseases. However, despite this promise, few compounds have been identified that enhance ER proteostasis through defined mechanisms of action. We previously identified the phenylhydrazone-based compound AA263 as a compound that promotes adaptive ER proteostasis remodeling through mechanisms including activation of the ATF6 signaling arm of the unfolded protein response (UPR). However, the protein target(s) of AA263 and the potential for further development of this class of ER proteostasis regulators had not been previously explored. Here, we employ chemical proteomics to demonstrate that AA263 covalently targets a subset of ER protein disulfide isomerases, revealing a molecular mechanism for the activation of ATF6 afforded by this compound. We then use medicinal chemistry to establish next-generation AA263 analogs showing improved potency and efficacy for ATF6 activation, as compared to the parent compound. Finally, we show that treatment with these AA263 analogs enhances secretory pathway proteostasis to correct the pathologic protein misfolding and trafficking of both a destabilized, disease-associated α1-antitrypsin (A1AT) variant and an epilepsy-associated GABA A receptor variant. These results establish AA263 analogs with enhanced potential for correcting imbalanced ER proteostasis associated with etiologically-diverse protein misfolding disorders.
Collapse
|
2
|
Sun S, Wang C, Hu J, Zhao P, Wang X, Balch WE. Spatial covariance reveals isothiocyanate natural products adjust redox stress to restore function in alpha-1-antitrypsin deficiency. Cell Rep Med 2025; 6:101917. [PMID: 39809267 DOI: 10.1016/j.xcrm.2024.101917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 06/09/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
Alpha-1 antitrypsin (AAT) deficiency (AATD) is a monogenic disease caused by misfolding of AAT variants resulting in gain-of-toxic aggregation in the liver and loss of monomer activity in the lung leading to chronic obstructive pulmonary disease (COPD). Using high-throughput screening, we discovered a bioactive natural product, phenethyl isothiocyanate (PEITC), highly enriched in cruciferous vegetables, including watercress and broccoli, which improves the level of monomer secretion and neutrophil elastase (NE) inhibitory activity of AAT-Z through the endoplasmic reticulum (ER) redox sensor protein disulfide isomerase (PDI) A4 (PDIA4). The intracellular polymer burden of AAT-Z can be managed by combination treatment of PEITC and an autophagy activator. Using Gaussian process (GP)-based spatial covariance (SCV) (GP-SCV) machine learning to map on a residue-by-residue basis at atomic resolution all variants in the worldwide AATD clinical population, we reveal a global rescue of monomer secretion and NE inhibitory activity for most variants triggering disease. We present a proof of concept that GP-SCV mapping of restoration of AAT variant function serves as a standard model to discover natural products such as the anti-oxidant PEITC that could potentially impact the redox/inflammatory environment of the ER to provide a nutraceutical approach to help minimize disease in AATD patients.
Collapse
Affiliation(s)
- Shuhong Sun
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA; Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Institute for Brain Tumors, Collaborative Innovation Center for Cancer Personalized Medicine, and Center for Global Health, Nanjing Medical University, Nanjing 211166, China.
| | - Chao Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA; Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Junyan Hu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Pei Zhao
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Xi Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - William E Balch
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
3
|
Priyanka, Raymandal B, Mondal S. Native State Stabilization of Amyloidogenic Proteins by Kinetic Stabilizers: Inhibition of Protein Aggregation and Clinical Relevance. ChemMedChem 2024; 19:e202400244. [PMID: 38863235 DOI: 10.1002/cmdc.202400244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Proteinopathies or amyloidoses are a group of life-threatening disorders that result from misfolding of proteins and aggregation into toxic insoluble amyloid aggregates. Amyloid aggregates have low clearance from the body due to the insoluble nature, leading to their deposition in various organs and consequent organ dysfunction. While amyloid deposition in the central nervous system leads to neurodegenerative diseases that mostly cause dementia and difficulty in movement, several other organs, including heart, liver and kidney are also affected by systemic amyloidoses. Regardless of the site of amyloid deposition, misfolding and structural alteration of the precursor proteins play the central role in amyloid formation. Kinetic stabilizers are an emerging class of drugs, which act like pharmacological chaperones to stabilize the native state structure of amyloidogenic proteins and to increase the activation energy barrier that is required for adopting a misfolded structure or conformation, ultimately leading to the inhibition of protein aggregation. In this review, we discuss the kinetic stabilizers that stabilize the native quaternary structure of transthyretin, immunoglobulin light chain and superoxide dismutase 1 that cause transthyretin amyloidoses, light chain amyloidosis and familial amyotrophic lateral sclerosis, respectively.
Collapse
Affiliation(s)
- Priyanka
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, Hauz Khas, New Delhi, Delhi, 110016, India
| | - Bitta Raymandal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, Hauz Khas, New Delhi, Delhi, 110016, India
| | - Santanu Mondal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, Hauz Khas, New Delhi, Delhi, 110016, India
| |
Collapse
|
4
|
Kline G, Paxman RJ, Lin CY, Madrazo N, Yoon L, Grandjean JMD, Lee K, Nugroho K, Powers ET, Wiseman RL, Kelly JW. Divergent Proteome Reactivity Influences Arm-Selective Activation of the Unfolded Protein Response by Pharmacological Endoplasmic Reticulum Proteostasis Regulators. ACS Chem Biol 2023; 18:1719-1729. [PMID: 37523656 PMCID: PMC10442855 DOI: 10.1021/acschembio.3c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Pharmacological activation of the activating transcription factor 6 (ATF6) arm of the unfolded protein response (UPR) has proven useful for ameliorating proteostasis deficiencies in cellular and mouse models of numerous etiologically diverse diseases. Previous high-throughput screening efforts identified the small molecule AA147 as a potent and selective ATF6 activating compound that operates through a mechanism involving metabolic activation of its 2-amino-p-cresol substructure affording a quinone methide, which then covalently modifies a subset of endoplasmic reticulum (ER) protein disulfide isomerases (PDIs). Another compound identified in this screen, AA132, also contains a 2-amino-p-cresol moiety; however, this compound showed less transcriptional selectivity, instead globally activating all three arms of the UPR. Here, we show that AA132 activates global UPR signaling through a mechanism analogous to that of AA147, involving metabolic activation and covalent modification of proteins including multiple PDIs. Chemoproteomic-enabled analyses show that AA132 covalently modifies PDIs to a greater extent than AA147. However, the extent of PDI labeling by AA147 approaches a plateau more rapidly than PDI labeling by AA132. These observations together suggest that AA132 can access a larger pool of proteins for covalent modification, possibly because its activated form is less susceptible to quenching than activated AA147. In other words, the lower reactivity of activated AA132 allows it to persist longer and modify more PDIs in the cellular environment. Collectively, these results suggest that AA132 globally activates the UPR through increased engagement of ER PDIs. Consistent with this, reducing the cellular concentration of AA132 decreases PDI modifications and enables selective ATF6 activation. Our results highlight the relationship between metabolically activatable-electrophile stability, ER proteome reactivity, and the transcriptional response observed with the enaminone chemotype of ER proteostasis regulators, enabling continued development of next-generation ATF6 activating compounds.
Collapse
Affiliation(s)
- Gabriel
M. Kline
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Ryan J. Paxman
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Chung-Yon Lin
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Nicole Madrazo
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
| | - Leonard Yoon
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Julia M. D. Grandjean
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
| | - Kyunga Lee
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Karina Nugroho
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Evan T. Powers
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - R. Luke Wiseman
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
| | - Jeffery W. Kelly
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
- The
Skaggs Institute for Chemical Biology, The
Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
5
|
Rottenaicher GJ, Absmeier RM, Meier L, Zacharias M, Buchner J. A constant domain mutation in a patient-derived antibody light chain reveals principles of AL amyloidosis. Commun Biol 2023; 6:209. [PMID: 36823438 PMCID: PMC9950467 DOI: 10.1038/s42003-023-04574-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Light chain (AL) amyloidosis is a debilitating disease in which mutant antibody light chains (LC), secreted by aberrant plasma cell clones, misfold and form insoluble fibrils, which can be deposited in various organs. In the majority of cases, the fibrillar deposits consist of LC variable domains (VL) containing destabilizing mutations compared to their germline counterparts. This is also true for the patient LC FOR005. However, this pathogenic LC sequence contains an additional mutation in the constant domain (CL). The mechanistic impact of CL mutations is not yet understood in the context of AL amyloidosis. Our analysis reveals that the FOR005 CL mutation influences the amyloid pathway in specific ways: (1) folding and stability of the patient CL domain are strongly impaired; (2) the mutation disrupts the LC dimer interface and weakens dimerization; (3) the CL mutation promotes proteolytic cleavage of the LC monomers resulting in an isolated, amyloidogenic VL domain while dimeric LCs are not cleaved. The enhanced proteolysis rates and the inability of full-length LCs to form amyloid fibrils even in the presence of a destabilized CL domain support a model for AL amyloidosis in which the CL domain plays a protective role and in which proteolytic cleavage precedes amyloid formation.
Collapse
Affiliation(s)
- Georg J Rottenaicher
- Center for Functional Protein Assemblies, Technical University Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
- Department of Biosciences, TUM School of Natural Sciences, Technical University Munich, Boltzmannstr. 10, 85748, Garching, Germany
| | - Ramona M Absmeier
- Center for Functional Protein Assemblies, Technical University Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
- Department of Biosciences, TUM School of Natural Sciences, Technical University Munich, Boltzmannstr. 10, 85748, Garching, Germany
| | - Laura Meier
- Center for Functional Protein Assemblies, Technical University Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
- Department of Biosciences, TUM School of Natural Sciences, Technical University Munich, Boltzmannstr. 10, 85748, Garching, Germany
| | - Martin Zacharias
- Center for Functional Protein Assemblies, Technical University Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
- Department of Biosciences, TUM School of Natural Sciences, Technical University Munich, Boltzmannstr. 10, 85748, Garching, Germany
| | - Johannes Buchner
- Center for Functional Protein Assemblies, Technical University Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany.
- Department of Biosciences, TUM School of Natural Sciences, Technical University Munich, Boltzmannstr. 10, 85748, Garching, Germany.
| |
Collapse
|
6
|
Sun S, Wang C, Zhao P, Kline GM, Grandjean JMD, Jiang X, Labaudiniere R, Wiseman RL, Kelly JW, Balch WE. Capturing the conversion of the pathogenic alpha-1-antitrypsin fold by ATF6 enhanced proteostasis. Cell Chem Biol 2023; 30:22-42.e5. [PMID: 36630963 PMCID: PMC9930901 DOI: 10.1016/j.chembiol.2022.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/07/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023]
Abstract
Genetic variation in alpha-1 antitrypsin (AAT) causes AAT deficiency (AATD) through liver aggregation-associated gain-of-toxic pathology and/or insufficient AAT activity in the lung manifesting as chronic obstructive pulmonary disease (COPD). Here, we utilize 71 AATD-associated variants as input through Gaussian process (GP)-based machine learning to study the correction of AAT folding and function at a residue-by-residue level by pharmacological activation of the ATF6 arm of the unfolded protein response (UPR). We show that ATF6 activators increase AAT neutrophil elastase (NE) inhibitory activity, while reducing polymer accumulation for the majority of AATD variants, including the prominent Z variant. GP-based profiling of the residue-by-residue response to ATF6 activators captures an unexpected role of the "gate" area in managing AAT-specific activity. Our work establishes a new spatial covariant (SCV) understanding of the convertible state of the protein fold in response to genetic perturbation and active environmental management by proteostasis enhancement for precision medicine.
Collapse
Affiliation(s)
- Shuhong Sun
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Chao Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Pei Zhao
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Gabe M Kline
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Xin Jiang
- Protego Biopharma, 10945 Vista Sorrento Parkway, San Diego, CA, USA
| | | | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - William E Balch
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
7
|
Kline GM, Paxman RJ, Lin CY, Madrazo N, Grandjean JM, Lee K, Nugroho K, Powers ET, Wiseman RL, Kelly JW. Divergent Proteome Reactivity Influences Arm-Selective Activation of Pharmacological Endoplasmic Reticulum Proteostasis Regulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524237. [PMID: 36712115 PMCID: PMC9882204 DOI: 10.1101/2023.01.16.524237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pharmacological activation of the activating transcription factor 6 (ATF6) arm of the Unfolded Protein Response (UPR) has proven useful for ameliorating proteostasis deficiencies in a variety of etiologically diverse diseases. Previous high-throughput screening efforts identified the small molecule AA147 as a potent and selective ATF6 activating compound that operates through a mechanism involving metabolic activation of its 2-amino- p -cresol substructure affording a quinone methide, which then covalently modifies a subset of ER protein disulfide isomerases (PDIs). Intriguingly, another compound identified in this screen, AA132, also contains a 2-amino- p -cresol moiety; however, this compound showed less transcriptional selectivity, instead globally activating all three arms of the UPR. Here, we show that AA132 activates global UPR signaling through a mechanism analogous to that of AA147, involving metabolic activation and covalent PDI modification. Chemoproteomic-enabled analyses show that AA132 covalently modifies PDIs to a greater extent than AA147. Paradoxically, activated AA132 reacts slower with PDIs, indicating it is less reactive than activated AA147. This suggests that the higher labeling of PDIs observed with activated AA132 can be attributed to its lower reactivity, which allows this activated compound to persist longer in the cellular environment prior to quenching by endogenous nucleophiles. Collectively, these results suggest that AA132 globally activates the UPR through increased engagement of ER PDIs. Consistent with this, reducing the cellular concentration of AA132 decreases PDI modifications and allows for selective ATF6 activation. Our results highlight the relationship between metabolically activatable-electrophile stability, ER proteome reactivity, and the transcriptional response observed with the enaminone chemotype of ER proteostasis regulators, enabling continued development of next-generation ATF6 activating compounds.
Collapse
Affiliation(s)
- Gabriel M. Kline
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA
| | - Ryan J Paxman
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA
| | - Chung-Yon Lin
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA
| | - Nicole Madrazo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Julia M. Grandjean
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Kyunga Lee
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA
| | - Karina Nugroho
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA
| | - Evan T. Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA
| | - R. Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Jeffery W. Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
8
|
Yuan Z, Lu L, Lian Y, Zhao Y, Tang T, Xu S, Yao Z, Yu Z. AA147 ameliorates post-cardiac arrest cerebral ischemia/reperfusion injury through the co-regulation of the ATF6 and Nrf2 signaling pathways. Front Pharmacol 2022; 13:1028002. [PMID: 36506549 PMCID: PMC9727236 DOI: 10.3389/fphar.2022.1028002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Ischemia/reperfusion caused by cardiac arrest (CA) disturbs endoplasmic reticulum (ER) homeostasis and redox balance in neurons. AA147, originally developed as a pharmacologic activator of the activating transcription factor 6 (ATF6), can protect multiple tissues from ischemia/reperfusion injury (IRI) by decreasing reactive oxygen species (ROS) and restoring ER function. However, it is unclear whether pharmacologic treatment of AA147 could ameliorate post-CA cerebral IRI and whether it is associated with proteostasis regulation and anti-oxidative stress mechanism. In the present study, mice were subjected to 9 min-CA surgery followed by cardiopulmonary resuscitation (CPR). AA147 or vehicle was administered 1 day before the operation and 15 min after the return of spontaneous circulation. We found that AA147 restored neurological function and reduced dead neurons in mice suffering from CA. Moreover, AA147 inhibited CA/CPR-caused neuronal apoptosis and ER stress, indicated by reduced TUNEL-positive neurons, surged expression of Bcl-2/Bax, and down expression of cleaved caspase-3, caspase-12, C/EBP homologous protein (CHOP). The expression of ATF6 and its regulated gene glucose-regulated protein 78 (GRP78) increased significantly after the administration of AA147, suggesting the activation of the ATF6 pathway. In addition, AA147 also alleviated the upsurge of the ROS generation and MDA levels as well as increased SOD activity, accompanied by enhancement of the nuclear factor E2-related factor 2 (Nrf2) and its modulated heme-oxygenase-1 (HO-1) expressions. Cotreatment of AA147 with inhibitors of the ATF6 or Nrf2 significantly suppressed AA147-dependent reductions in ROS scavenging and neuronal death after CA/CPR. The results suggested that AA147 could confer neuroprotection against post-CA cerebral IRI through inhibition of oxidative stress along with ER stress-associated apoptosis, which is attributed to the coregulation of both ATF6 and Nrf2 signaling pathways activity. Our findings support the potential for AA147 as a therapeutic approach to improve post-CA brain injury.
Collapse
Affiliation(s)
- Zhu Yuan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liping Lu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingtao Lian
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuanrui Zhao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tingting Tang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song Xu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhun Yao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China,*Correspondence: Zhui Yu,
| |
Collapse
|
9
|
Mesgarzadeh JS, Romine IC, Smith-Cohen EM, Grandjean JMD, Kelly JW, Genereux JC, Wiseman RL. ATF6 Activation Reduces Amyloidogenic Transthyretin Secretion through Increased Interactions with Endoplasmic Reticulum Proteostasis Factors. Cells 2022; 11:1661. [PMID: 35626697 PMCID: PMC9139617 DOI: 10.3390/cells11101661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 01/09/2023] Open
Abstract
The extracellular aggregation of destabilized transthyretin (TTR) variants is implicated in the onset and pathogenesis of familial TTR-related amyloid diseases. One strategy to reduce the toxic, extracellular aggregation of TTR is to decrease the population of aggregation-prone proteins secreted from mammalian cells. The stress-independent activation of the unfolded protein response (UPR)-associated transcription factor ATF6 preferentially decreases the secretion and subsequent aggregation of destabilized, aggregation-prone TTR variants. However, the mechanism of this reduced secretion was previously undefined. Here, we implement a mass-spectrometry-based interactomics approach to identify endoplasmic reticulum (ER) proteostasis factors involved in ATF6-dependent reductions in destabilized TTR secretion. We show that ATF6 activation reduces amyloidogenic TTR secretion and subsequent aggregation through a mechanism involving ER retention that is mediated by increased interactions with ATF6-regulated ER proteostasis factors including BiP and PDIA4. Intriguingly, the PDIA4-dependent retention of TTR is independent of both the single TTR cysteine residue and the redox activity of PDIA4, indicating that PDIA4 retains destabilized TTR in the ER through a redox-independent mechanism. Our results define a mechanistic basis to explain the ATF6 activation-dependent reduction in destabilized, amyloidogenic TTR secretion that could be therapeutically accessed to improve treatments of TTR-related amyloid diseases.
Collapse
Affiliation(s)
- Jaleh S. Mesgarzadeh
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Isabelle C. Romine
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ethan M. Smith-Cohen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Julia M. D. Grandjean
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffery W. Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joseph C. Genereux
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - R. Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
10
|
Wang M, Cotter E, Wang YJ, Fu X, Whittsette AL, Lynch JW, Wiseman RL, Kelly JW, Keramidas A, Mu TW. Pharmacological activation of ATF6 remodels the proteostasis network to rescue pathogenic GABA A receptors. Cell Biosci 2022; 12:48. [PMID: 35477478 PMCID: PMC9044816 DOI: 10.1186/s13578-022-00783-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic variants in the subunits of the gamma-aminobutyric acid type A (GABAA) receptors are implicated in the onset of multiple pathologic conditions including genetic epilepsy. Previous work showed that pathogenic GABAA subunits promote misfolding and inefficient assembly of the GABAA receptors, limiting receptor expression and activity at the plasma membrane. However, GABAA receptors containing variant subunits can retain activity, indicating that enhancing the folding, assembly, and trafficking of these variant receptors offers a potential opportunity to mitigate pathology associated with genetic epilepsy. RESULTS Here, we demonstrate that pharmacologically enhancing endoplasmic reticulum (ER) proteostasis using small molecule activators of the ATF6 (Activating Transcription Factor 6) signaling arm of the unfolded protein response (UPR) increases the assembly, trafficking, and surface expression of variant GABAA receptors. These improvements are attributed to ATF6-dependent remodeling of the ER proteostasis environment, which increases protein levels of pro-folding ER proteostasis factors including the ER chaperone BiP (Immunoglobulin Binding Protein) and trafficking receptors, such as LMAN1 (Lectin Mannose-Binding 1) and enhances their interactions with GABAA receptors. Importantly, we further show that pharmacologic ATF6 activators increase the activity of GABAA receptors at the cell surface, revealing the potential for this strategy to restore receptor activity to levels that could mitigate disease pathogenesis. CONCLUSIONS These results indicate that pharmacologic ATF6 activators offer an opportunity to restore GABAA receptor activity in diseases including genetic epilepsy and point to the potential for similar pharmacologic enhancement of ER proteostasis to improve trafficking of other disease-associated variant ion channels implicated in etiologically-diverse diseases.
Collapse
Affiliation(s)
- Meng Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| | - Edmund Cotter
- Queensland Brain Institute, the University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| | - Xu Fu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| | - Angela L Whittsette
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| | - Joseph W Lynch
- Queensland Brain Institute, the University of Queensland, Brisbane, QLD, 4072, Australia
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jeffery W Kelly
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Angelo Keramidas
- Queensland Brain Institute, the University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, 44106, USA.
| |
Collapse
|
11
|
Wiseman RL, Mesgarzadeh JS, Hendershot LM. Reshaping endoplasmic reticulum quality control through the unfolded protein response. Mol Cell 2022; 82:1477-1491. [PMID: 35452616 PMCID: PMC9038009 DOI: 10.1016/j.molcel.2022.03.025] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 01/09/2023]
Abstract
Endoplasmic reticulum quality control (ERQC) pathways comprising chaperones, folding enzymes, and degradation factors ensure the fidelity of ER protein folding and trafficking to downstream secretory environments. However, multiple factors, including tissue-specific secretory proteomes, environmental and genetic insults, and organismal aging, challenge ERQC. Thus, a key question is: how do cells adapt ERQC to match the diverse, ever-changing demands encountered during normal physiology and in disease? The answer lies in the unfolded protein response (UPR), a signaling mechanism activated by ER stress. In mammals, the UPR comprises three signaling pathways regulated downstream of the ER membrane proteins IRE1, ATF6, and PERK. Upon activation, these UPR pathways remodel ERQC to alleviate cellular stress and restore ER function. Here, we describe how UPR signaling pathways adapt ERQC, highlighting their importance for maintaining ER function across tissues and the potential for targeting the UPR to mitigate pathologies associated with protein misfolding diseases.
Collapse
Affiliation(s)
- R. Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037,To whom correspondences should be addressed: Linda Hendershot, ; R. Luke Wiseman,
| | - Jaleh S. Mesgarzadeh
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Linda M. Hendershot
- Department of Tumor Biology, St Jude Children’s Research Hospital, Memphis, TN 38105,To whom correspondences should be addressed: Linda Hendershot, ; R. Luke Wiseman,
| |
Collapse
|
12
|
Mesgarzadeh JS, Buxbaum JN, Wiseman RL. Stress-responsive regulation of extracellular proteostasis. J Cell Biol 2022; 221:213026. [PMID: 35191945 PMCID: PMC8868021 DOI: 10.1083/jcb.202112104] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/18/2022] Open
Abstract
Genetic, environmental, and aging-related insults can promote the misfolding and subsequent aggregation of secreted proteins implicated in the pathogenesis of numerous diseases. This has led to considerable interest in understanding the molecular mechanisms responsible for regulating proteostasis in extracellular environments such as the blood and cerebrospinal fluid (CSF). Extracellular proteostasis is largely dictated by biological pathways comprising chaperones, folding enzymes, and degradation factors localized to the ER and extracellular space. These pathways limit the accumulation of nonnative, potentially aggregation-prone proteins in extracellular environments. Many reviews discuss the molecular mechanisms by which these pathways impact the conformational integrity of the secreted proteome. Here, we instead focus on describing the stress-responsive mechanisms responsible for adapting ER and extracellular proteostasis pathways to protect the secreted proteome from pathologic insults that challenge these environments. Further, we highlight new strategies to identify stress-responsive pathways involved in regulating extracellular proteostasis and describe the pathologic and therapeutic implications for these pathways in human disease.
Collapse
Affiliation(s)
| | - Joel N Buxbaum
- Department of Molecular Medicine, Scripps Research, La Jolla, CA
| | - R Luke Wiseman
- Department of Molecular Medicine, Scripps Research, La Jolla, CA
| |
Collapse
|
13
|
Rodriguez M, Lenihan D, Merlini G. Future Developments in Light Chain Amyloidosis Management. Am J Med 2022; 135 Suppl 1:S53-S57. [PMID: 35081388 DOI: 10.1016/j.amjmed.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/14/2022] [Indexed: 11/01/2022]
Abstract
Light chain (AL) amyloidosis is challenging to diagnose, and it should be considered a cardiac emergency. There have been a great deal of advances in the treatment of AL amyloidosis from initial descriptions of melphalan therapy until the recent approval of the first AL amyloidosis specific drug (daratumumab). Comprehension of the pathophysiology and biology of AL amyloidosis is crucial to understanding the major therapeutic targets in which light chain stability remains as a major key target of therapy. Organ dysfunction is a result not only from disruption of organ architecture but also direct cellular toxicity. Novel antiplasma cell agents for AL like isatuximab (anti CD-38 monoclonal antibody), belantamab (anti-BCMA monoclonal antibody), and elotuzumab (anti-SLAMF7 monoclonal antibody) are currently under investigation. Both diagnostic and therapeutic advances make the future of AL management bright while acknowledging the complexity of this patient population and focusing on a multidisciplinary approach.
Collapse
Affiliation(s)
- Mario Rodriguez
- Cardio-Oncology Center of Excellence, Cardiovascular Division, Washington University School of Medicine, St. Louis, Mo.
| | - Daniel Lenihan
- Cardio-Oncology Center of Excellence, Cardiovascular Division, Washington University School of Medicine, St. Louis, Mo
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| |
Collapse
|
14
|
Rosarda J, Baron KR, Nutsch K, Kline GM, Stanton C, Kelly JW, Bollong MJ, Wiseman RL. Metabolically Activated Proteostasis Regulators Protect against Glutamate Toxicity by Activating NRF2. ACS Chem Biol 2021; 16:2852-2863. [PMID: 34797633 PMCID: PMC8689639 DOI: 10.1021/acschembio.1c00810] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022]
Abstract
The extracellular accumulation of glutamate is a pathologic hallmark of numerous neurodegenerative diseases including ischemic stroke and Alzheimer's disease. At high extracellular concentrations, glutamate causes neuronal damage by promoting oxidative stress, which can lead to cellular death. This has led to significant interest in developing pharmacologic approaches to mitigate the oxidative toxicity caused by high levels of glutamate. Here, we show that the small molecule proteostasis regulator AA147 protects against glutamate-induced cell death in a neuronal-derived cell culture model. While originally developed as an activator of the activating transcription factor 6 (ATF6) arm of the unfolded protein response, this AA147-dependent protection against glutamate toxicity is primarily mediated through activation of the NRF2-regulated oxidative stress response. We demonstrate that AA147 activates NRF2 selectively in neuronal-derived cells through a mechanism involving metabolic activation to a reactive electrophile and covalent modification of KEAP1─a mechanism analogous to that involved in the AA147-dependent activation of ATF6. These results define the potential for AA147 to protect against glutamate-induced oxidative toxicity and highlight the potential for metabolically activated proteostasis regulators like AA147 to activate both protective ATF6 and NRF2 stress-responsive signaling pathways to mitigate oxidative damage associated with diverse neurologic diseases.
Collapse
Affiliation(s)
- Jessica
D. Rosarda
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
| | - Kelsey R. Baron
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
| | - Kayla Nutsch
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Gabriel M. Kline
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
- The
Skaggs Institute for Chemical Biology, The
Scripps Research Institute, La
Jolla, California 92037, United States
| | - Caroline Stanton
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jeffery W. Kelly
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
- The
Skaggs Institute for Chemical Biology, The
Scripps Research Institute, La
Jolla, California 92037, United States
| | - Michael J. Bollong
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - R. Luke Wiseman
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
| |
Collapse
|
15
|
Yan NL, Santos-Martins D, Nair R, Chu A, Wilson IA, Johnson KA, Forli S, Morgan GJ, Petrassi HM, Kelly JW. Discovery of Potent Coumarin-Based Kinetic Stabilizers of Amyloidogenic Immunoglobulin Light Chains Using Structure-Based Design. J Med Chem 2021; 64:6273-6299. [PMID: 33939422 DOI: 10.1021/acs.jmedchem.1c00339] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In immunoglobulin light-chain (LC) amyloidosis, transient unfolding or unfolding and proteolysis enable aggregation of LC proteins, causing potentially fatal organ damage. A drug that kinetically stabilizes LCs could suppress aggregation; however, LC sequences are variable and have no natural ligands, hindering drug development efforts. We previously identified high-throughput screening hits that bind to a site at the interface between the two variable domains of the LC homodimer. We hypothesized that extending the stabilizers beyond this initially characterized binding site would improve affinity. Here, using protease sensitivity assays, we identified stabilizers that can be divided into four substructures. Some stabilizers exhibit nanomolar EC50 values, a 3000-fold enhancement over the screening hits. Crystal structures reveal a key π-π stacking interaction with a conserved tyrosine residue that was not utilized by the screening hits. These data provide a foundation for developing LC stabilizers with improved binding selectivity and enhanced physicochemical properties.
Collapse
Affiliation(s)
- Nicholas L Yan
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Diogo Santos-Martins
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Reji Nair
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Alan Chu
- California Institute for Biomedical Research, 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kristen A Johnson
- California Institute for Biomedical Research, 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Gareth J Morgan
- Section of Hematology and Medical Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, United States.,The Amyloidosis Center, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - H Michael Petrassi
- California Institute for Biomedical Research, 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|