1
|
Kakavand G, Arabzadeh S, Mohebbi S, Saeedfar K, Abedini A, Mardani M. Impact of remdesivir treatment on factor VIII gene expression and hematological parameters in COVID-19 patients. Microb Pathog 2025; 204:107536. [PMID: 40187577 DOI: 10.1016/j.micpath.2025.107536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
The novel coronavirus, COVID-19, which was first identified in December 2019 rapidly spread worldwide and was declared a global pandemic. Beyond respiratory symptoms, COVID-19 often results in coagulation and vascular endothelium disorders, causing increased clotting and bleeding, which are closely linked to the acute phase of the infection. Factor VIII is a crucial protein in the blood coagulation cascade, and elevated FVIII levels have been linked to thrombotic events in COVID-19, highlighting the need to understand its behavior during treatment. Remdesivir is an antiviral drug that has shown promise in reducing recovery time and mortality rates in COVID-19 patients. This study aims to examine the changes in blood factors and the expression of the factor VIII gene in patients treated with Remdesivir. Blood samples were collected from 30 COVID-19 patients before and after Remdesivir treatment and from 20 healthy individuals. Patients with underlying diseases were excluded from the study. RNA was extracted from these samples, followed by cDNA synthesis. The expression of the factor VIII gene was analyzed using Real-Time PCR. The results indicated that blood factors such as Urea, ALK, AST, WBC, and CRP were elevated in the patient group compared to the control group. At the same time, FBS, Urea, ALK, AST, WBC, RDW, INR, and K levels increased in the Remdesivir treatment group (P < 0.001). Conversely, MCHC, RBC, and Ca levels decreased in both patient and treatment groups compared to the control group (P < 0.001). The expression of the FVIII gene was upregulated approaching 2 times in COVID-19 patients and 1.5-fold in the treatment group compared to the control group (P < 0.001). However, no significant changes were observed in FVIII expression before and after Remdesivir treatment. However, a positive correlation between RBC, FBS, and Urea in the patient group and a negative correlation between RDW and FVIII expression levels was observed. In the treatment group, FVIII expression level correlated negatively with Urea, P, and RDW. These findings suggest that elevated FVIII levels are associated with disease severity and excessive coagulation in COVID-19 patients. Additionally, Remdesivir does not appear to exacerbate the coagulation process.
Collapse
Affiliation(s)
- Ghazal Kakavand
- Department of Biology, Faculty of Basic Science, Ale Taha Institute of Higher Education, Tehran, Iran
| | - Somayeh Arabzadeh
- Department of Biology, Faculty of Basic Science, Ale Taha Institute of Higher Education, Tehran, Iran
| | - Sohameh Mohebbi
- Department of Biology, Faculty of Basic Science, Ale Taha Institute of Higher Education, Tehran, Iran.
| | - Kayvan Saeedfar
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Atefeh Abedini
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Mardani
- Shahid Beheshti University of Medical Sciences, Infectious Disease Department, Loghman Hakim Hospital, Tehran, Iran
| |
Collapse
|
2
|
Starikova EA, Mammedova JT, Rubinstein AA, Sokolov AV, Kudryavtsev IV. Activation of the Coagulation Cascade as a Universal Danger Sign. Curr Issues Mol Biol 2025; 47:108. [PMID: 39996829 PMCID: PMC11854423 DOI: 10.3390/cimb47020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/26/2025] Open
Abstract
Hemostasis is a mechanism that stops bleeding from an injured vessel, involves multiple interlinked steps, culminating in the formation of a "clot" sealing the damaged area. Moreover, it has long been recognized that inflammation also provokes the activation of the coagulation system. However, there has been an increasing amount of evidence revealing the immune function of the hemostasis system. This review collects and analyzes the results of the experimental studies and data from clinical observations confirming the inflammatory function of hemostasis. Here, we summarize the latest knowledge of the pathways in immune system activation under the influence of coagulation factors. The data analyzed allow us to consider the components of hemostasis as receptors recognizing «foreign» or damaged «self» or/and as «self» damage signals that initiate and reinforce inflammation and affect the direction of the adaptive immune response. To sum up, the findings collected in the review allow us to classify the coagulation factors, such as Damage-Associated Molecular Patterns that break down the conventional concepts of the coagulation system.
Collapse
Affiliation(s)
- Eleonora A. Starikova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Department of Microbiology and Virology, Institute of Medical Education Almazov National Medical Research Centre, 2 Akkuratova Street, 197341 Saint Petersburg, Russia
| | - Jennet T. Mammedova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Department of Molecular Biotechnology, Chemical and Biotechnology Faculty, Saint Petersburg State Institute of Technology, Moskovski Ave., 26, 190013 Saint Petersburg, Russia
| | - Artem A. Rubinstein
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
| | - Alexey V. Sokolov
- Laboratory of Systemic Virology, Department of Molecular Biology of Viruses, Smorodintsev Research Institute of Influenza, 15/17, Prof. Popova Str., 197376 Saint Petersburg, Russia;
| | - Igor V. Kudryavtsev
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| |
Collapse
|
3
|
Campello E, Zanetto A, Prokopenko Y, Ilich A, Moonla C, Bulato C, Toffanin S, Shalaby S, Cardin R, Barbiero G, Gavasso S, Key NS, Senzolo M, Simioni P. Activation of the Contact System and Intrinsic Pathway in Peripheral and Portal Venous Circulations in Liver Cirrhosis. Thromb Haemost 2025. [PMID: 39719151 DOI: 10.1055/a-2507-2449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
BACKGROUND Portal vein system-specific risk factors contributing to portal vein thrombosis in cirrhosis are poorly investigated. AIM This study aimed to quantify contact system and intrinsic pathway activation in the peripheral compared to portal venous blood in patients with decompensated cirrhosis. METHODS Adult patients with cirrhosis undergoing transjugular intrahepatic portosystemic shunt underwent simultaneous blood sampling from a peripheral vein and the portal vein. Complexes of serine proteases with their respective inhibitors were measured by ELISA to quantify contact system (PKa:C1-INH [plasma kallikrein:C1-esterase inhibitor] and FXIIa:C1-INH) and intrinsic pathway activation (FXIa:C1-INH, FXIa:α1at [α-1 antitrypsin], FXIa:AT [antithrombin], and FIXa:AT). RESULTS Twenty patients with cirrhosis (mean age 55 ± 7 years, M = 58%, Child-Pugh A/B/C 6/11/3) and 25 healthy controls (mean age 45 ± 12 years, M = 60%) were enrolled. The etiology of cirrhosis was primarily alcohol abuse, followed by chronic viral infection. Log-transformed peripheral levels of all the complexes were significantly higher in patients compared with controls. While levels of PKa:C1-INH, FXIIa:C1-INH, FXIa:C1-INH and FXIa:α1at were similar in peripheral and portal venous blood in cirrhotic patients, FXIa:AT and FIXa:AT levels were significantly higher in portal blood (p = 0.013 and 0.011, respectively). FXIa:C1-INH significantly correlated with both contact system complexes (FXIIa:C1-INH and PKa:C1-INH) and with FIX:AT. CONCLUSION Markers of contact system and intrinsic pathway activation in the systemic circulation were significantly higher in cirrhosis versus controls. Complexes of FXIa and FIXa with AT were significantly higher in the portal than in peripheral plasma in cirrhosis, possibly indicating a unique heparin-like effect in portal venous blood.
Collapse
Affiliation(s)
- Elena Campello
- Internal Medicine 1, Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Alberto Zanetto
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Yuriy Prokopenko
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina, Chapel Hill, United States
| | - Anton Ilich
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina, Chapel Hill, United States
| | - Chatphatai Moonla
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina, Chapel Hill, United States
| | - Cristiana Bulato
- Internal Medicine 1, Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Serena Toffanin
- Internal Medicine 1, Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Sarah Shalaby
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Romilda Cardin
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Giulio Barbiero
- Radiology Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Sabrina Gavasso
- Internal Medicine 1, Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| | - Nigel S Key
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina, Chapel Hill, United States
| | - Marco Senzolo
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Paolo Simioni
- Internal Medicine 1, Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, Padova, Italy
| |
Collapse
|
4
|
van Mourik DJM, Jansen VLBI, Coppens M, Middeldorp S, Cate HT, Büller HR, Spronk HMH, Nagy M, van Mens TE. Intrinsic pathway activation in patients with antiphospholipid syndrome and healthy controls. Res Pract Thromb Haemost 2025; 9:102694. [PMID: 40093963 PMCID: PMC11909749 DOI: 10.1016/j.rpth.2025.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/19/2024] [Accepted: 01/24/2025] [Indexed: 03/19/2025] Open
Abstract
Background Antiphospholipid syndrome (APS) is a thrombotic autoimmune disease. Activation of the intrinsic coagulation pathway contributes to inflammatory and cardiovascular diseases, but its role in APS is unknown. Increased release of neutrophil extracellular traps and reduced effectiveness of direct oral anticoagulants support the hypothesis of increased intrinsic pathway activation in patients with APS, which is relevant considering the ongoing development and clinical testing of intrinsic pathway inhibitors. Objectives To compare in vivo intrinsic pathway activation of patients with APS and healthy controls. Methods Patients with APS without recent thrombotic or obstetric events and healthy controls were investigated. ELISAs were used to measure activated coagulation factors in complex with the natural inhibitors antithrombin or C1-esterase inhibitor in plasma. The primary outcome of this study was factor (F)XII activation, which initiates the intrinsic pathway. Secondary outcomes included activation of downstream intrinsic coagulation FXI and FIX. Results Plasma of 73 patients with APS and 19 healthy controls showed no significant difference in activated FXII-inhibitor complexes. The concentrations of activated FXI and FIX and inhibitor complexes likewise did not differ between the groups. A subanalysis of patients with APS by anticoagulant use showed no difference for FXII and FXI activation. Conclusion Intrinsic pathway activation in patients with APS without recent thrombotic or obstetric events did not differ significantly compared with healthy controls.
Collapse
Affiliation(s)
- Dagmar J M van Mourik
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
- Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Valérie L B I Jansen
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development, Amsterdam, the Netherlands
| | - Michiel Coppens
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - Saskia Middeldorp
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hugo Ten Cate
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Harry R Büller
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - Henri M H Spronk
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Biochemistry, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Magdolna Nagy
- Department of Biochemistry, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Thijs E van Mens
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
- Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Amsterdam Reproduction and Development, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Berra S, Parolin D, Suffritti C, Folcia A, Zanichelli A, Gusso L, Cogliati C, Riva A, Gidaro A, Caccia S. Patterns of C1-Inhibitor Plasma Levels and Kinin-Kallikrein System Activation in Relation to COVID-19 Severity. Life (Basel) 2024; 14:1525. [PMID: 39768234 PMCID: PMC11679851 DOI: 10.3390/life14121525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Although more than four years have passed since the pandemic began, SARS-CoV-2 continues to be of concern. Therefore, research into the underlying mechanisms that contribute to the development of the disease, especially in more severe forms, remains a priority. Sustained activation of the complement (CS), contact (CAS), and fibrinolytic and kinin-kallikrein systems (KKS) has been shown to play a central role in the pathogenesis of the disease. Since the C1 esterase inhibitor (C1-INH) is a potent inhibitor of all these systems, its role in the disease has been investigated, but some issues remained unresolved. METHODS We evaluated the impact of C1-INH and KKS on disease progression in a cohort of 45 COVID-19 patients divided into groups according to disease severity. We measured plasma levels of total and functional C1-INH and its complexes with kallikrein (PKa), reflecting KKS activation and kallikrein spontaneous activity. RESULTS We observed increased total and functional plasma concentrations of C1-INH in COVID-19 patients. A direct correlation (positive Spearman's r) was observed between C1-INH levels, especially functional C1-INH, and the severity of the disease. Moreover, a significant reduction in the ratio of functional over total C1-INH was evident in patients exhibiting mild to intermediate clinical severity but not in critically ill patients. Accordingly, activation of the KKS, assessed as an increase in PKa:C1-INH complexes, was explicitly observed in the mild categories. CONCLUSIONS Our study's findings on the consumption of C1-INH and the activation of the KKS in the less severe stages of COVID-19 but not in the critical stage suggest a potential role for C1-INH in containing disease severity. These results underscore the importance of C1-INH in the early phases of the disease and its potential implications in COVID-19 progression and/or long-term effects.
Collapse
Affiliation(s)
- Silvia Berra
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (S.B.); (D.P.); (C.S.); (A.F.); (L.G.); (C.C.); (A.R.)
- Department of Internal Medicine, Ospedale Fatebenefratelli, 20121 Milan, Italy
| | - Debora Parolin
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (S.B.); (D.P.); (C.S.); (A.F.); (L.G.); (C.C.); (A.R.)
| | - Chiara Suffritti
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (S.B.); (D.P.); (C.S.); (A.F.); (L.G.); (C.C.); (A.R.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, 20122 Milan, Italy
| | - Andrea Folcia
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (S.B.); (D.P.); (C.S.); (A.F.); (L.G.); (C.C.); (A.R.)
- Division of Oncology, Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Andrea Zanichelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy;
- Operative Unit of Medicine, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Luca Gusso
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (S.B.); (D.P.); (C.S.); (A.F.); (L.G.); (C.C.); (A.R.)
- Internal Medicine Unit, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Chiara Cogliati
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (S.B.); (D.P.); (C.S.); (A.F.); (L.G.); (C.C.); (A.R.)
- Department of Internal Medicine, Ospedale Luigi Sacco, 20157 Milan, Italy
| | - Agostino Riva
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (S.B.); (D.P.); (C.S.); (A.F.); (L.G.); (C.C.); (A.R.)
- Department of Infectious Diseases, Ospedale Luigi Sacco, 20157 Milan, Italy
| | - Antonio Gidaro
- Department of Internal Medicine, Ospedale Luigi Sacco, 20157 Milan, Italy
| | - Sonia Caccia
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (S.B.); (D.P.); (C.S.); (A.F.); (L.G.); (C.C.); (A.R.)
| |
Collapse
|
6
|
Kearney KJ, Spronk HMH, Emsley J, Key NS, Philippou H. Plasma Kallikrein as a Forgotten Clotting Factor. Semin Thromb Hemost 2024; 50:953-961. [PMID: 37072020 DOI: 10.1055/s-0043-57034] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
For decades, it was considered that plasma kallikrein's (PKa) sole function within the coagulation cascade is the activation of factor (F)XII. Until recently, the two key known activators of FIX within the coagulation cascade were activated FXI(a) and the tissue factor-FVII(a) complex. Simultaneously, and using independent experimental approaches, three groups identified a new branch of the coagulation cascade, whereby PKa can directly activate FIX. These key studies identified that (1) FIX or FIXa can bind with high affinity to either prekallikrein (PK) or PKa; (2) in human plasma, PKa can dose dependently trigger thrombin generation and clot formation independent of FXI; (3) in FXI knockout murine models treated with intrinsic pathway agonists, PKa activity results in increased formation of FIXa:AT complexes, indicating direct activation of FIX by PKa in vivo. These findings suggest that there is both a canonical (FXIa-dependent) and non-canonical (PKa-dependent) pathway of FIX activation. These three recent studies are described within this review, alongside historical data that hinted at the existence of this novel role of PKa as a coagulation clotting factor. The implications of direct PKa cleavage of FIX remain to be determined physiologically, pathophysiologically, and in the context of next-generation anticoagulants in development.
Collapse
Affiliation(s)
- Katherine J Kearney
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Henri M H Spronk
- Laboratory for Clinical Thrombosis and Haemostasis, Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Jonas Emsley
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Nigel S Key
- Division of Hematology and UNC Blood Research Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Helen Philippou
- Department of Discovery and Translational Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
7
|
Papadakis DD, Politou M, Pittaras T, Stergiou IE, Koutsoukou A, Kompoti M, Vasileiadis I. The Interaction of Complement and Intrinsic Coagulation System: A Comparative Study between COVID-19 and Bacterial Sepsis Patients. J Clin Med 2024; 13:5603. [PMID: 39337090 PMCID: PMC11432620 DOI: 10.3390/jcm13185603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Through the past several years, a constant interaction has been implicated between complement and coagulation cascades. SARS-CoV-2 infection and bacterial sepsis are potent activators of both cascades. This study aims to compare the extent of complement and intrinsic coagulation pathway activation (and the interplay between them) among patients with COVID-19 and bacterial sepsis. Methods: Serum and plasma samples were collected from 25 ICU patients (11 patients with COVID-19 and 14 patients with bacterial sepsis) at two time points (on admission and either on improvement or deterioration). The activities of coagulation factors XI and XII and complement factors C3a and C5a were measured at both time points. Results: The activities of factors XI and XII were increased in both groups of patients and at both time points. However, there were no statistically significant differences between SARS-CoV-2 and bacterial sepsis patients. On the other hand, both C3a and C5a were significantly higher in the COVID-19 group on admission. This correlation was preserved on reassessment. Conclusions: Complement activation seems to be more enhanced in COVID-19 than bacterial sepsis. However, the lack of statistical significance in factors XI and XII indicates t the presence of additional pathways for complement activation in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Dimitrios-Dorotheos Papadakis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (D.-D.P.); (I.E.S.)
| | - Marianna Politou
- Haematology Laboratory-Blood Bank, Aretaieion Hospital, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (M.P.); (T.P.)
| | - Theodoros Pittaras
- Haematology Laboratory-Blood Bank, Aretaieion Hospital, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (M.P.); (T.P.)
| | - Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (D.-D.P.); (I.E.S.)
| | - Antonia Koutsoukou
- Intensive Care Unit, First Department of Respiratory Medicine, Sotiria Hospital, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Maria Kompoti
- Thriassio General Hospital of Eleusis, 190 18 Eleusis, Greece;
| | - Ioannis Vasileiadis
- 1st Critical Care Department, Evangelismos Hospital, National and Kapodistrian University of Athens, 115 21 Athens, Greece
| |
Collapse
|
8
|
Lin L, Chen L, Chen G, Lu C, Hong FF. Effects of heterogeneous surface characteristics on hemocompatibility and cytocompatibility of bacterial nanocellulose. Carbohydr Polym 2024; 335:122063. [PMID: 38616074 DOI: 10.1016/j.carbpol.2024.122063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/16/2024]
Abstract
The surface properties of cardiovascular biomaterials play a critical role in their biological responses. Although bacterial nanocellulose (BNC) materials have exhibited potential applications in cardiovascular implants, the impact of their surface characteristics on biocompatibility has rarely been studied. This study investigated the mechanism for the biocompatibility induced by the physicochemical properties of both sides of BNC. With greater wettability and smoothness, the upper BNC surface reduced protein adsorption by 25 % compared with the lower surface. This prolonged the plasma re-calcification time by 14 % in venous blood. Further, compared with the lower BNC surface, the upper BNC surface prolonged the activated partial thromboplastin time by 5 % and 4 % in arterial and venous blood, respectively. Moreover, the lower BNC surface with lesser rigidity, higher roughness, and sparser fiber structure promoted cell adhesion. The lower BNC surface enhanced the proliferation rate of L929 and HUVECs cells by 15 % and 13 %, respectively, compared with the upper BNC surface. With lesser stiffness, the lower BNC surface upregulated the expressions of CD31 and eNOS while down-regulating the ICAM-1 expression - This promoted the proliferation of HUVECs. The findings of this study will provide valuable insights into the design of blood contact materials and cardiovascular implants.
Collapse
Affiliation(s)
- Lulu Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, China; College of Biological Science and Medical Engineering, Donghua University, Shanghai, China; National Advanced Functional Fiber Innovation Center, Wu Jiang, Su Zhou, China; Scientific Research Base of Bacterial Nanofiber Manufacturing and Composite Technology, China Textile Engineering Society, China
| | - Lin Chen
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China; Scientific Research Base of Bacterial Nanofiber Manufacturing and Composite Technology, China Textile Engineering Society, China
| | - Genqiang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, China; College of Biological Science and Medical Engineering, Donghua University, Shanghai, China.
| | - Changrui Lu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Feng F Hong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, China; College of Biological Science and Medical Engineering, Donghua University, Shanghai, China; National Advanced Functional Fiber Innovation Center, Wu Jiang, Su Zhou, China; Scientific Research Base of Bacterial Nanofiber Manufacturing and Composite Technology, China Textile Engineering Society, China.
| |
Collapse
|
9
|
Barbosa MS, de Lima F, Peachazepi Moraes CR, Borba-Junior IT, Huber SC, Santos I, Bombassaro B, Dertkigil SSJ, Ilich A, Key NS, Annichino-Bizzacchi JM, Orsi FA, Mansour E, Velloso LA, De Paula EV. Angiopoietin2 is associated with coagulation activation and tissue factor expression in extracellular vesicles in COVID-19. Front Med (Lausanne) 2024; 11:1367544. [PMID: 38803346 PMCID: PMC11128612 DOI: 10.3389/fmed.2024.1367544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024] Open
Abstract
Coagulation activation in immunothrombosis involves various pathways distinct from classical hemostasis, offering potential therapeutic targets to control inflammation-induced hypercoagulability while potentially sparing hemostasis. The Angiopoietin/Tie2 pathway, previously linked to embryonic angiogenesis and sepsis-related endothelial barrier regulation, was recently associated with coagulation activation in sepsis and COVID-19. This study explores the connection between key mediators of the Angiopoietin/Tie2 pathway and coagulation activation. The study included COVID-19 patients with hypoxia and healthy controls. Blood samples were processed to obtain platelet-free plasma, and frozen until analysis. Extracellular vesicles (EVs) in plasma were characterized and quantified using flow cytometry, and their tissue factor (TF) procoagulant activity was measured using a kinetic chromogenic method. Several markers of hemostasis were assessed. Levels of ANGPT1, ANGPT2, and soluble Tie2 correlated with markers of coagulation and platelet activation. EVs from platelets and endothelial cells were increased in COVID-19 patients, and a significant increase in TF+ EVs derived from endothelial cells was observed. In addition, ANGPT2 levels were associated with TF expression and activity in EVs. In conclusion, we provide further evidence for the involvement of the Angiopoietin/Tie2 pathway in the coagulopathy of COVID-19 mediated in part by release of EVs as a potential source of TF activity.
Collapse
Affiliation(s)
- Mayck Silva Barbosa
- School of Medical Sciences, Universidade Estadual de Campinas, Campinas, Brazil
| | - Franciele de Lima
- School of Medical Sciences, Universidade Estadual de Campinas, Campinas, Brazil
| | | | | | - Stephany Cares Huber
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas, Campinas, Brazil
| | - Irene Santos
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas, Campinas, Brazil
| | - Bruna Bombassaro
- Obesity and Comorbidities Research Center, Universidade Estadual de Campinas, Campinas, Brazil
| | | | - Anton Ilich
- Blood Research Center, University of North Carolina, Chapel Hill, NC, United States
- Division of Hematology, Department of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Nigel S. Key
- Blood Research Center, University of North Carolina, Chapel Hill, NC, United States
- Division of Hematology, Department of Medicine, University of North Carolina, Chapel Hill, NC, United States
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Joyce M. Annichino-Bizzacchi
- School of Medical Sciences, Universidade Estadual de Campinas, Campinas, Brazil
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas, Campinas, Brazil
| | - Fernanda Andrade Orsi
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas, Campinas, Brazil
| | - Eli Mansour
- School of Medical Sciences, Universidade Estadual de Campinas, Campinas, Brazil
| | - Licio A. Velloso
- School of Medical Sciences, Universidade Estadual de Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center, Universidade Estadual de Campinas, Campinas, Brazil
| | - Erich Vinicius De Paula
- School of Medical Sciences, Universidade Estadual de Campinas, Campinas, Brazil
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas, Campinas, Brazil
| |
Collapse
|
10
|
Hartmann JA, Cardoso MR, Talarico MCR, Kenney DJ, Leone MR, Reese DC, Turcinovic J, O'Connell AK, Gertje HP, Marino C, Ojeda PE, De Paula EV, Orsi FA, Velloso LA, Cafiero TR, Connor JH, Ploss A, Hoelzemer A, Carrington M, Barczak AK, Crossland NA, Douam F, Boucau J, Garcia-Beltran WF. Evasion of NKG2D-mediated cytotoxic immunity by sarbecoviruses. Cell 2024; 187:2393-2410.e14. [PMID: 38653235 PMCID: PMC11088510 DOI: 10.1016/j.cell.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/30/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
SARS-CoV-2 and other sarbecoviruses continue to threaten humanity, highlighting the need to characterize common mechanisms of viral immune evasion for pandemic preparedness. Cytotoxic lymphocytes are vital for antiviral immunity and express NKG2D, an activating receptor conserved among mammals that recognizes infection-induced stress ligands (e.g., MIC-A/B). We found that SARS-CoV-2 evades NKG2D recognition by surface downregulation of MIC-A/B via shedding, observed in human lung tissue and COVID-19 patient serum. Systematic testing of SARS-CoV-2 proteins revealed that ORF6, an accessory protein uniquely conserved among sarbecoviruses, was responsible for MIC-A/B downregulation via shedding. Further investigation demonstrated that natural killer (NK) cells efficiently killed SARS-CoV-2-infected cells and limited viral spread. However, inhibition of MIC-A/B shedding with a monoclonal antibody, 7C6, further enhanced NK-cell activity toward SARS-CoV-2-infected cells. Our findings unveil a strategy employed by SARS-CoV-2 to evade cytotoxic immunity, identify the culprit immunevasin shared among sarbecoviruses, and suggest a potential novel antiviral immunotherapy.
Collapse
Affiliation(s)
- Jordan A Hartmann
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | | | - Devin J Kenney
- Department of Virology, Immunology, and Microbiology, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Madison R Leone
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Dagny C Reese
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jacquelyn Turcinovic
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Aoife K O'Connell
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Hans P Gertje
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Caitlin Marino
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Pedro E Ojeda
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Erich V De Paula
- School of Medical Sciences, University of Campinas, Campinas, SP, Brazil; Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil
| | - Fernanda A Orsi
- School of Medical Sciences, University of Campinas, Campinas, SP, Brazil; Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil
| | - Licio Augusto Velloso
- School of Medical Sciences, University of Campinas, Campinas, SP, Brazil; Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
| | - Thomas R Cafiero
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - John H Connor
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Angelique Hoelzemer
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Institute for Infection and Vaccine Development (IIRVD), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Research Department Virus Immunology, Leibniz Institute for Virology, Hamburg, Germany
| | - Mary Carrington
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Amy K Barczak
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nicholas A Crossland
- Department of Virology, Immunology, and Microbiology, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Florian Douam
- Department of Virology, Immunology, and Microbiology, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Julie Boucau
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
| | - Wilfredo F Garcia-Beltran
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
11
|
Barion BG, Rocha TRFD, Ho YL, Mazetto Fonseca BDM, Okazaki E, Rothschild C, Stefanello B, Rocha VG, Villaça PR, Orsi FA. Extracellular vesicles are a late marker of inflammation, hypercoagulability and COVID-19 severity. Hematol Transfus Cell Ther 2024; 46:176-185. [PMID: 38341321 DOI: 10.1016/j.htct.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/27/2023] [Accepted: 12/08/2023] [Indexed: 02/12/2024] Open
Abstract
Exacerbated inflammation and coagulation are a hallmark of COVID-19 severity. Extracellular vesicles (EVs) are intercellular transmitters involved in inflammatory conditions, which are capable of triggering prothrombotic mechanisms. Since the release of EVs is potentially associated with COVID-19-induced coagulopathy, the aim of this study was to evaluate changes in inflammation- and hypercoagulability-related EVs during the first month after symptom onset and to determine whether they are associated with disease severity. Blood samples of patients with mild or severe forms of the disease were collected on three occasions: in the second, third and fourth weeks after symptom onset for the quantification by flow cytometry of CD41A (platelet glycoprotein IIb/IIIa), CD162 (PSGL-1), CD31 (PECAM-1) and CD142 cells (tissue factor). Analysis of variance (ANOVA) with repeated measures, Kruskal-Wallis and correlation tests were used. Eighty-five patients were enrolled, 71% of whom had mild disease. Seventeen uninfected individuals served as controls. Compared to controls, both mild and severe COVID-19 were associated with higher EV-CD31+, EV-CD41+ and EV-CD142+ levels. All EV levels were higher in severe than in mild COVID-19 only after the third week from symptom onset, as opposed to C-reactive protein and D-dimer levels, which were higher in severe than in mild COVID-19 earlier during disease progression. EV levels were also associated with C-reactive protein and D-dimer levels only after the third week of symptoms. In conclusion, EVs expressing CD41A, CD31, TF, and CD162 appear as late markers of COVID-19 severity. This finding may contribute to the understanding of the pathogenesis of acute and possibly long COVID-19.
Collapse
Affiliation(s)
| | | | - Yeh-Li Ho
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São (HCFMUSP), Sao Paulo, Brazil
| | | | - Erica Okazaki
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São (HCFMUSP), Sao Paulo, Brazil
| | - Cynthia Rothschild
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São (HCFMUSP), Sao Paulo, Brazil
| | - Bianca Stefanello
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São (HCFMUSP), Sao Paulo, Brazil
| | - Vanderson Geraldo Rocha
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São (HCFMUSP), Sao Paulo, Brazil
| | - Paula Ribeiro Villaça
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São (HCFMUSP), Sao Paulo, Brazil
| | - Fernanda A Orsi
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São (HCFMUSP), Sao Paulo, Brazil; Department of Pathology, School of Medical Sciences, Universidade de Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
12
|
Valencia I, Lumpuy-Castillo J, Magalhaes G, Sánchez-Ferrer CF, Lorenzo Ó, Peiró C. Mechanisms of endothelial activation, hypercoagulation and thrombosis in COVID-19: a link with diabetes mellitus. Cardiovasc Diabetol 2024; 23:75. [PMID: 38378550 PMCID: PMC10880237 DOI: 10.1186/s12933-023-02097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/14/2023] [Indexed: 02/22/2024] Open
Abstract
Early since the onset of the COVID-19 pandemic, the medical and scientific community were aware of extra respiratory actions of SARS-CoV-2 infection. Endothelitis, hypercoagulation, and hypofibrinolysis were identified in COVID-19 patients as subsequent responses of endothelial dysfunction. Activation of the endothelial barrier may increase the severity of the disease and contribute to long-COVID syndrome and post-COVID sequelae. Besides, it may cause alterations in primary, secondary, and tertiary hemostasis. Importantly, these responses have been highly decisive in the evolution of infected patients also diagnosed with diabetes mellitus (DM), who showed previous endothelial dysfunction. In this review, we provide an overview of the potential triggers of endothelial activation related to COVID-19 and COVID-19 under diabetic milieu. Several mechanisms are induced by both the viral particle itself and by the subsequent immune-defensive response (i.e., NF-κB/NLRP3 inflammasome pathway, vasoactive peptides, cytokine storm, NETosis, activation of the complement system). Alterations in coagulation mediators such as factor VIII, fibrin, tissue factor, the von Willebrand factor: ADAMST-13 ratio, and the kallikrein-kinin or plasminogen-plasmin systems have been reported. Moreover, an imbalance of thrombotic and thrombolytic (tPA, PAI-I, fibrinogen) factors favors hypercoagulation and hypofibrinolysis. In the context of DM, these mechanisms can be exacerbated leading to higher loss of hemostasis. However, a series of therapeutic strategies targeting the activated endothelium such as specific antibodies or inhibitors against thrombin, key cytokines, factor X, complement system, the kallikrein-kinin system or NETosis, might represent new opportunities to address this hypercoagulable state present in COVID-19 and DM. Antidiabetics may also ameliorate endothelial dysfunction, inflammation, and platelet aggregation. By improving the microvascular pathology in COVID-19 and post-COVID subjects, the associated comorbidities and the risk of mortality could be reduced.
Collapse
Affiliation(s)
- Inés Valencia
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, IIS Hospital Universitario de La Princesa, 28009, Madrid, Spain.
| | - Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain
- Spanish Biomedical Research Centre On Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain
| | - Giselle Magalhaes
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Carlos F Sánchez-Ferrer
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM), IdiPAZ, Madrid, Spain
| | - Óscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain.
- Spanish Biomedical Research Centre On Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain.
| | - Concepción Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain.
- Vascular Pharmacology and Metabolism (FARMAVASM), IdiPAZ, Madrid, Spain.
| |
Collapse
|
13
|
Coelho SVA, Augusto FM, de Arruda LB. Potential Pathways and Pathophysiological Implications of Viral Infection-Driven Activation of Kallikrein-Kinin System (KKS). Viruses 2024; 16:245. [PMID: 38400022 PMCID: PMC10892958 DOI: 10.3390/v16020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Microcirculatory and coagulation disturbances commonly occur as pathological manifestations of systemic viral infections. Research exploring the role of the kallikrein-kinin system (KKS) in flavivirus infections has recently linked microvascular dysfunctions to bradykinin (BK)-induced signaling of B2R, a G protein-coupled receptor (GPCR) constitutively expressed by endothelial cells. The relevance of KKS activation as an innate response to viral infections has gained increasing attention, particularly after the reports regarding thrombogenic events during COVID-19. BK receptor (B2R and B1R) signal transduction results in vascular permeability, edema formation, angiogenesis, and pain. Recent findings unveiling the role of KKS in viral pathogenesis include evidence of increased activation of KKS with elevated levels of BK and its metabolites in both intravascular and tissue milieu, as well as reports demonstrating that virus replication stimulates BKR expression. In this review, we will discuss the mechanisms triggered by virus replication and by virus-induced inflammatory responses that may stimulate KKS. We also explore how KKS activation and BK signaling may impact virus pathogenesis and further discuss the potential therapeutic application of BKR antagonists in the treatment of hemorrhagic and respiratory diseases.
Collapse
Affiliation(s)
- Sharton Vinícius Antunes Coelho
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | | | - Luciana Barros de Arruda
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
14
|
He S, Blombäck M, Wallén H. COVID-19: Not a thrombotic disease but a thromboinflammatory disease. Ups J Med Sci 2024; 129:9863. [PMID: 38327640 PMCID: PMC10845889 DOI: 10.48101/ujms.v129.9863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/17/2023] [Accepted: 10/21/2023] [Indexed: 02/09/2024] Open
Abstract
While Coronavirus Disease in 2019 (COVID-19) may no longer be classified as a global public health emergency, it still poses a significant risk at least due to its association with thrombotic events. This study aims to reaffirm our previous hypothesis that COVID-19 is fundamentally a thrombotic disease. To accomplish this, we have undertaken an extensive literature review focused on assessing the comprehensive impact of COVID-19 on the entire hemostatic system. Our analysis revealed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection significantly enhances the initiation of thrombin generation. However, it is noteworthy that the thrombin generation may be modulated by specific anticoagulants present in patients' plasma. Consequently, higher levels of fibrinogen appear to play a more pivotal role in promoting coagulation in COVID-19, as opposed to thrombin generation. Furthermore, the viral infection can stimulate platelet activation either through widespread dissemination from the lungs to other organs or localized effects on platelets themselves. An imbalance between Von Willebrand Factor (VWF) and ADAMTS-13 also contributes to an exaggerated platelet response in this disease, in addition to elevated D-dimer levels, coupled with a significant increase in fibrin viscoelasticity. This paradoxical phenotype has been identified as 'fibrinolysis shutdown'. To clarify the pathogenesis underlying these hemostatic disorders in COVID-19, we also examined published data, tracing the reaction process of relevant proteins and cells, from ACE2-dependent viral invasion, through induced tissue inflammation, endothelial injury, and innate immune responses, to occurrence of thrombotic events. We therefrom understand that COVID-19 should no longer be viewed as a thrombotic disease solely based on abnormalities in fibrin clot formation and proteolysis. Instead, it should be regarded as a thromboinflammatory disorder, incorporating both classical elements of cellular inflammation and their intricate interactions with the specific coagulopathy.
Collapse
Affiliation(s)
- Shu He
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
- Division of Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Margareta Blombäck
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
- Division of Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Wallén
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Misenheimer TM, Lasarev MR, Kumfer KT, Sheehan JP, Schwartz BS. A novel factor IXa-specific enzyme-linked immunosorbent assay detects factor IXa in human plasma. Res Pract Thromb Haemost 2024; 8:102338. [PMID: 38433974 PMCID: PMC10907220 DOI: 10.1016/j.rpth.2024.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 03/05/2024] Open
Abstract
Background Factor (F)IXa activity has been detected in human plasma and may impact thrombotic risk. Current FIXa activity assays are complex and cumbersome. Objectives To develop a reproducible enzyme-linked immunosorbent assay (ELISA) using a novel monoclonal antibody that detects total FIXa in human plasma. Methods A monoclonal antibody was raised against the new N-terminus exposed upon activation of FIX to FIXa by cleavage after R226. This antibody is specific for FIXa protease and does not recognize FIX zymogen or FIXα. The antibody was used to develop a FIXa-specific ELISA capable of quantifying total FIXa (free FIXa and FIXa-antithrombin complex) in human plasma. Total FIXa quantified using the ELISA was compared to that of FIXa-antithrombin quantified using modifications of a previously described ELISA. Results The FIXa-specific ELISA was reproducible and quantified total FIXa in human plasma. Total FIXa levels correlated with FIXa-antithrombin levels. Conclusion A monoclonal antibody was developed that specifically detects human FIXa protease. A FIXa-specific ELISA using the new antibody is capable of reproducibly measuring total FIXa in human plasma (both free FIXa and FIXa-antithrombin). This assay should facilitate the evaluation of total FIXa levels in a variety of clinical circumstances.
Collapse
Affiliation(s)
| | - Michael R. Lasarev
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kraig T. Kumfer
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - John P. Sheehan
- Department of Medicine/Hematology-Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
- University of Wisconsin-Madison Carbone Cancer Center, Madison, Wisconsin, USA
| | - Bradford S. Schwartz
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Departments of Medicine/Hematology-Oncology, and Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
16
|
Bosch FTM, Campello E, Mulder FI, Ilich A, Henderson MW, Prokopenko Y, Gavasso S, Pea A, Salvia R, Wilmink HW, Otten HM, van Es N, Key NS, Büller HR, Simioni P. Contact system and intrinsic pathway activation in patients with advanced pancreatic cancer: a prospective cohort study. J Thromb Haemost 2023; 21:2863-2872. [PMID: 37331518 DOI: 10.1016/j.jtha.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/10/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Despite high risk of venous thromboembolism (VTE) in patients with pancreatic cancer, there are little data on contact system activation in these patients. OBJECTIVES To quantify contact system and intrinsic pathway activation and subsequent VTE risk in patients with pancreatic cancer. METHODS Patients with advanced pancreatic cancer were compared with controls. Blood was drawn at baseline and patients were followed for 6 months. Complexes of proteases with their natural inhibitors, C1-esterase inhibitor (C1-INH), antithrombin (AT), or alpha-1 antitrypsin (α1at), were measured for complexes containing kallikrein (PKa:C1-INH), factor (F)XIIa (FXIIa:C1-INH), and FXIa (FXIa:C1-INH, FXIa:AT, FXIa:α1at). The association of cancer with complex levels was assessed in a linear regression model, adjusted for age, sex, and body mass index. In a competing risk regression model, we assessed associations between complex levels and VTE. RESULTS One hundred nine patients with pancreatic cancer and 22 controls were included. The mean age was 66 years (SD, 8.4) in the cancer cohort and 52 years (SD, 10.1) in controls. In the cancer cohort, 18 (16.7%) patients developed VTE during follow-up. In the multivariable regression model, pancreatic cancer was associated with increased complexes of PKa:C1-INH (P < .001), FXIa:C1-INH (P < .001), and FXIa:AT (P < .001). High FXIa:α1at (subdistribution hazard ratio, 1.48 per log increase; 95% CI, 1.02-2.16) and FXIa:AT (subdistribution hazard ratio, 2.78 highest vs lower quartiles; 95% CI, 1.10-7.00) were associated with VTE. CONCLUSION Complexes of proteases with their natural inhibitors were elevated in patients with cancer. These data suggest that the contact system and intrinsic pathway activation are increased in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Floris T M Bosch
- Department of Internal Medicine, Tergooi Medical Center, Hilversum, The Netherlands; Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands.
| | - Elena Campello
- General Internal Medicine and Thrombotic and Haemorrhagic Disease Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Frits I Mulder
- Department of Internal Medicine, Tergooi Medical Center, Hilversum, The Netherlands; Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Anton Ilich
- Univeristy of North Carolina Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Medicine, Division of Hematology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael W Henderson
- Univeristy of North Carolina Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Medicine, Division of Hematology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yuriy Prokopenko
- Univeristy of North Carolina Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Medicine, Division of Hematology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sabrina Gavasso
- General Internal Medicine and Thrombotic and Haemorrhagic Disease Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Antonio Pea
- Unit of General and Pancreatic Surgery, G.B. Rossi Hospital, Verona, Italy
| | - Roberto Salvia
- Unit of General and Pancreatic Surgery, G.B. Rossi Hospital, Verona, Italy
| | - Hanneke W Wilmink
- Department of Medical Oncology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Hans-Martin Otten
- Deptartment of Internal Medicine, Meander Medisch Centrum, Amersfoort, The Netherlands
| | - Nick van Es
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Nigel S Key
- Univeristy of North Carolina Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Medicine, Division of Hematology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Harry R Büller
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Paolo Simioni
- General Internal Medicine and Thrombotic and Haemorrhagic Disease Unit, Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
17
|
Motta G, Juliano L, Chagas JR. Human plasma kallikrein: roles in coagulation, fibrinolysis, inflammation pathways, and beyond. Front Physiol 2023; 14:1188816. [PMID: 37711466 PMCID: PMC10499198 DOI: 10.3389/fphys.2023.1188816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
Human plasma kallikrein (PKa) is obtained by activating its precursor, prekallikrein (PK), historically named the Fletcher factor. Human PKa and tissue kallikreins are serine proteases from the same family, having high- and low-molecular weight kininogens (HKs and LKs) as substrates, releasing bradykinin (Bk) and Lys-bradykinin (Lys-Bk), respectively. This review presents a brief history of human PKa with details and recent observations of its evolution among the vertebrate coagulation proteins, including the relations with Factor XI. We explored the role of Factor XII in activating the plasma kallikrein-kinin system (KKS), the mechanism of activity and control in the KKS, and the function of HK on contact activation proteins on cell membranes. The role of human PKa in cell biology regarding the contact system and KSS, particularly the endothelial cells, and neutrophils, in inflammatory processes and infectious diseases, was also approached. We examined the natural plasma protein inhibitors, including a detailed survey of human PKa inhibitors' development and their potential market.
Collapse
Affiliation(s)
- Guacyara Motta
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luiz Juliano
- Departamento de Biofisica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jair Ribeiro Chagas
- Departamento de Biofisica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Borba-Junior IT, Lima F, Sidarta-Oliveira D, Moraes CRP, Annichino-Bizzacchi JM, Bombassaro B, Palma AC, Costa FTM, Moretti ML, Mansour E, Velloso LA, Orsi FA, De Paula EV. Podoplanin and CLEC-2 levels in patients with COVID-19. Res Pract Thromb Haemost 2023; 7:100282. [PMID: 37361399 PMCID: PMC10284445 DOI: 10.1016/j.rpth.2023.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Podoplanin (PDPN gene) and CLEC-2 are involved in inflammatory hemostasis and have also been related with the pathogenesis of thrombosis. Emerging evidence also suggest that podoplanin can exert protective effects in sepsis and in acute lung injury. In lungs, podoplanin is co-expressed with ACE2, which is the main entry receptor for SARS-CoV-2. Aim To explore the role of podoplanin and CLEC-2 in COVID-19. Methods Circulating levels of podoplanin and CLEC-2 were measured in 30 consecutive COVID-19 patients admitted due to hypoxia, and in 30 age- and sex-matched healthy individuals. Podoplanin expression in lungs from patients who died of COVID-19 was obtained from two independent public databases of single-cell RNAseq from which data from control lungs were also available. Results Circulating podoplanin levels were lower in COVID-19, while no difference was observed in CLEC-2 levels. Podoplanin levels were significantly inversely correlated with markers of coagulation, fibrinolysis and innate immunity. scRNAseq data confirmed that PDPN is co-expressed with ACE2 in pneumocytes, and showed that PDPN expression is lower in this cell compartment in lungs from patients with COVID-19. Conclusion Circulating levels of podoplanin are lower in COVID-19, and the magnitude of this reduction is correlated with hemostasis activation. We also demonstrate the downregulation of PDPN at the transcription level in pneumocytes. Together, our exploratory study questions whether an acquired podoplanin deficiency could be involved in the pathogenesis of acute lung injury in COVID-19, and warrant additional studies to confirm and refine these findings.
Collapse
Affiliation(s)
| | - Franciele Lima
- School of Medical Sciences, University of Campinas, Campinas, Brazil
| | | | | | - Joyce M. Annichino-Bizzacchi
- School of Medical Sciences, University of Campinas, Campinas, Brazil
- Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
| | - Bruna Bombassaro
- School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - André C. Palma
- School of Medical Sciences, University of Campinas, Campinas, Brazil
| | | | | | - Eli Mansour
- School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Lício Augusto Velloso
- School of Medical Sciences, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Center, University of Campinas, Campinas, Brazil
| | - Fernanda Andrade Orsi
- School of Medical Sciences, University of Campinas, Campinas, Brazil
- Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
| | - Erich Vinicius De Paula
- School of Medical Sciences, University of Campinas, Campinas, Brazil
- Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
| |
Collapse
|
19
|
Sparkenbaugh EM, Henderson MW, Miller-Awe M, Abrams C, Ilich A, Trebak F, Ramadas N, Vital S, Bohinc D, Bane KL, Chen C, Patel M, Wallisch M, Renné T, Gruber A, Cooley B, Gailani D, Kasztan M, Vercellotti GM, Belcher JD, Gavins FE, Stavrou EX, Key NS, Pawlinski R. Factor XII contributes to thrombotic complications and vaso-occlusion in sickle cell disease. Blood 2023; 141:1871-1883. [PMID: 36706361 PMCID: PMC10122107 DOI: 10.1182/blood.2022017074] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/28/2023] Open
Abstract
A hypercoagulable state, chronic inflammation, and increased risk of venous thrombosis and stroke are prominent features in patients with sickle cell disease (SCD). Coagulation factor XII (FXII) triggers activation of the contact system that is known to be involved in both thrombosis and inflammation, but not in physiological hemostasis. Therefore, we investigated whether FXII contributes to the prothrombotic and inflammatory complications associated with SCD. We found that when compared with healthy controls, patients with SCD exhibit increased circulating biomarkers of FXII activation that are associated with increased activation of the contact pathway. We also found that FXII, but not tissue factor, contributes to enhanced thrombin generation and systemic inflammation observed in sickle cell mice challenged with tumor necrosis factor α. In addition, FXII inhibition significantly reduced experimental venous thrombosis, congestion, and microvascular stasis in a mouse model of SCD. Moreover, inhibition of FXII attenuated brain damage and reduced neutrophil adhesion to the brain vasculature of sickle cell mice after ischemia/reperfusion induced by transient middle cerebral artery occlusion. Finally, we found higher FXII, urokinase plasminogen activator receptor, and αMβ2 integrin expression in neutrophils of patients with SCD compared with healthy controls. Our data indicate that targeting FXII effectively reduces experimental thromboinflammation and vascular complications in a mouse model of SCD, suggesting that FXII inhibition may provide a safe approach for interference with inflammation, thrombotic complications, and vaso-occlusion in patients with SCD.
Collapse
Affiliation(s)
- Erica M. Sparkenbaugh
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Michael W. Henderson
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Megan Miller-Awe
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Christina Abrams
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Anton Ilich
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Fatima Trebak
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Nirupama Ramadas
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Shantel Vital
- Louisiana State University Health Sciences Center, Shreveport, LA
| | - Dillon Bohinc
- Hematology and Oncology Division, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Kara L. Bane
- Hematology and Oncology Division, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Chunsheng Chen
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Margi Patel
- Division of Hematology-Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | | | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Brian Cooley
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Malgorzata Kasztan
- Division of Hematology-Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | - Gregory M. Vercellotti
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - John D. Belcher
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Felicity E. Gavins
- Department of Life Sciences, Centre for Inflammation Research and Translational Medicine, Brunel University London, London, United Kingdom
| | - Evi X. Stavrou
- Hematology and Oncology Division, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
- Department of Medicine, Section of Hematology-Oncology, Louis Stokes Veterans Administration Medical Center, Cleveland, OH
| | - Nigel S. Key
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Rafal Pawlinski
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
20
|
Dong W, Wang J, Tian L, Zhang J, Settles EW, Qin C, Steinken-Kollath DR, Itogawa AN, Celona KR, Yi J, Bryant M, Mead H, Jaramillo SA, Lu H, Li A, Zumwalt RE, Dadwal S, Feng P, Yuan W, Whelan SPJ, Keim PS, Barker BM, Caligiuri MA, Yu J. Factor Xa cleaves SARS-CoV-2 spike protein to block viral entry and infection. Nat Commun 2023; 14:1936. [PMID: 37024459 PMCID: PMC10079155 DOI: 10.1038/s41467-023-37336-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Serine proteases (SP), including furin, trypsin, and TMPRSS2 cleave the SARS-CoV-2 spike (S) protein, enabling the virus to enter cells. Here, we show that factor (F) Xa, an SP involved in blood coagulation, is upregulated in COVID-19 patients. In contrast to other SPs, FXa exerts antiviral activity. Mechanistically, FXa cleaves S protein, preventing its binding to ACE2, and thus blocking viral entry and infection. However, FXa is less effective against variants carrying the D614G mutation common in all pandemic variants. The anticoagulant rivaroxaban, a direct FXa inhibitor, inhibits FXa-mediated S protein cleavage and facilitates viral entry, whereas the indirect FXa inhibitor fondaparinux does not. In the lethal SARS-CoV-2 K18-hACE2 model, FXa prolongs survival yet its combination with rivaroxaban but not fondaparinux abrogates that protection. These results identify both a previously unknown function for FXa and an associated antiviral host defense mechanism against SARS-CoV-2 and suggest caution in considering direct FXa inhibitors for preventing or treating thrombotic complications in COVID-19 patients.
Collapse
Affiliation(s)
- Wenjuan Dong
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Jing Wang
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Lei Tian
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Erik W Settles
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Chao Qin
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | | | - Ashley N Itogawa
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Kimberly R Celona
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Jinhee Yi
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Mitchell Bryant
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Heather Mead
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Sierra A Jaramillo
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Hongjia Lu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Aimin Li
- Pathology Core of Shared Resources Core, Beckman Research Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Ross E Zumwalt
- Department of Pathology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Sanjeet Dadwal
- Division of Infectious Diseases, Department of Medicine, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Paul S Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Bridget Marie Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Michael A Caligiuri
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
- City of Hope Comprehensive Cancer Center, Los Angeles, CA, 91010, USA.
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
- City of Hope Comprehensive Cancer Center, Los Angeles, CA, 91010, USA.
- Department of Immuno-Oncology, City of Hope, Los Angeles, CA, 91010, USA.
| |
Collapse
|
21
|
de Lima F, Moraes CRP, Barbosa MS, Bombassaro B, Palma AC, Dertkigil SSJ, Moretti ML, Orsi FA, Annichino-Bizzacchi JM, Mansour E, Velloso LA, De Paula EV. Association of heme-oxygenase 1, hemopexin, and heme levels with markers of disease severity in COVID-19. Exp Biol Med (Maywood) 2023; 248:309-316. [PMID: 36740756 PMCID: PMC9902789 DOI: 10.1177/15353702221139185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heme-oxygenase 1 (HO-1) is an enzyme with well-known anti-inflammatory and antioxidant properties, whose levels have been previously associated with disease severity in the context of sterile and infectious diseases. Moreover, the heme/HO-1 pathway has been associated with prothrombotic changes in other diseases. Accordingly, the potential of modulating HO-1 levels for the treatment of COVID-19 was extensively speculated during the COVID-19 pandemic, but very few actual data were generated. The aim of our study was to explore the association of HO-1, heme, and hemopexin (HPX) levels with COVID-19 severity and with markers of inflammation and coagulation activation. The study was conducted in 30 consecutive patients with COVID-19 admitted due to hypoxemia, and 30 healthy volunteers matched by sex, age, and geographic region. HO-1 and HPX levels were measured by enzyme immunoassay (ELISA) and heme levels were measured by a colorimetric method. A comprehensive panel of coagulation and fibrinolysis activation was also used. Patients with COVID-19 presented increased levels of HO-1 when compared to controls (5741 ± 2696 vs 1953 ± 612 pg/mL, respectively, P < 0.0001), as well as a trend toward increased levels of HPX (3.724 ± 0.880 vs 3.254 ± 1.022 mg/mL, respectively; P = 0.06). In addition, HO-1 and HPX levels reduced from admission to day + 4. HO-1 levels were associated with duration of intensive care unit stay and with several markers of coagulation activation. In conclusion, modulation of HO-1 could be associated with the prothrombotic state observed in COVID-19, and HO-1 could also represent a relevant biomarker for COVID-19. New independent studies are warranted to explore and expand these findings.
Collapse
Affiliation(s)
- Franciele de Lima
- School of Medical Sciences, University of Campinas, Campinas 13083-887, Brazil,Franciele de Lima.
| | | | - Mayck Silva Barbosa
- School of Medical Sciences, University of Campinas, Campinas 13083-887, Brazil
| | - Bruna Bombassaro
- Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | - André C Palma
- School of Medical Sciences, University of Campinas, Campinas 13083-887, Brazil
| | | | - Maria Luiza Moretti
- School of Medical Sciences, University of Campinas, Campinas 13083-887, Brazil
| | | | - Joyce M Annichino-Bizzacchi
- School of Medical Sciences, University of Campinas, Campinas 13083-887, Brazil,Hematology and Hemotherapy Center, University of Campinas, Campinas 13083-878, Brazil
| | - Eli Mansour
- School of Medical Sciences, University of Campinas, Campinas 13083-887, Brazil
| | - Licio A Velloso
- School of Medical Sciences, University of Campinas, Campinas 13083-887, Brazil,Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | - Erich Vinicius De Paula
- School of Medical Sciences, University of Campinas, Campinas 13083-887, Brazil,Hematology and Hemotherapy Center, University of Campinas, Campinas 13083-878, Brazil
| |
Collapse
|
22
|
Moraes CRP, Borba-Junior IT, De Lima F, Silva JRA, Bombassaro B, Palma AC, Mansour E, Velloso LA, Orsi FA, Costa FTM, De Paula EV. Association of Ang/Tie2 pathway mediators with endothelial barrier integrity and disease severity in COVID-19. Front Physiol 2023; 14:1113968. [PMID: 36895630 PMCID: PMC9988918 DOI: 10.3389/fphys.2023.1113968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Endothelial barrier (EB) disruption contributes to acute lung injury in COVID-19, and levels of both VEGF-A and Ang-2, which are mediators of EB integrity, have been associated with COVID-19 severity. Here we explored the participation of additional mediators of barrier integrity in this process, as well as the potential of serum from COVID-19 patients to induce EB disruption in cell monolayers. In a cohort from a clinical trial consisting of thirty patients with COVID-19 that required hospital admission due to hypoxia we demonstrate that i) levels of soluble Tie2 were increase, and of soluble VE-cadherin were decreased when compared to healthy individuals; ii) sera from these patients induce barrier disruption in monolayers of endothelial cells; and iii) that the magnitude of this effect is proportional to disease severity and to circulating levels of VEGF-A and Ang-2. Our study confirms and extends previous findings on the pathogenesis of acute lung injury in COVID-19, reinforcing the concept that EB is a relevant component of this disease. Our results pave the way for future studies that can refine our understanding of the pathogenesis of acute lung injury in viral respiratory disorders, and contribute to the identification of new biomarkers and therapeutic targets for these conditions.
Collapse
Affiliation(s)
| | | | - Franciele De Lima
- School of Medical Sciences, University of Campinas, Campinas, Brazil
| | | | - Bruna Bombassaro
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - André C Palma
- School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Eli Mansour
- School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Lício Augusto Velloso
- School of Medical Sciences, University of Campinas, Campinas, Brazil.,Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | | | | | - Erich Vinicius De Paula
- School of Medical Sciences, University of Campinas, Campinas, Brazil.,Hematology and Hemotherapy Center, University of Campinas, Campinas, Brazil
| |
Collapse
|
23
|
Busch MH, Timmermans SAMEG, Aendekerk JP, Ysermans R, Amiral J, Damoiseaux JGMC, Reutelingsperger CP, van Paassen P. Annexin A1 Is Associated with Adverse Clinical Outcomes in Patients with COVID-19. J Clin Med 2022; 11:jcm11247486. [PMID: 36556102 PMCID: PMC9781714 DOI: 10.3390/jcm11247486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Severe coronavirus disease 2019 (COVID-19) is characterized by hyperinflammation, vascular damage, and hypercoagulability. Insufficient responses of Annexin A1 (AnxA1), a pro-resolving inhibitor of neutrophil infiltration and activation, might contribute to a severe course of the disease. We longitudinally evaluated AnxA1's role in terms of inflammation, vascular damage, and clinical outcomes in a large prospective cohort of patients with COVID-19. AnxA1 was measured at presentation and during follow-up in the sera of 220 consecutive patients who presented at our hospital during the first wave. AnxA1 was significantly higher in the moderate and severe cases of COVID-19 compared to the healthy controls. Elevated AnxA1 was associated with markers of inflammation and endothelial damage. AnxA1 was significantly higher in patients with thrombotic events and ICU admission. Multivariable logistic regression indicated baseline AnxA1 (per ten units) as a predictor of thrombotic events. Linear mixed models predicted that AnxA1 tended to increase more steeply over time in patients without adverse events, with a statistically significant rise in patients without thrombotic events. These findings might reflect an insufficient increase in AnxA1 as a response to the excessive hyperinflammation in COVID-19. Future studies should evaluate whether hyperinflammation could be reduced through the administration of human recombinant AnxA1 or Ac2-26 peptide.
Collapse
Affiliation(s)
- Matthias H. Busch
- Department of Nephrology and Clinical Immunology, Maastricht University Medical Center, 6202AZ Maastricht, The Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229HX Maastricht, The Netherlands
| | - Sjoerd A. M. E. G. Timmermans
- Department of Nephrology and Clinical Immunology, Maastricht University Medical Center, 6202AZ Maastricht, The Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229HX Maastricht, The Netherlands
| | - Joop P. Aendekerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229HX Maastricht, The Netherlands
| | - Renée Ysermans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229HX Maastricht, The Netherlands
| | - Jean Amiral
- Scientific Hemostasis, 95130 Franconville, France
| | - Jan G. M. C. Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands
| | - Chris P. Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229HX Maastricht, The Netherlands
| | - Pieter van Paassen
- Department of Nephrology and Clinical Immunology, Maastricht University Medical Center, 6202AZ Maastricht, The Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229HX Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-(0)43-3871198
| |
Collapse
|
24
|
Singh PK, Chen Z, Horn K, Norris EH. Blocking domain 6 of high molecular weight kininogen to understand intrinsic clotting mechanisms. Res Pract Thromb Haemost 2022; 6:e12815. [PMID: 36254255 PMCID: PMC9561425 DOI: 10.1002/rth2.12815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/05/2022] Open
Abstract
Background The contact system is initiated by factor (F) XII activation and the assembly of high molecular weight kininogen (HK) with either FXI or prekallikrein (PK) on a negatively charged surface. Overactivation of this system contributes to thrombosis and inflammation in numerous diseases. To develop effective therapeutics for contact system disorders, a detailed understanding of this pathway is needed. Methods We performed coagulation assays in normal human plasma and various factor-deficient plasmas. To evaluate how HK-mediated PK and FXI activation contributes to coagulation, we used an anti-HK antibody to block access to domain 6 of HK, the region required for efficient activation of PK and FXI. Results FXI's binding to HK and its subsequent activation by activated FXII contributes to coagulation. We found that the 3E8 anti-HK antibody can inhibit the binding of FXI or PK to HK, delaying clot formation in human plasma. Our data show that in the absence of FXI, however, PK can substitute for FXI in this process. Addition of activated FXI (FXIa) or activated PK (PKa) abolished the inhibitory effect of 3E8. Moreover, the requirement of HK in intrinsic coagulation can be largely bypassed by adding FXIa. Like FXIa, exogenous PKa shortened the clotting time in HK-deficient plasma, which was not due to feedback activation of FXII. Conclusions This study improves our understanding of HK-mediated coagulation and provides an explanation for the absence of bleeding in HK-deficient individuals. 3E8 specifically prevented HK-mediated FXI activation; therefore, it could be used to prevent contact activation-mediated thrombosis without altering hemostasis.
Collapse
Affiliation(s)
- Pradeep K. Singh
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Zu‐Lin Chen
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Katharina Horn
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Erin H. Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and GeneticsThe Rockefeller UniversityNew YorkNew YorkUSA
| |
Collapse
|
25
|
Urwyler P, Moser S, Trendelenburg M, Sendi P, Osthoff M. Targeting thromboinflammation in COVID-19 - A narrative review of the potential of C1 inhibitor to prevent disease progression. Mol Immunol 2022; 150:99-113. [PMID: 36030710 PMCID: PMC9393183 DOI: 10.1016/j.molimm.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is associated with a clinical spectrum ranging from asymptomatic carriers to critically ill patients with complications including thromboembolic events, myocardial injury, multisystemic inflammatory syndromes and death. Since the beginning of the pandemic several therapeutic options emerged, with a multitude of randomized trials, changing the medical landscape of COVID-19. The effect of various monoclonal antibodies, antiviral, anti-inflammatory and anticoagulation drugs have been studied, and to some extent, implemented into clinical practice. In addition, a multitude of trials improved the understanding of the disease and emerging evidence points towards a significant role of the complement system, kallikrein-kinin, and contact activation system as drivers of disease in severe COVID-19. Despite their involvement in COVID-19, treatments targeting these plasmatic cascades have neither been systematically studied nor introduced into clinical practice, and randomized studies with regards to these treatments are scarce. Given the multiple-action, multiple-target nature of C1 inhibitor (C1-INH), the natural inhibitor of these cascades, this drug may be an interesting candidate to prevent disease progression and combat thromboinflammation in COVID-19. This narrative review will discuss the current evidence with regards to the involvement of these plasmatic cascades as well as endothelial cells in COVID-19. Furthermore, we summarize the evidence of C1-INH in COVID-19 and potential benefits and pitfalls of C1-INH treatment in COVID-19.
Collapse
Affiliation(s)
- Pascal Urwyler
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland; Department of Clinical Research and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Stephan Moser
- Department of Clinical Research and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marten Trendelenburg
- Department of Clinical Research and Department of Biomedicine, University of Basel, Basel, Switzerland; Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Parham Sendi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Michael Osthoff
- Department of Clinical Research and Department of Biomedicine, University of Basel, Basel, Switzerland; Division of Internal Medicine, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|