1
|
Upadhyay S, Dhok A, Kashikar S, Quazi ZS, Agarkar VB. Unveiling the Significance of LysE in Survival and Virulence of Mycobacterium tuberculosis: A Review Reveals It as a Potential Drug Target, Diagnostic Marker, and a Vaccine Candidate. Vaccines (Basel) 2024; 12:779. [PMID: 39066417 PMCID: PMC11281339 DOI: 10.3390/vaccines12070779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Tuberculosis (TB) remains a global health threat, necessitating innovative strategies for control and prevention. This comprehensive review explores the Mycobacterium tuberculosis Lysine Exporter (LysE) gene, unveiling its multifaceted roles and potential uses in controlling and preventing tuberculosis (TB). As a pivotal player in eliminating excess L-lysine and L-arginine, LysE contributes to the survival and virulence of M. tuberculosis. This review synthesizes findings from different electronic databases and includes 13 studies focused on the LysE of M. tuberculosis. The research unveils that LysE can be a potential drug target, a diagnostic marker for TB, and a promising candidate for vaccine development. The absence of LysE in the widely used BCG vaccine underscores its uniqueness and positions it as a novel area for TB prevention. In conclusion, this review underscores the significance of LysE in TB pathogenesis and its potential as a drug target, diagnostic marker, and vaccine candidate. The multifaceted nature of LysE positions it at the forefront of innovative approaches to combat TB, calling for sustained research efforts to harness its full potential in the global fight against this infectious disease.
Collapse
Affiliation(s)
- Shilpa Upadhyay
- Global Consortium of Public Health Research, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Sawangi, Wardha 442107, Maharashtra, India
| | - Archana Dhok
- i-Health Consortium, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Sawangi, Wardha 442107, Maharashtra, India;
| | - Supriya Kashikar
- GeNext Genomics Pvt. Ltd., Nagpur 440010, Maharashtra, India; (S.K.); (V.B.A.)
| | - Zahiruddin Syed Quazi
- Global Evidence Synthesis Initiative, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Sawangi, Wardha 442107, Maharashtra, India;
| | - Vinod B. Agarkar
- GeNext Genomics Pvt. Ltd., Nagpur 440010, Maharashtra, India; (S.K.); (V.B.A.)
| |
Collapse
|
2
|
Jackson S, McShane H. Challenges in Developing a Controlled Human Tuberculosis Challenge Model. Curr Top Microbiol Immunol 2024; 445:229-255. [PMID: 35332386 DOI: 10.1007/82_2022_252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Controlled human infection models (CHIMs) have provided pivotal scientific advancements, contributing to the licensure of new vaccines for many pathogens. Despite being one of the world's oldest known pathogens, there are still significant gaps in our knowledge surrounding the immunobiology of Mycobacterium tuberculosis (M. tb). Furthermore, the only licensed vaccine, BCG, is a century old and demonstrates limited efficacy in adults from endemic areas. Despite good global uptake of BCG, tuberculosis (TB) remains a silent epidemic killing 1.4 million in 2019 (WHO, Global tuberculosis report 2020). A mycobacterial CHIM could expedite the development pipeline of novel TB vaccines and provide critical understanding on the immune response to TB. However, developing a CHIM for such a complex organism is a challenging process. The first hurdle to address is which challenge agent to use, as it would not be ethical to use virulent M. tb. This chapter describes the current progress and outstanding issues in the development of a TB CHIM. Previous and current human studies include both aerosol and intradermal models using either BCG or purified protein derivative (PPD) as a surrogate agent. Future work investigating the use of attenuated M. tb is underway.
Collapse
Affiliation(s)
- Susan Jackson
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, Oxford University, Oxford, UK
| | - Helen McShane
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, Oxford University, Oxford, UK.
| |
Collapse
|
3
|
Sanchez C, Jaramillo-Valverde L, Capristano S, Solis G, Soto A, Valdivia-Silva J, Poterico JA, Guio H. Antigen-Induced IL-1RA Production Discriminates Active and Latent Tuberculosis Infection. Microorganisms 2023; 11:1385. [PMID: 37374887 DOI: 10.3390/microorganisms11061385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/22/2023] [Accepted: 04/29/2023] [Indexed: 06/29/2023] Open
Abstract
The IGRA (Interferon Gamma Release Assays) test is currently the standard specific test for Mycobacterium tuberculosis infection status. However, a positive test cannot distinguish between active tuberculosis disease (ATBD) and latent tuberculosis infection (LTBI). Developing a test with this characteristic is needed. We conducted longitudinal studies to identify a combination of antigen peptides and cytokines to discriminate between ATBD and LTBI. We studied 54 patients with ATBD disease and 51 with LTBI infection. Cell culture supernatant from cells stimulated with overlapping Mycobacterium tuberculosis novel peptides and 40 cytokines/chemokines were analyzed using the Luminex technology. To summarize longitudinal measurements of analyte levels, we calculated the area under the curve (AUC). Our results indicate that in vitro cell stimulation with a novel combination of peptides (Rv0849-12, Rv2031c-14, Rv2031c-5, and Rv2693-06) and IL-1RA detection in culture supernatants can discriminate between LTBI and ATBD.
Collapse
Affiliation(s)
- Cesar Sanchez
- Laboratorio de Biotecnología y Biología Molecular, Instituto Nacional de Salud, Lima 15046, Peru
- Escuela de Posgrado, Universidad Cesar Vallejo, Lima 15314, Peru
| | - Luis Jaramillo-Valverde
- Laboratorio de Biotecnología y Biología Molecular, Instituto Nacional de Salud, Lima 15046, Peru
- School of Medicine, Universidad Continental, Lima 15046, Peru
| | - Silvia Capristano
- Laboratorio de Biotecnología y Biología Molecular, Instituto Nacional de Salud, Lima 15046, Peru
| | - Gilmer Solis
- Laboratorio de Biotecnología y Biología Molecular, Instituto Nacional de Salud, Lima 15046, Peru
| | - Alonso Soto
- Hospital Nacional Hipólito Unanue, Lima 15007, Peru
| | - Julio Valdivia-Silva
- INBIOMEDIC Research and Technological Center, Lima 15046, Peru
- Centro de Investigación en Bioingeniería, Universidad de Ingenieria y Tecnologia-UTEC, Lima 15063, Peru
| | - Julio A Poterico
- INBIOMEDIC Research and Technological Center, Lima 15046, Peru
- Faculty of Health Sciences, Universidad de Huánuco, Huánuco 10001, Peru
| | - Heinner Guio
- Laboratorio de Biotecnología y Biología Molecular, Instituto Nacional de Salud, Lima 15046, Peru
- Centro de Investigación en Biodiversidad para la Salud, Universidad Privada Norbert Wiener, Lima 15046, Peru
| |
Collapse
|
4
|
Munir A, Wilson MT, Hardwick SW, Chirgadze DY, Worrall JAR, Blundell TL, Chaplin AK. Using cryo-EM to understand antimycobacterial resistance in the catalase-peroxidase (KatG) from Mycobacterium tuberculosis. Structure 2021; 29:899-912.e4. [PMID: 33444527 PMCID: PMC8355310 DOI: 10.1016/j.str.2020.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/27/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Resolution advances in cryoelectron microscopy (cryo-EM) now offer the possibility to visualize structural effects of naturally occurring resistance mutations in proteins and also of understanding the binding mechanisms of small drug molecules. In Mycobacterium tuberculosis the multifunctional heme enzyme KatG is indispensable for activation of isoniazid (INH), a first-line pro-drug for treatment of tuberculosis. We present a cryo-EM methodology for structural and functional characterization of KatG and INH resistance variants. The cryo-EM structure of the 161 kDa KatG dimer in the presence of INH is reported to 2.7 Å resolution allowing the observation of potential INH binding sites. In addition, cryo-EM structures of two INH resistance variants, identified from clinical isolates, W107R and T275P, are reported. In combination with electronic absorbance spectroscopy our cryo-EM approach reveals how these resistance variants cause disorder in the heme environment preventing heme uptake and retention, providing insight into INH resistance. A cryo-EM structure to 2.7 Å resolution of M. tuberculosis KatG with isoniazid Cryo-EM is able to visualize multiple dynamic binding modes of isoniazid to KatG Structural disorder in isoniazid resistance mutations is observed Structural disorder of the resistance mutations results in the lack of heme retention
Collapse
Affiliation(s)
- Asma Munir
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Michael T Wilson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Steven W Hardwick
- CryoEM Facility, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Dimitri Y Chirgadze
- CryoEM Facility, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Jonathan A R Worrall
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
| | - Amanda K Chaplin
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
| |
Collapse
|
5
|
Carranza C, Pedraza-Sanchez S, de Oyarzabal-Mendez E, Torres M. Diagnosis for Latent Tuberculosis Infection: New Alternatives. Front Immunol 2020; 11:2006. [PMID: 33013856 PMCID: PMC7511583 DOI: 10.3389/fimmu.2020.02006] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/24/2020] [Indexed: 12/29/2022] Open
Abstract
Latent tuberculosis infection (LTBI) is a subclinical mycobacterial infection defined on the basis of cellular immune response to mycobacterial antigens. The tuberculin skin test (TST) and the interferon gamma release assay (IGRA) are currently used to establish the diagnosis of LTB. However, neither TST nor IGRA is useful to discriminate between active and latent tuberculosis. Moreover, these tests cannot be used to predict whether an individual with LTBI will develop active tuberculosis (TB) or whether therapy for LTBI could be effective to decrease the risk of developing active TB. Therefore, in this article, we review current approaches and some efforts to identify an immunological marker that could be useful in distinguishing LTBI from TB and in evaluating the effectiveness of treatment of LTB on the risk of progression to active TB.
Collapse
Affiliation(s)
- Claudia Carranza
- Departamento de Microbiología, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Sigifredo Pedraza-Sanchez
- Unidad de Bioquímica Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico
| | | | - Martha Torres
- Departamento de Microbiología, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico.,Subdirección de Investigación Biomédica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| |
Collapse
|
6
|
de Oyarzabal E, García-García L, Rangel-Escareño C, Ferreyra-Reyes L, Orozco L, Herrera MT, Carranza C, Sada E, Juárez E, Ponce-de-León A, Sifuentes-Osornio J, Wilkinson RJ, Torres M. Expression of USP18 and IL2RA Is Increased in Individuals Receiving Latent Tuberculosis Treatment with Isoniazid. J Immunol Res 2019; 2019:1297131. [PMID: 31886294 PMCID: PMC6925913 DOI: 10.1155/2019/1297131] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/23/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The treatment of latent tuberculosis infection (LTBI) in individuals at risk of reactivation is essential for tuberculosis control. However, blood biomarkers associated with LTBI treatment have not been identified. METHODS Blood samples from tuberculin skin test (TST) reactive individuals were collected before and after one and six months of isoniazid (INH) therapy. Peripheral mononuclear cells (PBMC) were isolated, and an in-house interferon-γ release assay (IGRA) was performed. Expression of chemokine ligand 4 (CCL4), chemokine ligand 10 (CXCL10), chemokine ligand 11 (CXCL11), interferon alpha (IFNA), radical S-adenosyl methionine domain-containing 2 (RSAD2), ubiquitin-specific peptidase 18 (USP18), interferon-induced protein 44 (IFI44), interferon-induced protein 44 like (IFI44L), interferon-induced protein tetratricopeptide repeats 1(IFIT1), and interleukin 2 receptor subunit alpha (IL2RA) mRNA levels were assessed by qPCR before, during, and after INH treatment. RESULTS We observed significantly lower relative abundances of USP18, IFI44L, IFNA, and IL2RA transcripts in PBMC from IGRA-positive individuals compared to levels in IGRA-negative individuals before INH therapy. Also, relative abundance of CXCL11 was significantly lower in IGRA-positive than in IGRA-negative individuals before and after one month of INH therapy. However, the relative abundance of CCL4, CXCL10, and CXCL11 mRNA was significantly decreased and that of IL2RA and USP18 significantly increased after INH therapy, regardless of the IGRA result. Our results show that USP18, IFI44L, IFIT1, and IL2RA relative abundances increased significantly, meanwhile the relative abundance of CCL4, CXCL11, and IFNA decreased significantly after six months of INH therapy in TST-positive individuals. CONCLUSIONS Changes in the profiles of USP18, IL2RA, IFNA, CCL4, and CXCL11 expressions during INH treatment in TST-positive individuals, regardless of IGRA status, are potential tools for monitoring latent tuberculosis treatment.
Collapse
Affiliation(s)
- Eleane de Oyarzabal
- Departamento de Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Lourdes García-García
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Claudia Rangel-Escareño
- Computational and Integrative Genomics Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico
| | - Leticia Ferreyra-Reyes
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Lorena Orozco
- Computational and Integrative Genomics Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico
| | - María Teresa Herrera
- Departamento de Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Claudia Carranza
- Departamento de Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Eduardo Sada
- Departamento de Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Esmeralda Juárez
- Departamento de Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Alfredo Ponce-de-León
- Laboratorio de Microbiología, Instituto Nacional de Ciencias Médicas y de Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - José Sifuentes-Osornio
- Dirección Médica, Instituto Nacional de Ciencias Médicas y de Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Robert J. Wilkinson
- Department of Medicine, Imperial College, Norfolk Place, London W2 1PG, UK
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
- The Francis Crick Institute, London NW1 IAT, UK
| | - Martha Torres
- Departamento de Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de México, Mexico
| |
Collapse
|
7
|
Michelsen SW, Soborg B, Diaz LJ, Hoff ST, Agger EM, Koch A, Rosenkrands I, Wohlfahrt J, Melbye M. The dynamics of immune responses to Mycobacterium tuberculosis during different stages of natural infection: A longitudinal study among Greenlanders. PLoS One 2017; 12:e0177906. [PMID: 28570574 PMCID: PMC5453477 DOI: 10.1371/journal.pone.0177906] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 05/04/2017] [Indexed: 12/13/2022] Open
Abstract
Objective Understanding human immunity to Mycobacterium tuberculosis (Mtb) during different stages of infection is important for development of an effective tuberculosis (TB) vaccine. We aimed to evaluate immunity to Mtb infection by measuring immune responses to selected Mtb antigens expressed during different stages of infection over time and to observe sustainability of immunity. Methods In a cohort study comprising East Greenlanders aged 17–22 years (2012 to 2014) who had either; undetectable Mtb infection, ongoing or prior Mtb infection at enrolment, we measured immunity to 15 antigens over a one-year period. Quantiferon-TB Gold testing (QFT) defined Mtb infection status (undetected/detected). The eligible study population of East Greenlanders aged 17–22 years was identified from the entire population using the Civil Registration System. From the source population 65 participants were selected by stratified random sampling according to information on Mtb infection stage. Retrospective and prospective information on notified TB (including treatment) was obtained through the mandatory TB notification system and was used to characterise Mtb infection stage (ongoing/prior). Immunity to 15 antigens including two QFT antigens, PPD and 12 non-QFT antigens (representing early, constitutive and latent Mtb infection) was assessed by measuring immune responses using whole-blood antigen stimulation and interferon gamma measurement. Results Of 65 participants, 54 were considered Mtb-infected. Immunity to Mtb infection fluctuated with high annual risk of conversion (range: 6–69%) and reversion (range: 5–95%). During follow-up, five (8%) participants were notified with TB; neither conversion nor reversion was associated with an increased risk of progressing to TB. Conclusions Our findings suggest that human immunity to natural Mtb infection over time is versatile with fluctuations, resulting in high levels of conversion and reversion of immunity, thus human immunity to Mtb is much more dynamic than anticipated. The study findings suggest future use of longitudinal assessment of immune responses when searching for TB vaccine candidate antigens.
Collapse
Affiliation(s)
- Sascha Wilk Michelsen
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
- * E-mail:
| | - Bolette Soborg
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Lars Jorge Diaz
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Soren Tetens Hoff
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Else Marie Agger
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Anders Koch
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Jan Wohlfahrt
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Stanford School of Medicine, Stanford, California, United States of America
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Latent tuberculosis infection (LTBI) may affect over two billion individuals and serves as a potential reservoir for future active tuberculosis. The identification and treatment of LTBI in those at highest risk for progression is an essential part of tuberculosis control. RECENT FINDINGS Interferon-γ release assays are increasingly used for targeted testing and diagnosis of latent disease. The performance of these immunodiagnostic tests has been studied in various groups and may be better than the tuberculin skin test in certain populations. Ongoing research is focused on new biomarkers that may diagnose LTBI or predict progression to active tuberculosis. Isoniazid preventive treatment is effective at reducing risk of active disease, but length of treatment and potential side-effects limit patient acceptance and compliance. Rifamycin-based regimens are increasingly studied as a shorter and perhaps less toxic alternative for preventive therapy. SUMMARY Identification of those with LTBI is important as it allows treatment of those at highest risk of progression to active disease and thus decreases the overall burden of tuberculosis. The development of new immunodiagnostics may further improve identification of those at risk and alternative medication regimens may increase compliance with and efficacy of preventive therapy.
Collapse
|
9
|
Michelsen SW, Soborg B, Agger EM, Diaz LJ, Hoff ST, Koch A, Sorensen HCF, Andersen P, Wohlfahrt J, Melbye M. Host immunity to Mycobacterium tuberculosis and risk of tuberculosis: A longitudinal study among Greenlanders. Vaccine 2016; 34:5975-5983. [DOI: 10.1016/j.vaccine.2016.09.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
|
10
|
Prosser G, Brandenburg J, Reiling N, Barry CE, Wilkinson RJ, Wilkinson KA. The bacillary and macrophage response to hypoxia in tuberculosis and the consequences for T cell antigen recognition. Microbes Infect 2016; 19:177-192. [PMID: 27780773 PMCID: PMC5335906 DOI: 10.1016/j.micinf.2016.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/06/2016] [Indexed: 12/11/2022]
Abstract
Mycobacterium tuberculosis is a facultative anaerobe and its characteristic pathological hallmark, the granuloma, exhibits hypoxia in humans and in most experimental models. Thus the host and bacillary adaptation to hypoxia is of central importance in understanding pathogenesis and thereby to derive new drug treatments and vaccines.
Collapse
Affiliation(s)
- Gareth Prosser
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, United States
| | - Julius Brandenburg
- Microbial Interface Biology, Priority Research Area Infections, Forschungszentrum Borstel, Leibniz Center for Medicine and Biosciences, Parkallee 1-40, D-23845, Borstel, Germany
| | - Norbert Reiling
- Microbial Interface Biology, Priority Research Area Infections, Forschungszentrum Borstel, Leibniz Center for Medicine and Biosciences, Parkallee 1-40, D-23845, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Borstel-Lübeck, Borstel, Germany
| | - Clifton Earl Barry
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, United States; Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Robert J Wilkinson
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa; The Francis Crick Institute, London, NW1 2AT, United Kingdom; Department of Medicine, Imperial College, London, W2 1PG, United Kingdom.
| | - Katalin A Wilkinson
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa; The Francis Crick Institute, London, NW1 2AT, United Kingdom
| |
Collapse
|
11
|
Rockwood N, du Bruyn E, Morris T, Wilkinson RJ. Assessment of treatment response in tuberculosis. Expert Rev Respir Med 2016; 10:643-54. [PMID: 27030924 DOI: 10.1586/17476348.2016.1166960] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antibiotic treatment of tuberculosis has a duration of several months. There is significant variability of the host immune response and the pharmacokinetic-pharmacodynamic properties of Mycobacterium tuberculosis sub-populations at the site of disease. A limitation of sputum-based measures of treatment response may be sub-optimal detection and monitoring of Mycobacterium tuberculosis sub-populations. Potential biomarkers and surrogate endpoints should be benchmarked against hard clinical outcomes (failure/relapse/death) and may need tailoring to specific patient populations. Here, we assess the evidence supporting currently utilized and future potential host and pathogen-based models and biomarkers for monitoring treatment response in active and latent tuberculosis. Biomarkers for monitoring treatment response in extrapulmonary, pediatric and drug resistant tuberculosis are research priorities.
Collapse
Affiliation(s)
- Neesha Rockwood
- a Department of Medicine , Imperial College London , London , UK.,b Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine and Department of Medicine , University of Cape Town , Observatory , South Africa
| | - Elsa du Bruyn
- b Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine and Department of Medicine , University of Cape Town , Observatory , South Africa
| | - Thomas Morris
- a Department of Medicine , Imperial College London , London , UK
| | - Robert J Wilkinson
- a Department of Medicine , Imperial College London , London , UK.,b Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine and Department of Medicine , University of Cape Town , Observatory , South Africa.,c The Francis Crick Institute Mill Hill Laboratory , London , UK
| |
Collapse
|