1
|
Kim SY, van de Wetering M, Clevers H, Sanders K. The future of tumor organoids in precision therapy. Trends Cancer 2025:S2405-8033(25)00073-1. [PMID: 40185656 DOI: 10.1016/j.trecan.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 04/07/2025]
Abstract
Tumoroids are cultures of patient-derived tumor cells, which are grown in 3D in the presence of an extracellular matrix extract and specific growth factors. Tumoroids can be generated from adult as well as pediatric cancers, including epithelial cancers, sarcomas, and brain cancers. Tumoroids retain multi-omic characteristics of their corresponding tumor and recapitulate interpatient and intratumor heterogeneity. Retrospective and prospective studies have demonstrated that tumoroids predict patient responses to anticancer therapies, making them a promising tool for precision oncology. However, several challenges remain before tumoroids can be fully integrated into clinical decision-making, including success rates of tumoroid establishment and turnaround times. This review discusses the current advances, challenges, and future directions of tumoroid-based models in cancer research and precision therapy.
Collapse
Affiliation(s)
- Seok-Young Kim
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, The Netherlands; Current address: Roche Pharmaceutical Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Karin Sanders
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Huang W, Jeong S, Kim W, Chen L. Biomedical applications of organoids in genetic diseases. MEDICAL REVIEW (2021) 2025; 5:152-163. [PMID: 40224362 PMCID: PMC11987506 DOI: 10.1515/mr-2024-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/04/2024] [Indexed: 04/15/2025]
Abstract
Organoid technology has significantly transformed biomedical research by providing exceptional prospects for modeling human tissues and disorders in a laboratory setting. It has significant potential for understanding the intricate relationship between genetic mutations, cellular phenotypes, and disease pathology, especially in the field of genetic diseases. The intersection of organoid technology and genetic research offers great promise for comprehending the pathophysiology of genetic diseases and creating innovative treatment approaches customized for specific patients. This review aimed to present a thorough analysis of the current advancements in organoid technology and its biomedical applications for genetic diseases. We examined techniques for modeling genetic disorders using organoid platforms, analyze the approaches for incorporating genetic disease organoids into clinical practice, and showcase current breakthroughs in preclinical application, individualized healthcare, and transplantation. Through the integration of knowledge from several disciplines, such as genetics, regenerative medicine, and biological engineering, our aim is to enhance our comprehension of the complex connection between genetic variations and organoid models in relation to human health and disease.
Collapse
Affiliation(s)
- Wenhua Huang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Seogsong Jeong
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Seoul, Korea
| | - Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Divisions of Gastroenterology and Hepatology, Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Lei Chen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
De Pauw E, Gommers B, Ensinck MM, Timmerman S, De Vriendt S, Bueds C, Wei M, Hermans F, Arnauts K, Ramalho AS, Vermeulen F, Dupont L, Lambrechts D, Carlon MS, Vankelecom H. Endometrium-derived organoids from cystic fibrosis patients and mice as new models to study disease-associated endometrial pathobiology. Cell Mol Life Sci 2025; 82:109. [PMID: 40074868 PMCID: PMC11904040 DOI: 10.1007/s00018-025-05627-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/17/2025] [Accepted: 02/16/2025] [Indexed: 03/14/2025]
Abstract
Cystic fibrosis (CF) is a life-shortening genetic disorder, caused by mutations in the CF transmembrane conductance regulator (CFTR) protein that regulates ion and fluid transport in epithelial tissue. Female CF patients face considerable fertility challenges, with higher prevalence of deficient fertility compared to healthy women. Not much is known about the underlying causes. In particular, the pathobiology of the endometrium, the uterus' inner lining essential for pregnancy and expressing fluctuating CFTR levels during the menstrual cycle, is unexplored in CF. To address this gap, we developed organoid models from CF patient endometrium. The organoids recapitulated CF characteristics and revealed molecular and pathway differences in cycle-recapitulating hormone responses compared to healthy endometrial organoids. Furthermore, specific functional aberrations were restored by CFTR modulator treatment. To further complement human organoid models for unraveling endometrial pathobiology in CF, we also developed organoids from a genetic CF mouse model that were also found to recapitulate CF characteristics. Moreover, single-cell RNA-sequencing analysis of the CF mouse uterus revealed molecular traits in the endometrium similar to the human CF endometrium (as evidenced by its organoid model). Our study provides new endometrium models to advance our understanding of CF-associated endometrial pathobiology, particularly regarding menstrual cycle aberrations that impact fertility. This research is timely since improved CF therapeutics result in increased life expectancy, allowing more CF patients to consider starting a family.
Collapse
Affiliation(s)
- Ellen De Pauw
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), Leuven, Belgium
| | - Beau Gommers
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), Leuven, Belgium
| | - Marjolein M Ensinck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Stefan Timmerman
- Department of Obstetrics and Gynecology, University Hospitals Leuven (UZ Leuven), Leuven, Belgium
| | - Silke De Vriendt
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), Leuven, Belgium
| | - Celine Bueds
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), Leuven, Belgium
| | - Mengjie Wei
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), Leuven, Belgium
| | - Florian Hermans
- Department of Cardiology and Organ Systems, Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Kaline Arnauts
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Anabela S Ramalho
- CF Centre, Woman and Child Unit, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Francois Vermeulen
- CF Centre, Woman and Child Unit, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pediatrics, Pediatric Pulmonology, UZ Leuven, Leuven, Belgium
| | - Lieven Dupont
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, UZ Leuven, Leuven, Belgium
| | - Diether Lambrechts
- VIB- Center for Cancer Biology, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Marianne S Carlon
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), Leuven, Belgium.
| |
Collapse
|
4
|
Sugihara HY, Okamoto R, Mizutani T. Intestinal organoids: The path towards clinical application. Eur J Cell Biol 2025; 104:151474. [PMID: 39740324 DOI: 10.1016/j.ejcb.2024.151474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 01/02/2025] Open
Abstract
Organoids have revolutionized the whole field of biology with their ability to model complex three-dimensional human organs in vitro. Intestinal organoids were especially consequential as the first successful long-term culture of intestinal stem cells, which raised hopes for translational medical applications. Despite significant contributions to basic research, challenges remain to develop intestinal organoids into clinical tools for diagnosis, prognosis, and therapy. In this review, we outline the current state of translational research involving adult stem cell and pluripotent stem cell derived intestinal organoids, highlighting the advances and limitations in disease modeling, drug-screening, personalized medicine, and stem cell therapy. Preclinical studies have demonstrated a remarkable functional recapitulation of infectious and genetic diseases, and there is mounting evidence for the reliability of intestinal organoids as a patient-specific avatar. Breakthroughs now allow the generation of structurally and cellularly complex intestinal models to better capture a wider range of intestinal pathophysiology. As the field develops and evolves, there is a need for standardized frameworks for generation, culture, storage, and analysis of intestinal organoids to ensure reproducibility, comparability, and interpretability of these preclinical and clinical studies to ultimately enable clinical translation.
Collapse
Affiliation(s)
- Hady Yuki Sugihara
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tomohiro Mizutani
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
5
|
Demchenko A, Balyasin M, Nazarova A, Grigorieva O, Panchuk I, Kondrateva E, Tabakov V, Schagina O, Amelina E, Smirnikhina S. Human Induced Lung Organoids: A Promising Tool for Cystic Fibrosis Drug Screening. Int J Mol Sci 2025; 26:437. [PMID: 39859153 PMCID: PMC11764749 DOI: 10.3390/ijms26020437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the CFTR gene. Currently, CFTR modulators are the most effective treatment for CF; however, they may not be suitable for all patients. A representative and convenient in vitro model is needed to screen therapeutic agents under development. This study, on the most common mutation, F508del, investigates the efficacy of human induced pluripotent stem cell-derived lung organoids (hiLOs) from NKX2.1+ lung progenitors and airway basal cells (hiBCs) as a 3D model for CFTR modulator response assessment by a forskolin-induced swelling assay. Weak swelling was observed for hiLOs from NKX2.1+ lung progenitors and hiBCs in response to modulators VX-770/VX-809 and VX-770/VX-661, whereas the VX-770/VX-661/VX-445 combination resulted in the highest swelling response, indicating superior CFTR function restoration. The ROC analysis of the FIS assay results revealed an optimal cutoff of 1.21, with 65.9% sensitivity and 71.8% specificity, and the predictive accuracy of the model was 76.4%. In addition, this study compared the response of hiLOs with the clinical response of patients to therapy and showed similar drug response dynamics. Thus, hiLOs can effectively model the CF pathology and predict patients' specific response to modulators.
Collapse
Affiliation(s)
- Anna Demchenko
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| | - Maxim Balyasin
- Scientific and Educational Resource Center, Peoples’ Friendship University of Russia, Miklukho-Maklaya, 6, 117198 Moscow, Russia
- Department of Cell Technology, Endocrinology Research Center, Dm. Ulyanova Str., 11, 117292 Moscow, Russia
| | - Aleksandra Nazarova
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| | - Olga Grigorieva
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| | - Irina Panchuk
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| | - Ekaterina Kondrateva
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| | - Vyacheslav Tabakov
- Moscow Branch of the Biobank “All-Russian Collection of Biological Samples of Hereditary Diseases”, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia
| | - Olga Schagina
- DNA-Diagnostics Laboratory, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia
| | - Elena Amelina
- Laboratory of Cystic Fibrosis, Research Institute of Pulmonology, 11th Parkovaya Str., 32/4, 105077 Moscow, Russia
| | - Svetlana Smirnikhina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia; (A.D.)
| |
Collapse
|
6
|
Kroes S, Bierlaagh MC, Lefferts JW, Boni A, Muilwijk D, Viscomi C, Keijzer-Nieuwenhuijze NDA, Cristiani L, Niemöller PJ, Verburg TF, Cutrera R, Fiocchi AG, Lucidi V, van der Ent CK, Beekman JM, Alghisi F, Ciciriello F. Elexacaftor/tezacaftor/ivacaftor efficacy in intestinal organoids with rare CFTR variants in comparison to CFTR-F508del and CFTR-wild type controls. J Cyst Fibros 2025; 24:175-182. [PMID: 39523185 DOI: 10.1016/j.jcf.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/22/2024] [Accepted: 09/21/2024] [Indexed: 11/16/2024]
Abstract
Cystic fibrosis is a life-shortening genetic disease caused by pathological variants of the cystic fibrosis transmembrane conductance regulator gene. The CFTR modulator therapy elexacaftor, tezacaftor and ivacaftor (ETI) rescues CFTR protein function and has made a significant impact on the lives of many people with CF. In Europe, ETI is currently available for people with CF who have at least one F508del mutation whilst the effect of ETI on rare CFTR variants remains unknown, albeit that many of such variants may be restored through ETI. Italy has a high prevalence of rare CFTR variants compared to the rest of Europe, potentially leading to significant undertreatment of people with rare CFTR variants. In this study, we used patient-derived intestinal organoids to identify individuals harboring rare CFTR variants who might benefit from ETI modulator therapy. Two CFTR-dependent readouts (steady-state lumen area and forskolin-induced swelling) in intestinal organoids were characterized to assess CFTR function rescue upon ETI incubation. Functional restoration by CFTR modulators was compared to wild type CFTR function, ETI-treated organoids harboring genotypes currently eligible for ETI therapy (F508del/class I) and organoids harboring non-responsive genotypes. Our data showed in vitro response to ETI within or beyond the range of CFTR function associated with F508del-ETI in 19 out of 28 organoids. This suggest that a large percentage of people with rare CFTR variants without access to ETI may benefit from this treatment.
Collapse
Affiliation(s)
- Suzanne Kroes
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Marlou C Bierlaagh
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands
| | - Juliet W Lefferts
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Alessandra Boni
- Pneumology and Cystic Fibrosis Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Danya Muilwijk
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands
| | - Carla Viscomi
- Pneumology and Cystic Fibrosis Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Natascha D A Keijzer-Nieuwenhuijze
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Luca Cristiani
- Pneumology and Cystic Fibrosis Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Paul J Niemöller
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Tibo F Verburg
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Renato Cutrera
- Pneumology and Cystic Fibrosis Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | | | - Vincenzina Lucidi
- Cystic Fibrosis Center, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Cornelis K van der Ent
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands.
| | - Federico Alghisi
- Pneumology and Cystic Fibrosis Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Fabiana Ciciriello
- Pneumology and Cystic Fibrosis Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
7
|
Kasper VL, Assis DN. Pathophysiology of Cystic Fibrosis Liver Disease. Pediatr Pulmonol 2024; 59 Suppl 1:S98-S106. [PMID: 39105342 DOI: 10.1002/ppul.26869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 08/07/2024]
Abstract
Hepatobiliary complications of Cystic Fibrosis (CF) constitute a significant burden for persons with CF of all ages, with advanced CF liver disease in particular representing a leading cause of mortality. The causes of the heterogeneity of clinical manifestations, ranging from steatosis to focal biliary cholestasis and biliary strictures, are poorly understood and likely reflect a variety of environmental and disease-modifying factors in the setting of underlying CFTR mutations. This review summarizes the current understanding of the pathophysiology of hepatobiliary manifestations of CF, and discusses emerging disease models and therapeutic approaches that hold promise to impact this important yet incompletely addressed aspect of CF care.
Collapse
Affiliation(s)
- Vania L Kasper
- The Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Hasbro Children's Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - David N Assis
- Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Bierlaagh MC, Ramalho AS, Silva IAL, Vonk AM, van den Bor RM, van Mourik P, Pott J, Suen SWF, Boj SF, Vries RGJ, Lammertyn E, Vermeulen F, Amaral MD, de Boeck K, van der Ent CK, Beekman JM. Repeatability and reproducibility of the Forskolin-induced swelling (FIS) assay on intestinal organoids from people with Cystic Fibrosis. J Cyst Fibros 2024; 23:693-702. [PMID: 38749892 DOI: 10.1016/j.jcf.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/05/2024] [Accepted: 04/26/2024] [Indexed: 08/31/2024]
Abstract
BACKGROUND The forskolin-induced swelling (FIS) assay measures CFTR function on patient-derived intestinal organoids (PDIOs) and may guide treatment selection for individuals with Cystic Fibrosis (CF). The aim of this study is to demonstrate the repeatability and reproducibility of the FIS assay following a detailed Standard Operating Procedure (SOP), thus advancing the validation of the assay for precision medicine (theranostic) applications. METHODS Over a 2-year period, FIS responses to CFTR modulators were measured in four European labs. PDIOs from six subjects with CF carrying different CFTR genotypes were used to assess the repeatability and reproducibility across the dynamic range of the assay. RESULTS Technical, intra-assay repeatability was high (Lin's concordance correlation coefficient (CCC) 0.95-0.98). Experimental, within-subject repeatability was also high within each lab (CCCs all >0.9). Longer-term repeatability (>1 year) showed more variability (CCCs from 0.67 to 0.95). The reproducibility between labs was also high (CCC ranging from 0.92 to 0.97). Exploratory analysis also found that between-lab percentage of agreement of dichotomized CFTR modulator outcomes for predefined FIS thresholds ranged between 78 and 100 %. CONCLUSIONS The observed repeatability and reproducibility of the FIS assay within and across different labs is high and support the use of FIS as biomarker of CFTR function in the presence or absence of CFTR modulators.
Collapse
Affiliation(s)
- Marlou C Bierlaagh
- Dept. of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Iris A L Silva
- BioISI- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Annelotte M Vonk
- Dept. of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rutger M van den Bor
- Dept. of Data Science and Biostatistics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter van Mourik
- Dept. of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Johanna Pott
- HUB Organoids B.V. (HUB), Utrecht, The Netherlands
| | - Sylvia W F Suen
- Dept. of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sylvia F Boj
- HUB Organoids B.V. (HUB), Utrecht, The Netherlands
| | | | - Elise Lammertyn
- Cystic Fibrosis Europe & the Belgian Cystic Fibrosis Association, Brussels, Belgium
| | | | - Margarida D Amaral
- BioISI- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Kris de Boeck
- KULeuven, Dept. of Development and Regeneration, Leuven, Belgium
| | - Cornelis K van der Ent
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jeffrey M Beekman
- Dept. of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Centre for Living Technologies, Alliance Eindhoven University of Technology, Wageningen University & Research, Utrecht University and University Medical Center Utrecht (EWUU), Utrecht, The Netherlands.
| |
Collapse
|
9
|
Bulcaen M, Kortleven P, Liu RB, Maule G, Dreano E, Kelly M, Ensinck MM, Thierie S, Smits M, Ciciani M, Hatton A, Chevalier B, Ramalho AS, Casadevall I Solvas X, Debyser Z, Vermeulen F, Gijsbers R, Sermet-Gaudelus I, Cereseto A, Carlon MS. Prime editing functionally corrects cystic fibrosis-causing CFTR mutations in human organoids and airway epithelial cells. Cell Rep Med 2024; 5:101544. [PMID: 38697102 PMCID: PMC11148721 DOI: 10.1016/j.xcrm.2024.101544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/16/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
Prime editing is a recent, CRISPR-derived genome editing technology capable of introducing precise nucleotide substitutions, insertions, and deletions. Here, we present prime editing approaches to correct L227R- and N1303K-CFTR, two mutations that cause cystic fibrosis and are not eligible for current market-approved modulator therapies. We show that, upon DNA correction of the CFTR gene, the complex glycosylation, localization, and, most importantly, function of the CFTR protein are restored in HEK293T and 16HBE cell lines. These findings were subsequently validated in patient-derived rectal organoids and human nasal epithelial cells. Through analysis of predicted and experimentally identified candidate off-target sites in primary stem cells, we confirm previous reports on the high prime editor (PE) specificity and its potential for a curative CF gene editing therapy. To facilitate future screening of genetic strategies in a translational CF model, a machine learning algorithm was developed for dynamic quantification of CFTR function in organoids (DETECTOR: "detection of targeted editing of CFTR in organoids").
Collapse
Affiliation(s)
- Mattijs Bulcaen
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium.
| | - Phéline Kortleven
- Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Ronald B Liu
- Department of Biosystems, KU Leuven, 3000 Leuven, Belgium; School of Engineering, University of Edinburgh, EH9 3JL Edinburgh, UK
| | - Giulia Maule
- Department of CIBIO, University of Trento, 38123 Povo-Trento, Italy
| | - Elise Dreano
- INSERM, CNRS, Institut Necker Enfants Malades, 75015 Paris, France; Université Paris-Cité, 75015 Paris, France
| | - Mairead Kelly
- INSERM, CNRS, Institut Necker Enfants Malades, 75015 Paris, France; Université Paris-Cité, 75015 Paris, France
| | - Marjolein M Ensinck
- Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Sam Thierie
- Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Maxime Smits
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; Leuven Viral Vector Core, KU Leuven, 3000 Leuven, Belgium
| | - Matteo Ciciani
- Department of CIBIO, University of Trento, 38123 Povo-Trento, Italy
| | - Aurelie Hatton
- INSERM, CNRS, Institut Necker Enfants Malades, 75015 Paris, France; Université Paris-Cité, 75015 Paris, France
| | - Benoit Chevalier
- INSERM, CNRS, Institut Necker Enfants Malades, 75015 Paris, France; Université Paris-Cité, 75015 Paris, France
| | - Anabela S Ramalho
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | | | - Zeger Debyser
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; Leuven Viral Vector Core, KU Leuven, 3000 Leuven, Belgium
| | - François Vermeulen
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; Department of Pediatrics, UZ Leuven, 3000 Leuven, Belgium
| | - Rik Gijsbers
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; Leuven Viral Vector Core, KU Leuven, 3000 Leuven, Belgium
| | - Isabelle Sermet-Gaudelus
- INSERM, CNRS, Institut Necker Enfants Malades, 75015 Paris, France; Université Paris-Cité, 75015 Paris, France; Cystic Fibrosis National Pediatric Reference Center, Pneumo-Allergologie Pédiatrique, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), 75015 Paris, France; European Reference Network, ERN-Lung CF, 60596 Frankfurt am Mein, Germany
| | - Anna Cereseto
- Department of CIBIO, University of Trento, 38123 Povo-Trento, Italy
| | - Marianne S Carlon
- Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; Leuven Viral Vector Core, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
10
|
Furstova E, Drevinek P, Novotna S, Libik M, Benesova K, Borek-Dohalska L, Sakmarova K, Modrak M, Macek M, Dousova T. Precision medicine in cystic fibrosis: predictive role of forskolin-induced swelling assay. Eur Respir J 2024; 63:2400156. [PMID: 38485147 DOI: 10.1183/13993003.00156-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/06/2024] [Indexed: 04/20/2024]
Affiliation(s)
- Eva Furstova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Pavel Drevinek
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Stepanka Novotna
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Malgorzata Libik
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Klara Benesova
- Department of Clinical Psychology, Motol University Hospital, Prague, Czech Republic
- Department of Neurology and Centre for Clinical Neuroscience, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Lucie Borek-Dohalska
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Kristina Sakmarova
- Department of Bioinformatics, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Modrak
- Department of Bioinformatics, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Milan Macek
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Tereza Dousova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
11
|
Lefferts JW, Kroes S, Smith MB, Niemöller PJ, Nieuwenhuijze NDA, Sonneveld van Kooten HN, van der Ent CK, Beekman JM, van Beuningen SFB. OrgaSegment: deep-learning based organoid segmentation to quantify CFTR dependent fluid secretion. Commun Biol 2024; 7:319. [PMID: 38480810 PMCID: PMC10937908 DOI: 10.1038/s42003-024-05966-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Epithelial ion and fluid transport studies in patient-derived organoids (PDOs) are increasingly being used for preclinical studies, drug development and precision medicine applications. Epithelial fluid transport properties in PDOs can be measured through visual changes in organoid (lumen) size. Such organoid phenotypes have been highly instrumental for the studying of diseases, including cystic fibrosis (CF), which is characterized by genetic mutations of the CF transmembrane conductance regulator (CFTR) ion channel. Here we present OrgaSegment, a MASK-RCNN based deep-learning segmentation model allowing for the segmentation of individual intestinal PDO structures from bright-field images. OrgaSegment recognizes spherical structures in addition to the oddly-shaped organoids that are a hallmark of CF organoids and can be used in organoid swelling assays, including the new drug-induced swelling assay that we show here. OrgaSegment enabled easy quantification of organoid swelling and could discriminate between organoids with different CFTR mutations, as well as measure responses to CFTR modulating drugs. The easy-to-apply label-free segmentation tool can help to study CFTR-based fluid secretion and possibly other epithelial ion transport mechanisms in organoids.
Collapse
Affiliation(s)
- Juliet W Lefferts
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT, Utrecht, The Netherlands
| | - Suzanne Kroes
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT, Utrecht, The Netherlands
| | - Matthew B Smith
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT, Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB, Utrecht, The Netherlands
| | - Paul J Niemöller
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT, Utrecht, The Netherlands
| | - Natascha D A Nieuwenhuijze
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT, Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB, Utrecht, The Netherlands
| | - Heleen N Sonneveld van Kooten
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT, Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB, Utrecht, The Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA, Utrecht, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA, Utrecht, The Netherlands.
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT, Utrecht, The Netherlands.
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB, Utrecht, The Netherlands.
| | - Sam F B van Beuningen
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA, Utrecht, The Netherlands.
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT, Utrecht, The Netherlands.
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB, Utrecht, The Netherlands.
| |
Collapse
|
12
|
Bacalhau M, Camargo M, Lopes-Pacheco M. Laboratory Tools to Predict CFTR Modulator Therapy Effectiveness and to Monitor Disease Severity in Cystic Fibrosis. J Pers Med 2024; 14:93. [PMID: 38248793 PMCID: PMC10820563 DOI: 10.3390/jpm14010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The implementation of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulator drugs into clinical practice has been attaining remarkable therapeutic outcomes for CF, a life-threatening autosomal recessive genetic disease. However, there is elevated CFTR allelic heterogeneity, and various individuals carrying (ultra)rare CF genotypes remain without any approved modulator therapy. Novel translational model systems based on individuals' own cells/tissue are now available and can be used to interrogate in vitro CFTR modulator responses and establish correlations of these assessments with clinical features, aiming to provide prediction of therapeutic effectiveness. Furthermore, because CF is a progressive disease, assessment of biomarkers in routine care is fundamental in monitoring treatment effectiveness and disease severity. In the first part of this review, we aimed to focus on the utility of individual-derived in vitro models (such as bronchial/nasal epithelial cells and airway/intestinal organoids) to identify potential responders and expand personalized CF care. Thereafter, we discussed the usage of CF inflammatory biomarkers derived from blood, bronchoalveolar lavage fluid, and sputum to routinely monitor treatment effectiveness and disease progression. Finally, we summarized the progress in investigating extracellular vesicles as a robust and reliable source of biomarkers and the identification of microRNAs related to CFTR regulation and CF inflammation as novel biomarkers, which may provide valuable information for disease prognosis.
Collapse
Affiliation(s)
- Mafalda Bacalhau
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Mariana Camargo
- Department of Surgery, Division of Urology, Sao Paulo Federal University, Sao Paulo 04039-060, SP, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| |
Collapse
|
13
|
Dreano E, Burgel PR, Hatton A, Bouazza N, Chevalier B, Macey J, Leroy S, Durieu I, Weiss L, Grenet D, Stremler N, Ohlmann C, Reix P, Porzio M, Roux Claude P, Rémus N, Douvry B, Montcouquiol S, Cosson L, Mankikian J, Languepin J, Houdouin V, Le Clainche L, Guillaumot A, Pouradier D, Tissot A, Priou P, Mély L, Chedevergne F, Lebourgeois M, Lebihan J, Martin C, Zavala F, Da Silva J, Lemonnier L, Kelly-Aubert M, Golec A, Foucaud P, Marguet C, Edelman A, Hinzpeter A, de Carli P, Girodon E, Sermet-Gaudelus I, Pranke I. Theratyping cystic fibrosis patients to guide elexacaftor/tezacaftor/ivacaftor out-of-label prescription. Eur Respir J 2023; 62:2300110. [PMID: 37696564 DOI: 10.1183/13993003.00110-2023] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/16/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Around 20% of people with cystic fibrosis (pwCF) do not have access to the triple combination elexacaftor/tezacaftor/ivacaftor (ETI) in Europe because they do not carry the F508del allele on the CF transmembrane conductance regulator (CFTR) gene. Considering that pwCF carrying rare variants may benefit from ETI, including variants already validated by the US Food and Drug Administration (FDA), a compassionate use programme was launched in France. PwCF were invited to undergo a nasal brushing to investigate whether the pharmacological rescue of CFTR activity by ETI in human nasal epithelial cell (HNEC) cultures was predictive of the clinical response. METHODS CFTR activity correction was studied by short-circuit current in HNEC cultures at basal state (dimethyl sulfoxide (DMSO)) and after ETI incubation and expressed as percentage of normal (wild-type (WT)) CFTR activity after sequential addition of forskolin and Inh-172 (ΔI ETI/DMSO%WT). RESULTS 11 pwCF carried variants eligible for ETI according to the FDA label and 28 carried variants not listed by the FDA. ETI significantly increased CFTR activity of FDA-approved CFTR variants (I601F, G85E, S492F, M1101K, R347P, R74W;V201M;D1270N and H1085R). We point out ETI correction of non-FDA-approved variants, including N1303K, R334W, R1066C, Q552P and terminal splicing variants (4374+1G>A and 4096-3C>G). ΔI ETI/DMSO%WT was significantly correlated to change in percentage predicted forced expiratory volume in 1 s and sweat chloride concentration (p<0.0001 for both). G85E, R74W;V201M;D1270N, Q552P and M1101K were rescued more efficiently by other CFTR modulator combinations than ETI. CONCLUSIONS Primary nasal epithelial cells hold promise for expanding the prescription of CFTR modulators in pwCF carrying rare mutants. Additional variants should be discussed for ETI indication.
Collapse
Affiliation(s)
- Elise Dreano
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | - Pierre Régis Burgel
- Université Paris-Cité, Paris, France
- Respiratory Medicine and Cystic Fibrosis National Reference Center, Cochin Hospital, AP-HP, Paris, France
- INSERM U1016, Institut Cochin, Paris, France
- ERN-LUNG CF Network, Frankfurt, Germany
| | - Aurelie Hatton
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | - Naim Bouazza
- Université Paris-Cité, Paris, France
- Unité de Recherche Clinique, Hôpital Necker Enfants Malades, AP-HP, Paris, France
| | - Benoit Chevalier
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | - Julie Macey
- Centre de Ressources et de Compétence de la Mucoviscidose, CHU Pellegrin, Bordeaux, France
| | - Sylvie Leroy
- Centre de Ressources et de Compétence de la Mucoviscidose, CHU, Nice, France
| | - Isabelle Durieu
- Centre de Référence Adulte de la Mucoviscidose, Hospices Civils de Lyon, Université de Lyon, Équipe d'Accueil Health Services and Performance Research (HESPER) 7425, Lyon, France
| | - Laurence Weiss
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, CHU, Strasbourg, France
| | - Dominique Grenet
- Centre de Ressources et de Compétence de la Mucoviscidose, Hôpital Foch, Suresnes, France
| | - Nathalie Stremler
- Centre de Ressources et de Compétence de la Mucoviscidose, Hôpital de la Timone, Marseille, France
| | - Camille Ohlmann
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, Hospices Civils de Lyon, Bron, France
| | - Philippe Reix
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, Hospices Civils de Lyon, Bron, France
| | - Michele Porzio
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Strasbourg, France
| | - Pauline Roux Claude
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Besancon, France
| | - Natacha Rémus
- Centre de Ressources et de Compétence de la Mucoviscidose Mixte, CHIC, Créteil, France
| | - Benoit Douvry
- Centre de Ressources et de Compétence de la Mucoviscidose Mixte, CHIC, Créteil, France
| | - Sylvie Montcouquiol
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Clermont Ferrand, France
| | - Laure Cosson
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, CHU, Tours, France
| | - Julie Mankikian
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Tours, France
| | - Jeanne Languepin
- Centre de Ressources et de Compétence de la Mucoviscidose Mixte, CHU, Limoges, France
| | - Veronique Houdouin
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, Hôpital Robert Debré, Paris, France
| | - Laurence Le Clainche
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, Hôpital Robert Debré, Paris, France
| | - Anne Guillaumot
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Nancy, France
| | - Delphine Pouradier
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, Hôpital Mignot, Le Chesnay, France
| | - Adrien Tissot
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Nantes, France
| | - Pascaline Priou
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, CHU, Angers, France
| | - Laurent Mély
- Centre de Ressources et de Compétence de la Mucoviscidose, Hôpital René Sabran, Hospices Civils de Lyon, Giens, France
| | - Frederique Chedevergne
- Cystic Fibrosis National Pediatric Reference Center, Pneumo-Allergologie Pédiatrique, Hôpital Necker Enfants Malades, AP-HP, Paris, France
| | - Muriel Lebourgeois
- Cystic Fibrosis National Pediatric Reference Center, Pneumo-Allergologie Pédiatrique, Hôpital Necker Enfants Malades, AP-HP, Paris, France
| | - Jean Lebihan
- Centre de Ressources et de Compétence de la Mucoviscidose Adulte, Centre de Perharidy, Roscoff, France
| | - Clémence Martin
- Université Paris-Cité, Paris, France
- Respiratory Medicine and Cystic Fibrosis National Reference Center, Cochin Hospital, AP-HP, Paris, France
| | - Flora Zavala
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | - Jennifer Da Silva
- Respiratory Medicine and Cystic Fibrosis National Reference Center, Cochin Hospital, AP-HP, Paris, France
| | | | - Mairead Kelly-Aubert
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | - Anita Golec
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | | | - Christophe Marguet
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, CHU, Rouen, France
| | - Aleksander Edelman
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | - Alexandre Hinzpeter
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | | | - Emmanuelle Girodon
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, Paris, France
- These three authors contributed equally to this work as co-last authors
| | - Isabelle Sermet-Gaudelus
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
- ERN-LUNG CF Network, Frankfurt, Germany
- Centre de Ressources et de Compétence de la Mucoviscidose Pédiatrique, Hôpital Mignot, Le Chesnay, France
- These three authors contributed equally to this work as co-last authors
| | - Iwona Pranke
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
- These three authors contributed equally to this work as co-last authors
| |
Collapse
|
14
|
Lefferts JW, Bierlaagh MC, Kroes S, Nieuwenhuijze NDA, Sonneveld van Kooten HN, Niemöller PJ, Verburg TF, Janssens HM, Muilwijk D, van Beuningen SFB, van der Ent CK, Beekman JM. CFTR Function Restoration upon Elexacaftor/Tezacaftor/Ivacaftor Treatment in Patient-Derived Intestinal Organoids with Rare CFTR Genotypes. Int J Mol Sci 2023; 24:14539. [PMID: 37833986 PMCID: PMC10572896 DOI: 10.3390/ijms241914539] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. The combination of the CFTR modulators elexacaftor, tezacaftor, and ivacaftor (ETI) enables the effective rescue of CFTR function in people with the most prevalent F508del mutation. However, the functional restoration of rare CFTR variants remains unclear. Here, we use patient-derived intestinal organoids (PDIOs) to identify rare CFTR variants and potentially individuals with CF that might benefit from ETI. First, steady-state lumen area (SLA) measurements were taken to assess CFTR function and compare it to the level observed in healthy controls. Secondly, the forskolin-induced swelling (FIS) assay was performed to measure CFTR rescue within a lower function range, and to further compare it to ETI-mediated CFTR rescue in CFTR genotypes that have received market approval. ETI responses in 30 PDIOs harboring the F508del mutation served as reference for ETI responses of 22 PDIOs with genotypes that are not currently eligible for CFTR modulator treatment, following European Medicine Agency (EMA) and/or U.S. Food and Drug Administration (FDA) regulations. Our data expand previous datasets showing a correlation between in vitro CFTR rescue in organoids and corresponding in vivo ppFEV1 improvement upon a CFTR modulator treatment in published clinical trials, and suggests that the majority of individuals with rare CFTR variants could benefit from ETI. CFTR restoration was further confirmed on protein levels using Western blot. Our data support that CFTR function measurements in PDIOs with rare CFTR genotypes can help to select potential responders to ETI, and suggest that regulatory authorities need to consider providing access to treatment based on the principle of equality for people with CF who do not have access to treatment.
Collapse
Affiliation(s)
- Juliet W. Lefferts
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Marlou C. Bierlaagh
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Suzanne Kroes
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Natascha D. A. Nieuwenhuijze
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB Utrecht, The Netherlands
| | - Heleen N. Sonneveld van Kooten
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB Utrecht, The Netherlands
| | - Paul J. Niemöller
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Tibo F. Verburg
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands
| | - Hettie M. Janssens
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus Medical Center-Sophia Children’s Hospital, University Hospital Rotterdam, 3015 CN Rotterdam, The Netherlands
| | - Danya Muilwijk
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Sam F. B. van Beuningen
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB Utrecht, The Netherlands
| | - Cornelis K. van der Ent
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
| | - Jeffrey M. Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children’s Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB Utrecht, The Netherlands
| |
Collapse
|
15
|
Varga Á, Madácsy T, Görög M, Kiss A, Susánszki P, Szabó V, Jójárt B, Dudás K, Farkas G, Szederkényi E, Lázár G, Farkas A, Ayaydin F, Pallagi P, Maléth J. Human pancreatic ductal organoids with controlled polarity provide a novel ex vivo tool to study epithelial cell physiology. Cell Mol Life Sci 2023; 80:192. [PMID: 37380797 PMCID: PMC10307727 DOI: 10.1007/s00018-023-04836-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 06/30/2023]
Abstract
Epithelial ion and fluid secretion determine the physiological functions of a broad range of organs, such as the lung, liver, or pancreas. The molecular mechanism of pancreatic ion secretion is challenging to investigate due to the limited access to functional human ductal epithelia. Patient-derived organoids may overcome these limitations, however direct accessibility of the apical membrane is not solved. In addition, due to the vectorial transport of ions and fluid the intraluminal pressure in the organoids is elevated, which may hinder the study of physiological processes. To overcome these, we developed an advanced culturing method for human pancreatic organoids based on the removal of the extracellular matrix that induced an apical-to-basal polarity switch also leading to reversed localization of proteins with polarized expression. The cells in the apical-out organoids had a cuboidal shape, whereas their resting intracellular Ca2+ concentration was more consistent compared to the cells in the apical-in organoids. Using this advanced model, we demonstrated the expression and function of two novel ion channels, the Ca2+ activated Cl- channel Anoctamin 1 (ANO1) and the epithelial Na+ channel (ENaC), which were not considered in ductal cells yet. Finally, we showed that the available functional assays, such as forskolin-induced swelling, or intracellular Cl- measurement have improved dynamic range when performed with apical-out organoids. Taken together our data suggest that polarity-switched human pancreatic ductal organoids are suitable models to expand our toolset in basic and translational research.
Collapse
Affiliation(s)
- Árpád Varga
- Department of Medicine, University of Szeged, Szeged, Hungary
- ELRN-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HCEMM-USZ Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Tamara Madácsy
- Department of Medicine, University of Szeged, Szeged, Hungary
- ELRN-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HCEMM-USZ Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Marietta Görög
- Department of Medicine, University of Szeged, Szeged, Hungary
- ELRN-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, Department of Medicine, University of Szeged, Szeged, 6720, Hungary
| | - Aletta Kiss
- Department of Medicine, University of Szeged, Szeged, Hungary
- ELRN-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, Department of Medicine, University of Szeged, Szeged, 6720, Hungary
| | - Petra Susánszki
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Viktória Szabó
- Department of Medicine, University of Szeged, Szeged, Hungary
- ELRN-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HCEMM-USZ Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Boldizsár Jójárt
- Department of Medicine, University of Szeged, Szeged, Hungary
- ELRN-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HCEMM-USZ Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Krisztina Dudás
- Department of Medicine, University of Szeged, Szeged, Hungary
| | - Gyula Farkas
- Department of Surgery, University of Szeged, Szeged, Hungary
| | | | - György Lázár
- Department of Surgery, University of Szeged, Szeged, Hungary
| | - Attila Farkas
- HCEMM-USZ Functional Cell Biology and Immunology Advanced Core Facility, University of Szeged, Szeged, Hungary
| | - Ferhan Ayaydin
- HCEMM-USZ Functional Cell Biology and Immunology Advanced Core Facility, University of Szeged, Szeged, Hungary
| | - Petra Pallagi
- Department of Medicine, University of Szeged, Szeged, Hungary
- ELRN-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, Department of Medicine, University of Szeged, Szeged, 6720, Hungary
- HCEMM-USZ Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - József Maléth
- Department of Medicine, University of Szeged, Szeged, Hungary.
- ELRN-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, Department of Medicine, University of Szeged, Szeged, 6720, Hungary.
- HCEMM-USZ Molecular Gastroenterology Research Group, University of Szeged, Szeged, Hungary.
| |
Collapse
|
16
|
de Poel E, Spelier S, Hagemeijer MC, van Mourik P, Suen SWF, Vonk AM, Brunsveld JE, Ithakisiou GN, Kruisselbrink E, Oppelaar H, Berkers G, de Winter de Groot KM, Heida-Michel S, Jans SR, van Panhuis H, Bakker M, van der Meer R, Roukema J, Dompeling E, Weersink EJM, Koppelman GH, Blaazer AR, Muijlwijk-Koezen JE, van der Ent CK, Beekman JM. FDA-approved drug screening in patient-derived organoids demonstrates potential of drug repurposing for rare cystic fibrosis genotypes. J Cyst Fibros 2023; 22:548-559. [PMID: 37147251 DOI: 10.1016/j.jcf.2023.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/06/2023] [Accepted: 03/03/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Preclinical cell-based assays that recapitulate human disease play an important role in drug repurposing. We previously developed a functional forskolin induced swelling (FIS) assay using patient-derived intestinal organoids (PDIOs), allowing functional characterization of CFTR, the gene mutated in people with cystic fibrosis (pwCF). CFTR function-increasing pharmacotherapies have revolutionized treatment for approximately 85% of people with CF who carry the most prevalent F508del-CFTR mutation, but a large unmet need remains to identify new treatments for all pwCF. METHODS We used 76 PDIOs not homozygous for F508del-CFTR to test the efficacy of 1400 FDA-approved drugs on improving CFTR function, as measured in FIS assays. The most promising hits were verified in a secondary FIS screen. Based on the results of this secondary screen, we further investigated CFTR elevating function of PDE4 inhibitors and currently existing CFTR modulators. RESULTS In the primary screen, 30 hits were characterized that elevated CFTR function. In the secondary validation screen, 19 hits were confirmed and categorized in three main drug families: CFTR modulators, PDE4 inhibitors and tyrosine kinase inhibitors. We show that PDE4 inhibitors are potent CFTR function inducers in PDIOs where residual CFTR function is either present, or created by additional compound exposure. Additionally, upon CFTR modulator treatment we show rescue of CF genotypes that are currently not eligible for this therapy. CONCLUSION This study exemplifies the feasibility of high-throughput compound screening using PDIOs. We show the potential of repurposing drugs for pwCF carrying non-F508del genotypes that are currently not eligible for therapies. ONE-SENTENCE SUMMARY We screened 1400 FDA-approved drugs in CF patient-derived intestinal organoids using the previously established functional FIS assay, and show the potential of repurposing PDE4 inhibitors and CFTR modulators for rare CF genotypes.
Collapse
Affiliation(s)
- E de Poel
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, EA 3584, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, CT 3584, the Netherlands
| | - S Spelier
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, EA 3584, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, CT 3584, the Netherlands
| | - M C Hagemeijer
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, EA 3584, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, CT 3584, the Netherlands; Center for Lysosomal and Metabolic Diseases, Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, GD 3015, the Netherlands
| | - P van Mourik
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, EA 3584, the Netherlands
| | - S W F Suen
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, EA 3584, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, CT 3584, the Netherlands
| | - A M Vonk
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, EA 3584, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, CT 3584, the Netherlands
| | - J E Brunsveld
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, EA 3584, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, CT 3584, the Netherlands
| | - G N Ithakisiou
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, EA 3584, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, CT 3584, the Netherlands
| | - E Kruisselbrink
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, EA 3584, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, CT 3584, the Netherlands
| | - H Oppelaar
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, EA 3584, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, CT 3584, the Netherlands
| | - G Berkers
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, EA 3584, the Netherlands
| | - K M de Winter de Groot
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, EA 3584, the Netherlands
| | - S Heida-Michel
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, EA 3584, the Netherlands
| | - S R Jans
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, EA 3584, the Netherlands
| | - H van Panhuis
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, EA 3584, the Netherlands
| | - M Bakker
- Department of Pulmonology, Erasmus MC, University Medical Center, Rotterdam, GD 3015, the Netherlands
| | - R van der Meer
- Haga Teaching Hospital, The Hague, CH 2545, the Netherlands
| | - J Roukema
- Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, XZ 6525, the Netherlands
| | - E Dompeling
- Maastricht University Medical Center, Maastricht, HX 6229, the Netherlands
| | - E J M Weersink
- Amsterdam University Medical Center, location AMC, Amsterdam, AZ 1105, the Netherlands
| | - G H Koppelman
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - A R Blaazer
- Division of Medicinal Chemistry, Vrije Universiteit Amsterdam, Amsterdam, HZ 1081, the Netherlands
| | - J E Muijlwijk-Koezen
- Division of Medicinal Chemistry, Vrije Universiteit Amsterdam, Amsterdam, HZ 1081, the Netherlands
| | - C K van der Ent
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, EA 3584, the Netherlands
| | - J M Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, EA 3584, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, CT 3584, the Netherlands; Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Princetonlaan 6, Utrecht, CB 3584, the Netherlands.
| |
Collapse
|
17
|
Spelier S, de Poel E, Ithakisiou GN, Suen SW, Hagemeijer MC, Muilwijk D, Vonk AM, Brunsveld JE, Kruisselbrink E, van der Ent CK, Beekman JM. High-throughput functional assay in cystic fibrosis patient-derived organoids allows drug repurposing. ERJ Open Res 2023; 9:00495-2022. [PMID: 36726369 PMCID: PMC9885274 DOI: 10.1183/23120541.00495-2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022] Open
Abstract
Background Cystic fibrosis (CF) is a rare hereditary disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Recent therapies enable effective restoration of CFTR function of the most common F508del CFTR mutation. This shifts the unmet clinical need towards people with rare CFTR mutations such as nonsense mutations, of which G542X and W1282X are most prevalent. CFTR function measurements in patient-derived cell-based assays played a critical role in preclinical drug development for CF and may play an important role to identify new drugs for people with rare CFTR mutations. Methods Here, we miniaturised the previously described forskolin-induced swelling (FIS) assay in intestinal organoids from a 96-well to a 384-well plate screening format. Using this novel assay, we tested CFTR increasing potential of a 1400-compound Food and Drug Administration (FDA)-approved drug library in organoids from donors with W1282X/W1282X CFTR nonsense mutations. Results The 384-well FIS assay demonstrated uniformity and robustness based on coefficient of variation and Z'-factor calculations. In the primary screen, CFTR induction was limited overall, yet interestingly, the top five compound combinations that increased CFTR function all contained at least one statin. In the secondary screen, we indeed verified that four out of the five statins (mevastatin, lovastatin, simvastatin and fluvastatin) increased CFTR function when combined with CFTR modulators. Statin-induced CFTR rescue was concentration-dependent and W1282X-specific. Conclusions Future studies should focus on elucidating genotype specificity and mode-of-action of statins in more detail. This study exemplifies proof of principle of large-scale compound screening in a functional assay using patient-derived organoids.
Collapse
Affiliation(s)
- Sacha Spelier
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands,These authors contributed equally to this work,Corresponding author: Sacha Spelier ()
| | - Eyleen de Poel
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands,These authors contributed equally to this work
| | - Georgia N. Ithakisiou
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Sylvia W.F. Suen
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Marne C. Hagemeijer
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands,Center for Lysosomal and Metabolic Diseases, Department of Clinical Genetics Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Danya Muilwijk
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Annelotte M. Vonk
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Jesse E. Brunsveld
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Evelien Kruisselbrink
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Cornelis K. van der Ent
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Jeffrey M. Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, The Netherlands,Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
18
|
Dong R, Zhang B, Zhang X. Liver organoids: an in vitro 3D model for liver cancer study. Cell Biosci 2022; 12:152. [PMID: 36085085 PMCID: PMC9463833 DOI: 10.1186/s13578-022-00890-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/28/2022] [Indexed: 11/21/2022] Open
Abstract
Primary liver cancer (PLC) is the second leading cause of cancer mortality worldwide, and its morbidity unceasingly increases these years. Hepatitis B virus (HBV) infection accounted for approximately 50% of hepatocellular carcinoma (HCC) cases globally in 2015. Due to the lack of an effective model to study HBV-associated liver carcinogenesis, research has made slow progress. Organoid, an in vitro 3D model which maintains self-organization, has recently emerged as a powerful tool to investigate human diseases. In this review, we first summarize the categories and development of liver organoids. Then, we mainly focus on the functions of culture medium components and applications of organoids for HBV infection and HBV-associated liver cancer studies. Finally, we provide insights into a potential patient-derived organoid model from those infected with HBV based on our study, as well as the limitations and future applications of organoids in liver cancer research.
Collapse
|
19
|
Advances in Preclinical In Vitro Models for the Translation of Precision Medicine for Cystic Fibrosis. J Pers Med 2022; 12:jpm12081321. [PMID: 36013270 PMCID: PMC9409685 DOI: 10.3390/jpm12081321] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
The development of preclinical in vitro models has provided significant progress to the studies of cystic fibrosis (CF), a frequently fatal monogenic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. Numerous cell lines were generated over the last 30 years and they have been instrumental not only in enhancing the understanding of CF pathological mechanisms but also in developing therapies targeting the underlying defects in CFTR mutations with further validation in patient-derived samples. Furthermore, recent advances toward precision medicine in CF have been made possible by optimizing protocols and establishing novel assays using human bronchial, nasal and rectal tissues, and by progressing from two-dimensional monocultures to more complex three-dimensional culture platforms. These models also enable to potentially predict clinical efficacy and responsiveness to CFTR modulator therapies at an individual level. In parallel, advanced systems, such as induced pluripotent stem cells and organ-on-a-chip, continue to be developed in order to more closely recapitulate human physiology for disease modeling and drug testing. In this review, we have highlighted novel and optimized cell models that are being used in CF research to develop novel CFTR-directed therapies (or alternative therapeutic interventions) and to expand the usage of existing modulator drugs to common and rare CF-causing mutations.
Collapse
|
20
|
Amatngalim GD, Rodenburg LW, Aalbers BL, Raeven HH, Aarts EM, Sarhane D, Spelier S, Lefferts JW, Silva IA, Nijenhuis W, Vrendenbarg S, Kruisselbrink E, Brunsveld JE, van Drunen CM, Michel S, de Winter-de Groot KM, Heijerman HG, Kapitein LC, Amaral MD, van der Ent CK, Beekman JM. Measuring cystic fibrosis drug responses in organoids derived from 2D differentiated nasal epithelia. Life Sci Alliance 2022; 5:e202101320. [PMID: 35922154 PMCID: PMC9351388 DOI: 10.26508/lsa.202101320] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
Cystic fibrosis is caused by genetic defects that impair the CFTR channel in airway epithelial cells. These defects may be overcome by specific CFTR modulating drugs, for which the efficacy can be predicted in a personalized manner using 3D nasal-brushing-derived airway organoids in a forskolin-induced swelling assay. Despite of this, previously described CFTR function assays in 3D airway organoids were not fully optimal, because of inefficient organoid differentiation and limited scalability. In this report, we therefore describe an alternative method of culturing nasal-brushing-derived airway organoids, which are created from an equally differentiated airway epithelial monolayer of a 2D air-liquid interface culture. In addition, we have defined organoid culture conditions, with the growth factor/cytokine combination neuregulin-1<i>β</i> and interleukin-1<i>β</i>, which enabled consistent detection of CFTR modulator responses in nasal-airway organoid cultures from subjects with cystic fibrosis.
Collapse
Affiliation(s)
- Gimano D Amatngalim
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lisa W Rodenburg
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bente L Aalbers
- Department of Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Henriette Hm Raeven
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ellen M Aarts
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Dounia Sarhane
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sacha Spelier
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Juliet W Lefferts
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Iris Al Silva
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Wilco Nijenhuis
- Department of Biology, Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands
| | - Sacha Vrendenbarg
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Evelien Kruisselbrink
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jesse E Brunsveld
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cornelis M van Drunen
- Department of Otorhinolaryngology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Sabine Michel
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
| | - Karin M de Winter-de Groot
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
| | - Harry G Heijerman
- Department of Pulmonology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lukas C Kapitein
- Department of Biology, Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands
| | - Magarida D Amaral
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| | - Cornelis K van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands
| |
Collapse
|
21
|
Cholon DM, Gentzsch M. Established and novel human translational models to advance cystic fibrosis research, drug discovery, and optimize CFTR-targeting therapeutics. Curr Opin Pharmacol 2022; 64:102210. [DOI: 10.1016/j.coph.2022.102210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022]
|