1
|
Mendoza N, Meiners S. COPD, IPF and Tobacco: What are the Common (Immune) Denominators? Arch Bronconeumol 2025; 61:191-192. [PMID: 39890528 DOI: 10.1016/j.arbres.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/03/2025]
Affiliation(s)
- Nuria Mendoza
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Spain.
| | - Silke Meiners
- Research Center Borstel/Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany; Institute of Experimental Medicine, Christian-Albrechts University, Kiel, Germany
| |
Collapse
|
2
|
Lai Y, Wang S, Shen X, Qi R, Liu T, Du F, YuHe Y, Miao B, Zhai J, Zhang Y, Liu S, Chen Z. An Injectable Chitosan Hydrochloride-Sodium Alginate Hydrogel Adjuvant Capable of Eliciting Potent Humoral and Cellular Immunity. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39970265 DOI: 10.1021/acsami.4c15189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Adjuvants can enhance the immune effects of vaccines. Currently, the most commonly used and validated are aluminum and oil-emulsion adjuvants. However, these adjuvants are not without flaws; for instance, aluminum adjuvants can cause adverse reactions and irritation at the injection site. Consequently, the development of new, safe, and effective adjuvants remains a prominent topic in vaccine research. In this study, we synthesized a composite hydrogel by combining sodium alginate (SA) and the chitosan derivative chitosan hydrochloride (CHCL) to explore the feasibility of this polymer composite hydrogel as a novel immunoadjuvant. Our results indicate that this hydrogel material possesses good biocompatibility and antibacterial properties, is easily injectable, and locally initiates vaccine responses by stimulating the phagocytosis of protein antigens by dendritic cells (DCs). Additionally, they offer sustained exposure to vaccine antigens. After administration, a transient inflammatory niche is created to prolong immune system activation. Importantly, our study demonstrated that the CHCL-SA hydrogel loaded with antigens effectively stimulated the body to produce a humoral immune response and enhance the maturation of the CD8+ T lymphocyte subset. In murine tumor challenge experiments, the CHCL-SA supplemented antigen group significantly inhibited tumor cell growth and improved mouse survival rates. In summary, we developed an injectable CHCL-SA hydrogel adjuvant with great potential for enhancing the efficacy of vaccines.
Collapse
Affiliation(s)
- Yonghao Lai
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Sibo Wang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Xiwen Shen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Ruicheng Qi
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Tingshu Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Fangyuan Du
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Yujia YuHe
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Beiliang Miao
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
- Department of Nephrology and Endocrinology, Wangjing Hospital, Chinese Academy of Chinese Medical Science, Beijing 100102, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yi Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Shiwei Liu
- Department of Nephrology and Endocrinology, Wangjing Hospital, Chinese Academy of Chinese Medical Science, Beijing 100102, China
| | - Zeliang Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| |
Collapse
|
3
|
Wu L, Zhang E, Tu Y, Chen Y, Wang C, Ren Y, Fang B. Inherent immunity and adaptive immunity: Mechanism and role in AECOPD. Innate Immun 2025; 31:17534259251322612. [PMID: 40017227 PMCID: PMC11869301 DOI: 10.1177/17534259251322612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 12/20/2024] [Accepted: 02/04/2025] [Indexed: 03/01/2025] Open
Abstract
Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) is the leading cause of hospitalization and mortality in COPD patients. The occurrence of antibiotic resistance and the progression of non-infectious diseases contribute to poor patient outcomes. Thus, a comprehensive understanding of the mechanisms underlying AECOPD is essential for effective prevention. It is widely acknowledged that the immune system plays a fundamental role in pathogen clearance and the development of inflammation. Immune dysregulation, either due to deficiency or hyperactivity, has been implicated in AECOPD pathogenesis. Therefore, the purpose of this review is to investigate the possible mechanisms underlying dysregulated immune function and disease progression in COPD patients, specifically focusing on the innate and adaptive immune responses. The ultimate aim is to provide new insights for clinical prevention and treatment strategies targeting AECOPD.
Collapse
Affiliation(s)
- Linguangjin Wu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Emergency Department, Shanghai, China
| | - Erxin Zhang
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yadan Tu
- Chongqing Hospital of Traditional Chinese Medicine, Classic Department of Traditional Chinese Medicine, Chongqing, China
| | - Yong Chen
- Chongqing Hospital of Traditional Chinese Medicine, Classic Department of Traditional Chinese Medicine, Chongqing, China
| | - Chenghu Wang
- Chongqing Hospital of Traditional Chinese Medicine, Classic Department of Traditional Chinese Medicine, Chongqing, China
| | - Yi Ren
- Chongqing Hospital of Traditional Chinese Medicine, Classic Department of Traditional Chinese Medicine, Chongqing, China
| | - Bangjiang Fang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Emergency Department, Shanghai, China
| |
Collapse
|
4
|
Tu Y, Chen Y, Li X, Wang Y, Fang B, Ren Y, Wang C. Advances in acute COPD exacerbation: clarifying specific immune mechanisms of infectious and noninfectious factors. Ther Adv Respir Dis 2025; 19:17534666241308408. [PMID: 40098281 PMCID: PMC11915264 DOI: 10.1177/17534666241308408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) is the main cause of hospitalization and death of patients with chronic obstructive pulmonary disease. This is largely due to bacterial resistance caused by clinical antibiotic abuse and the limited efficacy of current treatment strategies in managing noninfectious AECOPD, which presents a significant challenge for clinicians. Therefore, it is urgent for clinical treatment and prevention of AECOPD to fully understand the specific mechanism of AECOPD in the immune system and master the key differences between infectious factors and noninfectious factors. This article systematically discusses AECOPD triggered by various factors, including the activation of immune system, the recruitment and activation of inflammatory cells and the role of specific inflammatory responses, and through a comprehensive review of the literature, this article expounds the existing targeted diagnosis and treatment methods and technologies at different stages in order to provide new ideas and strategies for clinical prevention and treatment of AECOPD.
Collapse
Affiliation(s)
- Yadan Tu
- Department of Classic Chinese Medicine, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing, China
- Classic Department of Traditional Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Yong Chen
- Department of Classic Chinese Medicine, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing, China
- Classic Department of Traditional Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xuanhan Li
- Department of Classic Chinese Medicine, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing, China
- Classic Department of Traditional Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Yigang Wang
- Department of Classic Chinese Medicine, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing, China
- Classic Department of Traditional Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Bangjiang Fang
- Emergency Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Ren
- Department of Classic Chinese Medicine, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing 400021, China
- Classic Department of Traditional Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Chenghu Wang
- Department of Classic Chinese Medicine, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing, China
- Classic Department of Traditional Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
5
|
Wu CY, Melo-Narváez MC, Cuevas-Ocaña S. Early career member highlights from the 22nd ERS Lung Science Conference: development of chronic lung diseases - from life-spanning mechanisms to preventive therapy. ERJ Open Res 2024; 10:00659-2024. [PMID: 39687388 PMCID: PMC11647874 DOI: 10.1183/23120541.00659-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/31/2024] [Indexed: 12/18/2024] Open
Abstract
ERJOR: In case you missed the #LSC2024, this work highlights some of the new key points that were discussed at the @EuroRespSoc Lung Science Conference about #COPD & #IPF by @SaraOcana1 @danielchengyuwu @cami93melo @EarlyCareerERS @ERSpublications #ERJOR https://bit.ly/4cbMjpS.
Collapse
Affiliation(s)
- Cheng-Yu Wu
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen, Germany
- These authors contributed equally
| | - María Camila Melo-Narváez
- Institute for Lung Research, Philipps-University Marburg, Member of the DZL, Marburg, Germany
- Comprehensive Pneumology Center, Institute of Lung Health and Immunity, Helmholtz Center Munich, Member of the DZL, Munich, Germany
- These authors contributed equally
| | - Sara Cuevas-Ocaña
- Biodiscovery Institute, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
6
|
Deng H, Zhu S, Yu F, Song X, Jin X, Ding X. Analysis of Predictive Value of Cellular Inflammatory Factors and T Cell Subsets for Disease Recurrence and Prognosis in Patients with Acute Exacerbations of COPD. Int J Chron Obstruct Pulmon Dis 2024; 19:2361-2369. [PMID: 39502935 PMCID: PMC11537194 DOI: 10.2147/copd.s490152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Objective To explore the predictive value of cellular inflammatory factors and T cell subsets for disease recurrence and prognosis in patients with acute exacerbations of chronic obstructive pulmonary disease (COPD). Methods Serum samples were collected from the two groups to detect and compare the levels of inflammatory cytokines [interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α)], T cell subsets (CD4+, CD8+), and clinical related indicators. Pearson correlation analysis was used to analyze the correlation between inflammatory cytokines, T cell subsets, and clinical indicators. Receiver operating characteristic (ROC) curves were plotted to analyze the predictive value of serum inflammatory factors and T cell subsets for acute exacerbations of COPD. Results The observation group had higher levels of IL-1β, IL-6, TNF-α, and CD8+, and lower CD4+ levels (P<0.05). The ratio of forced expiratory volume in 1 second to forced vital capacity (FEV1/FVC) was lower, while procalcitonin (PCT) and white blood cell count (WBC) were higher (P<0.05). Correlation analysis showed positive correlations between IL-1β, IL-6, TNF-α, and CD8+, and negative correlations with CD4+ and FEV1/FVC (P<0.05). After 6 months, 15 out of 73 patients had acute recurrences, with higher IL-1β, IL-6, TNF-α, and CD8+ levels (P<0.05). Binary logistic regression identified IL-1β, IL-6, TNF-α, and CD8+ as significant predictors of exacerbations, while CD4+ was protective. ROC analysis showed that combined biomarkers had the highest predictive efficiency (AUC = 0.907). Conclusion This study is the first to integrate multiple serum inflammatory factors and T cell subsets into a comprehensive predictive model for acute recurrence of COPD within six months (AUC = 0.907), offering a more accurate prediction than traditional methods. The findings underscore the value of these biomarkers in clinical follow-up and highlight their independent predictive power, providing new insights into the interaction between immune markers and clinical indicators in COPD exacerbations.
Collapse
Affiliation(s)
- Haoran Deng
- Department of Respiratory and Critical Care Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, People’s Republic of China
| | - Shiping Zhu
- Department of Respiratory and Critical Care Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, People’s Republic of China
| | - Fei Yu
- Department of Respiratory and Critical Care Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, People’s Republic of China
| | - Xue Song
- Department of Respiratory and Critical Care Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, People’s Republic of China
| | - Xinlai Jin
- Department of Respiratory and Critical Care Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, People’s Republic of China
| | - Xuchun Ding
- Department of Respiratory and Critical Care Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, People’s Republic of China
| |
Collapse
|
7
|
Ehrhardt B, Roeder T, Krauss-Etschmann S. Drosophila melanogaster as an Alternative Model to Higher Organisms for In Vivo Lung Research. Int J Mol Sci 2024; 25:10324. [PMID: 39408654 PMCID: PMC11476989 DOI: 10.3390/ijms251910324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
COPD and asthma are lung diseases that cause considerable burden to more than 800 million people worldwide. As both lung diseases are so far incurable, it is mandatory to understand the mechanisms underlying disease development and progression for developing novel therapeutic approaches. Exposures to environmental cues such as cigarette smoke in earliest life are known to increase disease risks in the individual's own future. To explore the pathomechanisms leading to later airway disease, mammalian models are instrumental. However, such in vivo experiments are time-consuming and burdensome for the animals, which applies in particular to transgenerational studies. Along this line, the fruit fly Drosophila melanogaster comes with several advantages for research in this field. The short lifespan facilitates transgenerational studies. A high number of evolutionary conserved signaling pathways, together with a large toolbox for tissue-specific gene modification, has the potential to identify novel target genes involved in disease development. A well-defined airway microbiome could help to untangle interactions between disease development and microbiome composition. In the following article, Drosophila melanogaster is therefore presented and discussed as an alternative in vivo model to investigate airway diseases that can complement and/or replace models in higher organisms.
Collapse
Affiliation(s)
- Birte Ehrhardt
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel-Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Thomas Roeder
- Division of Molecular Physiology, Institute of Zoology, Christian-Albrechts University Kiel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), 24118 Kiel, Germany
| | - Susanne Krauss-Etschmann
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel-Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Borstel, Germany
- DZL Laboratory for Experimental Microbiome Research, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), 23845 Borstel, Germany
- Institute of Experimental Medicine, Christian-Albrechts-University Kiel, 24105 Kiel, Germany
| |
Collapse
|
8
|
Yu MR, Hu W, Yan S, Qu MM, Jiao YM, Wang FS. The Relationship between Smoking and Susceptibility to HIV Infection: A Two-Sample Mendelian Randomization Analysis. Biomedicines 2024; 12:2060. [PMID: 39335573 PMCID: PMC11428241 DOI: 10.3390/biomedicines12092060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Smoking is prevalent among people living with the human immunodeficiency virus (HIV), and it increases morbidity and mortality in this population. However, due to ethical constraints, there is limited information on the effects of smoking on susceptibility to HIV infection. To investigate whether smoking is associated with an increased susceptibility to HIV infection, we conducted a two-sample Mendelian randomization (MR) study using summary statistics from genome-wide association studies of individuals of European ancestry who have ever smoked (n = 99,996) and have HIV (n = 412,130). The random-effects inverse-variance weighted estimation method was used as the study's primary approach, with the MR-Egger regression and the weighted-median method as complementary approaches. Using 100 single-nucleotide polymorphisms of genome-wide significance as instrumental variables for smoking, we observed a significant association between smoking and HIV infection (odds ratio 5.790, 95% confidence interval [1.785, 18.787], and p = 0.003). Comparable results were obtained using the weighted-median method. Our findings implied that smoking is probably associated with increased susceptibility to HIV infection. Given the exploratory nature of this study, further research is needed to confirm this relationship.
Collapse
Affiliation(s)
- Min-Rui Yu
- Medical School of Chinese PLA, Beijing 100853, China;
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (W.H.); (M.-M.Q.)
| | - Wei Hu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (W.H.); (M.-M.Q.)
- Department of Emergency, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Song Yan
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China;
| | - Meng-Meng Qu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (W.H.); (M.-M.Q.)
| | - Yan-Mei Jiao
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (W.H.); (M.-M.Q.)
| | - Fu-Sheng Wang
- Medical School of Chinese PLA, Beijing 100853, China;
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (W.H.); (M.-M.Q.)
| |
Collapse
|
9
|
Baraldo S, Bonato M, Cassia S, Casolari P, De Ferrari L, Tiné M, Baraldi F, Bigoni T, Riccio AM, Braido F, Saetta M, Papi A, Contoli M. Expression of human Interferon Regulatory Factor 3 (IRF-3) in alveolar macrophages relates to clinical and functional traits in COPD. Respir Res 2024; 25:315. [PMID: 39160551 PMCID: PMC11334339 DOI: 10.1186/s12931-024-02952-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a frequent cause of morbidity and mortality. Dysregulated and enhanced immune-inflammatory responses have been described in COPD. Recent data showed impaired immune responses and, in particular, of interferon (IFNs) signaling pathway in these patients. AIM To evaluate in peripheral lung of COPD patients, the expression of some of the less investigated key components of the innate immune responses leading to IFN productions including: IFN-receptors (IFNAR1/IFNAR2), IRF-3 and MDA-5. Correlations with clinical traits and with the inflammatory cell profile have been assessed. METHODS Lung specimens were collected from 58 subjects undergoing thoracic surgery: 22 COPD patients, 21 smokers with normal lung function (SC) and 15 non-smoker controls (nSC). The expression of IFNAR1, IFNAR2, IRF-3 and MDA-5, of eosinophils and activated NK cells (NKp46+) were quantified in the peripheral lung by immunohistochemistry. RESULTS A significant increase of IRF-3 + alveolar macrophages were observed in COPD and SC compared with nSC subjects. However, in COPD patients, the lower the levels of IRF-3 + alveolar macrophages the lower the FEV1 and the higher the exacerbation rate. The presence of chronic bronchitis (CB) was also associated with low levels of IRF-3 + alveolar macrophages. NKp46 + cells, but not eosinophils, were increased in COPD patients compared to nSC patients (p < 0.0001). CONCLUSIONS Smoking is associated with higher levels of innate immune response as showed by higher levels of IRF-3 + alveolar macrophages and NKp46 + cells. In COPD, exacerbation rates, severe airflow obstruction and CB were associated with lower levels of IRF-3 expression, suggesting that innate immune responses characterize specific clinical traits of the disease.
Collapse
Affiliation(s)
- Simonetta Baraldo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Matteo Bonato
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Pulmonology Unit, Ca' Foncello Hospital, Azienda Unità Locale Socio-Sanitaria 2 Marca Trevigiana, Treviso, Italy
| | - Sebastiano Cassia
- Respiratory Clinic, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paolo Casolari
- Section of Respiratory Diseases, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Laura De Ferrari
- Respiratory Clinic, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mariaenrica Tiné
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Federico Baraldi
- Section of Respiratory Diseases, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Tommaso Bigoni
- Section of Respiratory Diseases, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Anna Maria Riccio
- Respiratory Clinic, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fulvio Braido
- Respiratory Clinic, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marina Saetta
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Alberto Papi
- Section of Respiratory Diseases, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Azienda Ospedaliera Universitaria Ferrara and AUSL, Ferrara, Italy
| | - Marco Contoli
- Section of Respiratory Diseases, Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
- Azienda Ospedaliera Universitaria Ferrara and AUSL, Ferrara, Italy.
| |
Collapse
|
10
|
Jiang M, Wang J, Li Z, Xu D, Jing J, Li F, Ding J, Li Q. Dietary Fiber-Derived Microbial Butyrate Suppresses ILC2-Dependent Airway Inflammation in COPD. Mediators Inflamm 2024; 2024:6263447. [PMID: 39015676 PMCID: PMC11251798 DOI: 10.1155/2024/6263447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/27/2024] [Accepted: 06/08/2024] [Indexed: 07/18/2024] Open
Abstract
Group 2 innate lymphoid cells (ILC2) strongly modulate COPD pathogenesis. However, the significance of microbiota in ILC2s remains unelucidated. Herein, we investigated the immunomodulatory role of short-chain fatty acids (SCFAs) in regulating ILC2-associated airway inflammation and explores its associated mechanism in COPD. In particular, we assessed the SCFA-mediated regulation of survival, proliferation, and cytokine production in lung sorted ILC2s. To elucidate butyrate action in ILC2-driven inflammatory response in COPD models, we administered butyrate to BALB/c mice via drinking water. We revealed that SCFAs, especially butyrate, derived from dietary fiber fermentation by gut microbiota inhibited pulmonary ILC2 functions and suppressed both IL-13 and IL-5 synthesis by murine ILC2s. Using in vivo and in vitro experimentation, we validated that butyrate significantly ameliorated ILC2-induced inflammation. We further demonstrated that butyrate suppressed ILC2 proliferation and GATA3 expression. Additionally, butyrate potentially utilized histone deacetylase (HDAC) inhibition to enhance NFIL3 promoter acetylation, thereby augmenting its expression, which eventually inhibited cytokine production in ILC2s. Taken together, the aforementioned evidences demonstrated a previously unrecognized role of microbial-derived SCFAs on pulmonary ILC2s in COPD. Moreover, our evidences suggest that metabolomics and gut microbiota modulation may prevent lung inflammation of COPD.
Collapse
Affiliation(s)
- Min Jiang
- Xinjiang Key Laboratory of Respiratory Disease ResearchTraditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| | - Jing Wang
- Xinjiang Key Laboratory of Respiratory Disease ResearchTraditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| | - Zheng Li
- Xinjiang Key Laboratory of Respiratory Disease ResearchTraditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| | - Dan Xu
- Xinjiang Key Laboratory of Respiratory Disease ResearchTraditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| | - Jing Jing
- Xinjiang Key Laboratory of Respiratory Disease ResearchTraditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| | - Fengsen Li
- Xinjiang Key Laboratory of Respiratory Disease ResearchTraditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| | - Jianbing Ding
- Department of ImmunologyCollege of Basic MedicineXinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Qifeng Li
- Xinjiang Institute of PediatricsXinjiang Hospital of Beijing Children's HospitalChildren's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| |
Collapse
|
11
|
Kastratovic N, Zdravkovic N, Cekerevac I, Sekerus V, Harrell CR, Mladenovic V, Djukic A, Volarevic A, Brankovic M, Gmizic T, Zdravkovic M, Bjekic-Macut J, Zdravkovic N, Djonov V, Volarevic V. Effects of Combustible Cigarettes and Heated Tobacco Products on Systemic Inflammatory Response in Patients with Chronic Inflammatory Diseases. Diseases 2024; 12:144. [PMID: 39057115 PMCID: PMC11276168 DOI: 10.3390/diseases12070144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Smoke derived from combustible cigarettes (CCs) contains numerous harmful chemicals that can impair the viability, proliferation, and activation of immune cells, affecting the progression of chronic inflammatory diseases. In order to avoid the detrimental effects of cigarette smoking, many CC users have replaced CCs with heated tobacco products (HTPs). Due to different methods of tobacco processing, CC-sourced smoke and HTP-derived aerosols contain different chemical constituents. With the exception of nicotine, HTP-sourced aerosols contain significantly lower amounts of harmful constituents than CC-derived smoke. Since HTP-dependent effects on immune-cell-driven inflammation are still unknown, herein we used flow cytometry analysis, intracellular staining, and an enzyme-linked immunosorbent assay to determine the impact of CCs and HTPs on systemic inflammatory response in patients suffering from ulcerative colitis (UC), diabetes mellitus (DM), and chronic obstructive pulmonary disease (COPD). Both CCs and HTPs significantly modulated cytokine production in circulating immune cells, affecting the systemic inflammatory response in COPD, DM, and UC patients. Compared to CCs, HTPs had weaker capacity to induce the synthesis of inflammatory cytokines (IFN-γ, IL-1β, IL-5, IL-6, IL-12, IL-23, IL-17, TNF-α), but more efficiently induced the production of immunosuppressive IL-10 and IL-35. Additionally, HTPs significantly enhanced the synthesis of pro-fibrotic TGF-β. The continuous use of CCs and HTPs aggravated immune-cell-driven systemic inflammation in COPD and DM patients, but not in UC patients, suggesting that the immunomodulatory effects of CC-derived smoke and HTP-sourced aerosols are disease-specific, and need to be determined for specific immune-cell-driven inflammatory diseases.
Collapse
Affiliation(s)
- Nikolina Kastratovic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (N.K.); (N.Z.); (I.C.); (A.V.); (N.Z.)
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Natasa Zdravkovic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (N.K.); (N.Z.); (I.C.); (A.V.); (N.Z.)
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (V.M.); (A.D.)
- Center for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center Kragujevac, 30 Zmaj Jovina Street, 34000 Kragujevac, Serbia
| | - Ivan Cekerevac
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (N.K.); (N.Z.); (I.C.); (A.V.); (N.Z.)
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (V.M.); (A.D.)
- Pulmonology Clinic, University Clinical Center Kragujevac, 30 Zmaj Jovina Street, 34000 Kragujevac, Serbia
| | - Vanesa Sekerus
- Institute for Pulmonary Diseases of Vojvodina, 4 Institutski Put, 21204 Novi Sad, Serbia;
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, 3 Hajduk Veljkova Street, 21000 Novi Sad, Serbia
| | - Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N, Palm Harbor, FL 34684, USA;
| | - Violeta Mladenovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (V.M.); (A.D.)
- Center for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center Kragujevac, 30 Zmaj Jovina Street, 34000 Kragujevac, Serbia
| | - Aleksandar Djukic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (V.M.); (A.D.)
- Center for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center Kragujevac, 30 Zmaj Jovina Street, 34000 Kragujevac, Serbia
| | - Ana Volarevic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (N.K.); (N.Z.); (I.C.); (A.V.); (N.Z.)
- Department of Psychology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Marija Brankovic
- Department of Gastroenterology, University Medical Center “Bežanijska Kosa”, Dr Zoza Matea bb, 11080 Belgrade, Serbia; (M.B.); (T.G.)
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia;
| | - Tijana Gmizic
- Department of Gastroenterology, University Medical Center “Bežanijska Kosa”, Dr Zoza Matea bb, 11080 Belgrade, Serbia; (M.B.); (T.G.)
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia;
| | - Marija Zdravkovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia;
- Department of Cardiology, University Medical Center “Bežanijska Kosa”, Dr Zoza Matea bb, 11080 Belgrade, Serbia
| | - Jelica Bjekic-Macut
- Department of Endocrinology, University Medical Center “Bežanijska Kosa”, Dr Zoza Matea bb, 11080 Belgrade, Serbia;
| | - Nebojsa Zdravkovic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (N.K.); (N.Z.); (I.C.); (A.V.); (N.Z.)
- Department of Statistics, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland;
| | - Vladislav Volarevic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (N.K.); (N.Z.); (I.C.); (A.V.); (N.Z.)
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
- Faculty of Pharmacy Novi Sad, Trg Mladenaca 5, 21000 Novi Sad, Serbia
| |
Collapse
|
12
|
Jiang M, Hong X, Gao Y, Kho AT, Tantisira KG, Li J. piRNA associates with immune diseases. Cell Commun Signal 2024; 22:347. [PMID: 38943141 PMCID: PMC11214247 DOI: 10.1186/s12964-024-01724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024] Open
Abstract
PIWI-interacting RNA (piRNA) is the most abundant small non-coding RNA in animal cells, typically 26-31 nucleotides in length and it binds with PIWI proteins, a subfamily of Argonaute proteins. Initially discovered in germ cells, piRNA is well known for its role in silencing transposons and maintaining genome integrity. However, piRNA is also present in somatic cells as well as in extracellular vesicles and exosomes. While piRNA has been extensively studied in various diseases, particular cancer, its function in immune diseases remains unclear. In this review, we summarize current research on piRNA in immune diseases. We first introduce the basic characteristics, biogenesis and functions of piRNA. Then, we review the association of piRNA with different types of immune diseases, including autoimmune diseases, immunodeficiency diseases, infectious diseases, and other immune-related diseases. piRNA is considered a promising biomarker for diseases, highlighting the need for further research into its potential mechanisms in disease pathogenesis.
Collapse
Affiliation(s)
- Mingye Jiang
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Xiaoning Hong
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yunfei Gao
- Department of Otolaryngology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Alvin T Kho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jiang Li
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China.
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Guangdong, Shenzhen, China.
| |
Collapse
|
13
|
Erice PA, Huang X, Seasock MJ, Robertson MJ, Tung HY, Perez-Negron MA, Lotlikar SL, Corry DB, Kheradmand F, Rodriguez A. Downregulation of Mirlet7 miRNA family promotes Tc17 differentiation and emphysema via de-repression of RORγt. eLife 2024; 13:RP92879. [PMID: 38722677 PMCID: PMC11081633 DOI: 10.7554/elife.92879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Environmental air irritants including nanosized carbon black (nCB) can drive systemic inflammation, promoting chronic obstructive pulmonary disease (COPD) and emphysema development. The let-7 microRNA (Mirlet7 miRNA) family is associated with IL-17-driven T cell inflammation, a canonical signature of lung inflammation. Recent evidence suggests the Mirlet7 family is downregulated in patients with COPD, however, whether this repression conveys a functional consequence on emphysema pathology has not been elucidated. Here, we show that overall expression of the Mirlet7 clusters, Mirlet7b/Mirlet7c2 and Mirlet7a1/Mirlet7f1/Mirlet7d, are reduced in the lungs and T cells of smokers with emphysema as well as in mice with cigarette smoke (CS)- or nCB-elicited emphysema. We demonstrate that loss of the Mirlet7b/Mirlet7c2 cluster in T cells predisposed mice to exaggerated CS- or nCB-elicited emphysema. Furthermore, ablation of the Mirlet7b/Mirlet7c2 cluster enhanced CD8+IL17a+ T cells (Tc17) formation in emphysema development in mice. Additionally, transgenic mice overexpressing Mirlet7g in T cells are resistant to Tc17 and CD4+IL17a+ T cells (Th17) development when exposed to nCB. Mechanistically, our findings reveal the master regulator of Tc17/Th17 differentiation, RAR-related orphan receptor gamma t (RORγt), as a direct target of Mirlet7 in T cells. Overall, our findings shed light on the Mirlet7/RORγt axis with Mirlet7 acting as a molecular brake in the generation of Tc17 cells and suggest a novel therapeutic approach for tempering the augmented IL-17-mediated response in emphysema.
Collapse
Affiliation(s)
- Phillip A Erice
- Immunology Graduate Program, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of MedicineHoustonUnited States
| | - Xinyan Huang
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of MedicineHoustonUnited States
| | - Matthew J Seasock
- Immunology Graduate Program, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of MedicineHoustonUnited States
| | - Matthew J Robertson
- Dan Duncan Comprehensive Cancer Center, Baylor College of MedicineHoustonUnited States
| | - Hui-Ying Tung
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
| | - Melissa A Perez-Negron
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of MedicineHoustonUnited States
| | - Shivani L Lotlikar
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of MedicineHoustonUnited States
| | - David B Corry
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of MedicineHoustonUnited States
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Center for Translational Research on Inflammatory Diseases, Michael E Debakey, Baylor College of MedicineHoustonUnited States
| | - Farrah Kheradmand
- Department of Pathology and Immunology, Baylor College of MedicineHoustonUnited States
- Center for Translational Research on Inflammatory Diseases, Michael E Debakey, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Section of Pulmonary and Critical Care, Baylor College of MedicineHoustonUnited States
| | - Antony Rodriguez
- Department of Medicine, Immunology & Allergy Rheumatology, Baylor College of MedicineHoustonUnited States
- Center for Translational Research on Inflammatory Diseases, Michael E Debakey, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
14
|
Zhang F, Xiang Y, Ma Q, Guo E, Zeng X. A deep insight into ferroptosis in lung disease: facts and perspectives. Front Oncol 2024; 14:1354859. [PMID: 38562175 PMCID: PMC10982415 DOI: 10.3389/fonc.2024.1354859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
In the last decade, ferroptosis has received much attention from the scientific research community. It differs from other modes of cell death at the morphological, biochemical, and genetic levels. Ferroptosis is mainly characterized by non-apoptotic iron-dependent cell death caused by iron-dependent lipid peroxide excess and is accompanied by abnormal iron metabolism and oxidative stress. In recent years, more and more studies have shown that ferroptosis is closely related to the occurrence and development of lung diseases. COPD, asthma, lung injury, lung fibrosis, lung cancer, lung infection and other respiratory diseases have become the third most common chronic diseases worldwide, bringing serious economic and psychological burden to people around the world. However, the exact mechanism by which ferroptosis is involved in the development and progression of lung diseases has not been fully revealed. In this manuscript, we describe the mechanism of ferroptosis, targeting of ferroptosis related signaling pathways and proteins, summarize the relationship between ferroptosis and respiratory diseases, and explore the intervention and targeted therapy of ferroptosis for respiratory diseases.
Collapse
Affiliation(s)
- Fan Zhang
- Wuhan University of Science and Technology, School of Medicine, Wuhan, China
| | - Yu Xiang
- Wuhan University of Science and Technology, School of Medicine, Wuhan, China
| | - Qiao Ma
- Wuhan University of Science and Technology, School of Medicine, Wuhan, China
| | - E. Guo
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Xiansheng Zeng
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
15
|
Huang Y, Liu J, Liang D. Comprehensive analysis reveals key genes and environmental toxin exposures underlying treatment response in ulcerative colitis based on in-silico analysis and Mendelian randomization. Aging (Albany NY) 2023; 15:14141-14171. [PMID: 38059894 PMCID: PMC10756092 DOI: 10.18632/aging.205294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND UC is increasingly prevalent worldwide and represents a significant global disease burden. Although medical therapeutics are employed, they often fall short of being optimal, leaving patients struggling with treatment non-responsiveness and many related complications. MATERIALS AND METHODS The study utilized gene microarray data and clinical information from GEO. Gene enrichment and differential expression analyses were conducted using Metascape and Limma, respectively. Lasso Regression Algorithm was constructed using glmnet and heat maps were generated using pheatmap. ROC curves were used to assess diagnostic parameter capability, while XSum was employed to screen for small-molecule drugs exacerbating UC. Molecular docking was carried out using Autodock Vina. The study also performed Mendelian randomization analysis based on TwoSampleMR and used CTD to investigate the relationship between exposure to environmental chemical toxicants and UC therapy responsiveness. RESULTS Six genes (ELL2, DAPP1, SAMD9L, CD38, IGSF6, and LYN) were found to be significantly overexpressed in UC patient samples that did not respond to multiple therapies. Lasso analysis identified ELL2 and DAPP1 as key genes influencing UC treatment response. Both genes accurately predicted intestinal inflammation in UC and impacted the immunological infiltration status. Clofibrate showed therapeutic potential for UC by binding to ELL2 and DAPP1 proteins. The study also reviews environmental toxins and drug exposures that could impact UC progression. CONCLUSIONS We used microarray technology to identify DAPP1 and ELL2 as key genes that impact UC treatment response and inflammatory progression. Clofibrate was identified as a promising UC treatment. Our review also highlights the impact of environmental toxins on UC treatment response, providing valuable insights for personalized clinical management.
Collapse
Affiliation(s)
- Yizhou Huang
- Department of Gastroenterology, The PLA Navy Anqing Hospital, Anqing 246000, Anhui Province, China
| | - Jie Liu
- Department of Gastroenterology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui Province, China
| | - Dingbao Liang
- Department of Gastroenterology, The PLA Navy Anqing Hospital, Anqing 246000, Anhui Province, China
| |
Collapse
|
16
|
Schmalen A, Kammerl IE, Meiners S, Noessner E, Deeg CA, Hauck SM. A Lysine Residue at the C-Terminus of MHC Class I Ligands Correlates with Low C-Terminal Proteasomal Cleavage Probability. Biomolecules 2023; 13:1300. [PMID: 37759700 PMCID: PMC10527444 DOI: 10.3390/biom13091300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The majority of peptides presented by MHC class I result from proteasomal protein turnover. The specialized immunoproteasome, which is induced during inflammation, plays a major role in antigenic peptide generation. However, other cellular proteases can, either alone or together with the proteasome, contribute peptides to MHC class I loading non-canonically. We used an immunopeptidomics workflow combined with prediction software for proteasomal cleavage probabilities to analyze how inflammatory conditions affect the proteasomal processing of immune epitopes presented by A549 cells. The treatment of A549 cells with IFNγ enhanced the proteasomal cleavage probability of MHC class I ligands for both the constitutive proteasome and the immunoproteasome. Furthermore, IFNγ alters the contribution of the different HLA allotypes to the immunopeptidome. When we calculated the HLA allotype-specific proteasomal cleavage probabilities for MHC class I ligands, the peptides presented by HLA-A*30:01 showed characteristics hinting at a reduced C-terminal proteasomal cleavage probability independently of the type of proteasome. This was confirmed by HLA-A*30:01 ligands from the immune epitope database, which also showed this effect. Furthermore, two additional HLA allotypes, namely, HLA-A*03:01 and HLA-A*11:01, presented peptides with a markedly reduced C-terminal proteasomal cleavage probability. The peptides eluted from all three HLA allotypes shared a peptide binding motif with a C-terminal lysine residue, suggesting that this lysine residue impairs proteasome-dependent HLA ligand production and might, in turn, favor peptide generation by other cellular proteases.
Collapse
Affiliation(s)
- Adrian Schmalen
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Martinsried, 82152 Planegg, Germany
- Core Facility—Metabolomics and Proteomics Core, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 80939 Munich, Germany
| | - Ilona E. Kammerl
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians-University, Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Silke Meiners
- Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany
- Institute of Experimental Medicine, Christian-Albrechts University Kiel, 24118 Kiel, Germany
| | - Elfriede Noessner
- Immunoanalytics Research Group—Tissue Control of Immunocytes, Helmholtz Center Munich, 81377 Munich, Germany
| | - Cornelia A. Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Martinsried, 82152 Planegg, Germany
| | - Stefanie M. Hauck
- Core Facility—Metabolomics and Proteomics Core, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 80939 Munich, Germany
| |
Collapse
|
17
|
Bracke KR, Polverino F. Blunted adaptive immune responses and acute exacerbations of COPD: breaking the code. Eur Respir J 2023; 62:2301030. [PMID: 37536726 DOI: 10.1183/13993003.01030-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023]
Affiliation(s)
- Ken R Bracke
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Francesca Polverino
- Pulmonary and Critical Care Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|