1
|
Zhang J, Wang S, Huang YY. Exploring the protective role of maternal lung cancer history on allergic rhinitis. J Clin Biochem Nutr 2025; 76:156-163. [PMID: 40151401 PMCID: PMC11936740 DOI: 10.3164/jcbn.24-172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/12/2024] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The causal relationship between family history of lung cancer and allergic rhinitis remains unclear. This study aimed to explore the association between family history of lung cancer and allergic rhinitis, along with potential mediating mechanisms, using Mendelian randomization. METHODS A bidirectional two-sample Mendelian randomization analysis was conducted to assess the causal relationship between family history of lung cancer (including parental, paternal, maternal, and sibling histories) and allergic rhinitis, using genetic variants associated with family history of lung cancer as instrumental variables. Additionally, mediation Mendelian randomization analysis was performed to investigate the role of specific metabolites in mediating this relationship. RESULTS The analysis revealed a significant causal relationship between parental history of lung cancer and allergic rhinitis, with maternal lung cancer history showing a strong protective effect against allergic rhinitis (OR = 0.28, p<0.05). Mediation analysis further indicated that metabolites such as 1-linoleoyl-GPE (18:2) and N-palmitoyl-sphingosine exhibited negative mediating effects in the association between maternal lung cancer and allergic rhinitis. Lower levels of these metabolites enhanced the protective effect of maternal lung cancer history on allergic rhinitis. CONCLUSION This study demonstrates a significant causal relationship between maternal lung cancer history and allergic rhinitis, with specific metabolites potentially playing a mediating role. Changes in the levels of 1-linoleoyl-GPE (18:2) and N-palmitoyl-sphingosine are associated with the protective effect of maternal lung cancer history on allergic rhinitis, suggesting that metabolites may be crucial in regulating this relationship. These findings provide new insights into the relationship between family history of lung cancer and immune-related diseases, offering potential directions for future clinical prevention and treatment strategies.
Collapse
Affiliation(s)
- Junyan Zhang
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 250 Changgang East Road, Haizhu District, Guangzhou 510260, China
| | - Songsheng Wang
- NLP2CT Lab, University of Macau, Avenida da Universidade Taipa, Macau, China
| | - Yu-Yi Huang
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 250 Changgang East Road, Haizhu District, Guangzhou 510260, China
- NLP2CT Lab, University of Macau, Avenida da Universidade Taipa, Macau, China
| |
Collapse
|
2
|
Bhargava M, Crouser ED. Application of laboratory models for sarcoidosis research. J Autoimmun 2024; 149:103184. [PMID: 38443221 DOI: 10.1016/j.jaut.2024.103184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/07/2024]
Abstract
This manuscript will review the implications and applications of sarcoidosis models towards advancing our understanding of sarcoidosis disease mechanisms, identification of biomarkers, and preclinical testing of novel therapies. Emerging disease models and innovative research tools will also be considered.
Collapse
Affiliation(s)
- Maneesh Bhargava
- University of Minnesota Medical Center, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, 420 Delaware Street SE, MMC 276. Minneapolis, MN 55455, USA
| | - Elliott D Crouser
- Ohio State University Wexner Medicine Center, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, 241 W. 11th Street, Suite 5000, Columbus, OH 43201, USA.
| |
Collapse
|
3
|
Zhao S, Qi C, Zhao G, Wang Y, Fu G. A model-free and distribution-free multi-omics integration approach for detecting novel lung adenocarcinoma genes. Sci Rep 2024; 14:17996. [PMID: 39097651 PMCID: PMC11297939 DOI: 10.1038/s41598-023-45813-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/24/2023] [Indexed: 08/05/2024] Open
Abstract
Detection of important genes affecting lung adenocarcinoma (LUAD) is critical to finding effective therapeutic targets for this highly lethal cancer. However, many existing approaches have focused on single outcomes or phenotypic associations, which may not be as thorough as investigating molecular transcript levels within cells. In this article, we apply a novel multivariate rank-distance correlation-based gene selection procedure (MrDcGene) to LUAD multi-omics data downloaded from The Cancer Genome Atlas (TCGA). MrDcGene provides additional opportunities for detecting novel susceptibility genes as it leverages information from multiple platforms, while efficiently handling challenges such as high dimensionality, low signal-to-noise ratio, unknown distributions, and non-linear structures, etc. Notably, the MrDcGene method is able to detect two different scenarios, i.e., strong association strength with a few gene expressions and weak association strength with several gene expressions. After thoroughly exploring the association between gene expression (GE) and multiple other platforms, including reverse phase protein array (RPPA), miRNA, copy number variation (CNV) and DNA methylation (ME), we detect several novel genes that may play an important role in LUAD (ZNF133, CCDC159, YWHAZ, HNRNPR. ITPR2, PTHLH, and WIPI2). In addition, we quantitatively validate several other susceptibility genes that were reported in the literature using different methods and studies. The accuracy of the MrDcGene approach is theoretically assured and empirically demonstrated by the simulation studies.
Collapse
Affiliation(s)
- Shaofei Zhao
- Binghamton University, Department of Mathematics and Statistics, Binghamton, NY, 13902, USA.
| | - Caleb Qi
- Binghamton University, Department of Mathematics and Statistics, Binghamton, NY, 13902, USA
| | - Geran Zhao
- Binghamton University, Department of Mathematics and Statistics, Binghamton, NY, 13902, USA
| | - Yangsheng Wang
- Binghamton University, Department of Mathematics and Statistics, Binghamton, NY, 13902, USA
| | - Guifang Fu
- Binghamton University, Department of Mathematics and Statistics, Binghamton, NY, 13902, USA.
| |
Collapse
|
4
|
Sandri BJ, Kim J, Lubach GR, Lock EF, Ennis-Czerniak K, Kling PJ, Georgieff MK, Coe CL, Rao RB. Prognostic Performance of Hematological and Serum Iron and Metabolite Indices for Detection of Early Iron Deficiency Induced Metabolic Brain Dysfunction in Infant Rhesus Monkeys. J Nutr 2024; 154:875-885. [PMID: 38072152 PMCID: PMC10942850 DOI: 10.1016/j.tjnut.2023.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND The current pediatric practice of monitoring for infantile iron deficiency (ID) via hemoglobin (Hgb) screening at one y of age does not identify preanemic ID nor protect against later neurocognitive deficits. OBJECTIVES To identify biomarkers of iron-related metabolic alterations in the serum and brain and determine the sensitivity of conventional iron and heme indices for predicting risk of brain metabolic dysfunction using a nonhuman primate model of infantile ID. METHODS Simultaneous serum iron and RBC indices, and serum and cerebrospinal fluid (CSF) metabolomic profiles were determined in 20 rhesus infants, comparing iron sufficient (IS; N = 10) and ID (N = 10) infants at 2 and 4 mo of age. RESULTS Reticulocyte hemoglobin (RET-He) was lower at 2 wk in the ID group. Significant IS compared with ID differences in serum iron indices were present at 2 mo, but Hgb and RBC indices differed only at 4 mo (P < 0.05). Serum and CSF metabolomic profiles of the ID and IS groups differed at 2 and 4 mo (P < 0.05). Key metabolites, including homostachydrine and stachydrine (4-5-fold lower at 4 mo in ID group, P < 0.05), were altered in both serum and CSF. Iron indices and RET-He at 2 mo, but not Hgb or other RBC indices, were correlated with altered CSF metabolic profile at 4 mo and had comparable predictive accuracy (area under the receiver operating characteristic curve scores, 0.75-0.80). CONCLUSIONS Preanemic ID at 2 mo was associated with metabolic alterations in serum and CSF in infant monkeys. Among the RBC indices, only RET-He predicted the future risk of abnormal CSF metabolic profile with a predictive accuracy comparable to serum iron indices. The concordance of homostachydrine and stachydrine changes in serum and CSF indicates their potential use as early biomarkers of brain metabolic dysfunction in infantile ID.
Collapse
Affiliation(s)
- Brian J Sandri
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, United States
| | - Jonathan Kim
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Gabriele R Lubach
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, WI, United States
| | - Eric F Lock
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Kathleen Ennis-Czerniak
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Pamela J Kling
- Division of Neonatology, Department of Pediatrics, University of Wisconsin, Madison, WI, United States
| | - Michael K Georgieff
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, United States
| | - Christopher L Coe
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, WI, United States
| | - Raghavendra B Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
5
|
Long MB, Howden AJM, Keir HR, Rollings CM, Giam YH, Pembridge T, Delgado L, Abo-Leyah H, Lloyd AF, Sollberger G, Hull R, Gilmour A, Hughes C, New BJM, Cassidy D, Shoemark A, Richardson H, Lamond AI, Cantrell DA, Chalmers JD, Brenes AJ. Extensive acute and sustained changes to neutrophil proteomes post-SARS-CoV-2 infection. Eur Respir J 2024; 63:2300787. [PMID: 38097207 PMCID: PMC10918319 DOI: 10.1183/13993003.00787-2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/23/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND Neutrophils are important in the pathophysiology of coronavirus disease 2019 (COVID-19), but the molecular changes contributing to altered neutrophil phenotypes following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are not fully understood. We used quantitative mass spectrometry-based proteomics to explore neutrophil phenotypes immediately following acute SARS-CoV-2 infection and during recovery. METHODS Prospective observational study of hospitalised patients with PCR-confirmed SARS-CoV-2 infection (May to December 2020). Patients were enrolled within 96 h of admission, with longitudinal sampling up to 29 days. Control groups comprised non-COVID-19 acute lower respiratory tract infection (LRTI) and age-matched noninfected controls. Neutrophils were isolated from peripheral blood and analysed using mass spectrometry. COVID-19 severity and recovery were defined using the World Health Organization ordinal scale. RESULTS Neutrophil proteomes from 84 COVID-19 patients were compared to those from 91 LRTI and 42 control participants. 5800 neutrophil proteins were identified, with >1700 proteins significantly changed in neutrophils from COVID-19 patients compared to noninfected controls. Neutrophils from COVID-19 patients initially all demonstrated a strong interferon signature, but this signature rapidly declined in patients with severe disease. Severe disease was associated with increased abundance of proteins involved in metabolism, immunosuppression and pattern recognition, while delayed recovery from COVID-19 was associated with decreased granule components and reduced abundance of metabolic proteins, chemokine and leukotriene receptors, integrins and inhibitory receptors. CONCLUSIONS SARS-CoV-2 infection results in the sustained presence of circulating neutrophils with distinct proteomes suggesting altered metabolic and immunosuppressive profiles and altered capacities to respond to migratory signals and cues from other immune cells, pathogens or cytokines.
Collapse
Affiliation(s)
- Merete B Long
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
- Indicates equal contribution
| | - Andrew J M Howden
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
- Indicates equal contribution
| | - Holly R Keir
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
- Indicates equal contribution
| | - Christina M Rollings
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
- Indicates equal contribution
| | - Yan Hui Giam
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Thomas Pembridge
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Lilia Delgado
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Hani Abo-Leyah
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Amy F Lloyd
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Gabriel Sollberger
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Rebecca Hull
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Amy Gilmour
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Chloe Hughes
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Benjamin J M New
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Diane Cassidy
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Hollian Richardson
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Angus I Lamond
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Doreen A Cantrell
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
- Indicates joint senior authorship
| | - Alejandro J Brenes
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
- Indicates joint senior authorship
| |
Collapse
|
6
|
Salvato I, Ricciardi L, Nucera F, Nigro A, Dal Col J, Monaco F, Caramori G, Stellato C. RNA-Binding Proteins as a Molecular Link between COPD and Lung Cancer. COPD 2023; 20:18-30. [PMID: 36655862 DOI: 10.1080/15412555.2022.2107500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) represents an independent risk factor for lung cancer development. Accelerated cell senescence, induced by oxidative stress and inflammation, is a common pathogenic determinant of both COPD and lung cancer. The post transcriptional regulation of genes involved in these processes is finely regulated by RNA-binding proteins (RBPs), which regulate mRNA turnover, subcellular localization, splicing and translation. Multiple pro-inflammatory mediators (including cytokines, chemokines, proteins, growth factors and others), responsible of lung microenvironment alteration, are regulated by RBPs. Several mouse models have shown the implication of RBPs in multiple mechanisms that sustain chronic inflammation and neoplastic transformation. However, further studies are required to clarify the role of RBPs in the pathogenic mechanisms shared by lung cancer and COPD, in order to identify novel biomarkers and therapeutic targets. This review will therefore focus on the studies collectively indicating the role of RBPs in oxidative stress and chronic inflammation as common pathogenic mechanisms shared by lung cancer and COPD.
Collapse
Affiliation(s)
- Ilaria Salvato
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Luca Ricciardi
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Francesco Monaco
- Chirurgia Toracica, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| |
Collapse
|
7
|
Sandri BJ, Ennis-Czerniak K, Kanajam P, Frey WH, Lock EF, Rao RB. Intranasal insulin treatment partially corrects the altered gene expression profile in the hippocampus of developing rats with perinatal iron deficiency. Am J Physiol Regul Integr Comp Physiol 2023; 325:R423-R432. [PMID: 37602386 PMCID: PMC10639019 DOI: 10.1152/ajpregu.00311.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
Perinatal iron deficiency (FeD) targets the hippocampus and leads to long-term cognitive deficits. Intranasal insulin administration improves cognitive deficits in adult humans with Alzheimer's disease and type 2 diabetes and could provide benefits in FeD-induced hippocampal dysfunction. To objective was to assess the effects of intranasal insulin administration intranasal insulin administration on the hippocampal transcriptome in a developing rat model of perinatal FeD. Perinatal FeD was induced using low-iron diet from gestational day 3 until postnatal day (P) 7, followed by an iron sufficient (FeS) diet through P21. Intranasal insulin was administered at a dose of 0.3 IU twice daily from P8 to P21. Hippocampi were removed on P21 from FeS control, FeD control, FeS insulin, and FeD insulin groups. Total RNA was isolated and profiled using next-generation sequencing. Gene expression profiles were characterized using custom workflows and expression patterns examined using ingenuity pathways analysis (n = 7-9 per group). Select RNAseq results were confirmed via qPCR. Transcriptomic profiling revealed that mitochondrial biogenesis and flux, oxidative phosphorylation, quantity of neurons, CREB signaling in neurons, and RICTOR-based mTOR signaling were disrupted with FeD and positively affected by intranasal insulin treatment with the most benefit observed in the FeD insulin group. Both perinatal FeD and intranasal insulin administration altered gene expression profile in the developing hippocampus. Intranasal insulin treatment reversed the adverse effects of FeD on many molecular pathways and could be explored as an adjunct therapy in perinatal FeD.
Collapse
Affiliation(s)
- Brian J Sandri
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota, United States
| | - Kathleen Ennis-Czerniak
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States
| | - Priya Kanajam
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States
| | - William H Frey
- HealthPartners Center for Memory and Aging, HealthPartners Neurosciences, St. Paul, Minnesota, United States
| | - Eric F Lock
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States
| | - Raghavendra B Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
8
|
Blutt SE, Coarfa C, Neu J, Pammi M. Multiomic Investigations into Lung Health and Disease. Microorganisms 2023; 11:2116. [PMID: 37630676 PMCID: PMC10459661 DOI: 10.3390/microorganisms11082116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Diseases of the lung account for more than 5 million deaths worldwide and are a healthcare burden. Improving clinical outcomes, including mortality and quality of life, involves a holistic understanding of the disease, which can be provided by the integration of lung multi-omics data. An enhanced understanding of comprehensive multiomic datasets provides opportunities to leverage those datasets to inform the treatment and prevention of lung diseases by classifying severity, prognostication, and discovery of biomarkers. The main objective of this review is to summarize the use of multiomics investigations in lung disease, including multiomics integration and the use of machine learning computational methods. This review also discusses lung disease models, including animal models, organoids, and single-cell lines, to study multiomics in lung health and disease. We provide examples of lung diseases where multi-omics investigations have provided deeper insight into etiopathogenesis and have resulted in improved preventative and therapeutic interventions.
Collapse
Affiliation(s)
- Sarah E. Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Josef Neu
- Department of Pediatrics, Section of Neonatology, University of Florida, Gainesville, FL 32611, USA;
| | - Mohan Pammi
- Department of Pediatrics, Section of Neonatology, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| |
Collapse
|
9
|
Titmarsh HF, von Kriegsheim A, Wills JC, O’Connor RA, Dhaliwal K, Frame MC, Pattle SB, Dorward DA, Byron A, Akram AR. Quantitative proteomics identifies tumour matrisome signatures in patients with non-small cell lung cancer. Front Oncol 2023; 13:1194515. [PMID: 37397358 PMCID: PMC10313119 DOI: 10.3389/fonc.2023.1194515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction The composition and remodelling of the extracellular matrix (ECM) are important factors in the development and progression of cancers, and the ECM is implicated in promoting tumour growth and restricting anti-tumour therapies through multiple mechanisms. The characterisation of differences in ECM composition between normal and diseased tissues may aid in identifying novel diagnostic markers, prognostic indicators and therapeutic targets for drug development. Methods Using tissue from non-small cell lung cancer (NSCLC) patients undergoing curative intent surgery, we characterised quantitative tumour-specific ECM proteome signatures by mass spectrometry. Results We identified 161 matrisome proteins differentially regulated between tumour tissue and nearby non-malignant lung tissue, and we defined a collagen hydroxylation functional protein network that is enriched in the lung tumour microenvironment. We validated two novel putative extracellular markers of NSCLC, the collagen cross-linking enzyme peroxidasin and a disintegrin and metalloproteinase with thrombospondin motifs 16 (ADAMTS16), for discrimination of malignant and non-malignant lung tissue. These proteins were up-regulated in lung tumour samples, and high PXDN and ADAMTS16 gene expression was associated with shorter survival of lung adenocarcinoma and squamous cell carcinoma patients, respectively. Discussion These data chart extensive remodelling of the lung extracellular niche and reveal tumour matrisome signatures in human NSCLC.
Collapse
Affiliation(s)
- Helen F. Titmarsh
- The EPSRC and MRC Centre for Doctoral Training in Optical Medical Imaging, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Alex von Kriegsheim
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Jimi C. Wills
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A. O’Connor
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Kevin Dhaliwal
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Margaret C. Frame
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Samuel B. Pattle
- Department of Pathology, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - David A. Dorward
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
- Department of Pathology, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Adam Byron
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ahsan R. Akram
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Guan Q, Zhao P, Tian Y, Yang L, Zhang Z, Li J. Identification of cancer risk assessment signature in patients with chronic obstructive pulmonary disease and exploration of the potential key genes. Ann Med 2022; 54:2309-2320. [PMID: 35993327 PMCID: PMC9415445 DOI: 10.1080/07853890.2022.2112070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
It is essential to assess the cancer risk for patients with chronic obstructive pulmonary disease (COPD). Comparing gene expression data from patients with lung cancer (a total of 506 samples) and those with cancer-adjacent normal lung tissues (a total of 370 samples), we generated a qualitative transcriptional signature consisting of 2046 gene pairs. The signature was verified in an evaluation dataset comprising 18 subjects with severe disease and 52 subjects with moderate disease (Wilcoxon rank-sum test; p = 7.33 × 10-5). Similar results were obtained in other independent datasets. Among the gene pairs in the signature, 326 COPD stage-related gene pairs were identified based on Spearman's rank correlation tests and those gene pairs comprised 368 unique genes. Of these 368 genes, 16 genes were significantly dysregulated in COPD rat model data compared with control data. Some of these genes (Dhx16, Upf2, Notch3, Sec61a1, Dyrk2, and Hmmr) were altered when the COPD rat model was treated with traditional Chinese medicines (TCM), including Bufei Yishen formula, Bufei Jianpi formula, and Yiqi Zishen formula. Overall, the signature could predict the cancer incidence-risk of COPD and the identified key genes might provide guidance regarding both the treatment of COPD using TCM and the prevention of cancer in patients with COPD. KEY MESSAGESA cancer risk assessment signature was identified in patients with COPD.The signature is insensitive to batch effects and is well verified.COPD key genes identified in this study might play a crucial role in TCM treatment and cancer prevention.
Collapse
Affiliation(s)
- Qingzhou Guan
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Peng Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yange Tian
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Liping Yang
- School of Basic Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhenzhen Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China.,The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
11
|
Mumby S, Adcock IM. Recent evidence from omic analysis for redox signalling and mitochondrial oxidative stress in COPD. J Inflamm (Lond) 2022; 19:10. [PMID: 35820851 PMCID: PMC9277949 DOI: 10.1186/s12950-022-00308-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
COPD is driven by exogenous and endogenous oxidative stress derived from inhaled cigarette smoke, air pollution and reactive oxygen species from dysregulated mitochondria in activated inflammatory cells within the airway and lung. This is compounded by the loss in antioxidant defences including FOXO and NRF2 and other antioxidant transcription factors together with various key enzymes that attenuate oxidant effects. Oxidative stress enhances inflammation; airway remodelling including fibrosis and emphysema; post-translational protein modifications leading to autoantibody generation; DNA damage and cellular senescence. Recent studies using various omics technologies in the airways, lungs and blood of COPD patients has emphasised the importance of oxidative stress, particularly that derived from dysfunctional mitochondria in COPD and its role in immunity, inflammation, mucosal barrier function and infection. Therapeutic interventions targeting oxidative stress should overcome the deleterious pathologic effects of COPD if targeted to the lung. We require novel, more efficacious antioxidant COPD treatments among which mitochondria-targeted antioxidants and Nrf2 activators are promising.
Collapse
|
12
|
Palzer EF, Wendt CH, Bowler RP, Hersh CP, Safo SE, Lock EF. sJIVE: Supervised Joint and Individual Variation Explained. Comput Stat Data Anal 2022; 175:107547. [PMID: 36119152 PMCID: PMC9481062 DOI: 10.1016/j.csda.2022.107547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Analyzing multi-source data, which are multiple views of data on the same subjects, has become increasingly common in molecular biomedical research. Recent methods have sought to uncover underlying structure and relationships within and/or between the data sources, and other methods have sought to build a predictive model for an outcome using all sources. However, existing methods that do both are presently limited because they either (1) only consider data structure shared by all datasets while ignoring structures unique to each source, or (2) they extract underlying structures first without consideration to the outcome. The proposed method, supervised joint and individual variation explained (sJIVE), can simultaneously (1) identify shared (joint) and source-specific (individual) underlying structure and (2) build a linear prediction model for an outcome using these structures. These two components are weighted to compromise between explaining variation in the multi-source data and in the outcome. Simulations show sJIVE to outperform existing methods when large amounts of noise are present in the multi-source data. An application to data from the COPDGene study explores gene expression and proteomic patterns associated with lung function.
Collapse
Affiliation(s)
- Elise F. Palzer
- Division of Biostatistics, University of Minnesota, Minneapolis, 55455, USA
| | - Christine H. Wendt
- Division of Pulmonary, Allergy and Critical Care, University of Minnesota, Minneapolis, 55455, USA
| | - Russell P. Bowler
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Craig P. Hersh
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sandra E. Safo
- Division of Biostatistics, University of Minnesota, Minneapolis, 55455, USA
| | - Eric F. Lock
- Division of Biostatistics, University of Minnesota, Minneapolis, 55455, USA
| |
Collapse
|
13
|
Murden RJ, Zhang Z, Guo Y, Risk BB. Interpretive JIVE: Connections with CCA and an application to brain connectivity. Front Neurosci 2022; 16:969510. [PMID: 36312020 PMCID: PMC9614436 DOI: 10.3389/fnins.2022.969510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/26/2022] [Indexed: 01/19/2023] Open
Abstract
Joint and Individual Variation Explained (JIVE) is a model that decomposes multiple datasets obtained on the same subjects into shared structure, structure unique to each dataset, and noise. JIVE is an important tool for multimodal data integration in neuroimaging. The two most common algorithms are R.JIVE, an iterative approach, and AJIVE, which uses principal angle analysis. The joint structure in JIVE is defined by shared subspaces, but interpreting these subspaces can be challenging. In this paper, we reinterpret AJIVE as a canonical correlation analysis of principal component scores. This reformulation, which we call CJIVE, (1) provides an intuitive view of AJIVE; (2) uses a permutation test for the number of joint components; (3) can be used to predict subject scores for out-of-sample observations; and (4) is computationally fast. We conduct simulation studies that show CJIVE and AJIVE are accurate when the total signal ranks are correctly specified but, generally inaccurate when the total ranks are too large. CJIVE and AJIVE can still extract joint signal even when the joint signal variance is relatively small. JIVE methods are applied to integrate functional connectivity (resting-state fMRI) and structural connectivity (diffusion MRI) from the Human Connectome Project. Surprisingly, the edges with largest loadings in the joint component in functional connectivity do not coincide with the same edges in the structural connectivity, indicating more complex patterns than assumed in spatial priors. Using these loadings, we accurately predict joint subject scores in new participants. We also find joint scores are associated with fluid intelligence, highlighting the potential for JIVE to reveal important shared structure.
Collapse
Affiliation(s)
- Raphiel J. Murden
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Zhengwu Zhang
- Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, NC, United States
| | - Ying Guo
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Benjamin B. Risk
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
14
|
Xu L, Wang P, Zhang Y, Wang M, Li Y, Dang W. Study on Chronic Obstructive Pulmonary Disease and Lung Cancer: Web of Science-Based Bibliometric and Visual Analysis. Int J Gen Med 2022; 15:7523-7534. [PMID: 36196373 PMCID: PMC9527034 DOI: 10.2147/ijgm.s370781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/13/2022] [Indexed: 12/04/2022] Open
Abstract
PURPOSE Chronic obstructive pulmonary disease (COPD) is one of the main risk factors for lung carcinomas. This study aimed to analyze and construct a model to assess scientific publications on the relationship between COPD and lung carcinomas. PATIENTS AND METHODS A literature search of the Web of Science database was performed for publications until November 2, 2021. Microsoft Excel and CiteSpace software were used to perform bibliometric and visual analysis of source journals, countries/regions, institutions, authors, research areas, and hot topics of selected publications. RESULTS A total of 2175 publications on the relationship between COPD and lung carcinomas were identified. The annual number of papers published and the total annual citation frequency in the field of COPD and lung carcinoma show an upward trend, and the current research hot topics are health, disease risk factors, disease burden, prevention and serious complications. The top three countries/regions with the number of published articles are the United States, China, and the United Kingdom. The author with the most signatures was Castaldi PJ of USA, followed by Xian JF of China. The lack of multinational/regional multi-center research illustrated that the distribution of research forces is unbalanced. CONCLUSION According to this study, researchers can identify hot topics and explore new research directions in research of the relationship between COPD and lung carcinomas.
Collapse
Affiliation(s)
- LiHong Xu
- Department of Infectious Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Peng Wang
- Division of Neurosurgery, Xian XD Group Hospital, Xi’an, Shaanxi Province, People’s Republic of China
| | - YaNi Zhang
- Academic Affairs Library, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, People’s Republic of China
| | - MuQi Wang
- Department of Infectious Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, People’s Republic of China
| | - YaPing Li
- Department of Infectious Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, People’s Republic of China
| | - WenHui Dang
- Department of Pulmonary and Critical Care Medicine, Xi’an, Shaanxi Province, People’s Republic of China
| |
Collapse
|
15
|
Ma H, Zhang Q, Zhao Y, Zhang Y, Zhang J, Chen G, Tan Y, Zhang Q, Duan Q, Sun T, Qi C, Li F. Molecular and Clinicopathological Characteristics of Lung Cancer Concomitant Chronic Obstructive Pulmonary Disease (COPD). Int J Chron Obstruct Pulmon Dis 2022; 17:1601-1612. [PMID: 35860812 PMCID: PMC9293488 DOI: 10.2147/copd.s363482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/25/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) and lung cancer often coexist, but its pathophysiology and genomics features are still unclear. Methods In this study, we retrospectively collected lung cancer concomitant COPD (COPD-LC) and non-COPD lung cancer (non-COPD-LC) patients, who performed next generation sequencing (NGS) and had clinicopathological information simultaneously. The COPD-LC data from the TCGA cohort were collected to conduct further analysis. Results A total of 51 COPD-LC patients and 88 non-COPD-LC patients were included in the study. Clinicopathological analysis showed that proportion of male gender, older age, and smoking patients were all substantially higher in COPD-LC group than in non-COPD-LC group (all P<0.01). Comparing the genomic data of the two groups in our cohort, COPD-LC had higher mutation frequency of LRP1B (43% vs 9%, P = 0.001), EPHA5 (24% vs 1%, P = 0.002), PRKDC (14% vs 1%, P = 0.039), PREX2 (14% vs 0%, P = 0.012), and FAT1 (14% vs 0%, P = 0.012), which had a relationship with improved tumor immunity. Immunotherapy biomarker of PD-L1 positive expression (62.5% vs 52.0%, P = 0.397) and tumor mutation burden (TMB, median TMB: 7.09 vs 2.94, P = 0.004) also were higher in COPD-LC. In addition, RNA data from TCGA further indicated tumor immunity increased in COPD-LC. Whereas, COPD-LC had lower frequency of EGFR mutation (19% vs 50%, P = 0.013) and EGFR mutant COPD-LC treated with EGFR-TKI had worse progression-free survival (PFS) (HR = 3.52, 95% CI: 1.27–9.80, P = 0.01). Conclusion In this retrospective study, we first explored molecular features of COPD-LC in a Chinese population. Although COPD-LC had lower EGFR mutant frequency and worse PFS with target treatment, high PD-L1 expression and TMB indicated these patients may benefit from immunotherapy.
Collapse
Affiliation(s)
- Hongxia Ma
- Pneumology Department, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, The Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Qian Zhang
- Pneumology Department, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, The Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yanwen Zhao
- Pneumology Department, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, The Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yaohui Zhang
- Pneumology Department, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, The Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Jingjing Zhang
- Pneumology Department, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, The Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Guoqing Chen
- Pneumology Department, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, The Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yuan Tan
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China.,Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China.,The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China
| | - Qin Zhang
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China.,Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China.,The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China
| | - Qianqian Duan
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China.,Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China.,The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China
| | - Tingting Sun
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China.,Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China.,The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China
| | - Chuang Qi
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China.,Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China.,The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu Province, People's Republic of China
| | - Fengsen Li
- Pneumology Department, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, The Xinjiang Uygur Autonomous Region, People's Republic of China
| |
Collapse
|
16
|
Yang L, Gilbertsen A, Smith K, Xia H, Higgins L, Guerrero C, Henke CA. Proteomic analysis of the IPF mesenchymal progenitor cell nuclear proteome identifies abnormalities in key nodal proteins that underlie their fibrogenic phenotype. Proteomics 2022; 22:e2200018. [PMID: 35633524 PMCID: PMC9541064 DOI: 10.1002/pmic.202200018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022]
Abstract
IPF is a progressive fibrotic lung disease whose pathogenesis remains incompletely understood. We have previously discovered pathologic mesenchymal progenitor cells (MPCs) in the lungs of IPF patients. IPF MPCs display a distinct transcriptome and create sustained interstitial fibrosis in immune deficient mice. However, the precise pathologic alterations responsible for this fibrotic phenotype remain to be uncovered. Quantitative mass spectrometry and interactomics is a powerful tool that can define protein alterations in specific subcellular compartments that can be implemented to understand disease pathogenesis. We employed quantitative mass spectrometry and interactomics to define protein alterations in the nuclear compartment of IPF MPCs compared to control MPCs. We identified increased nuclear levels of PARP1, CDK1, and BACH1. Interactomics implicated PARP1, CDK1, and BACH1 as key hub proteins in the DNA damage/repair, differentiation, and apoptosis signaling pathways respectively. Loss of function and inhibitor studies demonstrated important roles for PARP1 in DNA damage/repair, CDK1 in regulating IPF MPC stemness and self-renewal, and BACH1 in regulating IPF MPC viability. Our quantitative mass spectrometry studies combined with interactomic analysis uncovered key roles for nuclear PARP1, CDK1, and BACH1 in regulating IPF MPC fibrogenicity.
Collapse
Affiliation(s)
- Libang Yang
- Department of MedicineUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Adam Gilbertsen
- Department of MedicineUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Karen Smith
- Department of MedicineUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Hong Xia
- Department of MedicineUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - LeeAnn Higgins
- Center for Mass Spectrometry and ProteomicsUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Candace Guerrero
- Center for Mass Spectrometry and ProteomicsUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Craig A. Henke
- Department of MedicineUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
17
|
Yang L, Yang J, Jacobson B, Gilbertsen A, Smith K, Higgins L, Guerrero C, Xia H, Henke CA, Lin J. SFPQ Promotes Lung Cancer Malignancy via Regulation of CD44 v6 Expression. Front Oncol 2022; 12:862250. [PMID: 35707369 PMCID: PMC9190464 DOI: 10.3389/fonc.2022.862250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) contribute to tumor pathogenesis and elicit antitumor immune responses in tumor microenvironments. Nuclear proteins might be the main players in these processes. In the current study, combining spatial proteomics with ingenuity pathway analysis (IPA) in lung non-small cell (NSC) cancer MSCs, we identify a key nuclear protein regulator, SFPQ (Splicing Factor Proline and Glutamine Rich), which is overexpressed in lung cancer MSCs and functions to promote MSCs proliferation, chemical resistance, and invasion. Mechanistically, the knockdown of SFPQ reduces CD44v6 expression to inhibit lung cancer MSCs stemness, proliferation in vitro, and metastasis in vivo. The data indicates that SFPQ may be a potential therapeutic target for limiting growth, chemotherapy resistance, and metastasis of lung cancer.
Collapse
Affiliation(s)
- Libang Yang
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jianbo Yang
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minneapolis, Minneapolis, MN, United States.,The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Blake Jacobson
- Hematology, Oncology and Transplantation, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Adam Gilbertsen
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Karen Smith
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - LeeAnn Higgins
- Center for Mass Spectrometry and Proteomics, University of Minnesota, St. Paul, MN, United States
| | - Candace Guerrero
- Center for Mass Spectrometry and Proteomics, University of Minnesota, St. Paul, MN, United States
| | - Hong Xia
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Craig A Henke
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jizhen Lin
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, China.,The Immunotherapy Research Laboratory, Department of Otolaryngology, Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
18
|
Sandri BJ, Kim J, Lubach GR, Lock EF, Guerrero C, Higgins L, Markowski TW, Kling PJ, Georgieff MK, Coe CL, Rao RB. Multiomic profiling of iron-deficient infant monkeys reveals alterations in neurologically important biochemicals in serum and cerebrospinal fluid before the onset of anemia. Am J Physiol Regul Integr Comp Physiol 2022; 322:R486-R500. [PMID: 35271351 PMCID: PMC9054343 DOI: 10.1152/ajpregu.00235.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/17/2022]
Abstract
The effects of iron deficiency (ID) during infancy extend beyond the hematologic compartment and include short- and long-term adverse effects on many tissues including the brain. However, sensitive biomarkers of iron-dependent brain health are lacking in humans. To determine whether serum and cerebrospinal fluid (CSF) biomarkers of ID-induced metabolic dysfunction are concordant in the pre/early anemic stage of ID before anemia in a nonhuman primate model of infantile iron deficiency anemia (IDA). ID (n = 7), rhesus infants at 4 mo (pre-anemic period) and 6 mo of age (anemic) were examined. Hematological, metabolomic, and proteomic profiles were generated via HPLC/MS at both time points to discriminate serum biomarkers of ID-induced brain metabolic dysfunction. We identified 227 metabolites and 205 proteins in serum. Abnormalities indicating altered liver function, lipid dysregulation, and increased acute phase reactants were present in ID. In CSF, we measured 210 metabolites and 1,560 proteins with changes in ID infants indicative of metabolomic and proteomic differences indexing disrupted synaptogenesis. Systemic and CSF proteomic and metabolomic changes were present and concurrent in the pre-anemic and anemic periods. Multiomic serum and CSF profiling uncovered pathways disrupted by ID in both the pre-anemic and anemic stages of infantile IDA, including evidence for hepatic dysfunction and activation of acute phase response. Parallel changes observed in serum and CSF potentially provide measurable serum biomarkers of ID that reflect at-risk brain processes prior to progression to clinical anemia.
Collapse
Affiliation(s)
- Brian J Sandri
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota
| | - Jonathan Kim
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Gabriele R Lubach
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, Wisconsin
| | - Eric F Lock
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Candace Guerrero
- Department of Biochemistry, Molecular Biology, & Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology, & Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Todd W Markowski
- Department of Biochemistry, Molecular Biology, & Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Pamela J Kling
- Division of Neonatology, Department of Pediatrics, University of Wisconsin, Madison, Wisconsin
| | - Michael K Georgieff
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota
| | - Christopher L Coe
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, Wisconsin
| | - Raghavendra B Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
19
|
Sandri BJ, Lubach GR, Lock EF, Kling PJ, Georgieff MK, Coe CL, Rao RB. Correcting iron deficiency anemia with iron dextran alters the serum metabolomic profile of the infant Rhesus Monkey. Am J Clin Nutr 2021; 113:915-923. [PMID: 33740040 PMCID: PMC8023818 DOI: 10.1093/ajcn/nqaa393] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The effects of infantile iron deficiency anemia (IDA) extend beyond hematological indices and include short- and long-term adverse effects on multiple cells and tissues. IDA is associated with an abnormal serum metabolomic profile, characterized by altered hepatic metabolism, lowered NAD flux, increased nucleoside levels, and a reduction in circulating dopamine levels. OBJECTIVES The objective of this study was to determine whether the serum metabolomic profile is normalized after rapid correction of IDA using iron dextran injections. METHODS Blood was collected from iron-sufficient (IS; n = 10) and IDA (n = 12) rhesus infants at 6 months of age. IDA infants were then administered iron dextran and vitamin B via intramuscular injections at weekly intervals for 2 to 8 weeks. Their hematological and metabolomic statuses were evaluated following treatment and compared with baseline and a separate group of age-matched IS infants (n = 5). RESULTS Serum metabolomic profiles assessed at baseline and after treatment via HPLC/MS using isobaric standards identified 654 quantifiable metabolites. At baseline, 53 metabolites differed between IS and IDA infants. Iron treatment restored traditional hematological indices, including hemoglobin and mean corpuscular volume, into the normal range, but the metabolite profile in the IDA group after iron treatment was markedly altered, with 323 metabolites differentially expressed when compared with an infant's own baseline profile. CONCLUSIONS Rapid correction of IDA with iron dextran resulted in extensive metabolic changes across biochemical pathways indexing the liver function, bile acid release, essential fatty acid production, nucleoside release, and several neurologically important metabolites. The results highlight the importance of a cautious approach when developing a route and regimen of iron repletion to treat infantile IDA.
Collapse
Affiliation(s)
- Brian J Sandri
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA,Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN, USA
| | - Gabriele R Lubach
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, WI, USA
| | - Eric F Lock
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Pamela J Kling
- Division of Neonatology, Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| | - Michael K Georgieff
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA,Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN, USA
| | - Christopher L Coe
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
20
|
Zhang L, Chen J, Yang H, Pan C, Li H, Luo Y, Cheng T. Multiple microarray analyses identify key genes associated with the development of Non-Small Cell Lung Cancer from Chronic Obstructive Pulmonary Disease. J Cancer 2021; 12:996-1010. [PMID: 33442399 PMCID: PMC7797649 DOI: 10.7150/jca.51264] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction: Chronic obstructive pulmonary disease (COPD) is an independent risk factor of non-small cell lung cancer (NSCLC). This study aimed to analyze the key genes and potential molecular mechanisms that are involved in the development from COPD to NSCLC. Methods: Expression profiles of COPD and NSCLC in GSE106899, GSE12472, and GSE12428 were downloaded from the Gene Expression Omnibus (GEO) database, followed by identification of the differentially expressed genes (DEGs) between COPD and NSCLC. Based on the identified DEGs, functional pathway enrichment and lung carcinogenesis-related networks analyses were performed and further visualized with Cytoscape software. Then, principal component analysis (PCA), cluster analysis, and support vector machines (SVM) verified the ability of the top modular genes to distinguish COPD from NSCLC. Additionally, the corrections between these key genes and clinical staging of NSCLC were studied using the UALCAN and HPA websites. Finally, a prognostic risk model was constructed based on multivariate Cox regression analysis. Kaplan-Meier survival curves of the top modular genes on the training and verification sets were generated. Results: A total of 2350, 1914, and 1850 DEGs were obtained from GSE106899, GSE12472, and GSE12428 datasets, respectively. Following analysis of protein-protein interaction networks, the identified modular gene signatures containing H2AFX, MCM2, MCM3, MCM7, POLD1, and RPA1 were identified as markers for discrimination between COPD and NSCLC. The modular gene signatures were mainly enriched in the processes of DNA replication, cell cycle, mismatch repair, and others. Besides, the expression levels of these genes were significantly higher in NSCLC than in COPD, which was further verified by the immunohistochemistry. In addition, the high expression levels of H2AFX, MCM2, MCM7, and POLD1 correlate with poor prognosis of lung adenocarcinoma (LUAD). The Cox regression prognostic risk model showed the similar results and the predictive ability of this model is independent of other clinical variables. Conclusions: This study revealed several key modules that closely relate to NSCLC with underlying disease COPD, which provide a deeper understanding of the potential mechanisms underlying the malignant development from COPD to NSCLC. This study provides valuable prognostic factors in high-risk lung cancer patients with COPD.
Collapse
Affiliation(s)
- Lemeng Zhang
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, P.R. China, 410013
| | - Jianhua Chen
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, P.R. China, 410013
| | - Hua Yang
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, P.R. China, 410013
| | - Changqie Pan
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, P.R. China, 410013
| | - Haitao Li
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, P.R. China, 410013
| | - Yongzhong Luo
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, P.R. China, 410013
| | - Tianli Cheng
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, P.R. China, 410013
| |
Collapse
|
21
|
Sandri BJ, Lubach GR, Lock EF, Georgieff MK, Kling PJ, Coe CL, Rao RB. Early-Life Iron Deficiency and Its Natural Resolution Are Associated with Altered Serum Metabolomic Profiles in Infant Rhesus Monkeys. J Nutr 2020; 150:685-693. [PMID: 31722400 PMCID: PMC7138653 DOI: 10.1093/jn/nxz274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/23/2019] [Accepted: 10/11/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Iron deficiency is the most common nutrient deficiency in human infants aged 6 to 24 mo, and negatively affects many cellular metabolic processes, including energy production, electron transport, and oxidative degradation of toxins. There can be persistent influences on long-term metabolic health beyond its acute effects. OBJECTIVES The objective was to determine how iron deficiency in infancy alters the serum metabolomic profile and to test whether these effects persist after the resolution of iron deficiency in a nonhuman primate model of spontaneous iron deficiency. METHODS Blood was collected from naturally iron-sufficient (IS; n = 10) and iron-deficient (ID; n = 10) male and female infant rhesus monkeys (Macaca mulatta) at 6 mo of age. Iron deficiency resolved without intervention upon feeding of solid foods, and iron status was re-evaluated at 12 mo of age from the IS and formerly ID monkeys using hematological and other indices; sera were metabolically profiled using HPLC/MS and GC/MS with isobaric standards for identification and quantification at both time points. RESULTS A total of 413 metabolites were measured, with differences in 40 metabolites identified between IS and ID monkeys at 6 mo (P$\le $ 0.05). At 12 mo, iron-related hematological parameters had returned to normal, but the formerly ID infants remained metabolically distinct from the age-matched IS infants, with 48 metabolites differentially expressed between the groups. Metabolomic profiling indicated altered liver metabolites, differential fatty acid production, increased serum uridine release, and atypical bile acid production in the ID monkeys. CONCLUSIONS Pathway analyses of serum metabolites provided evidence of a hypometabolic state, altered liver function, differential essential fatty acid production, irregular uracil metabolism, and atypical bile acid production in ID infants. Many metabolites remained altered after the resolution of ID, suggesting long-term effects on metabolic health.
Collapse
Affiliation(s)
- Brian J Sandri
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Gabriele R Lubach
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, WI, USA
| | - Eric F Lock
- School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Michael K Georgieff
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA,Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN, USA
| | - Pamela J Kling
- Division of Neonatology, Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| | - Christopher L Coe
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, WI, USA
| | - Raghavendra B Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA,Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN, USA,Address correspondence to RBR (e-mail: )
| |
Collapse
|
22
|
Sandri BJ, Masvidal L, Murie C, Bartish M, Avdulov S, Higgins L, Markowski T, Peterson M, Bergh J, Yang P, Rolny C, Limper AH, Griffin TJ, Bitterman PB, Wendt CH, Larsson O. Distinct Cancer-Promoting Stromal Gene Expression Depending on Lung Function. Am J Respir Crit Care Med 2019; 200:348-358. [PMID: 30742544 PMCID: PMC6680296 DOI: 10.1164/rccm.201801-0080oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/08/2019] [Indexed: 12/31/2022] Open
Abstract
Rationale: Chronic obstructive pulmonary disease is an independent risk factor for lung cancer, but the underlying molecular mechanisms are unknown. We hypothesized that lung stromal cells activate pathological gene expression programs that support oncogenesis.Objectives: To identify molecular mechanisms operating in the lung stroma that support the development of lung cancer.Methods: The study included subjects with and without lung cancer across a spectrum of lung-function values. We conducted a multiomics analysis of nonmalignant lung tissue to quantify the transcriptome, translatome, and proteome.Measurements and Main Results: Cancer-associated gene expression changes predominantly manifested as alterations in the efficiency of mRNA translation modulating protein levels in the absence of corresponding changes in mRNA levels. The molecular mechanisms that drove these cancer-associated translation programs differed based on lung function. In subjects with normal to mildly impaired lung function, the mammalian target of rapamycin (mTOR) pathway served as an upstream driver, whereas in subjects with severe airflow obstruction, pathways downstream of pathological extracellular matrix emerged. Consistent with a role during cancer initiation, both the mTOR and extracellular matrix gene expression programs paralleled the activation of previously identified procancer secretomes. Furthermore, an in situ examination of lung tissue showed that stromal fibroblasts expressed cancer-associated proteins from two procancer secretomes: one that included IL-6 (in cases of mild or no airflow obstruction), and one that included BMP1 (in cases of severe airflow obstruction).Conclusions: Two distinct stromal gene expression programs that promote cancer initiation are activated in patients with lung cancer depending on lung function. Our work has implications both for screening strategies and for personalized approaches to cancer treatment.
Collapse
Affiliation(s)
- Brian J. Sandri
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Laia Masvidal
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Carl Murie
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Margarita Bartish
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Svetlana Avdulov
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Todd Markowski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Mark Peterson
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Jonas Bergh
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | | | - Charlotte Rolny
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Andrew H. Limper
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota; and
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Peter B. Bitterman
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Chris H. Wendt
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
- Pulmonary, Allergy, Critical Care, and Sleep Medicine, Veterans Affairs Medical Center, Minneapolis, Minnesota
| | - Ola Larsson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
23
|
Mouronte-Roibás C, Ruano-Raviña A, Fernández-Villar A. Lung cancer and chronic obstructive pulmonary disease: understanding the complexity of carcinogenesis. Transl Lung Cancer Res 2018; 7:S214-S217. [PMID: 30393605 DOI: 10.21037/tlcr.2018.08.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cecilia Mouronte-Roibás
- Pulmonary Department, Hospital Álvaro Cunqueiro, Vigo Health Area, NeumoVigoI+i Research Group, Vigo Biomedical Research Institute (IBIV), Vigo, Spain
| | - Alberto Ruano-Raviña
- Preventive Medicine and Public Health, School of Medicine, University of Santiago de Compostela, San Francisco st s/n Santiago de Compostela, A Coruña, Spain.,CIBER de Epidemiología y Salud Pública, CIBERESP, Spain
| | - Alberto Fernández-Villar
- Pulmonary Department, Hospital Álvaro Cunqueiro, Vigo Health Area, NeumoVigoI+i Research Group, Vigo Biomedical Research Institute (IBIV), Vigo, Spain
| |
Collapse
|
24
|
Interleukin-1 Beta-A Friend or Foe in Malignancies? Int J Mol Sci 2018; 19:ijms19082155. [PMID: 30042333 PMCID: PMC6121377 DOI: 10.3390/ijms19082155] [Citation(s) in RCA: 282] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/14/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022] Open
Abstract
Interleukin-1 beta (IL-1β) is induced by inflammatory signals in a broad number of immune cell types. IL-1β (and IL-18) are the only cytokines which are processed by caspase-1 after inflammasome-mediated activation. This review aims to summarize current knowledge about parameters of regulation of IL-1β expression and its multi-facetted role in pathophysiological conditions. IL-1 signaling activates innate immune cells including antigen presenting cells, and drives polarization of CD4+ T cells towards T helper type (Th) 1 and Th17 cells. Therefore, IL-1β has been attributed a largely beneficial role in resolving acute inflammations, and by initiating adaptive anti-tumor responses. However, IL-1β generated in the course of chronic inflammation supports tumor development. Furthermore, IL-1β generated within the tumor microenvironment predominantly by tumor-infiltrating macrophages promotes tumor growth and metastasis via different mechanisms. These include the expression of IL-1 targets which promote neoangiogenesis and of soluble mediators in cancer-associated fibroblasts that evoke antiapoptotic signaling in tumor cells. Moreover, IL-1 promotes the propagation of myeloid-derived suppressor cells. Using genetic mouse models as well as agents for pharmacological inhibition of IL-1 signaling therapeutically applied for treatment of IL-1 associated autoimmune diseases indicate that IL-1β is a driver of tumor induction and development.
Collapse
|