1
|
Zhou J, Song J, Peng D, Zheng Y, Ning N, Chen G, Huang Q, Li Y. Evaluation of the Efficacy of Jiangqi Dingchuan Pill Based on Network Pharmacology Analysis and Cigarette Smoke and Lipopolysaccharide Induced Chronic Obstructive Pulmonary Disease Rat Model. Int J Chron Obstruct Pulmon Dis 2025; 20:929-941. [PMID: 40191262 PMCID: PMC11972581 DOI: 10.2147/copd.s489696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/21/2025] [Indexed: 04/09/2025] Open
Abstract
Background Jiangqi Dingchuan Pill (JDP) is a patent Chinese medicine in the treatment of asthma. JDP consists of six herbal drugs, namely, Ephedrae Herba, Mori Cortex, Citri Reticulatae Pericarpium, Perillae Fructus, Descurainiae Semen, Sinapis Semen. Objective To employ the tools of network pharmacology and in vivo experiments, exploring the possible mechanism of JDP in treating chronic obstructive pulmonary disease (COPD). Materials and Methods Chemical constituents of JDP, collection of targets of COPD, target prediction were conducted, and then network pharmacological analysis was performed based on protein-protein interaction (PPI). The cigarette smoke and lipopolysaccharide-induced COPD model was applied to assess the effects of JDP. Rats were randomly divided into five groups (n = 8), ie, a sham group, a COPD-control group, two COPD groups treated with different doses of JDP (1.26 and 2.52 g/kg/d, respectively), and one COPD group treated with aminophylline (54 mg/kg/d). Pulmonary functions were assessed. The inflammatory cytokines in bronchial alveolar lavage fluid (BALF) were quantified using enzyme-linked immunosorbent assay (ELISA). The expression of matrix metalloprotein-9 (MMP-9) was quantified using Western blot. Results A total of 108 genes were found to be the main target genes regulated by JDP in the treatment of COPD, according to PPI analysis. Compared with the COPD-control group, rats in the JDP group exhibited amelioration in lung function, including 20 ms forced expiratory volume/forced vital capacity, maximal mid-expiratory flow curve, and airway resistance (all p < 0.05). A reduction of IL-1β and TNF-α expressions in BALF was also observed (both p < 0.05). Compared with the COPD-control group, the expression of MMP-9 in lung tissue was down-regulated in the JDP group (p < 0.05). Conclusion This study explored the effects and its mechanisms of JDP in COPD treatment. JDP exhibited therapeutic potential as a COPD intervention drug.
Collapse
Affiliation(s)
- Jiewen Zhou
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Jinbin Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Danting Peng
- Clinical Research Center, Guangzhou Baiyunshan Qixing Pharmaceutical Co. Ltd, Guangzhou, Guangdong, People’s Republic of China
| | - Yanqiu Zheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Na Ning
- Clinical Research Center, Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong, People’s Republic of China
| | - Guirong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Qiuling Huang
- Clinical Research Center, Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong, People’s Republic of China
| | - Yanwu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
2
|
Țicolea M, Pop RM, Pârvu M, Usatiuc LO, Uifălean A, Pop DD, Fischer-Fodor E, Ranga F, Rusu CC, Cătoi AF, Palma-Garcia F, Gherman LM, Pârvu AE. Flowers and Leaves of Artemisia absinthium and Artemisia annua Phytochemical Characterization, Anti-Inflammatory, Antioxidant, and Anti-Proliferative Activities Evaluation. PLANTS (BASEL, SWITZERLAND) 2025; 14:1029. [PMID: 40219097 PMCID: PMC11990577 DOI: 10.3390/plants14071029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 04/14/2025]
Abstract
This study investigates the phytochemical composition, anti-inflammatory, antioxidant, and antiproliferative activities of A. absinthium and A. annua flowers and leaf ethanol extracts in acute rat inflammation model. Polyphenolic compounds were analyzed quantitatively (total phenolic (TPC) and total flavonoids (TFCs)) and qualitatively by HPLC-ESI MS analysis. The antioxidant activity was evaluated in vitro (by DPPH, FRAP, H2O2, and NO scavenging tests), and in vivo (by total oxidative status (TOS), total antioxidant capacity (TAC), oxidative stress index (OSI), and key oxidative damage markers). Inflammation was evaluated via nuclear factor-kB-p65 (NfkB-p65), and canonical NLRP3 inflammasome activation (with IL-1β, IL-18, caspase-1, and gasdermin D). The antiproliferative activity against human ovarian tumor cells (A2780cis, OVCAR-3, and OAW-42) was evaluated by the MTT assay, focusing on the modulation of multidrug resistance (MDR) pumps and the PARP-1 enzyme. Liver and renal toxicity were tested by measuring transaminases (ALT and AST), creatinine, and urea. The study results indicated that A. absinthium and A. annua flowers and leaf ethanol extracts have rich polyphenol content and moderate in vitro antioxidant activity. Tested extracts display an important antiproliferative activity against the ovarian tumor cell lines A2780cis, OVCAR-3, and OAW-42 based on chemoresistance countering and apoptotic mechanisms. There were differences related to the cell type and plant extract type. The tested plant extracts had significant and dose-dependent in vivo anti-inflammatory and antioxidant activity, with the A. annua flowers extract having the lowest efficiency. The anti-inflammatory and antioxidant activity biomarkers correlated with the extracts' chemical composition. There was no inflammation-induced hepatotoxicity, but renal dysfunction was associated. Only AANL improved the renal function. These results can be used to design and develop remedies with combined anti-inflammatory, antioxidant, and anti-proliferative activities.
Collapse
Affiliation(s)
- Mădălina Țicolea
- Department of Morpho-Functional Sciences, Discipline of Pathophysiology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.Ț.); (L.-O.U.); (A.U.); (A.F.C.); (A.E.P.)
| | - Raluca Maria Pop
- Department of Morpho-Functional Sciences, Discipline of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Marcel Pârvu
- Department of Biology, Babes-Bolyai University, 400015 Cluj-Napoca, Romania;
| | - Lia-Oxana Usatiuc
- Department of Morpho-Functional Sciences, Discipline of Pathophysiology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.Ț.); (L.-O.U.); (A.U.); (A.F.C.); (A.E.P.)
| | - Ana Uifălean
- Department of Morpho-Functional Sciences, Discipline of Pathophysiology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.Ț.); (L.-O.U.); (A.U.); (A.F.C.); (A.E.P.)
| | - Dalina Diana Pop
- Department of Morpho-Functional Sciences, Discipline of Anatomy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Eva Fischer-Fodor
- Tumor Biology Department, The Oncology Institute I. Chiricuță, 400015 Cluj-Napoca, Romania;
| | - Floricuța Ranga
- Food Science and Technology, Department of Food Science, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Crina Claudia Rusu
- Department of Nephrology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- “Mihai Manasia” Nephrology and Dialysis Clinic, County Emergency Clinical Hospital Cluj, 400347 Cluj-Napoca, Romania
| | - Adriana Florinela Cătoi
- Department of Morpho-Functional Sciences, Discipline of Pathophysiology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.Ț.); (L.-O.U.); (A.U.); (A.F.C.); (A.E.P.)
| | | | - Luciana-Mădălina Gherman
- Experimental Center, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400349 Cluj-Napoca, Romania;
| | - Alina Elena Pârvu
- Department of Morpho-Functional Sciences, Discipline of Pathophysiology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.Ț.); (L.-O.U.); (A.U.); (A.F.C.); (A.E.P.)
| |
Collapse
|
3
|
Zhang Y, Wang L, Zeng J, Shen W. Research advances in polyphenols from Chinese herbal medicine for the prevention and treatment of chronic obstructive pulmonary disease: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03945-y. [PMID: 40035820 DOI: 10.1007/s00210-025-03945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/17/2025] [Indexed: 03/06/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is a global health problem due to its high death and morbidity worldwide, which is characterized by an incompletely reversible limitation in airflow that is not fully reversible. Unfortunately, Western medical treatments are unable to reverse the progressive decline in lung function. Importantly, polyphenolic compounds isolated from Chinese herbal medicine exhibited therapeutic/interventional effects on COPD in preclinical studies. This review systematically analyzed the pathogenesis of COPD, such as inflammation, oxidative stress, protease/antiprotease imbalance, aging, cell death, and dysbiosis of gut microbiota. Moreover, this review summarized the regulatory mechanisms of natural polyphenolic compounds for the treatment of COPD. Several studies have demonstrated that natural polyphenolic compounds have therapeutic effects on COPD by regulating various biological processes, such as anti-inflammatory, reduction of oxidative damage, anti-cell death, and inhibition of airway hyperglycemia. Mechanistically, this review found that the promising effects of natural polyphenolic compounds on COPD were mainly achieved through modulating the NF-κB and MAPK inflammatory pathways, the Nrf2 oxidative stress pathway, and the SIRT1/PGC-1α lung injury pathway. Furthermore, this review analyzed the efficacy and safety of natural polyphenolic compounds for the treatment of COPD in clinical trials, and discussed their challenges and future development directions. In conclusion, this review combined the latest literature to illustrate the various pathogenesis and interrelationships of COPD in the form of graphs, texts, and tables, and sorted out the functional role and mechanisms of natural polyphenols in treating COPD, with a view to providing new ideas and plans for the in-depth research on COPD and the systemic treatment of COPD with Chinese herbal medicine.
Collapse
Affiliation(s)
- Yang Zhang
- Department of General Practice Medicine, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Wuhua District, Kunming, 650101, China
| | - Lijuan Wang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Jinyi Zeng
- Department of General Practice Medicine, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Wuhua District, Kunming, 650101, China
| | - Wen Shen
- Department of General Practice Medicine, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Wuhua District, Kunming, 650101, China.
| |
Collapse
|
4
|
Ji Q, Meng Y, Han X, Yi C, Chen X, Zhan Y. Bioinformatic Insights and XGBoost Identify Shared Genetics in Chronic Obstructive Pulmonary Disease and Type 2 Diabetes. THE CLINICAL RESPIRATORY JOURNAL 2025; 19:e70057. [PMID: 40045538 PMCID: PMC11882755 DOI: 10.1111/crj.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/15/2024] [Accepted: 01/30/2025] [Indexed: 03/09/2025]
Abstract
BACKGROUND The correlation between chronic obstructive pulmonary disease (COPD) and Type 2 diabetes mellitus (T2DM) has long been recognized, but their shared molecular underpinnings remain elusive. This study aims to uncover common genetic markers and pathways in COPD and T2DM, providing insights into their molecular crosstalk. METHODS Utilizing the Gene Expression Omnibus (GEO) database, we analyzed gene expression datasets from six COPD and five T2DM studies. A multifaceted bioinformatics approach, encompassing the limma R package, unified matrix analysis, and weighted gene co-expression network analysis (WGCNA), was deployed to identify differentially expressed genes (DEGs) and hub genes. Functional enrichment and protein-protein interaction (PPI) analyses were conducted, followed by cross-species validation in Mus musculus models. Machine learning techniques, including random forest and LASSO regression, were applied for further validation, culminating in the development of a prognostic model using XGBoost. RESULTS Our analysis revealed shared DEGs such as KIF1C, CSTA, GMNN, and PHGDH in both COPD and T2DM. Cross-species comparison identified common genes including PON1 and CD14, exhibiting varying expression patterns. The random forest and LASSO regression identified six critical genes, with our XGBoost model demonstrating significant predictive accuracy (AUC = 0.996 for COPD). CONCLUSIONS This study identifies key genetic markers shared between COPD and T2DM, providing new insights into their molecular pathways. Our XGBoost model exhibited high predictive accuracy for COPD, highlighting the potential utility of these markers. These findings offer promising biomarkers for early detection and enhance our understanding of the diseases' interplay. Further validation in larger cohorts is recommended.
Collapse
Affiliation(s)
- Qianqian Ji
- Department of Epidemiology, School of Public Health (Shenzhen)Sun Yat‐Sen UniversityShenzhenGuangdongChina
| | - Yaxian Meng
- Department of Epidemiology, School of Public Health (Shenzhen)Sun Yat‐Sen UniversityShenzhenGuangdongChina
| | - Xiaojie Han
- Department of Chronic Disease ControlGuangming Center for Disease Control and PreventionShenzhenGuangdongChina
| | - Chao Yi
- Department of Chronic Disease ControlGuangming Center for Disease Control and PreventionShenzhenGuangdongChina
| | - Xiaoliang Chen
- Department of Chronic Disease ControlGuangming Center for Disease Control and PreventionShenzhenGuangdongChina
| | - Yiqiang Zhan
- Department of Epidemiology, School of Public Health (Shenzhen)Sun Yat‐Sen UniversityShenzhenGuangdongChina
- Guangdong Engineering Technology Research Center of Nutrition TransformationSun Yat‐sen UniversityShenzhenGuangdongChina
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| |
Collapse
|
5
|
Cui L, Yang Y, Hao Y, Zhao H, Zhang Y, Wu T, Song X. Nanotechnology-Based Therapeutics for Airway Inflammatory Diseases. Clin Rev Allergy Immunol 2025; 68:12. [PMID: 39928241 PMCID: PMC11811441 DOI: 10.1007/s12016-024-09019-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 02/11/2025]
Abstract
Under the concept of "one airway, one disease", upper and lower airway inflammatory diseases share similar pathogenic mechanisms and are collectively referred to as airway inflammatory diseases. With industrial development and environmental changes, the incidence of these diseases has gradually increased. Traditional treatments, including glucocorticoids, antihistamines, and bronchodilators, have alleviated much of the discomfort experienced by patients. However, conventional drug delivery routes have inherent flaws, such as significant side effects, irritation of the respiratory mucosa, and issues related to drug deactivation. In recent years, nanomaterials have emerged as excellent carriers for drug delivery and are being increasingly utilized in the treatment of airway inflammatory diseases. These materials not only optimize the delivery of traditional medications but also facilitate the administration of various new drugs that target novel pathways, thereby enhancing the treatment outcomes of inflammatory diseases. This study reviews the latest research on nano-drug delivery systems used in the treatment of airway inflammatory diseases, covering traditional drugs, immunotherapy drugs, antimicrobial drugs, plant-derived drugs, and RNA drugs. The challenges involved in developing nano-delivery systems for these diseases are discussed, along with a future outlook. This review offers new insights that researchers can utilize to advance further research into the clinical application of nano-drug delivery systems for treating airway inflammatory diseases.
Collapse
Affiliation(s)
- Limei Cui
- Department of Otolaryngology, Head and Neck Surgery, Qingdao Medical College, Qingdao University, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, China
| | - Yujuan Yang
- Department of Otolaryngology, Head and Neck Surgery, Qingdao Medical College, Qingdao University, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, China
| | - Yan Hao
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, China
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Hongfei Zhao
- Department of Otolaryngology, Head and Neck Surgery, Qingdao Medical College, Qingdao University, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, 264000, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, China
| | - Yu Zhang
- Department of Otolaryngology, Head and Neck Surgery, Qingdao Medical College, Qingdao University, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, 264000, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, China.
| | - Tong Wu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
| | - Xicheng Song
- Department of Otolaryngology, Head and Neck Surgery, Qingdao Medical College, Qingdao University, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, 264000, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, 264000, China.
| |
Collapse
|
6
|
Liu C, Reger M, Fan H, Wang J, Zhang J. Dietary intake of isoflavones and coumestrol and risk of pancreatic cancer in the prostate, lung, colorectal, and ovarian cancer screening trial. Br J Cancer 2025; 132:266-275. [PMID: 39681617 PMCID: PMC11791052 DOI: 10.1038/s41416-024-02929-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Although phytoestrogens modulated pancreatic tumour growth in experimental studies, it remains unclear whether phytoestrogen intake is associated with pancreatic cancer. METHODS Of 92,278 persons who completed the Diet History Questionnaire in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, 346 were diagnosed with pancreatic cancer within a median follow-up of 9.4 years. Cox proportional hazards regression was used to evaluate pancreatic cancer risk in relation to phytoestrogen intake. RESULTS After adjustment for confounders, intakes of glycitein and formononetin were associated with a reduced risk of pancreatic cancer [highest vs. lowest quartile, hazard ratio (HR) (95% confidence interval (CI)) for glycitein: 0.60 (0.39, 0.92); P for linear trend: 0.01; HR for formononetin: 0.51 (0.37, 0.70); P for linear trend: 0.005]. These associations were stronger and their linear trends across the quartiles of intakes were more statistically significant among ever smokers than never-smokers. A reduced risk was also observed for ever smokers in the highest quartile of total isoflavones or daidzein compared with those in the lowest quartile. CONCLUSIONS Our study suggests that high intakes of total isoflavones and some individual isoflavones were inversely associated with pancreatic cancer risk, but this potential protective effect was confined to ever smokers.
Collapse
Affiliation(s)
- Chunliang Liu
- Department of Gastroenterology, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, IN, USA
| | - Michael Reger
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Hao Fan
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA
| | - Jintao Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, PR China
| | - Jianjun Zhang
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, IN, USA.
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA.
| |
Collapse
|
7
|
Li M, Gao W. The impact of smoking on respiratory rehabilitation efficacy and correlation analysis in patients with chronic obstructive pulmonary disease: a retrospective study. J Thorac Dis 2025; 17:254-264. [PMID: 39975758 PMCID: PMC11833573 DOI: 10.21037/jtd-24-1267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/22/2024] [Indexed: 02/21/2025]
Abstract
Background Chronic obstructive pulmonary disease (COPD) was a significant public health concern, with smoking being the primary risk factor for its development and progression. The impact of smoking on respiratory rehabilitation efficacy in COPD patients remains an area of interest and investigation. This study aimed to assess the influence of smoking on the efficacy of respiratory rehabilitation in patients with COPD. Methods Data of patients with COPD from October 2015 to October 2023 were retrospectively analyzed in this case-control study. The patients who had previously participated in a pulmonary rehabilitation program were excluded. Pulmonary function, exercise capacity, quality of life, and sleep patterns were evaluated before and after rehabilitation. Results A total of 40 patients were included and categorized into non-smoking (n=20) and smoking groups (n=20) based on their smoking history. Before rehabilitation, no significant differences were observed between the groups in forced expiratory volume in one second (FEV1) (P=0.96), forced vital capacity (FVC) (P=0.97), FEV1/FVC ratio (P=0.73), maximal voluntary ventilation (MVV) (P=0.69), and diffusing capacity of the lung for carbon monoxide (DLCO) (P=0.63). After rehabilitation, FEV1 (P=0.02), FVC (P=0.009), FEV1/FVC ratio (P=0.03), MVV (P=0.004), DLCO (P=0.01), these pulmonary functions for non-smokers were much better than the smokers. Similarly, the non-smoking group exhibited significantly greater improvements in 6-minute walk distance (P=0.03), peak oxygen consumption (VO2) (P=0.01), Borg scale ratings (P=0.02), St. George's Respiratory Questionnaire (SGRQ) scores (P=0.004), and Medical Research Council (MRC) dyspnea scale scores (P=0.005) compared to the smoking group after rehabilitation. The non-smoking patients have more better quality of life compared to the smokers after rehabilitation, which demonstrated by the quality of life scores and Sleep Quality Score, including somatization (P=0.01), emotion management (P=0.009), role play (P=0.008), cognitive function (P=0.04), return to social function (P=0.01), Sleep Quality Score (P=0.02). Conclusions Smoking negatively impacts the efficacy of respiratory rehabilitation in COPD patients, leading to poorer pulmonary function, exercise capacity, quality of life, and sleep patterns.
Collapse
Affiliation(s)
- Mingzhen Li
- Department of Respiratory & Critical Care Medicine, China Rehabilitation Research Center, Beijing, China
| | - Wei Gao
- Department of Respiratory & Critical Care Medicine, China Rehabilitation Research Center, Beijing, China
| |
Collapse
|
8
|
Luan X, Zhu D, Hao Y, Xie J, Wang X, Li Y, Zhu J. Qibai Pingfei Capsule ameliorated inflammation in chronic obstructive pulmonary disease (COPD) via HIF-1 α/glycolysis pathway mediated of BMAL1. Int Immunopharmacol 2025; 144:113636. [PMID: 39579541 DOI: 10.1016/j.intimp.2024.113636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized for the persistent inflammation. The brain and muscle arnt-like 1 (BMAL1), as a crucial clock gene, is associated with the expression level of upstream factor hypoxia-inducible factor (HIF)-1α in glycolysis, which may affect the occurrence of inflammatory reactions in COPD. However, the moderation effect of Qibai Pingfei Capsule (QBPF) capsule is still unknown on BMAL1 and HIF-1α/glycolytic pathway. OBJECTIVE The aim of this study is to investigate the modulatory effects of QBPF capsules on BMAL1 and the HIF-1α/glycolytic pathway in COPD. METHODS The multifactorial approach were used to construct the COPD rat model, including forced swimming, hypoxia, and inhalation of cigarette smoke with four weeks. Nextly, the rats received a two-week course of gavage treatment with medicant. Finally, tissue samples were collected for comprehensive analysis using various molecular biology techniques. These methods included molecular docking, immunoprecipitation, small interfering RNA (siRNA), hematoxylin and eosin (HE) staining, western blot (WB), and immunofluorescence etc. to elucidate the modulatory effects of QBPF for treating COPD in vitro and in vivo. RESULTS The expression levels in mRNA and protein of BMAL1 decreased in COPD, while the content in mRNA and protein of HIF-1α increased. At the same time, the concentration in glycolytic metabolites of hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), lactate dehydrogenase (LDH), and lactate (LD) increased, and ATP decreased. The QBPF capsule can reverse the imbalance between BMAL1 and HIF-1α, improve disorders of glycolytic pathway, and alleviate the inflammation response. Notably, in vivo experiments, the interaction between BMAL1 and HIF-1α were confirmed via molecular docking and immunoprecipitation. In rescue experiments, intervention with siRNA BMAL1 in 16HBE cells revealed a significant decrease in BMAL1 levels and the therapeutic effect of QBPF was also affected. CONCLUSION QBPF could up-regulate the expression level of clock gene BMAL1, thereby regulating the HIF-1α/glycolytic pathway and metabolite to improve the inflammatory response in COPD.
Collapse
Affiliation(s)
- Xuejing Luan
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Dandan Zhu
- Research Center of Integrated Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu 241002, China
| | - Yifei Hao
- Research Center of Integrated Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu 241002, China
| | - Jinghui Xie
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xiu Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu 241002, China
| | - Yan Li
- Yijishan Hospital Affiliated to Wannan Medical College, Wuhu 241001, China
| | - Jie Zhu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Research Center of Integrated Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu 241002, China.
| |
Collapse
|
9
|
Liu L, Wen T, Xiao Y, Chen H, Yang S, Shen X. Sea buckthorn extract mitigates chronic obstructive pulmonary disease by suppression of ferroptosis via scavenging ROS and blocking p53/MAPK pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118726. [PMID: 39181279 DOI: 10.1016/j.jep.2024.118726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sea buckthorn (Hippophae rhamnoides), a traditional Tibetan medicinal herb, exhibits protective effects against cardiovascular and respiratory diseases. Although Sea buckthorn extract (SBE) has been confirmed to alleviate airway inflammation in mice, its therapeutic effect and underlying mechanism on chronic obstructive pulmonary disease (COPD) requires further clarification. AIM OF THE STUDY To elucidate the alleviative effect and molecular mechanism of SBE on lipopolysaccharides (LPS)/porcine pancreatic elastase (PPE)-induced COPD by blocking ferroptosis. METHODS The anti-ferroptotic effects of SBE were evaluated in human BEAS-2B bronchial epithelial cells using CCK8, RT-qPCR, western blotting, and transmission electron microscopy. Transwell was employed to detect chemotaxis of neutrophils. COPD model was induced by intranasally administration of LPS/PPE in mice and measured by alterations of histopathology, inflammation, and ferroptosis. RNA-sequencing, western blotting, antioxidant examination, flow cytometry, DARTS, CETSA, and molecular docking were then used to investigate its anti-ferroptotic mechanisms. RESULTS In vitro, SBE not only suppressed erastin- or RSL3-induced ferroptosis by suppressing lipid peroxides (LPOs) production and glutathione (GSH) depletion, but also suppressed ferroptosis-induced chemotactic migration of neutrophils via reducing mRNA expression of chemokines. In vivo, SBE ameliorated LPS/PPE-induced COPD phenotypes, and inhibited the generation of LPOs, cytokines, and chemokines. RNA-sequencing showed that p53 pathway and mitogen-activated protein kinases (MAPK) pathway were implicated in SBE-mediated anti-ferroptotic action. SBE repressed erastin- or LPS/PPE-induced overactivation of p53 and MAPK pathway, thereby decreasing expression of diamine acetyltransferase 1 (SAT1) and arachidonate 15-lipoxygenase (ALOX15), and increasing expression of glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11). Mechanistically, erastin-induced elevation of reactive oxygen species (ROS) was reduced by SBE through directly scavenging free radicals, thereby contributing to its inhibition of p53 and MAPK pathways. CETSA, DARTS, and molecular docking further showed that ROS-generating enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) may be the target of SBE. Overexpression of NOX4 partially impaired the anti-ferroptotic activity of SBE. CONCLUSION Our results demonstrated that SBE mitigated COPD by suppressing p53 and MAPK pro-ferroptosis pathways via directly scavenging ROS and blocking NOX4. These findings also supported the clinical application of Sea buckthorn in COPD therapy.
Collapse
Affiliation(s)
- Lu Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Wen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xiao
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongqing Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shan Yang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
10
|
Chen Y, Wu Y, Dong J, Zhang C, Tang J. Acacetin Attenuates Cigarette Smoke Extract-Induced Human Bronchial Epithelial Cell Injury by Activating NRF2/SLC7A11/GPX4 Signaling to Inhibit Ferroptosis. Cell Biochem Biophys 2025:10.1007/s12013-024-01659-1. [PMID: 39751740 DOI: 10.1007/s12013-024-01659-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) stands as a major contributor to mortality worldwide, with cigarette smoke being a primary causative factor. Acacetin has been reported to possess lung protective effects. However, the precise role and mechanism of Acacetin in COPD remains elusive. In this study, human bronchial epithelial cell line HBE135-E6E7 was treated with Acacetin under cigarette smoke extract (CSE) conditions. Cellular viability was assessed using CCK-8 and LDH kits. Reactive oxygen species (ROS) generation was tested with DCFH-DA staining. JC-1 staining was employed to examine the mitochondrial membrane potential (MMP). Additionally, hydroxynonenal (4-HNE) level was tested using immunofluorescence staining and mitochondrial lipid peroxidation was evaluated using MitoPeDPP staining. MitoSOX staining was used to detect mitochondrial (mito)-ROS. Fe2+ level was measured using FerroOrange staining and the expression of ferroptosis-related proteins was detected with western blot. Besides, the binding between Acacetin and NRF2 was analyzed by molecular docking. The sequent NRF2 overexpression or knockdown was used to explore the regulation of Acacetin on NRF2/SLC7A11/GPX4 signaling. Results indicated that CSE significantly reduced the viability, augmented ROS generation and decreased MMP in HBE135-E6E7 cells, which were blocked by Acacetin addition. Moreover, Acacetin inhibited lipid peroxidation and ferroptosis in CSE-treated HBE135-E6E7 cells. Specifically, Acacetin targeted NRF2 and activated the NRF2/SLC7A11/GPX4 signaling in CSE-induced HBE135-E6E7 cells. Furthermore, NRF2 deficiency or ML-385 treatment notably restored the influences of Acacetin on oxidative stress and ferroptosis in HBE135-E6E7 cells challenged with CSE. In conclusion, Acacetin alleviated CSE-induced injury in HBE135-E6E7 cells by activating The NRF2/SLC7A11/GPX4 signaling to inhibit ferroptosis.
Collapse
Affiliation(s)
- Yongchang Chen
- Department of Pulmonary Disease, Yangzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou, 225000, Jiangsu, China
| | - Yan Wu
- Department of Pulmonary Disease, Yangzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou, 225000, Jiangsu, China
| | - Juan Dong
- Department of Traditional Chinese Medicine Culture Publicity, Yangzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou, 225000, Jiangsu, China
| | - Chuanming Zhang
- Department of Pulmonary Disease, Yangzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou, 225000, Jiangsu, China
| | - Jia Tang
- Yangzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou, 225000, Jiangsu, China.
| |
Collapse
|
11
|
Li X, Liu J, Jing Z, Li S. SLC27A3 downregulation restores Th17/Treg balance and alleviates COPD via JAK2/STAT3 pathway inhibition. Allergol Immunopathol (Madr) 2025; 53:91-98. [PMID: 39786880 DOI: 10.15586/aei.v53i1.1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025]
Abstract
The main goal of this investigation is to find out how solute carrier family 27 member 3 (SLC27A3) is expressed in the lung tissue of mice with chronic obstructive pulmonary disease (COPD), and how it relates to lung function. A model of COPD was established by exposing organisms to cigarette smoke, followed by investigating the role of SLC27A3 in COPD through experiments conducted both in living organisms and in laboratory settings. Knockout mice lacking SLC27A3 were produced through siRNA transfection to investigate lung function and inflammatory response, using methods such as hematoxylin-eosin staining and enzyme-linked immunosorbent assay. Western blotting was carried out to analyze the expression of SLC27A3. Naïve CD4+ T-cells were stimulated with anti-CD3, anti-CD28, transforming growth factor (TGF)-β, and/or interleukin (IL)-6, and their differentiation into Th17 or Treg cells was promoted, as assessed by flow cytometry. The pathway expression of JAK2/STAT3 was detected using Western blotting. Mice with COPD that had higher expression levels of SLC27A3 in their lung tissue display abnormalities in lung architecture and function, as well as an imbalance between Th17 and Tregs and an elevated inflammatory response. In COPD mice with SLC27A3 knockdown, the JAK2/STAT3 pathway was repressed, lung inflammation was decreased, Th17/Treg balance was improved, and lung functioning was improved. In conclusion, the findings of this study suggest that downregulating SLC27A3 has the potential to attenuate the inflammatory response, mitigate COPD progression, and rebalance the Th17/Treg ratio by inhibiting the JAK2/STAT3 signaling pathway. These results lay a foundation for utilizing SLC27A3 as a potential therapeutic target to modulate the JAK2/STAT3 pathway for the treatment of COPD, with the aim of enhancing lung function, reducing inflammation, and restoring Th17/Treg equilibrium in a clinical context.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Geriatric Medicine, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| | - Ji Liu
- Department of Geriatric Medicine, Qinghai University Affiliated Hospital, Xining, Qinghai, China;
| | - Zehui Jing
- Department of Geriatric Medicine, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| | - Shuxia Li
- Department of Geriatric Medicine, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| |
Collapse
|
12
|
Tabeshpour J, Asadpour A, Norouz S, Hosseinzadeh H. The protective effects of medicinal plants against cigarette smoking: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156199. [PMID: 39492128 DOI: 10.1016/j.phymed.2024.156199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUNDS Cigarette smoking remains a pervasive and harmful habit, and it poses a significant public health concern globally. Tobacco smoke contains numerous toxicants and carcinogens that contribute to the incidence of various diseases, including respiratory ailments, cancer, and cardiovascular disorders. Over the past decade, there has been a growing interest in exploring natural remedies to mitigate the harmful effects of cigarette smoke (CS). Medicinal plants, with their rich phytochemical compositions, have emerged as potential sources of protective agents against CS-induced damage. OBJECTIVES The current review attempts to comprehensively review and provide a thorough analysis of the protective effects of medicinal plants, including ginseng, Aloe vera, Olea europaea, Zea mays, green tea, etc. against CS-related toxicities. MATERIALS AND METHODS A comprehensive research and compilation of existing literature were conducted. We conducted a literature search using the Web of Science, PubMed, Scopus, and Google Scholar. We selected articles published in English between 1987 and 2025. The search was performed using keywords including cigarette smoking, cigarette smokers, second-hand smokers, natural compounds, plant extracts, naturally derived products, natural resources, phytochemicals, and medicinal plants. RESULTS This review critically investigated recent literature focusing on the effects of medicinal plant extracts, essential oils, and isolated compounds on reducing the adverse consequences of CS exposure. These investigations encompassed several in vivo, in vitro, and clinical trials, clarifying the mechanisms underlying the protective effects of these plants. The notable antioxidant, anti-inflammatory, and detoxifying properties of these botanical interventions were also highlighted. CONCLUSION Collectively, this review emphasizes the potential of medicinal plants in alleviating the harmful effects of CS. The rich active constituents present in these plants offer various mechanisms that counteract oxidative stress, inflammation, and carcinogenesis induced by CS exposure. Further research is warranted to reveal the precise molecular mechanisms, derive dosing recommendations, and explore the efficacy of botanical interventions in large-scale clinical trials, ultimately improving public health outcomes and providing valuable insights for the smoking population worldwide.
Collapse
Affiliation(s)
- Jamshid Tabeshpour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Amirali Asadpour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Sayena Norouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Wei J, Tian Y, Wei J, Guan M, Yu X, Xie J, Fan G. Bilirubin regulates cell death type by alleviating macrophage mitochondrial dysfunction caused by cigarette smoke extract. Redox Rep 2024; 29:2382946. [PMID: 39074442 PMCID: PMC11288206 DOI: 10.1080/13510002.2024.2382946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
OBJECTIVES To explore the effects and mechanisms of bilirubin on mitochondrial function and type of macrophage cell death after exposure to cigarette smoke extract (CSE). METHODS RAW264.7 macrophages were treated with different concentrations of CSE and bilirubin solutions and divided into four groups: control, CSE, bilirubin, and bilirubin + CSE groups. The necrotic and apoptotic states of the macrophages were determined using an Annexin V-fluorescein 5-isothiocyanate/propidium iodide (FITC/PI) staining kit. Cytoplasmic NOD-like receptor family, pyrin domain containing 3 (NLRP3) expression in macrophages was detected by immunofluorescence and the levels of IL-1β and IL-18 in the supernatants of culture medium were detected by enzyme linked immunosorbent assay (ELISA) test. A JC-1 mitochondrial membrane potential detection kit was used to assess mitochondrial membrane damage and the adenosine triphosphate (ATP) assay kit was used to determine intracellular ATP levels. After the macrophages were stained with reactive oxygen species (ROS) specific dye, 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA), the fluorescence intensity and proportion of ROS-positive macrophages were measured using flow cytometry. RESULTS We observed that compared with those of 0 μM (control group), concentrations of 5, 10, or 20 μΜ bilirubin significantly decreased cell viability, which was increased by bilirubin exposure below 1 μM. The effect of CSE on macrophage viability was concentration- and time-dependent. Bilirubin of 0.2 μM could alleviate the inhibition of macrophage viability caused by 5% CSE. In addition, bilirubin intervention could reduce the occurrence of necrosis and pyroptosis to a certain extent. CONCLUSIONS CSE could cause mitochondrial dysfunction in macrophages, as demonstrated by a decrease in mitochondrial membrane potential and intracellular ATP levels and an increase in ROS production, while bilirubin could relieve mitochondrial dysfunction caused by CSE.
Collapse
Affiliation(s)
- Jingjing Wei
- Department of Pediatrics, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Yuan Tian
- Department of Pediatrics, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Jinshu Wei
- Department of Pediatrics, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Meiqi Guan
- Department of Pediatrics, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Xiaoya Yu
- Department of Pediatrics, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Jianing Xie
- Department of Pediatrics, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Guoquan Fan
- School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
14
|
Vahedi Fard M, Mohammadhasani K, Dehnavi Z, Khorasanchi Z. Chronic Obstructive Pulmonary Disease: The Role of Healthy and Unhealthy Dietary Patterns-A Comprehensive Review. Food Sci Nutr 2024; 12:9875-9892. [PMID: 39723104 PMCID: PMC11666972 DOI: 10.1002/fsn3.4519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/16/2024] [Accepted: 09/21/2024] [Indexed: 12/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive and irreversible disease affecting many people worldwide. Recent evidence suggests that diet and lifestyle play a vital role in COPD progression. We aimed to provide a comprehensive review of the effect of healthy and unhealthy dietary patterns on preventing and treating COPD. For this reason, Scopus, EMBASE, Web of Science, and PubMed were searched. Based on our findings, it appears that adhering to a healthy dietary pattern rich in vegetables, legumes, fruit, nuts, and whole grains may have advantageous impacts on preventing and treating COPD while following an unhealthy dietary pattern rich in red and processed meat, saturated fats, sweets, and sugary drinks affect COPD negatively. Adhering to Mediterranean, dietary approaches to stop hypertension (DASH), Prudent, Ketogenic, and High-protein diet may be related to a lower risk of COPD and improved pulmonary function. Conversely, Western and Ramadan Intermittent Fasting diets may elevate the prevalence of COPD. Proposing a nutritious diet that enhances pulmonary function could potentially be an effective approach to preventing and managing COPD. A comprehensive knowledge of the relationship between dietary factors and COPD can provide healthcare professionals with properly supported approaches to advise patients and empower individuals to make informed lifestyle decisions that are beneficial to improve their pulmonary health.
Collapse
Affiliation(s)
- Mohammad Vahedi Fard
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research CenterGonabad University of Medical SciencesGonabadIran
| | - Kimia Mohammadhasani
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research CenterGonabad University of Medical SciencesGonabadIran
| | - Zahra Dehnavi
- Department of Nutritional Sciences, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Zahra Khorasanchi
- Department of Nutritional Sciences, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
15
|
Feng T, Cao J, Ma X, Wang X, Guo X, Yan N, Fan C, Bao S, Fan J. Animal models of chronic obstructive pulmonary disease: a systematic review. Front Med (Lausanne) 2024; 11:1474870. [PMID: 39512624 PMCID: PMC11540622 DOI: 10.3389/fmed.2024.1474870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/06/2024] [Indexed: 11/15/2024] Open
Abstract
Objective Experimental animal models have been used for decades to study the development and progression of chronic obstructive pulmonary disease (COPD). However, there is a lack of methods for constructing animal models of COPD for optimal modelling. This systematic literature review (SLR) aimed to assess the various methods used to establish COPD animal models, highlight their advantages and limitations, and explore more optimized approaches for establishing such models. Methods A systematic search was performed in four English databases (PubMed, Embase, Web of Science, and the Cochrane Library) and four Chinese databases (Chinese Biomedical Literature Database, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Wanfang Database). Of the 8,015 retrieved full-text manuscripts, 453 were selected. Results Smoking (n = 140), smoking combined with lipopolysaccharide (LPS) (n = 275), smoking combined with protease drip (PPE) (n = 10), smoking combined with bacteria (n = 23), and smoking combined with particulate matter (PM2.5) (n = 5) were the most used methods for establishing animal models of COPD. Rats and mice were the most frequently selected experimental animals, with male animals accounting for 79.47% of the total. A total of 92.49 and 29.14% of the articles reviewed considered lung pathology of experimental animals only and lung pathology and lung function tests, respectively. Conclusion Our review suggests that the best way to establish an animal model of COPD is to combine smoking with LPS. Although findings from animal models of COPD cannot be directly extrapolated to human COPD, they could provide useful tools for further investigation into human COPD disease. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023407555, Identifier PROSPERO CRD42023407555.
Collapse
Affiliation(s)
- Tiantian Feng
- School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Juan Cao
- Department of Public Health, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaoting Ma
- School of Nursing, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xinhua Wang
- School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaolong Guo
- School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Na Yan
- School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chunling Fan
- Department of Clinical Pharmacy, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Shisan Bao
- School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jingchun Fan
- School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
16
|
Wang Y, Li YJ, Li CC, Pu L, Geng WL, Gao F, Zhang Q. GRP78 mediates mitochondrial fusion and fission in cigarette smoke-induced inflammatory responses in airway epithelial cells. Inhal Toxicol 2024; 36:511-520. [PMID: 39565149 DOI: 10.1080/08958378.2024.2428163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
OBJECTIVE Chronic obstructive pulmonary disease (COPD) is characterized by persistent airway inflammation, with cigarette smoke being a major contributor to epithelial injury. Recent studies have shown that abnormal mitochondrial function is closely linked to the onset and progression of airway inflammation. This study aims to explore the role and underlying molecular mechanisms of mitochondrial dynamics in cigarette smoke-induced airway inflammation. MATERIALS AND METHODS Human bronchial epithelial (HBE) cells were exposed to cigarette smoke extract (CSE) to assess the expression of mitochondrial fusion markers MFN2 and OPA1, the fission marker DRP1, and the glucose-regulated protein GRP78. The siRNA and pharmaceutics targeting DRP1, MFN2, and GRP78 were employed. Both cells and supernatants were analyzed for inflammatory factor levels and the related signaling pathways. RESULTS In this study, HBE cells exposed to CSE showed a significant decrease in the proteins MFN2 and OPA1 and an increase in DRP1. The inhibition of DRP1 expression mitigated inflammation while silencing MFN2 exacerbated it. This was similarly corroborated by the use of the DRP1 inhibitor mdivi-1 and the MFN2 activator leflunomide. Additionally, we proved that GRP78 played an important regulatory role as an essential endoplasmic reticulum protein, regulating the mitochondrial fusion/fission process and subsequently activating the NF-κB pathway to regulate airway inflammation. DISCUSSION AND CONCLUSION Taken together, these results suggested that the GRP78-mediated mitochondrial fusion and fission process played a vital role in cigarette smoke-induced airway inflammation and might be a potential therapeutic target in this regard.
Collapse
Affiliation(s)
- Yong Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ya-Jing Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chen-Chen Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li Pu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wan-Li Geng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fei Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qing Zhang
- Emergency Department, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
17
|
Sweef O, Mahfouz R, Taşcıoğlu T, Albowaidey A, Abdelmonem M, Asfar M, Zaabout E, Corcino YL, Thomas V, Choi ES, Furuta S. Decoding LncRNA in COPD: Unveiling Prognostic and Diagnostic Power and Their Driving Role in Lung Cancer Progression. Int J Mol Sci 2024; 25:9001. [PMID: 39201688 PMCID: PMC11354875 DOI: 10.3390/ijms25169001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer represent formidable challenges in global health, characterized by intricate pathophysiological mechanisms and multifaceted disease progression. This comprehensive review integrates insights from diverse perspectives to elucidate the intricate roles of long non-coding RNAs (lncRNAs) in the pathogenesis of COPD and lung cancer, focusing on their diagnostic, prognostic, and therapeutic implications. In the context of COPD, dysregulated lncRNAs, such as NEAT1, TUG1, MALAT1, HOTAIR, and GAS5, emerge as pivotal regulators of genes involved in the disease pathogenesis and progression. Their identification, profiling, and correlation with the disease severity present promising avenues for prognostic and diagnostic applications, thereby shaping personalized disease interventions. These lncRNAs are also implicated in lung cancer, underscoring their multifaceted roles and therapeutic potential across both diseases. In the domain of lung cancer, lncRNAs play intricate modulatory roles in disease progression, offering avenues for innovative therapeutic approaches and prognostic indicators. LncRNA-mediated immune responses have been shown to drive lung cancer progression by modulating the tumor microenvironment, influencing immune cell infiltration, and altering cytokine production. Their dysregulation significantly contributes to tumor growth, metastasis, and chemo-resistance, thereby emphasizing their significance as therapeutic targets and prognostic markers. This review summarizes the transformative potential of lncRNA-based diagnostics and therapeutics for COPD and lung cancer, offering valuable insights into future research directions for clinical translation and therapeutic development.
Collapse
Affiliation(s)
- Osama Sweef
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Reda Mahfouz
- Core Laboratory, University Hospital Cleveland Medical Center, Department of Pathology, School of Medicine, Case Western Reserve University, 1100 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Clinical Pathology, Faculty of Medicine, Menofia University, Shebin-Elkom 32511, Egypt
| | - Tülin Taşcıoğlu
- Department of Molecular Biology and Genetics, Demiroglu Bilim University, Esentepe Central Campus, Besiktas, 34394 Istanbul, Turkey
| | - Ali Albowaidey
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Mohamed Abdelmonem
- Department of Pathology, Transfusion Medicine Service, Stanford Healthcare, Stanford, CA 94305, USA
| | - Malek Asfar
- Department of Pathology, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Elsayed Zaabout
- Department of Therapeutics & Pharmacology, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
| | - Yalitza Lopez Corcino
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Venetia Thomas
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Eun-Seok Choi
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Saori Furuta
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| |
Collapse
|
18
|
Lin J, Xia H, Yu J, Wang Y, Wang H, Xie D, Cheng C, Lu L, Bian T, Wu Y, Liu Q. circADAMTS6 via stabilizing CAMK2A is involved in smoking-induced emphysema through driving M2 macrophage polarization. ENVIRONMENT INTERNATIONAL 2024; 190:108832. [PMID: 38936066 DOI: 10.1016/j.envint.2024.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Cigarette smoke (CS), an indoor environmental pollutant, is a prominent risk factor for emphysema, which is a pathological feature of chronic obstructive pulmonary disease (COPD). Emerging function of circRNAs in immune responses and disease progression shed new light to explore the pathogenesis of emphysema. In this research, we demonstrated, by single-cell RNA sequencing (scRNAseq), that the ratio of M2 macrophages were increased in lung tissues of humans and mice with smoking-related emphysema. Further, our data showed that circADAMTS6 was associated with cigarette smoke extract (CSE)-induced M2 macrophage polarization. Mechanistically, in macrophages, circADAMTS6 stabilized CAMK2A mRNA via forming a circADAMTS6/IGF2BP2/CAMK2A RNA-protein ternary complex to activate CREB, which drives M2 macrophage polarization and leads to emphysema. In addition, in macrophages of mouse lung tissues, downregulation of circADAMTS6 reversed M2 macrophage polarization, the proteinase/anti-proteinase imbalance, and the elastin degradation, which protecting against CS-induced emphysema. Moreover, for macrophages and in a model with co-cultured lung organoids, the target of circADAMTS6 restored the growth of lung organoids compared to CSE-treated macrophages. Our results also demonstrated that, for smokers and COPD smokers, elevation of circADAMTS6 negatively correlated with lung function. Overall, this study reveals a novel mechanism for circADAMTS6-driven M2 macrophage polarization in smoking-related emphysema and postulates that circADAMTS6 could serve as a diagnostic and therapeutic marker for smoking-related emphysema.
Collapse
Affiliation(s)
- Jiaheng Lin
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Haibo Xia
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; School of Public Health, Southeast University, Nanjing 210009, Jiangsu, People's Republic of China
| | - Jinyan Yu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, People's Republic of China
| | - Yue Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Hailan Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Daxiao Xie
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Lu Lu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Tao Bian
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, People's Republic of China.
| | - Yan Wu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, People's Republic of China.
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
19
|
Kastratovic N, Cekerevac I, Sekerus V, Markovic V, Arsenijevic A, Volarevic A, Harrell CR, Jakovljevic V, Djonov V, Volarevic V. Effects of combustible cigarettes and heated tobacco products on immune cell-driven inflammation in chronic obstructive respiratory diseases. Toxicol Sci 2024; 200:265-276. [PMID: 38788227 DOI: 10.1093/toxsci/kfae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024] Open
Abstract
Since long-term effects of heated tobacco products (HTP) on the progression of chronic obstructive pulmonary disease (COPD) are unknown, we used COPD mice model to compare immune cell-dependent pathological changes in the lungs of animals which were exposed to HTP or combustible cigarettes (CCs). We also performed intracellular staining and flow cytometry analysis of immune cells which were present in the blood of CCs and HTP users who suffered from immune cell-driven chronic obstructive respiratory diseases. CCs enhanced NLRP3 inflammasome-dependent production of inflammatory cytokines in lung-infiltrated neutrophils and macrophages and increased influx of cytotoxic Th1, Th2, and Th17 lymphocytes in the lungs of COPD mice. Similarly, CCs promoted generation of inflammatory phenotype in circulating leukocytes of COPD patients. Opposite to CCs, HTP favored expansion of immunosuppressive, IL-10-producing, FoxP3-expressing T, NK, and NKT cells in inflamed lungs of COPD mice. Compared with CCs, HTP had weaker capacity to promote synthesis of inflammatory cytokines in lung-infiltrated immune cells. Significantly lower number of inflammatory neutrophils, monocytes, Th1, Th2, and Th17 lymphocytes were observed in the blood of patients who consumed HTP than in the blood of CCs users, indicating different effects of CCs and HTP on immune cells' phenotype and function.
Collapse
Affiliation(s)
- Nikolina Kastratovic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Ivan Cekerevac
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
- Pulmonology Clinic, University Clinical Center Kragujevac, Kragujevac 34000, Serbia
| | - Vanesa Sekerus
- Institute for Pulmonary Diseases of Vojvodina, Sremska Kamenica 21204, Serbia
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Vladimir Markovic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Aleksandar Arsenijevic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Ana Volarevic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
- Department of Psychology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | | | - Vladimir Jakovljevic
- Department of Physiology, Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Vladislav Volarevic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
- Faculty of Pharmacy Novi Sad, Novi Sad 21000, Serbia
| |
Collapse
|
20
|
Ho WY, Shen ZH, Chen Y, Chen TH, Lu X, Fu YS. Therapeutic implications of quercetin and its derived-products in COVID-19 protection and prophylactic. Heliyon 2024; 10:e30080. [PMID: 38765079 PMCID: PMC11098804 DOI: 10.1016/j.heliyon.2024.e30080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/21/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel human coronavirus, which has triggered a global pandemic of the coronavirus infectious disease 2019 (COVID-19). Outbreaks of emerging infectious diseases continue to challenge human health worldwide. The virus conquers human cells through the angiotensin-converting enzyme 2 receptor-driven pathway by mostly targeting the human respiratory tract. Quercetin is a natural flavonoid widely represented in the plant kingdom. Cumulative evidence has demonstrated that quercetin and its derivatives have various pharmacological properties including anti-cancer, anti-hypertension, anti-hyperlipidemia, anti-hyperglycemia, anti-microbial, antiviral, neuroprotective, and cardio-protective effects, because it is a potential treatment for severe inflammation and acute respiratory distress syndrome. Furthermore, it is the main life-threatening condition in patients with COVID-19. This article provides a comprehensive review of the primary literature on the predictable effectiveness of quercetin and its derivatives docked to multi-target of SARS-CoV-2 and host cells via in silico and some of validation through in vitro, in vivo, and clinically to fight SARS-CoV-2 infections, contribute to the reduction of inflammation, which suggests the preventive and therapeutic latency of quercetin and its derived-products against COVID-19 pandemic, multisystem inflammatory syndromes (MIS), and long-COVID.
Collapse
Affiliation(s)
- Wan-Yi Ho
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zi-Han Shen
- Department of Clinical Medicine, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Yijing Chen
- Department of Dentisty, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Ting-Hsu Chen
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - XiaoLin Lu
- Anatomy Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Yaw-Syan Fu
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen, 361023, Fujian, China
- Anatomy Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen, 361023, Fujian, China
| |
Collapse
|
21
|
Wang M, Peng J, Yang M, Chen J, Shen Y, Liu L, Chen L. Elevated expression of NLRP3 promotes cigarette smoke-induced airway inflammation in chronic obstructive pulmonary disease. Arch Med Sci 2024; 20:1281-1293. [PMID: 39439673 PMCID: PMC11493075 DOI: 10.5114/aoms/176805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/11/2023] [Indexed: 10/25/2024] Open
Abstract
Introduction NOD-like receptor protein 3 (NLRP3) is implicated in chronic obstructive pulmonary disease (COPD) pathogenesis. Here, we explored the role of NLRP3 in cigarette smoke (CS)-induced airway inflammation in COPD. Material and methods NLRP3 expression level was assessed with the microarray data in GEO datasets and validated in serum by ELISA from a case-control cohort. Male C57BL/6J mice were randomly divided into: saline, CS, MCC950 (a specific NLRP3 inhibitor, 10 mg/kg) and CS + MCC950 (5 mg/kg and 10 mg/kg) groups (n = 5 per group). All mice were exposed to CS or air for 4 weeks. Then, broncho-alveolar lavage (BAL) fluid and lung tissues were collected for cell counting, ELISA, HE staining and RNA sequencing with validation by real-time qPCR. Results Compared to non-smokers, NLRP3 expression was significantly elevated in the lung tissues and sera of COPD smokers. CS remarkably induced airway inflammation in mice, characterized by an increase of inflammatory cells and proinflammatory cytokines in BAL fluid and HE inflammatory score, which were ameliorated by MCC950 treatment dose-dependently. Subsequently, 84 candidate genes were selected following RNA sequencing, and five hub genes (Mmp9, IL-1α, Cxcr2, Cxcl10, Ccr1) were then identified by PPI and MCODE analyses, which were confirmed by real-time qPCR. GO and KEGG analysis suggested that the five genes were enriched in a complicated network of inflammatory processes and signaling pathways. Conclusions NLRP3 expression is elevated in lungs and sera of COPD smokers. Inhibition of NLRP3 significantly attenuates CS-induced airway inflammation in mice via inactivation of multiple hub genes and their related inflammatory processes and signaling pathways.
Collapse
Affiliation(s)
- Min Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junjie Peng
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mei Yang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jun Chen
- Lab of Pulmonary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongchun Shen
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Liu
- Department of Pulmonary and Critical Care Medicine, 363 Hospital, Chengdu, Sichuan, China
| | - Lei Chen
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
22
|
Rudrapal M, Rakshit G, Singh RP, Garse S, Khan J, Chakraborty S. Dietary Polyphenols: Review on Chemistry/Sources, Bioavailability/Metabolism, Antioxidant Effects, and Their Role in Disease Management. Antioxidants (Basel) 2024; 13:429. [PMID: 38671877 PMCID: PMC11047380 DOI: 10.3390/antiox13040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Polyphenols, as secondary metabolites ubiquitous in plant sources, have emerged as pivotal bioactive compounds with far-reaching implications for human health. Plant polyphenols exhibit direct or indirect associations with biomolecules capable of modulating diverse physiological pathways. Due to their inherent abundance and structural diversity, polyphenols have garnered substantial attention from both the scientific and clinical communities. The review begins by providing an in-depth analysis of the chemical intricacies of polyphenols, shedding light on their structural diversity and the implications of such diversity on their biological activities. Subsequently, an exploration of the dietary origins of polyphenols elucidates the natural plant-based sources that contribute to their global availability. The discussion extends to the bioavailability and metabolism of polyphenols within the human body, unraveling the complex journey from ingestion to systemic effects. A central focus of the review is dedicated to unravelling the antioxidant effects of polyphenols, highlighting their role in combating oxidative stress and associated health conditions. The comprehensive analysis encompasses their impact on diverse health concerns such as hypertension, allergies, aging, and chronic diseases like heart stroke and diabetes. Insights into the global beneficial effects of polyphenols further underscore their potential as preventive and therapeutic agents. This review article critically examines the multifaceted aspects of dietary polyphenols, encompassing their chemistry, dietary origins, bioavailability/metabolism dynamics, and profound antioxidant effects. The synthesis of information presented herein aims to provide a valuable resource for researchers, clinicians, and health enthusiasts, fostering a deeper understanding of the intricate relationship between polyphenols and human health.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur 522213, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| | - Ravi Pratap Singh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| | - Samiksha Garse
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai 400614, India;
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia;
| | - Soumi Chakraborty
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| |
Collapse
|
23
|
Tao X, Zhang J, Meng Q, Chu J, Zhao R, Liu Y, Dong Y, Xu H, Tian T, Cui J, Zhang L, Chu M. The potential health effects associated with electronic-cigarette. ENVIRONMENTAL RESEARCH 2024; 245:118056. [PMID: 38157958 DOI: 10.1016/j.envres.2023.118056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/17/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
A good old gateway theory that electronic-cigarettes (e-cigarettes) are widely recognized as safer tobacco substitutes. In actuality, demographics also show that vaping cannibalizes smoking, the best explanation of the data is the "common liability". However, the utilization of e-cigarette products remains a controversial topic at present. Currently, there has been a widespread and substantial growth in e-cigarette use worldwide owing to their endless new flavors and customizable characteristics. Furthermore, e-cigarette has grown widespread among smokers as well as non-smokers, including adolescents and young adults. And some studies have shown that e-cigarette users are at greater risk to start using combustible cigarettes while e-cigarettes use was also observed the potential benefits to people who want to quit smoking or not. Although it is true that e-cigarettes generally contain fewer toxic substances than combustible cigarettes, this does not mean that the chemical composition in e-cigarettes aerosols poses absolutely no risks. While concerns about toxic substances in e-cigarettes and their widespread use in the population are reasonable, it is also crucial to consider that e-cigarettes have been associated with the potential for promoting smoking cessation and the clinically relevant improvements in users with smoking-related pathologies. Meanwhile, there is still short of understanding of the health impacts associated with e-cigarette use. Therefore, in this review, we discussed the health impacts of e-cigarette exposure on oral, nasal, pulmonary, cardiovascular systems and brain. We aspire for this review to change people's previous perceptions of e-cigarettes and provide them with a more balanced perspective. Additionally, we suggest appropriate adjustments on regulation and policy for e-cigarette to gain greater public health benefits.
Collapse
Affiliation(s)
- Xiaobo Tao
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Jiale Zhang
- The Second People's Hospital of Nantong, Nantong, Jiangsu, China
| | - Qianyao Meng
- Department of Global Health and Population, School of Public Health, Harvard University, Boston, USA
| | - Junfeng Chu
- Department of Oncology, Jiangdu People's Hospital of Yangzhou, Yangzhou, Jiangsu, China
| | - Rongrong Zhao
- Department of Oncology, Jiangdu People's Hospital of Yangzhou, Yangzhou, Jiangsu, China
| | - Yiran Liu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yang Dong
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Huiwen Xu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Tian Tian
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Jiahua Cui
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Lei Zhang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
24
|
Wang Q, He Z, Zhu J, Hu M, Yang L, Yang H. Polyphyllin B inhibited STAT3/NCOA4 pathway and restored gut microbiota to ameliorate lung tissue injury in cigarette smoke-induced mice. BMC Biotechnol 2024; 24:13. [PMID: 38459479 PMCID: PMC10921762 DOI: 10.1186/s12896-024-00837-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/15/2024] [Indexed: 03/10/2024] Open
Abstract
OBJECTIVE Smoking was a major risk factor for chronic obstructive pulmonary disease (COPD). This study plan to explore the mechanism of Polyphyllin B in lung injury induced by cigarette smoke (CSE) in COPD. METHODS Network pharmacology and molecular docking were applied to analyze the potential binding targets for Polyphyllin B and COPD. Commercial unfiltered CSE and LPS were used to construct BEAS-2B cell injury in vitro and COPD mouse models in vivo, respectively, which were treated with Polyphyllin B or fecal microbiota transplantation (FMT). CCK8, LDH and calcein-AM were used to detect the cell proliferation, LDH level and labile iron pool. Lung histopathology, Fe3+ deposition and mitochondrial morphology were observed by hematoxylin-eosin, Prussian blue staining and transmission electron microscope, respectively. ELISA was used to measure inflammation and oxidative stress levels in cells and lung tissues. Immunohistochemistry and immunofluorescence were applied to analyze the 4-HNE, LC3 and Ferritin expression. RT-qPCR was used to detect the expression of FcRn, pIgR, STAT3 and NCOA4. Western blot was used to detect the expression of Ferritin, p-STAT3/STAT3, NCOA4, GPX4, TLR2, TLR4 and P65 proteins. 16S rRNA gene sequencing was applied to detect the gut microbiota. RESULTS Polyphyllin B had a good binding affinity with STAT3 protein, which as a target gene in COPD. Polyphyllin B inhibited CS-induced oxidative stress, inflammation, mitochondrial damage, and ferritinophagy in COPD mice. 16S rRNA sequencing and FMT confirmed that Akkermansia and Escherichia_Shigella might be the potential microbiota for Polyphyllin B and FMT to improve CSE and LPS-induced COPD, which were exhausted by the antibiotics in C + L and C + L + P mice. CSE and LPS induced the decrease of cell viability and the ferritin and LC3 expression, and the increase of NCOA4 and p-STAT3 expression in BEAS-2B cells, which were inhibited by Polyphyllin B. Polyphyllin B promoted ferritin and LC3II/I expression, and inhibited p-STAT3 and NCOA4 expression in CSE + LPS-induced BEAS-2B cells. CONCLUSION Polyphyllin B improved gut microbiota disorder and inhibited STAT3/NCOA4 pathway to ameliorate lung tissue injury in CSE and LPS-induced mice.
Collapse
Affiliation(s)
- Qing Wang
- The Affiliated Changsha Central Hospital, Department of Respiratory and Critical Care Medicine, Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China
| | - Zhiyi He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jinqi Zhu
- The Affiliated Changsha Central Hospital, Department of Respiratory and Critical Care Medicine, Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China
| | - Mengyun Hu
- The Affiliated Changsha Central Hospital, Department of Respiratory and Critical Care Medicine, Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China
| | - Liu Yang
- The Affiliated Changsha Central Hospital, Department of Respiratory and Critical Care Medicine, Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China
| | - Hongzhong Yang
- The Affiliated Changsha Central Hospital, Department of Respiratory and Critical Care Medicine, Hengyang Medical School, University of South China, Changsha, Hunan, 410004, China.
| |
Collapse
|
25
|
Long J, Xu P, Chen J, Liao J, Sun D, Xiang Z, Ma H, Duan H, Ju M, Ouyang Y. Inflammation and comorbidities of chronic obstructive pulmonary disease: The cytokines put on a mask! Cytokine 2023; 172:156404. [PMID: 37922621 DOI: 10.1016/j.cyto.2023.156404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/19/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE Chronic obstructive pulmonary disease (COPD) is a well-known complex multicomponent disease characterized by systemic inflammation that frequently coexists with other conditions. We investigated the relationship between some inflammatory markers and complications in COPD patients to explore the possible roles of inflammation in these comorbidities. METHODS This study used cross-sectional and case-control methods. We included 336 hospitalized COPD patients, 64 healthy controls, and 42 major depression patients and evaluated all participants using the Hamilton Rating Scale. C-reactive protein (CRP), red blood cell distribution width (RDW), neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), monocyte/lymphocyte ratio (MLR), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were collected and measured in the study population. Statistical methods were used to analyze the association of inflammatory markers with COPD comorbidities. RESULTS Cor pulmonale and psychological comorbidities (depression and anxiety) were more common in this study on COPD patients. We found that MLR (OR = 2.054, 95 % CI 1.129-3.735, p = 0.018) and RDW (OR = 1.367, 95 % CI 1.178-1.586, p = 0.000) were related to COPD patients complicated with cor pulmonale, while IL-6 (OR = 1.026, 95 % CI 1.001-1.053, p = 0.045) and RDW (OR = 1.280, 95 % CI 1.055-1.552, p = 0.012) were related to depression symptoms. CONCLUSION MLR, RDW and IL-6 were closely related to cor pulmonale and depression in COPD patients. IL-1 β and IL-6 are closely related to depression in humans.
Collapse
Affiliation(s)
- Jian Long
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, China; Soochow University Medical College, Suzhou, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, China; Soochow University Medical College, Suzhou, China.
| | - Jie Chen
- Department of Respiratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou, China
| | - Jiangrong Liao
- Department of Respiratory Medicine, Aerospace Hospital, Zunyi City, China
| | - Desheng Sun
- Department of Respiratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou, China
| | | | | | - Haizhen Duan
- Department of Emergency Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, China
| | - Mingliang Ju
- Shanghai Mental Health Center Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai City, China
| | - Yao Ouyang
- Department of Respiratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou, China.
| |
Collapse
|
26
|
Chen J, Zhu Y, Zheng C, Zhao W, Liu Q. Clinical efficacy of budesonide combined with acetylcysteine in the treatment of mycoplasma pneumonia infection. Immun Inflamm Dis 2023; 11:e1068. [PMID: 38018572 PMCID: PMC10664398 DOI: 10.1002/iid3.1068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/05/2023] [Accepted: 10/17/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVE Mycoplasma pneumoniae pneumonia (MPP) is a common respiratory tract infectious disease in children. The study aimed to elucidate the therapeutic efficacy of aerosolized budesonide and N-acetylcysteine combination therapy for MP infection in children. METHODS One hundred and twenty children with MP infection were included and divided into the control group (received aerosol inhalation of budesonide) and the experimental group (aerosolized budesonide and N-acetylcysteine). After treatment, the disappearance time of clinical symptoms and efficacy were contrasted between the two groups. RESULTS With the passage of treatment time, the children's cough score of the two groups were gradually reduced. The children in the experimental group got well from the cough faster than the control group, and the difference reached a significant level on the 5th and 7th days. The time required for fever, rale, and cough to disappear in the experimental group was shorter than those in the control group. As the treatment progressed, a gradual decrease in serum interleukin-6, tumor necrosis factor-α, and C-reactive protein values was detected in both groups, and the decrease was more significant in the experimental group. The total effective rate of the experimental group was 98.33%, which surpassed the control group (93.33%). CONCLUSION Budesonide and N-acetylcysteine combination therapy in the treatment of MP infection in children has a significant effect, and can quickly relieve the clinical symptoms of children with good safety. It is worthy of widespread clinical use.
Collapse
Affiliation(s)
- Jing Chen
- Department of PediatricsThe Second Affiliated Hospital of Qiqihar Medical UniversityQiqiharHeilongjiangChina
| | - Ying Zhu
- Department of PediatricsThe Second Affiliated Hospital of Qiqihar Medical UniversityQiqiharHeilongjiangChina
| | - Chunfeng Zheng
- Department of PediatricsThe Second Affiliated Hospital of Qiqihar Medical UniversityQiqiharHeilongjiangChina
| | - Wei Zhao
- Department of PediatricsThe Second Affiliated Hospital of Qiqihar Medical UniversityQiqiharHeilongjiangChina
| | - Qi Liu
- The Research Institute of Medicine and PharmacyQiqihar Medical UniversityQiqihar Academy of Medical SciencesQiqiharHeilongjiangChina
| |
Collapse
|
27
|
Liu L, Zhang Y, Wang L, Liu Y, Chen H, Hu Q, Xie C, Meng X, Shen X. Scutellarein alleviates chronic obstructive pulmonary disease through inhibition of ferroptosis by chelating iron and interacting with arachidonate 15-lipoxygenase. Phytother Res 2023; 37:4587-4606. [PMID: 37353982 DOI: 10.1002/ptr.7928] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
Ferroptosis, an iron-dependent cell death characterized by lethal lipid peroxidation, is involved in chronic obstructive pulmonary disease (COPD) pathogenesis. Therefore, ferroptosis inhibition represents an attractive strategy for COPD therapy. Herein, we identified natural flavonoid scutellarein as a potent ferroptosis inhibitor for the first time, and characterized its underlying mechanisms for inhibition of ferroptosis and COPD. In vitro, the anti-ferroptotic activity of scutellarein was investigated through CCK8, real-time quantitative polymerase chain reaction (RT-qPCR), Western blotting, flow cytometry, and transmission electron microscope (TEM). In vivo, COPD was induced by lipopolysaccharide (LPS)/cigarette smoke (CS) and assessed by changes in histopathological, inflammatory, and ferroptotic markers. The mechanisms were investigated by RNA-sequencing (RNA-seq), electrospray ionization mass spectra (ESI-MS), local surface plasmon resonance (LSPR), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA), and molecular dynamics. Our results showed that scutellarein significantly inhibited Ras-selective lethal small molecule (RSL)-3-induced ferroptosis and mitochondria injury in BEAS-2B cells, and ameliorated LPS/CS-induced COPD in mice. Furthermore, scutellarein also repressed RSL-3- or LPS/CS-induced lipid peroxidation, GPX4 down-regulation, and overactivation of Nrf2/HO-1 and JNK/p38 pathways. Mechanistically, scutellarein inhibited RSL-3- or LPS/CS-induced Fe2+ elevation through directly chelating Fe2+ . Moreover, scutellarein bound to the lipid peroxidizing enzyme arachidonate 15-lipoxygenase (ALOX15), which resulted in an unstable state of the catalysis-related Fe2+ chelating cluster. Additionally, ALOX15 overexpression partially abolished scutellarein-mediated anti-ferroptotic activity. Our findings revealed that scutellarein alleviated COPD by inhibiting ferroptosis via directly chelating Fe2+ and interacting with ALOX15, and also highlighted scutellarein as a candidate for the treatment of COPD and other ferroptosis-related diseases.
Collapse
Affiliation(s)
- Lu Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunsen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Lun Wang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yue Liu
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongqing Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiongying Hu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
28
|
Liu Y, Lei H, Zhang W, Xing Q, Liu R, Wu S, Liu Z, Yan Q, Li W, Liu X, Hu Y. Pyroptosis in renal inflammation and fibrosis: current knowledge and clinical significance. Cell Death Dis 2023; 14:472. [PMID: 37500614 PMCID: PMC10374588 DOI: 10.1038/s41419-023-06005-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Pyroptosis is a novel inflammatory form of regulated cell death (RCD), characterized by cell swelling, membrane rupture, and pro-inflammatory effects. It is recognized as a potent inflammatory response required for maintaining organismal homeostasis. However, excessive and persistent pyroptosis contributes to severe inflammatory responses and accelerates the progression of numerous inflammation-related disorders. In pyroptosis, activated inflammasomes cleave gasdermins (GSDMs) and generate membrane holes, releasing interleukin (IL)-1β/18, ultimately causing pyroptotic cell death. Mechanistically, pyroptosis is categorized into caspase-1-mediated classical pyroptotic pathway and caspase-4/5/11-mediated non-classical pyroptotic pathway. Renal fibrosis is a kidney disease characterized by the loss of structural and functional units, the proliferation of fibroblasts and myofibroblasts, and extracellular matrix (ECM) accumulation, which leads to interstitial fibrosis of the kidney tubules. Histologically, renal fibrosis is the terminal stage of chronic inflammatory kidney disease. Although there is a multitude of newly discovered information regarding pyroptosis, the regulatory roles of pyroptosis involved in renal fibrosis still need to be fully comprehended, and how to improve clinical outcomes remains obscure. Hence, this review systematically summarizes the novel findings regarding the role of pyroptosis in the pathogenesis of renal fibrosis and discusses potential biomarkers and drugs for anti-fibrotic therapeutic strategies.
Collapse
Affiliation(s)
- Ya Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Haibo Lei
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Wenyou Zhang
- Department of Pharmacy, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qichang Xing
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Renzhu Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Shiwei Wu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Zheng Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Qingzi Yan
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Wencan Li
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Xiang Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China.
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China.
| | - Yixiang Hu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China.
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China.
| |
Collapse
|
29
|
Li S, Huang Q, He B. SIRT1 as a Potential Therapeutic Target for Chronic Obstructive Pulmonary Disease. Lung 2023; 201:201-215. [PMID: 36790647 DOI: 10.1007/s00408-023-00607-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/04/2023] [Indexed: 02/16/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common, preventable, and treatable disease characterized by irreversible airflow obstruction and lung function decline. It is well established that COPD represents a major cause of morbidity and mortality globally. Due to the substantial economic and social burdens associated with COPD, it is necessary to discover new targets and develop novel beneficial therapies. Although the pathogenesis of COPD is complex and remains to be robustly elucidated, numerous studies have shown that oxidative stress, inflammatory responses, cell apoptosis, autophagy, and aging are involved in the pathogenesis of COPD. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase belonging to the silent information regulator 2 (Sir2) family. Multiple studies have indicated that SIRT1 plays an important role in oxidative stress, apoptosis, inflammation, autophagy, and cellular senescence, which contributes to the pathogenesis and development of COPD. This review aimed to discuss the functions and mechanisms of SIRT1 in the progression of COPD and concluded that SIRT1 activation might be a potential therapeutic strategy for COPD.
Collapse
Affiliation(s)
- Siqi Li
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Huang
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Baimei He
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China. .,Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|