1
|
Zhou K, Qin L, Chen Y, Gao H, Ling Y, Qin Q, Mou C, Qin T, Lu J. A machine learning model for predicting acute respiratory distress syndrome risk in patients with sepsis using circulating immune cell parameters: a retrospective study. BMC Infect Dis 2025; 25:568. [PMID: 40259224 PMCID: PMC12013033 DOI: 10.1186/s12879-025-10974-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/14/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a severe complication associated with a high mortality rate in patients with sepsis. Early identification of patients with sepsis at high risk of developing ARDS is crucial for timely intervention, optimization of treatment strategies, and improvement of clinical outcomes. However, traditional risk prediction methods are often insufficient. This study aimed to develop a machine learning (ML) model to predict the risk of ARDS in patients with sepsis using circulating immune cell parameters and other physiological data. METHODS Clinical data from 10,559 patients with sepsis were obtained from the MIMIC-IV database. Principal component analysis (PCA) was used for dimensionality reduction and to comprehensively evaluate the models' predictive capabilities, we used several ML algorithms, including decision trees, k-nearest neighbors (KNN), logistic regression, naive Bayes, random forests, neural networks, XGBoost, and support vector machines (SVM) to predict ARDS risk. The model performance was assessed using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and F1 score. Shapley additive explanations (SHAP) were used to interpret the contribution of individual features to model predictions. RESULTS Among all models, XGBoost showed the best performance with an AUC of 0.764. Feature importance analysis revealed that mean arterial pressure, monocyte count, neutrophil count, pH, and platelet count were key predictors of ARDS risk in patients with sepsis. The SHAP analysis provided further information on how these features contributed to the model's predictions, aiding in interpretability and potential clinical applications. CONCLUSION The XGBoost model using circulating immune cell parameters accurately predicted the risk of ARDS in patients with sepsis. This model could be a useful tool for the early identification of high-risk patients and timely intervention; however, further validation and integration into clinical practice are required.
Collapse
Affiliation(s)
- Kaihuan Zhou
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, 530007, Guangxi, China
| | - Lian Qin
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, 530007, Guangxi, China
| | - Yin Chen
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, 530007, Guangxi, China
| | - Hanming Gao
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, 530007, Guangxi, China
| | - Yicong Ling
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, 530007, Guangxi, China
| | - Qianqian Qin
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, 530007, Guangxi, China
| | - Chenglin Mou
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, 530007, Guangxi, China
| | - Tao Qin
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, 530007, Guangxi, China.
| | - Junyu Lu
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, 530007, Guangxi, China.
| |
Collapse
|
2
|
Barka K, Papachatzi E, Fouzas S, Dimitriou G, Dassios T. Respiratory Function in Ventilated Newborn Infants Nursed Prone and Supine. Pediatr Pulmonol 2025; 60:e71075. [PMID: 40167569 PMCID: PMC11960726 DOI: 10.1002/ppul.71075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/23/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
OBJECTIVES Prone positioning has been associated with improved oxygenation in ventilated newborn infants but the physiological basis of this improvement has not been previously studied. We aimed to test the hypothesis that respiratory function measured by composite physiological indices would be improved in the prone compared to the supine position. STUDY DESIGN Prospective observational study of ventilated newborns in a tertiary neonatal unit studied prone and supine at random order. METHODOLOGY The ventilation to perfusion ratio (VA/Q) and right to left shunt were non-invasively calculated using the oxyhemoglobin dissociation curve method. The gradient of the arterial to end tidal carbon dioxide (PaCO2 - EtCO2 gradient) was calculated to describe changes in the alveolar dead space. RESULTS Forty-six (26 male) infants with a median (IQR) gestational age of 34.8 (33.1-36.3) weeks and birth weight of 2.34 (1.77-2.87) kg were studied after 5 (2-10) hours of invasive ventilation. The VA/Q was significantly higher in the prone position [0.57 (0.52-0.63)] compared to supine [0.53 (0.46-0.62), p = 0.001]. Right to left shunt was significantly lower in prone [7 (0-12) %] compared to supine [9 (1-16) %, p = 0.003]. The PaCO2 - EtCO2 gradient was significantly lower in prone [6.3 (3.8-8.4) mmHg] compared to supine [12.1 (7.1-16.0) mmHg]. CONCLUSIONS The prone position in ventilated neonates was associated with improved ventilation to perfusion matching and lower intrapulmonary shunting and alveolar dead space compared to supine.
Collapse
Affiliation(s)
| | - Eleni Papachatzi
- Department of PaediatricsNeonatal Intensive Care UnitPatrasGreece
| | - Sotirios Fouzas
- Department of PaediatricsPediatric Pulmonology UnitPatrasGreece
| | | | - Theodore Dassios
- Department of PaediatricsNeonatal Intensive Care UnitPatrasGreece
| |
Collapse
|
3
|
Bruna-Rosso C, Boussen S. MEGA: a computational framework to simulate the acute respiratory distress syndrome. J Appl Physiol (1985) 2025; 138:825-835. [PMID: 39946545 DOI: 10.1152/japplphysiol.00741.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/01/2024] [Accepted: 01/29/2025] [Indexed: 03/14/2025] Open
Abstract
The acute respiratory distress syndrome (ARDS) is a critical condition that necessitates mechanical ventilation (MV) to ensure sufficient ventilation and oxygenation for patients. Intensivists employ various therapeutic tools such as adjusting positive end-expiratory pressure (PEEP) levels or positioning the patient prone. However, practitioners encounter several challenges when dealing with ARDS: high variability among patients and limited understanding of underlying mechanisms. As a result, decision-making by physicians largely relies on experience. Yet, having the ability to estimate the likelihood of a patient responding to different therapeutic approaches would hold significant clinical value. Moreover, gaining a deeper understanding of the biomechanical and physiological phenomena underlying patient responses could inform the development of new MV strategies for ARDS management. To address these challenges, a coupled physiomechanical computational framework based on patient's computed tomography scan data was conceived and implemented. Simulations were conducted for prone positioning and PEEP-increment scenarios. The model results qualitatively align with both literature data and clinical measurements. However, some results diverge quantitatively from clinical measurements, emphasizing the necessity for thorough model calibration. Nonetheless, this serves as a proof of concept that the developed framework could be valuable in supporting intensivists' decision-making processes.NEW & NOTEWORTHY An original computational framework has been developed to simulate respiratory biomechanics and physiology of patients with ARDS. Using patient's CT scans, this spatially resolved model enables the calculation of global parameters (e.g., tidal volumes), but also the detailed distribution of ventilation within the lung, a capability not achievable with conventional single-compartment models commonly used in clinical practice. Furthermore, the framework allows to simulate recruitment maneuvers, including those regularly performed in ICU, such as prone positioning.
Collapse
Affiliation(s)
- Claire Bruna-Rosso
- Laboratoire de Biomécanique Appliquée, Aix-Marseille Université, Université Gustave Eiffel, Marseille, France
| | - Salah Boussen
- Laboratoire de Biomécanique Appliquée, Aix-Marseille Université, Université Gustave Eiffel, Marseille, France
- Fédération d'Anesthésie Réanimation, Hôpital National d'Instruction des Armées Sainte-Anne, Toulon, France
| |
Collapse
|
4
|
Wang L, Chen J, Zhou X. Factors influencing sepsis associated thrombocytopenia (SAT): A multicenter retrospective cohort study. PLoS One 2025; 20:e0318887. [PMID: 39928637 PMCID: PMC11809783 DOI: 10.1371/journal.pone.0318887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/23/2025] [Indexed: 02/12/2025] Open
Abstract
INTRODUCTION Sepsis associated thrombocytopenia (SAT) is a common complication of sepsis. We designed this study to investigate factors influencing SAT. METHODS Patients with sepsis (2984 in Peking union medical college hospital [PUMCH] database, 13165 in eICU Collaborative Research [eICU] database, 11101 in Medical Information Mart for Intensive Care IV [MIMIC-IV] database) were enrolled. Variables included basic information, comorbidities, and organ functions. Multi-variable logistic regression models and artificial neural network model were applied to determine the factors related to SAT. MAIN RESULTS Age and body mass index (BMI) were inversely correlated with the incidence of SAT (p-value 0.175 and 0.049 [PUMCH], p-value 0.000 and 0.000 [eICU], p-value 0.000 and 0.000 [MIMIC-IV]). Hematologic malignancies and other malignancies were positively correlated with the incidence of SAT (p-value 0.000 and 0.000 [PUMCH], p-value 0.000 and 0.000 [eICU], p-value 0.000 and 0.020 [MIMIC-IV]) except other malignancies was inversely correlated with the incidence of SAT in PUMCH database. Norepinephrine (NE) equivalents, total bilirubin (TBIL) and creatinine were positively correlated with the incidence of SAT (p-value 0.000, 0.000 and 0.011 [PUMCH], p-value 0.028, 0.000 and 0.013 [eICU], p-value 0.028, 0.000 and 0.027 [MIMIC-IV]). PaO2 / FiO2 was inversely correlated with the incidence of SAT in PUMCH database (p-value 0.021 [PUMCH]), while it was positively correlated with the incidence of SAT (p-value 0.000 [MIMIC-IV]). PaO2 / FiO2 and SAT was not related (p-value 0.111 [eICU]). TBIL, hematologic malignancies, PaO2 / FiO2 and NE equivalents ranked in the top five significant variables in all three datasets. CONCLUSIONS Hematologic malignancies and other malignancies were positively correlated with the incidence of SAT. NE equivalents, TBIL and creatinine were positively correlated with the incidence of SAT. TBIL, hematologic malignancies, PaO2 / FiO2 and NE equivalents ranked in the top significant variables in factors influencing SAT.
Collapse
Affiliation(s)
- Lu Wang
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jieqing Chen
- Information Center Department/Department of Information Management, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiang Zhou
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Information Center Department/Department of Information Management, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | | |
Collapse
|
5
|
Hu Z, Wang H, Huang J, Yang G, Luo W, Zhong J, Zheng X, Wei X, Luo X, Xiong A. Cardiovascular disease in connective tissue disease-associated interstitial lung disease: A systematic review and meta-analysis of observational studies. Autoimmun Rev 2024; 23:103614. [PMID: 39222675 DOI: 10.1016/j.autrev.2024.103614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES We performed a systematic review and meta-analysis to assess whether patients with connective tissue disease (CTD)-associated interstitial lung diseases (ILD) have an increased prevalence of cardiovascular (CV) disease and to validate associated risk factors. METHODS The PRISMA guidelines and PICO model were followed. We searched PubMed, Embase, Cochrane Library databases, Scopus, and Directory of Open Access Journals from inception to April 2024. RESULTS Thirteen studies comprising of 12,520 patients were included. Patients with CTD-ILD had a significantly increased risk of CV disease than patients with CTD (relative risk [RR] = 1.65, 95 % confidence interval [CI]: 1.41, 1.93), which are related to the proportion of men (P = 0.001) and the proportion of smokers (P = 0.045). Subgroup analysis found that patients with CTD-ILD had a higher risk of heart failure (RR = 2.84, 95 % CI: 1.50, 5.39), arrhythmia (RR = 1.55, 95 % CI: 1.22, 1.97) than patients with CTD. Another subgroup analysis showed that RA-ILD and SSc-ILD were associated with an increased risk of CV disease, but not IIM-ILD and MCTD-ILD (RA-ILD: RR = 2.19, 95 % CI: 1.27, 3.80; SSc-ILD: RR = 1.53, 95 % CI: 1.29, 1.82). Besides, patients with CTD-ILD had a higher prevalence of pulmonary arterial hypertension (RR = 2.48, 95 % CI: 1.69, 3.63) than patients with CTD. CONCLUSIONS Patients with CTD-ILD had a 1.65 times increased risk of CV than patients with CTD-non-ILD, with increased prevalence of heart failure and arrhythmia. The risk of CV disease in SSc-ILD and RA-ILD is increased and we should pay more attention to male smokers. In addition, compared with CTD patients, CTD-ILD patients had a higher risk of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Ziyi Hu
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong Hospital of Beijing Anzhen Hospital Capital Medical University, Nanchong, Sichuan, China
| | - Haolan Wang
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong Hospital of Beijing Anzhen Hospital Capital Medical University, Nanchong, Sichuan, China
| | - Jinyu Huang
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong Hospital of Beijing Anzhen Hospital Capital Medical University, Nanchong, Sichuan, China
| | - Guanhui Yang
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong Hospital of Beijing Anzhen Hospital Capital Medical University, Nanchong, Sichuan, China
| | - Wenxuan Luo
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong Hospital of Beijing Anzhen Hospital Capital Medical University, Nanchong, Sichuan, China
| | - Jiaxun Zhong
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong Hospital of Beijing Anzhen Hospital Capital Medical University, Nanchong, Sichuan, China
| | - Xiaoli Zheng
- School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Wei
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiongyan Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Anji Xiong
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong Hospital of Beijing Anzhen Hospital Capital Medical University, Nanchong, Sichuan, China; Nanchong Central Hospital, (Nanchong Clinical Research Center), Nanchong, Sichuan, China.
| |
Collapse
|
6
|
Li M, Duan X, Zhang J, Yang D. Repercussions of SARS-CoV-2 infection on intrapulmonary shunt in patients undergoing one-lung ventilation. J Cardiothorac Surg 2024; 19:522. [PMID: 39256794 PMCID: PMC11385816 DOI: 10.1186/s13019-024-03037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Hypoxic pulmonary vasoconstriction is the most important regulatory mechanism by which right-to-left shunts decrease during one-lung ventilation (OLV), but the effects of pulmonary microarterial thrombosis and impaired HPV after SARS-CoV-2 infection on intrapulmonary shunt during OLV remain unknown. The aim of this study was to observe the changes of intrapulmonary shunt in patients undergoing thoracoscopic partial pneumonectomy at different periods after SARS-CoV-2 infection compared with patients without SARS-CoV-2 infection history. METHODS A total of 80 patients who underwent elective thoracoscopic partial lung resection and were classified as American Society of Anaesthesiologists (ASA) grades I-II were selected and divided into 4 groups (n = 20 in each group): patients not infected with SARS-CoV-2 (Group A), patients infected with SARS-CoV-2 for 5-8 weeks (Group B), patients infected with SARS-CoV-2 for 9-12 weeks (Group C), and patients infected with SARS-CoV-2 for 13-16 weeks (Group D). For all patients, the same anaesthesia method was adopted, and anaesthesia was maintained with propofol, remifentanil, and cisatracurium. Radial artery and mixed venous blood gases were measured at 10 min of two-lung ventilation (TLV), 15 min of one-lung ventilation (OLV15), and 30 min of OLV (OLV30) in the lateral recumbent position to calculate the intrapulmonary shunt. Multiple linear regression analysis was employed to investigate the association between intrapulmonary shunt and SARS-CoV-2 infection. RESULTS Qs/Qt at TLV was significantly higher in Groups B and C than in Group A (P < 0.05), and PaO2 at TLV was significantly lower in Groups B and C than in Group A (P < 0.05). Qs/Qt values at OLV15 and OLV30 were significantly higher in Group B, C or D than in Group A (P < 0.05), and PaO2 values at OLV15 and OLV30 were significantly lower in Groups B, C or D than in Group A (P < 0.05). Multiple linear regression analysis revealed that SARS-CoV-2 infection (95%CI -4.245 to -0.679, P = 0.007) was an independent risk factor for increased intrapulmonary shunt during TLV, while SARS-CoV-2 infection (95%CI 0.124 to 3.661, P = 0.036), exacerbation of COVID-19 clinical classification (95%CI -5.203 to -1.139, P = 0.003), and persistent symptoms (95%CI -12.122 to -5.522, P < 0.001) were independent risk factors for increased intrapulmonary shunt during OLV after SARS-CoV-2 infection. CONCLUSION SARS-CoV-2 infection increased intrapulmonary shunt and reduced oxygenation. Although oxygenation improved at TLV after 13-16 weeks of infection, intrapulmonary shunt and oxygenation under OLV took longer to recover. TRIAL REGISTRATION Chinese Clinical Trial Registry, Retrospectively registered, Full date of first registration: 17/05/2023, Registration number: ChiCTR2300071539.
Collapse
Affiliation(s)
- Min Li
- Department of Anesthesiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Xianning Duan
- Department of Anesthesiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Jianyou Zhang
- Department of Anesthesiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Dawei Yang
- Department of Anesthesiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China.
| |
Collapse
|
7
|
Dartsch RC, Kraut S, Mayer T, Gabel A, Dietrich A, Weissmann N, Fuchs B, Knoepp F. Use of FRET-Sensor 'Mermaid' to Detect Subtle Changes in Membrane Potential of Primary Mouse PASMCs. Cells 2024; 13:1070. [PMID: 38920698 PMCID: PMC11202191 DOI: 10.3390/cells13121070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Subtle changes in the membrane potential of pulmonary arterial smooth muscle cells (PASMCs) are pivotal for controlling pulmonary vascular tone, e.g., for initiating Hypoxic Pulmonary Vasoconstriction, a vital mechanism of the pulmonary circulation. In our study, we evaluated the ability of the fluorescence resonance energy transfer (FRET)-based voltage-sensor Mermaid to detect such subtle changes in membrane potential. Mouse PASMCs were isolated and transduced with Mermaid-encoding lentiviral vectors before the acceptor/donor emission ratio was assessed via live cell FRET-imaging. Mermaid's sensitivity was tested by applying specific potassium chloride (KCl) concentrations. These KCl concentrations were previously validated by patch clamp recordings to induce depolarization with predefined amplitudes that physiologically occur in PASMCs. Mermaid's emission ratio dose-dependently increased upon depolarization with KCl. However, Mermaid formed unspecific intracellular aggregates, which limited the usefulness of this voltage sensor. When analyzing the membrane rim only to circumvent these unspecific signals, Mermaid was not suitable to resolve subtle changes in the membrane potential of ≤10 mV. In summary, we found Mermaid to be a suitable alternative for reliably detecting qualitative membrane voltage changes of more than 10 mV in primary mouse PASMCs. However, one should be aware of the limitations associated with this voltage sensor.
Collapse
Affiliation(s)
- Ruth C. Dartsch
- Cardiopulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, 35392 Giessen, Germany
| | - Simone Kraut
- Cardiopulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, 35392 Giessen, Germany
| | - Tim Mayer
- Walther-Straub-Institute for Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Ludwig-Maximilians University, 80539 Munich, Germany; (T.M.)
| | - Andreas Gabel
- Cardiopulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, 35392 Giessen, Germany
| | - Alexander Dietrich
- Walther-Straub-Institute for Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Ludwig-Maximilians University, 80539 Munich, Germany; (T.M.)
| | - Norbert Weissmann
- Cardiopulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, 35392 Giessen, Germany
| | - Beate Fuchs
- Cardiopulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, 35392 Giessen, Germany
| | - Fenja Knoepp
- Cardiopulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
8
|
Riou M, Coste F, Meyer A, Enache I, Talha S, Charloux A, Reboul C, Geny B. Mechanisms of Pulmonary Vasculopathy in Acute and Long-Term COVID-19: A Review. Int J Mol Sci 2024; 25:4941. [PMID: 38732160 PMCID: PMC11084496 DOI: 10.3390/ijms25094941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Despite the end of the pandemic, coronavirus disease 2019 (COVID-19) remains a major public health concern. The first waves of the virus led to a better understanding of its pathogenesis, highlighting the fact that there is a specific pulmonary vascular disorder. Indeed, COVID-19 may predispose patients to thrombotic disease in both venous and arterial circulation, and many cases of severe acute pulmonary embolism have been reported. The demonstrated presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within the endothelial cells suggests that direct viral effects, in addition to indirect effects of perivascular inflammation and coagulopathy, may contribute to pulmonary vasculopathy in COVID-19. In this review, we discuss the pathological mechanisms leading to pulmonary vascular damage during acute infection, which appear to be mainly related to thromboembolic events, an impaired coagulation cascade, micro- and macrovascular thrombosis, endotheliitis and hypoxic pulmonary vasoconstriction. As many patients develop post-COVID symptoms, including dyspnea, we also discuss the hypothesis of pulmonary vascular damage and pulmonary hypertension as a sequela of the infection, which may be involved in the pathophysiology of long COVID.
Collapse
Affiliation(s)
- Marianne Riou
- Translational Medicine Federation of Strasbourg (FMTS), University of Strasbourg, CRBS, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg, France; (M.R.); (A.M.); (I.E.); (S.T.); (A.C.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’hôpital, 67091 Strasbourg, France
| | - Florence Coste
- EA4278, Laboratoire de Pharm-Ecologie Cardiovasculaire, UFR Sciences Technologies Santé, Pôle Sport et Recherche, 74 rue Louis Pasteur, 84000 Avignon, France; (F.C.); (C.R.)
| | - Alain Meyer
- Translational Medicine Federation of Strasbourg (FMTS), University of Strasbourg, CRBS, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg, France; (M.R.); (A.M.); (I.E.); (S.T.); (A.C.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’hôpital, 67091 Strasbourg, France
| | - Irina Enache
- Translational Medicine Federation of Strasbourg (FMTS), University of Strasbourg, CRBS, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg, France; (M.R.); (A.M.); (I.E.); (S.T.); (A.C.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’hôpital, 67091 Strasbourg, France
| | - Samy Talha
- Translational Medicine Federation of Strasbourg (FMTS), University of Strasbourg, CRBS, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg, France; (M.R.); (A.M.); (I.E.); (S.T.); (A.C.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’hôpital, 67091 Strasbourg, France
| | - Anne Charloux
- Translational Medicine Federation of Strasbourg (FMTS), University of Strasbourg, CRBS, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg, France; (M.R.); (A.M.); (I.E.); (S.T.); (A.C.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’hôpital, 67091 Strasbourg, France
| | - Cyril Reboul
- EA4278, Laboratoire de Pharm-Ecologie Cardiovasculaire, UFR Sciences Technologies Santé, Pôle Sport et Recherche, 74 rue Louis Pasteur, 84000 Avignon, France; (F.C.); (C.R.)
| | - Bernard Geny
- Translational Medicine Federation of Strasbourg (FMTS), University of Strasbourg, CRBS, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg, France; (M.R.); (A.M.); (I.E.); (S.T.); (A.C.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’hôpital, 67091 Strasbourg, France
| |
Collapse
|
9
|
Levy E, Reilly JP. Pharmacologic Treatments in Acute Respiratory Failure. Crit Care Clin 2024; 40:275-289. [PMID: 38432696 DOI: 10.1016/j.ccc.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Acute respiratory failure relies on supportive care using non-invasive and invasive oxygen and ventilatory support. Pharmacologic therapies for the most severe form of respiratory failure, acute respiratory distress syndrome (ARDS), are limited. This review focuses on the most promising therapies for ARDS, targeting different mechanisms that contribute to dysregulated inflammation and resultant hypoxemia. Significant heterogeneity exists within the ARDS population. Treatment requires prompt recognition of ARDS and an understanding of which patients may benefit most from specific pharmacologic interventions. The key to finding effective pharmacotherapies for ARDS may rely on deeper understanding of pathophysiology and bedside identification of ARDS subphenotypes.
Collapse
Affiliation(s)
- Elizabeth Levy
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, 3400 Spruce Street, Philadelphia, PA 19146, USA
| | - John P Reilly
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, 3400 Spruce Street, Philadelphia, PA 19146, USA.
| |
Collapse
|
10
|
Chung E, Leem AY, Chung KS, Kang YA, Park MS, Kim YS, Jang HJ, Lee SH. Differences of respiratory mechanics in mechanical ventilation of acute respiratory distress syndrome between patients with COVID-19 and Influenza A. Respir Res 2024; 25:112. [PMID: 38448933 PMCID: PMC10919012 DOI: 10.1186/s12931-024-02730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Whether COVID-19-induced acute respiratory distress syndrome (ARDS) should be approached differently in terms of mechanical ventilation therapy compared to other virus-induced ARDS is debatable. Therefore, we aimed to ascertain whether the respiratory mechanical characteristics of COVID-19-induced ARDS differ from those of influenza A induced ARDS, in order to establish a rationale for mechanical ventilation therapy in COVID-19-induced ARDS. METHODS This was a retrospective cohort study comparing patients with COVID-19-induced ARDS and influenza A induced ARDS. We included intensive care unit (ICU) patients with COVID-19 or Influenza A aged ≥ 19, who were diagnosed with ARDS according to the Berlin definition between January 2015 and July 2021. Ventilation parameters for respiratory mechanics were collected at specific times on days one, three, and seven after intubation. RESULTS The median age of the 87 participants was 71.0 (62.0-78.0) years old, and 63.2% were male. The ratio of partial pressure of oxygen in arterial blood to the fractional of inspiratory oxygen concentration in COVID-19-induced ARDS was lower than that in influenza A induced ARDS during the initial stages of mechanical ventilation (influenza A induced ARDS 216.1 vs. COVID-19-induced ARDS 167.9, p = 0.009, day 1). The positive end expiratory pressure remained consistently higher in the COVID-19 group throughout the follow-up period (7.0 vs. 10.0, p < 0.001, day 1). COVID-19 and influenza A initially showed different directions for peak inspiratory pressure and dynamic compliance; however, after day 3, both groups exhibited similar directions. Dynamic driving pressure exhibited opposite trends between the two groups during mechanical ventilation. CONCLUSIONS Respiratory mechanics show clear differences between COVID-19-induced ARDS and influenza A induced ARDS. Based on these findings, we can consider future treatment strategies for COVID-19-induced ARDS.
Collapse
Affiliation(s)
- Eunki Chung
- Division of Pulmonology, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ah Young Leem
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyung Soo Chung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Young Ae Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Moo Suk Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Young Sam Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hye Jin Jang
- Division of Pulmonary, Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, 27, Inhang-Ro, Jung-Gu, Inchon, 22332, Republic of Korea.
| | - Su Hwan Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
11
|
Cicvarić A, Glavaš Tahtler J, Turk T, Škrinjarić-Cincar S, Koulenti D, Nešković N, Edl M, Kvolik S. Ventilation Management in a Patient with Ventilation-Perfusion Mismatch in the Early Phase of Lung Injury and during the Recovery. J Clin Med 2024; 13:871. [PMID: 38337565 PMCID: PMC10856224 DOI: 10.3390/jcm13030871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Chest trauma is one of the most serious and difficult injuries, with various complications that can lead to ventilation-perfusion (V/Q) mismatch and systemic hypoxia. We are presenting a case of a 53-year-old male with no chronic therapy who was admitted to the Intensive Care Unit due to severe respiratory failure after chest trauma. He developed a right-sided pneumothorax, and then a thoracic drain was placed. On admission, the patient was hemodynamically unstable and tachypneic. He was intubated and mechanically ventilated, febrile (38.9 °C) and unconscious. A lung CT showed massive non-ventilated areas, predominantly in the right lung, guiding repeated therapeutic and diagnostic bronchoalveolar lavages. He was ventilated with PEEP of 10 cmH2O with a FiO2 of 0.6-0.8. Empirical broad-spectrum antimicrobial therapy was immediately initiated. Both high FiO2 and moderate PEEP were maintained and adjusted according to the current blood gas values and oxygen saturation. He was weaned from mechanical ventilation, and non-invasive oxygenation was continued. After Stenotrophomonas maltophilia was identified and treated with sulfamethoxazole/trimethoprim, a regression of lung infiltrates was observed. In conclusion, both ventilatory and antibiotic therapy were needed to improve the oxygenation and outcome of the patient with S. maltophilia pneumonia and V/Q mismatch.
Collapse
Affiliation(s)
- Ana Cicvarić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.G.T.); (T.T.); (N.N.); (M.E.)
- Department of Anesthesiology, Resuscitation and Intensive Care, Osijek University Hospital, 31000 Osijek, Croatia
| | - Josipa Glavaš Tahtler
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.G.T.); (T.T.); (N.N.); (M.E.)
- Department of Anesthesiology, Resuscitation and Intensive Care, Osijek University Hospital, 31000 Osijek, Croatia
| | - Tajana Turk
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.G.T.); (T.T.); (N.N.); (M.E.)
- Department of Radiology, Osijek University Hospital, 31000 Osijek, Croatia
| | | | - Despoina Koulenti
- 2nd Critical Care Department, Attikon University Hospital, 15772 Athens, Greece;
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane 4029, Australia
| | - Nenad Nešković
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.G.T.); (T.T.); (N.N.); (M.E.)
- Department of Anesthesiology, Resuscitation and Intensive Care, Osijek University Hospital, 31000 Osijek, Croatia
| | - Mia Edl
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.G.T.); (T.T.); (N.N.); (M.E.)
| | - Slavica Kvolik
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.G.T.); (T.T.); (N.N.); (M.E.)
- Department of Anesthesiology, Resuscitation and Intensive Care, Osijek University Hospital, 31000 Osijek, Croatia
| |
Collapse
|
12
|
Papoutsi E, Andrianopoulos I, Mavrikaki V, Bolaki M, Stamatopoulou V, Toli E, Papathanakos G, Koulouras V, Kondili E, Siempos II, Vaporidi K. A combination of mild-moderate hypoxemia and low compliance is highly prevalent in persistent ARDS: a retrospective study. Respir Res 2024; 25:1. [PMID: 38173002 PMCID: PMC10765810 DOI: 10.1186/s12931-023-02626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The Acute Respiratory Distress Syndrome (ARDS) is characterized by lung inflammation and edema, impairing both oxygenation and lung compliance. Recent studies reported a dissociation between oxygenation and compliance (severe hypoxemia with preserved compliance) in early ARDS and COVID-19-related-ARDS (CARDS). During the pandemic, in patients requiring prolonged mechanical ventilation, we observed the opposite combination (mild-moderate hypoxemia but significantly impaired compliance). The purpose of our study was to investigate the prevalence of this combination of mild-moderate hypoxemia and impaired compliance in persistent ARDS and CARDS. METHODS For this retrospective study, we used individual patient-level data from two independent cohorts of ARDS patients. The ARDSNet cohort included patients from four ARDS Network randomized controlled trials. The CARDS cohort included patients with ARDS due to COVID-19 hospitalized in two intensive care units in Greece. We used a threshold of 150 for PaO2/FiO2 and 30 ml/cmH2O for compliance, estimated the prevalence of each of the four combinations of oxygenation and compliance at baseline, and examined the change in its prevalence from baseline to day 21 in the ARDSNet and CARDS cohorts. RESULTS The ARDSNet cohort included 2909 patients and the CARDS cohort included 349 patients. The prevalence of the combination of mild-moderate hypoxemia and low compliance increased from baseline to day 21 both in the ARDSNet cohort (from 22.2 to 42.7%) and in the CARDS cohort (from 3.1 to 33.3%). Among surviving patients with low compliance, oxygenation improved over time. The 60-day mortality rate was higher for patients who had mild-moderate hypoxemia and low compliance on day 21 (28% and 56% in ARDSNet and CARDS), compared to those who had mild-moderate hypoxemia and high compliance (20% and 50%, respectively). CONCLUSIONS Among patients with ARDS who require prolonged controlled mechanical ventilation, regardless of ARDS etiology, a dissociation between oxygenation and compliance characterized by mild-moderate hypoxemia but low compliance becomes increasingly prevalent. The findings of this study highlight the importance of monitoring mechanics in patients with persistent ARDS.
Collapse
Affiliation(s)
- Eleni Papoutsi
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | | | - Vasiliki Mavrikaki
- Department of Intensive Care, University Hospital of Heraklion, University of Crete School of Medicine, Voutes Campus, Office 8A4, Heraklion, Crete, 70013, Greece
| | - Maria Bolaki
- Department of Intensive Care, University Hospital of Heraklion, University of Crete School of Medicine, Voutes Campus, Office 8A4, Heraklion, Crete, 70013, Greece
| | - Vagia Stamatopoulou
- Department of Intensive Care, University Hospital of Heraklion, University of Crete School of Medicine, Voutes Campus, Office 8A4, Heraklion, Crete, 70013, Greece
| | - Eleni Toli
- Department of Intensive Care Unit, University Hospital of Ioannina, Ioannina, Greece
| | - Georgios Papathanakos
- Department of Intensive Care Unit, University Hospital of Ioannina, Ioannina, Greece
| | - Vasilios Koulouras
- Department of Intensive Care Unit, University Hospital of Ioannina, Ioannina, Greece
| | - Eumorfia Kondili
- Department of Intensive Care, University Hospital of Heraklion, University of Crete School of Medicine, Voutes Campus, Office 8A4, Heraklion, Crete, 70013, Greece
| | - Ilias I Siempos
- First Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Katerina Vaporidi
- Department of Intensive Care, University Hospital of Heraklion, University of Crete School of Medicine, Voutes Campus, Office 8A4, Heraklion, Crete, 70013, Greece.
| |
Collapse
|
13
|
Notz Q, Hermann J, Muellenbach RM, Lotz C. [Pathophysiology of Acute Respiratory Distress Syndrome]. Anasthesiol Intensivmed Notfallmed Schmerzther 2024; 59:12-22. [PMID: 38190822 DOI: 10.1055/a-2043-8602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is a common condition in intensive care medicine. Various intra- and extrapulmonal causes may trigger an epithelial and endothelial permeability increase, which leads to impaired gas exchange due to fluid overload of the alveoli and transmigration of leukocytes. This results in hypoxemia and hypercapnia, as well as deleterious consequences for the macro- and microcirculation with the risk of multi-organ failure and high mortality. This review summarizes ARDS pathophysiology and clinical consequences.
Collapse
|
14
|
Ibarra-Estrada M, Wang H, Li J. Awake Prone Positioning Improves Cardiac Performance in Patients With COVID-19. Respir Care 2023; 68:852-855. [PMID: 37225657 PMCID: PMC10208997 DOI: 10.4187/respcare.11145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Miguel Ibarra-Estrada
- Unidad de Terapia IntensivaHospital Civil Fray Antonio AlcaldeUniversidad de GuadalajaraGuadalajara, Jalisco, MéxicoGrupo Internacional de Ventilación Mecánica WeVentLatin American Intensive Care Network
| | - Huan Wang
- Department of Critical Care MedicineZhongshan HospitalFudan University, Shanghai, China
| | - Jie Li
- Department of Cardiopulmonary SciencesDivision of Respiratory CareRush UniversityChicago, Illinois
| |
Collapse
|
15
|
Swenson KE, Hardin CC. Pathophysiology of Hypoxemia in COVID-19 Lung Disease. Clin Chest Med 2023; 44:239-248. [PMID: 37085217 PMCID: PMC9682047 DOI: 10.1016/j.ccm.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
As the pandemic has progressed, our understanding of hypoxemia in coronavirus disease 2019 (COVID-19) lung disease has become more nuanced, although much remains to be understood. In this article, we review ventilation-perfusion mismatching in COVID-19 and the evidence to support various biologic theories offered in explanation. In addition, the relationship between hypoxemia and other features of severe COVID-19 lung disease such as respiratory symptoms, radiographic abnormalities, and pulmonary mechanics is explored. Recognizing and understanding hypoxemia in COVID-19 lung disease remains essential for risk stratification, prognostication, and choice of appropriate treatments in severe COVID-19.
Collapse
Affiliation(s)
- Kai E Swenson
- Division of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Bulfinch 148, 55 Fruit Street, Boston, MA 02114, USA.
| | - Charles C Hardin
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Bulfinch 148, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
16
|
Lawler PR, Derde LPG, van de Veerdonk FL, McVerry BJ, Huang DT, Berry LR, Lorenzi E, van Kimmenade R, Gommans F, Vaduganathan M, Leaf DE, Baron RM, Kim EY, Frankfurter C, Epelman S, Kwan Y, Grieve R, O'Neill S, Sadique Z, Puskarich M, Marshall JC, Higgins AM, Mouncey PR, Rowan KM, Al-Beidh F, Annane D, Arabi YM, Au C, Beane A, van Bentum-Puijk W, Bonten MJM, Bradbury CA, Brunkhorst FM, Burrell A, Buzgau A, Buxton M, Cecconi M, Cheng AC, Cove M, Detry MA, Estcourt LJ, Ezekowitz J, Fitzgerald M, Gattas D, Godoy LC, Goossens H, Haniffa R, Harrison DA, Hills T, Horvat CM, Ichihara N, Lamontagne F, Linstrum KM, McAuley DF, McGlothlin A, McGuinness SP, McQuilten Z, Murthy S, Nichol AD, Owen DRJ, Parke RL, Parker JC, Pollock KM, Reyes LF, Saito H, Santos MS, Saunders CT, Seymour CW, Shankar-Hari M, Singh V, Turgeon AF, Turner AM, Zarychanski R, Green C, Lewis RJ, Angus DC, Berry S, Gordon AC, McArthur CJ, Webb SA. Effect of Angiotensin-Converting Enzyme Inhibitor and Angiotensin Receptor Blocker Initiation on Organ Support-Free Days in Patients Hospitalized With COVID-19: A Randomized Clinical Trial. JAMA 2023; 329:1183-1196. [PMID: 37039790 PMCID: PMC10326520 DOI: 10.1001/jama.2023.4480] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/07/2023] [Indexed: 04/12/2023]
Abstract
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non-critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support-free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support-free days among critically ill patients was 10 (-1 to 16) in the ACE inhibitor group (n = 231), 8 (-1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support-free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02735707.
Collapse
Affiliation(s)
- Patrick R Lawler
- Peter Munk Cardiac Centre at University Health Network, Toronto, Canada
- McGill University Health Centre, Montreal, QC, Canada
| | | | | | | | | | | | | | | | - Frank Gommans
- Radboud University Medical Centre, Nijmegen, Netherlands
| | | | - David E Leaf
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rebecca M Baron
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Edy Y Kim
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Slava Epelman
- Peter Munk Cardiac Centre at University Health Network, Toronto, Canada
| | - Yvonne Kwan
- Peter Munk Cardiac Centre at University Health Network, Toronto, Canada
| | - Richard Grieve
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Stephen O'Neill
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Zia Sadique
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | | | - Paul R Mouncey
- Intensive Care National Audit & Research Centre (ICNARC), London, United Kingdom
| | - Kathryn M Rowan
- Intensive Care National Audit & Research Centre (ICNARC), London, United Kingdom
| | | | - Djillali Annane
- Hospital Raymond Poincaré (Assistance Publique Hôpitaux de Paris), Garches, France
- Université Versailles SQY - Université Paris Saclay, Montigny-le-Bretonneux, France
| | - Yaseen M Arabi
- King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Carly Au
- Intensive Care National Audit & Research Centre (ICNARC), London, United Kingdom
| | - Abi Beane
- University of Oxford, Oxford, England
| | | | | | | | | | | | | | - Meredith Buxton
- Global Coalition for Adaptive Research, Larkspur, California
| | | | | | - Matthew Cove
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | | | | | | | | | - David Gattas
- The George Institute for Global Health, Sydney, Australia
| | - Lucas C Godoy
- Peter Munk Cardiac Centre at University Health Network, Toronto, Canada
| | | | - Rashan Haniffa
- University of Oxford, Bangkok, Thailand
- National Intensive Care Surveillance (NICST), Colombo, Sri Lanka
| | - David A Harrison
- Intensive Care National Audit & Research Centre (ICNARC), London, United Kingdom
| | - Thomas Hills
- Medical Research Institute of New Zealand (MRINZ), Wellington, New Zealand
| | | | | | | | | | - Daniel F McAuley
- Queen's University Belfast, Belfast, Northern Ireland
- Royal Victoria Hospital, Belfast, Northern Ireland
| | | | - Shay P McGuinness
- Monash University, Melbourne, Australia
- Auckland City Hospital, Auckland, New Zealand
| | | | | | - Alistair D Nichol
- Monash University, Melbourne, Australia
- University College Dublin, Dublin, Ireland
| | - David R J Owen
- Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute of Imperial College London, London, United Kingdom
| | - Rachael L Parke
- Auckland City Hospital, Auckland, New Zealand
- University of Auckland, Auckland, New Zealand
| | | | | | - Luis Felipe Reyes
- Universidad de La Sabana, Chia, Colombia
- Clinica Universidad de La Sabana, Chia, Colombia
| | - Hiroki Saito
- St Marianna University School of Medicine, Yokohama City Seibu Hospital, Yokohama, Japan
| | | | | | | | | | | | - Alexis F Turgeon
- Université Laval, Québec City, Canada
- CHU de Québec-Université Laval Research Center, Québec City, Canada
| | - Anne M Turner
- Medical Research Institute of New Zealand (MRINZ), Wellington, New Zealand
| | | | | | - Roger J Lewis
- Berry Consultants, Austin, Texas
- Harbor-UCLA Medical Center, Torrance, California
- Statistical Editor, JAMA
| | - Derek C Angus
- University of Pittsburgh, Pittsburgh, Pennsylvania
- Senior Editor, JAMA
| | | | - Anthony C Gordon
- Imperial College London, London, United Kingdom
- Imperial College Healthcare NHS Trust, St Mary's Hospital, London, United Kingdom
| | | | - Steve A Webb
- Monash University, Melbourne, Australia
- St John of God Hospital, Subiaco, Australia
| |
Collapse
|
17
|
Piazza I, Ferrero P. First case reported of COVID-19 infection in an adult patient with Ellis-van Creveld Syndrome. PROGRESS IN PEDIATRIC CARDIOLOGY 2022; 67:101508. [PMID: 35250252 PMCID: PMC8885086 DOI: 10.1016/j.ppedcard.2022.101508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
Ellis-van Creveld syndrome (EVC) is a rare autosomal recessive disorder, the features of the syndrome are: chondral and ectodermal dysplasia characterized by short ribs, polydactyly, growth retardation resulting in dwarfism, teeth and craniofacial abnormalities and heart defects (mostly endocardial cushions and atrial septal defects). We describe the first case reported of COVID-19 infection in a 24-years-old girl, diagnosed with EVC syndrome. The patient suffered only from a mild illness, she remained stable with normal saturation without need of neither respiratory support nor specific therapy and she was rapidly discharged. This case appraises the pathophysiological interplay between different specific prognostic variable in a syndromic patient with congenital heart disease and COVID-19. In patients with congenital heart disease, comorbidities related to syndromic picture may affect the clinical course of COVID-19 infection regardless of the anatomic complexity.
Collapse
Affiliation(s)
- Isabelle Piazza
- Emergency Medicine Department, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Paolo Ferrero
- ACHD Unit - Pediatric and Adult Congenital Heart Centre, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
18
|
Pak O, Nolte A, Knoepp F, Giordano L, Pecina P, Hüttemann M, Grossman LI, Weissmann N, Sommer N. Mitochondrial oxygen sensing of acute hypoxia in specialized cells - Is there a unifying mechanism? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148911. [PMID: 35988811 DOI: 10.1016/j.bbabio.2022.148911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Acclimation to acute hypoxia through cardiorespiratory responses is mediated by specialized cells in the carotid body and pulmonary vasculature to optimize systemic arterial oxygenation and thus oxygen supply to the tissues. Acute oxygen sensing by these cells triggers hyperventilation and hypoxic pulmonary vasoconstriction which limits pulmonary blood flow through areas of low alveolar oxygen content. Oxygen sensing of acute hypoxia by specialized cells thus is a fundamental pre-requisite for aerobic life and maintains systemic oxygen supply. However, the primary oxygen sensing mechanism and the question of a common mechanism in different specialized oxygen sensing cells remains unresolved. Recent studies unraveled basic oxygen sensing mechanisms involving the mitochondrial cytochrome c oxidase subunit 4 isoform 2 that is essential for the hypoxia-induced release of mitochondrial reactive oxygen species and subsequent acute hypoxic responses in both, the carotid body and pulmonary vasculature. This review compares basic mitochondrial oxygen sensing mechanisms in the pulmonary vasculature and the carotid body.
Collapse
Affiliation(s)
- Oleg Pak
- Justus Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Anika Nolte
- Justus Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Fenja Knoepp
- Justus Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Luca Giordano
- Justus Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Petr Pecina
- Laboratory of Bioenergetics, Institute of Physiology CAS, Prague, Czech Republic
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Norbert Weissmann
- Justus Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Natascha Sommer
- Justus Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
19
|
Perchiazzi G, Larina A, Hansen T, Frithiof R, Hultström M, Lipcsey M, Pellegrini M. Chest dual-energy CT to assess the effects of steroids on lung function in severe COVID-19 patients. Crit Care 2022; 26:328. [PMID: 36284360 PMCID: PMC9595078 DOI: 10.1186/s13054-022-04200-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/12/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Steroids have been shown to reduce inflammation, hypoxic pulmonary vasoconstriction (HPV) and lung edema. Based on evidence from clinical trials, steroids are widely used in severe COVID-19. However, the effects of steroids on pulmonary gas volume and blood volume in this group of patients are unexplored. OBJECTIVE Profiting by dual-energy computed tomography (DECT), we investigated the relationship between the use of steroids in COVID-19 and distribution of blood volume as an index of impaired HPV. We also investigated whether the use of steroids influences lung weight, as index of lung edema, and how it affects gas distribution. METHODS Severe COVID-19 patients included in a single-center prospective observational study at the intensive care unit at Uppsala University Hospital who had undergone DECT were enrolled in the current study. Patients' cohort was divided into two groups depending on the administration of steroids. From each patient's DECT, 20 gas volume maps and the corresponding 20 blood volume maps, evenly distributed along the cranial-caudal axis, were analyzed. As a proxy for HPV, pulmonary blood volume distribution was analyzed in both the whole lung and the hypoinflated areas. Total lung weight, index of lung edema, was estimated. RESULTS Sixty patients were analyzed, whereof 43 received steroids. Patients not exposed to steroids showed a more extensive non-perfused area (19% vs 13%, p < 0.01) and less homogeneous pulmonary blood volume of hypoinflated areas (kurtosis: 1.91 vs 2.69, p < 0.01), suggesting a preserved HPV compared to patients treated with steroids. Moreover, patients exposed to steroids showed a significantly lower lung weight (953 gr vs 1140 gr, p = 0.01). A reduction in alveolar-arterial difference of oxygen followed the treatment with steroids (322 ± 106 mmHg at admission vs 267 ± 99 mmHg at DECT, p = 0.04). CONCLUSIONS The use of steroids might cause impaired HPV and might reduce lung edema in severe COVID-19. This is consistent with previous findings in other diseases. Moreover, a reduced lung weight, as index of decreased lung edema, and a more homogeneous distribution of gas within the lung were shown in patients treated with steroids. TRIAL REGISTRATION Clinical Trials ID: NCT04316884, Registered March 13, 2020.
Collapse
Affiliation(s)
- Gaetano Perchiazzi
- grid.8993.b0000 0004 1936 9457Anesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,grid.8993.b0000 0004 1936 9457Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset, Ing 40, 3 tr, 751 85 Uppsala, Sweden ,grid.412354.50000 0001 2351 3333Department of Anesthesia, Operation and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| | - Aleksandra Larina
- grid.8993.b0000 0004 1936 9457Anesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,grid.412354.50000 0001 2351 3333Department of Anesthesia, Operation and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| | - Tomas Hansen
- grid.8993.b0000 0004 1936 9457Section of Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Robert Frithiof
- grid.8993.b0000 0004 1936 9457Anesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,grid.412354.50000 0001 2351 3333Department of Anesthesia, Operation and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| | - Michael Hultström
- grid.8993.b0000 0004 1936 9457Anesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,grid.412354.50000 0001 2351 3333Department of Anesthesia, Operation and Intensive Care, Uppsala University Hospital, Uppsala, Sweden ,grid.8993.b0000 0004 1936 9457Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Miklos Lipcsey
- grid.8993.b0000 0004 1936 9457Anesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,grid.8993.b0000 0004 1936 9457Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset, Ing 40, 3 tr, 751 85 Uppsala, Sweden ,grid.412354.50000 0001 2351 3333Department of Anesthesia, Operation and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| | - Mariangela Pellegrini
- grid.8993.b0000 0004 1936 9457Anesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,grid.8993.b0000 0004 1936 9457Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset, Ing 40, 3 tr, 751 85 Uppsala, Sweden ,grid.412354.50000 0001 2351 3333Department of Anesthesia, Operation and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
20
|
González-Ruiz FJ, Lazcano-Díaz EA, Baeza Herrera LA, Villalobos-Pedroza M, Toledo Alemán EL, Zuñiga-Salcedo MG, Cruz-Rodríguez C, López-Polanco A, Torres-Pulido A, Sierra-González de Cossio A, Cota Apodaca LA, Manzur-Sandoval D. Endotheliitis, Shunts, and Ventilation-Perfusion Mismatch in Coronavirus Disease 2019: A Literature Review of Disease Mechanisms. Ann Med Surg (Lond) 2022; 78:103820. [PMID: 35600188 PMCID: PMC9112604 DOI: 10.1016/j.amsu.2022.103820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 10/27/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 pandemic has continued to impact global health. However, while immunity acquired by vaccines has been developed, 40% of the world's population has still not been vaccinated. Economic problems associated with acquiring novel therapies, misinformation, and differences in treatment protocols have generated catastrophic results, especially in low-resource countries. Understanding the pathophysiological aspects of coronavirus disease and the therapeutic strategies that have been validated to date is essential for successful medical care. In this review, I summarize the historical aspects of the virus, molecules involved in infecting the host, and consequences of viral interactions with and in tissues.
Collapse
Affiliation(s)
- Francisco J. González-Ruiz
- Department of Cardiovascular Critical Care, National Institute of Cardiology “Dr. Ignacio Chávez,”, Mexico City, México
| | - Emmanuel A. Lazcano-Díaz
- Department of Cardiovascular Critical Care, National Institute of Cardiology “Dr. Ignacio Chávez,”, Mexico City, México
| | - Luis A. Baeza Herrera
- Department of Cardiovascular Critical Care, National Institute of Cardiology “Dr. Ignacio Chávez,”, Mexico City, México
| | | | - Enma L. Toledo Alemán
- Department of Cardiovascular Diseases, National Institute of Cardiology “Dr. Ignacio Chávez,”, Mexico City, Mexico
| | - Miriam G. Zuñiga-Salcedo
- Department of Cardiovascular Diseases, National Institute of Cardiology “Dr. Ignacio Chávez,”, Mexico City, Mexico
| | - Camelia Cruz-Rodríguez
- Department of Cardiovascular Critical Care, National Institute of Cardiology “Dr. Ignacio Chávez,”, Mexico City, México
| | - Alexandra López-Polanco
- Department of Cardiovascular Critical Care, National Institute of Cardiology “Dr. Ignacio Chávez,”, Mexico City, México
| | - Abraham Torres-Pulido
- Department of Cardiovascular Critical Care, National Institute of Cardiology “Dr. Ignacio Chávez,”, Mexico City, México
| | | | - Luis A. Cota Apodaca
- Department of Cardiovascular Critical Care, National Institute of Cardiology “Dr. Ignacio Chávez,”, Mexico City, México
| | - Daniel Manzur-Sandoval
- Department of Cardiovascular Critical Care, National Institute of Cardiology “Dr. Ignacio Chávez,”, Mexico City, México
| |
Collapse
|
21
|
Mitochondrien als universelle Sensoren der akuten Hypoxie? BIOSPEKTRUM 2022; 28:132-134. [PMID: 35369109 PMCID: PMC8960675 DOI: 10.1007/s12268-022-1742-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractAdaptation to acute hypoxia through cardiorespiratory responses is mediated by specialized cells in the carotid body and pulmonary vasculature to optimize systemic arterial oxygenation. Acute oxygen sensing thus is a fundamental pre-requisite for aerobic life. Recent studies unravelled basic oxygen sensing mechanisms involving the mitochondrial cytochrome c oxidase subunit 4 isoform 2 that regulates the release of mitochondrial reactive oxygen species and subsequent acute hypoxic responses.
Collapse
|
22
|
Hannemann J, Böger R. Dysregulation of the Nitric Oxide/Dimethylarginine Pathway in Hypoxic Pulmonary Vasoconstriction—Molecular Mechanisms and Clinical Significance. Front Med (Lausanne) 2022; 9:835481. [PMID: 35252268 PMCID: PMC8891573 DOI: 10.3389/fmed.2022.835481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/27/2022] [Indexed: 12/21/2022] Open
Abstract
The pulmonary circulation responds to hypoxia with vasoconstriction, a mechanism that helps to adapt to short-lived hypoxic episodes. When sustained, hypoxic pulmonary vasoconstriction (HPV) may become deleterious, causing right ventricular hypertrophy and failure, and contributing to morbidity and mortality in the late stages of several chronic pulmonary diseases. Nitric oxide (NO) is an important endothelial vasodilator. Its release is regulated, amongst other mechanisms, by the presence of endogenous inhibitors like asymmetric dimethylarginine (ADMA). Evidence has accumulated in recent years that elevated ADMA may be implicated in the pathogenesis of HPV and in its clinical sequelae, like pulmonary arterial hypertension (PAH). PAH is one phenotypic trait in experimental models with disrupted ADMA metabolism. In high altitude, elevation of ADMA occurs during long-term exposure to chronic or chronic intermittent hypobaric hypoxia; ADMA is significantly associated with high altitude pulmonary hypertension. High ADMA concentration was also reported in patients with chronic obstructive lung disease, obstructive sleep apnoea syndrome, and overlap syndrome, suggesting a pathophysiological role for ADMA-mediated impairment of endothelium-dependent, NO-mediated pulmonary vasodilation in these clinically relevant conditions. Improved understanding of the molecular (dys-)regulation of pathways controlling ADMA concentration may help to dissect the pathophysiology and find novel therapeutic options for these diseases.
Collapse
Affiliation(s)
- Juliane Hannemann
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and its Health Sequelae, Hamburg, Germany
| | - Rainer Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and its Health Sequelae, Hamburg, Germany
- *Correspondence: Rainer Böger
| |
Collapse
|