1
|
Nath S, Qurashi H, Kitsios GD, Bain W, Aneis H, Suber T, Prendergast N, Hensley M, Schaefer C, Zhang Y, Bon J, McVerry BJ, Evankovich J, Shah FA. Clinical and biologic profiles of patients with acute respiratory distress syndrome by prevalence of chronic obstructive pulmonary disease or emphysema; a cohort study. Respir Res 2024; 25:400. [PMID: 39516808 PMCID: PMC11549746 DOI: 10.1186/s12931-024-03027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Acute respiratory distress syndrome (ARDS) is characterized by diffuse lung injury. The impact of pre-existing chronic obstructive pulmonary disease (COPD) or emphysema on ARDS pathogenesis is not well characterized. METHODS Secondary analysis of ARDS patients enrolled in the Acute Lung Injury Registry and Biospecimen Repository at the University of Pittsburgh between June 2012 and September 2021. Patients were categorized into two mutually exclusive groups by the prevalence of COPD or emphysema at the time of ARDS diagnosis. The COPD/emphysema group comprised ARDS patients with radiological evidence of emphysema, chart diagnosis of COPD, or both. Demographics, lung mechanics, and clinical outcomes were obtained from the electronic medical record. Host-response biomarkers known to have validated associations with ARDS were previously measured in plasma and lower respiratory tract samples using a customized Luminex assay. Continuous and categorical variables were compared between groups with and without COPD/emphysema. RESULTS 217 patients with ARDS were included in the study, 57 (27%) had COPD/emphysema. Patients with COPD/emphysema were older (median 62 [interquartile range 55-69] versus 53 [41-64] years, p < 0.01), more likely to be male (62% vs. 44%, p = 0.02) and had a higher prevalence of congestive heart failure (25% vs. 4%, p < 0.01) compared to patients without COPD/emphysema. Baseline demographics, laboratory parameters, and mechanical ventilatory characteristics were otherwise similar between the two groups. No difference in 90-day mortality was observed between groups; however, patients with COPD/emphysema had shorter duration of intensive care unit (ICU) stay (median 10 [7-18] versus 16 [9-28] days, p = 0.04) and shorter duration of mechanical ventilation (median 7 [4-16] vs. 12 [6-20] days, p = 0.01). Host response biomarkers in serum and lower respiratory tract samples did not significantly differ between groups. CONCLUSION ARDS patients with COPD or emphysema had similar respiratory mechanics, host response biomarker profiles, and mortality compared to those without COPD or emphysema but with a shorter median duration of mechanical ventilation and ICU length of stay. Future studies should address differences in clinical and biological responses by disease severity, and should investigate the impact of severity of COPD and emphysema on mechanical ventilation and targeted therapeutic strategies in ARDS. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Sridesh Nath
- Department of Medicine, Division of Pulmonary, and Critical Care Medicine, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Hafiz Qurashi
- Department of Medicine, UPMC Health Systems, Pittsburgh, PA, USA
| | - Georgios D Kitsios
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Bain
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Hamam Aneis
- Department of Medicine, UPMC McKeesport Hospital, Pittsburgh, PA, USA
| | - Tomeka Suber
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Niall Prendergast
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew Hensley
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Caitlin Schaefer
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingze Zhang
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica Bon
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Bryan J McVerry
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Evankovich
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Faraaz Ali Shah
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, UPMC Montefiore NW 628, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA.
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA.
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Kitsios GD, Sayed K, Fitch A, Yang H, Britton N, Shah F, Bain W, Evankovich JW, Qin S, Wang X, Li K, Patel A, Zhang Y, Radder J, Dela Cruz C, Okin DA, Huang CY, Van Tyne D, Benos PV, Methé B, Lai P, Morris A, McVerry BJ. Longitudinal multicompartment characterization of host-microbiota interactions in patients with acute respiratory failure. Nat Commun 2024; 15:4708. [PMID: 38830853 PMCID: PMC11148165 DOI: 10.1038/s41467-024-48819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/13/2024] [Indexed: 06/05/2024] Open
Abstract
Critical illness can significantly alter the composition and function of the human microbiome, but few studies have examined these changes over time. Here, we conduct a comprehensive analysis of the oral, lung, and gut microbiota in 479 mechanically ventilated patients (223 females, 256 males) with acute respiratory failure. We use advanced DNA sequencing technologies, including Illumina amplicon sequencing (utilizing 16S and ITS rRNA genes for bacteria and fungi, respectively, in all sample types) and Nanopore metagenomics for lung microbiota. Our results reveal a progressive dysbiosis in all three body compartments, characterized by a reduction in microbial diversity, a decrease in beneficial anaerobes, and an increase in pathogens. We find that clinical factors, such as chronic obstructive pulmonary disease, immunosuppression, and antibiotic exposure, are associated with specific patterns of dysbiosis. Interestingly, unsupervised clustering of lung microbiota diversity and composition by 16S independently predicted survival and performed better than traditional clinical and host-response predictors. These observations are validated in two separate cohorts of COVID-19 patients, highlighting the potential of lung microbiota as valuable prognostic biomarkers in critical care. Understanding these microbiome changes during critical illness points to new opportunities for microbiota-targeted precision medicine interventions.
Collapse
Affiliation(s)
- Georgios D Kitsios
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Khaled Sayed
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
- Department of Electrical and Computer Engineering & Computer Science, University of New Haven, West Haven, CT, USA
| | - Adam Fitch
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haopu Yang
- School of Medicine, Tsinghua University, Beijing, China
| | - Noel Britton
- Division of Pulmonary Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Faraaz Shah
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Veteran's Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - William Bain
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Veteran's Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - John W Evankovich
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shulin Qin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaohong Wang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelvin Li
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Asha Patel
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Josiah Radder
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles Dela Cruz
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel A Okin
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ching-Ying Huang
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Barbara Methé
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peggy Lai
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alison Morris
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bryan J McVerry
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Das S, Kaminski TW, Schlegel BT, Bain W, Hu S, Patel A, Kale SL, Chen K, Lee JS, Mallampalli RK, Kagan VE, Rajasundaram D, McVerry BJ, Sundd P, Kitsios GD, Ray A, Ray P. Neutrophils and galectin-3 defend mice from lethal bacterial infection and humans from acute respiratory failure. Nat Commun 2024; 15:4724. [PMID: 38830855 PMCID: PMC11148175 DOI: 10.1038/s41467-024-48796-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Respiratory infection by Pseudomonas aeruginosa, common in hospitalized immunocompromised and immunocompetent ventilated patients, can be life-threatening because of antibiotic resistance. This raises the question of whether the host's immune system can be educated to combat this bacterium. Here we show that prior exposure to a single low dose of lipopolysaccharide (LPS) protects mice from a lethal infection by P. aeruginosa. LPS exposure trained the innate immune system by promoting expansion of neutrophil and interstitial macrophage populations distinguishable from other immune cells with enrichment of gene sets for phagocytosis- and cell-killing-associated genes. The cell-killing gene set in the neutrophil population uniquely expressed Lgals3, which encodes the multifunctional antibacterial protein, galectin-3. Intravital imaging for bacterial phagocytosis, assessment of bacterial killing and neutrophil-associated galectin-3 protein levels together with use of galectin-3-deficient mice collectively highlight neutrophils and galectin-3 as central players in LPS-mediated protection. Patients with acute respiratory failure revealed significantly higher galectin-3 levels in endotracheal aspirates (ETAs) of survivors compared to non-survivors, galectin-3 levels strongly correlating with a neutrophil signature in the ETAs and a prognostically favorable hypoinflammatory plasma biomarker subphenotype. Taken together, our study provides impetus for harnessing the potential of galectin-3-expressing neutrophils to protect from lethal infections and respiratory failure.
Collapse
Affiliation(s)
- Sudipta Das
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Tomasz W Kaminski
- VERSITI Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI, 53233, USA
| | - Brent T Schlegel
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - William Bain
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Veteran's Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Sanmei Hu
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Akruti Patel
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Sagar L Kale
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Kong Chen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Janet S Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rama K Mallampalli
- Department of Medicine, The Ohio State University (OSU), Columbus, OH, 43210, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Bryan J McVerry
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Prithu Sundd
- VERSITI Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI, 53233, USA
| | - Georgios D Kitsios
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Anuradha Ray
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Prabir Ray
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
4
|
Shah FA, Bahudhanapati H, Jiang M, Tabary M, van der Geest R, Tolman NJ, Kochin M, Xiong Z, Al-Yousif N, Sayed K, Benos PV, Raffensperger K, Evankovich J, Neal MD, Snyder ME, Eickelberg O, Ray P, Dela Cruz C, Bon J, McVerry BJ, Straub AC, Jurczak MJ, Suber TL, Zhang Y, Chen K, Kitsios GD, Lee JS, Alder JK, Bain WG. Lung Epithelium Releases Growth Differentiation Factor 15 in Response to Pathogen-mediated Injury. Am J Respir Cell Mol Biol 2024; 70:379-391. [PMID: 38301257 PMCID: PMC11109583 DOI: 10.1165/rcmb.2023-0429oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/01/2024] [Indexed: 02/03/2024] Open
Abstract
GDF15 (growth differentiation factor 15) is a stress cytokine with several proposed roles, including support of stress erythropoiesis. Higher circulating GDF15 levels are prognostic of mortality during acute respiratory distress syndrome, but the cellular sources and downstream effects of GDF15 during pathogen-mediated lung injury are unclear. We quantified GDF15 in lower respiratory tract biospecimens and plasma from patients with acute respiratory failure. Publicly available data from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were reanalyzed. We used mouse models of hemorrhagic acute lung injury mediated by Pseudomonas aeruginosa exoproducts in wild-type mice and mice genetically deficient for Gdf15 or its putative receptor, Gfral. In critically ill humans, plasma levels of GDF15 correlated with lower respiratory tract levels and were higher in nonsurvivors. SARS-CoV-2 infection induced GDF15 expression in human lung epithelium, and lower respiratory tract GDF15 levels were higher in coronavirus disease (COVID-19) nonsurvivors. In mice, intratracheal P. aeruginosa type II secretion system exoproducts were sufficient to induce airspace and plasma release of GDF15, which was attenuated with epithelial-specific deletion of Gdf15. Mice with global Gdf15 deficiency had decreased airspace hemorrhage, an attenuated cytokine profile, and an altered lung transcriptional profile during injury induced by P. aeruginosa type II secretion system exoproducts, which was not recapitulated in mice deficient for Gfral. Airspace GDF15 reconstitution did not significantly modulate key lung cytokine levels but increased circulating erythrocyte counts. Lung epithelium releases GDF15 during pathogen injury, which is associated with plasma levels in humans and mice and can increase erythrocyte counts in mice, suggesting a novel lung-blood communication pathway.
Collapse
Affiliation(s)
- Faraaz A. Shah
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | | | - Mao Jiang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
| | | | | | | | - Megan Kochin
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
| | - Zeyu Xiong
- Division of Pulmonary and Critical Care Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Nameer Al-Yousif
- Division of Pulmonary, Critical Care, and Sleep Medicine, MetroHealth Medical Center, Cleveland, Ohio
| | - Khaled Sayed
- Electrical & Computer Engineering and Computer Science Department, University of New Haven, West Haven, Connecticut
- Department of Epidemiology, University of Florida, Gainesville, Florida
| | | | | | - John Evankovich
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
| | | | - Mark E. Snyder
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
| | | | - Prabir Ray
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
| | - Charles Dela Cruz
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Jessica Bon
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
| | - Adam C. Straub
- Department of Pharmacology and Chemical Biology and
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael J. Jurczak
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tomeka L. Suber
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
| | - Kong Chen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
| | | | - Janet S. Lee
- Division of Pulmonary and Critical Care Medicine, Washington University in St. Louis, St. Louis, Missouri
| | | | - William G. Bain
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Bain W, Bastarache JA, Sarma A, McElvaney NG, Baron RM, McVerry BJ, Kitsios GD. Research Bronchoscopy Standards and the Need for Noninvasive Sampling of the Failing Lungs. Ann Am Thorac Soc 2024; 21:183-184. [PMID: 37776282 PMCID: PMC10867904 DOI: 10.1513/annalsats.202306-589le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023] Open
Affiliation(s)
- William Bain
- University of Pittsburgh and Veterans Affairs Pittsburgh Healthcare System Pittsburgh, Pennsylvania
| | | | - Aartik Sarma
- University of California, San Francisco, San Francisco, California
| | - Noel G McElvaney
- Royal College of Surgeons in Ireland and Beaumont Hospital Dublin, Ireland
| | - Rebecca M Baron
- Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts
| | | | | |
Collapse
|
6
|
Kitsios GD, Sayed K, Fitch A, Yang H, Britton N, Shah F, Bain W, Evankovich JW, Qin S, Wang X, Li K, Patel A, Zhang Y, Radder J, Dela Cruz C, Okin DA, Huang CY, van Tyne D, Benos PV, Methé B, Lai P, Morris A, McVerry BJ. Prognostic Insights from Longitudinal Multicompartment Study of Host-Microbiota Interactions in Critically Ill Patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.25.23296086. [PMID: 37808745 PMCID: PMC10557814 DOI: 10.1101/2023.09.25.23296086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Critical illness can disrupt the composition and function of the microbiome, yet comprehensive longitudinal studies are lacking. We conducted a longitudinal analysis of oral, lung, and gut microbiota in a large cohort of 479 mechanically ventilated patients with acute respiratory failure. Progressive dysbiosis emerged in all three body compartments, characterized by reduced alpha diversity, depletion of obligate anaerobe bacteria, and pathogen enrichment. Clinical variables, including chronic obstructive pulmonary disease, immunosuppression, and antibiotic exposure, shaped dysbiosis. Notably, of the three body compartments, unsupervised clusters of lung microbiota diversity and composition independently predicted survival, transcending clinical predictors, organ dysfunction severity, and host-response sub-phenotypes. These independent associations of lung microbiota may serve as valuable biomarkers for prognostication and treatment decisions in critically ill patients. Insights into the dynamics of the microbiome during critical illness highlight the potential for microbiota-targeted interventions in precision medicine.
Collapse
Affiliation(s)
- Georgios D. Kitsios
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Khaled Sayed
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
- Department of Electrical and Computer Engineering & Computer Science, University of New Haven, West Haven, CT, USA
| | - Adam Fitch
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haopu Yang
- School of Medicine, Tsinghua University, Beijing, China
| | - Noel Britton
- Division of Pulmonary Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Faraaz Shah
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Veteran’s Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - William Bain
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Veteran’s Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - John W. Evankovich
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shulin Qin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaohong Wang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelvin Li
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Asha Patel
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Josiah Radder
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles Dela Cruz
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel A Okin
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ching-Ying Huang
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daria van Tyne
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Barbara Methé
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peggy Lai
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alison Morris
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|