1
|
Adeola AC, Bello SF, Abdussamad AM, Adedokun RAM, Olaogun SC, Abdullahi N, Mark AI, Onoja AB, Sanke OJ, Mangbon GF, Ibrahim J, Dawuda PM, Salako AE, Kdidi S, Yahyaoui MH. Single nucleotide polymorphisms (SNPs) in the open reading frame (ORF) of prion protein gene (PRNP) in Nigerian livestock species. BMC Genomics 2024; 25:177. [PMID: 38355406 PMCID: PMC10865551 DOI: 10.1186/s12864-024-10070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Prion diseases, also known as transmissible spongiform encephalopathies (TSEs) remain one of the deleterious disorders, which have affected several animal species. Polymorphism of the prion protein (PRNP) gene majorly determines the susceptibility of animals to TSEs. However, only limited studies have examined the variation in PRNP gene in different Nigerian livestock species. Thus, this study aimed to identify the polymorphism of PRNP gene in Nigerian livestock species (including camel, dog, horse, goat, and sheep). We sequenced the open reading frame (ORF) of 65 camels, 31 village dogs and 12 horses from Nigeria and compared with PRNP sequences of 886 individuals retrieved from public databases. RESULTS All the 994 individuals were assigned into 162 haplotypes. The sheep had the highest number of haplotypes (n = 54), and the camel had the lowest (n = 7). Phylogenetic tree further confirmed clustering of Nigerian individuals into their various species. We detected five non-synonymous SNPs of PRNP comprising of G9A, G10A, C11G, G12C, and T669C shared by all Nigerian livestock species and were in Hardy-Weinberg Equilibrium (HWE). The amino acid changes in these five non-synonymous SNP were all "benign" via Polyphen-2 program. Three SNPs G34C, T699C, and C738G occurred only in Nigerian dogs while C16G, G502A, G503A, and C681A in Nigerian horse. In addition, C50T was detected only in goats and sheep. CONCLUSION Our study serves as the first to simultaneously investigate the polymorphism of PRNP gene in Nigerian livestock species and provides relevant information that could be adopted in programs targeted at breeding for prion diseases resistance.
Collapse
Affiliation(s)
- Adeniyi C Adeola
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China.
| | - Semiu F Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, 510642, Guangzhou, China
| | - Abdussamad M Abdussamad
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Bayero University, Kano, Nigeria
| | - Rahamon A M Adedokun
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sunday C Olaogun
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Nasiru Abdullahi
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Akanbi I Mark
- Ministry of Agriculture and Rural Development, Secretariat, Ibadan, Nigeria
| | - Anyebe B Onoja
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oscar J Sanke
- Taraba State Ministry of Agriculture and Natural Resources, Jalingo, Nigeria
| | | | - Jebi Ibrahim
- Department of Veterinary Surgery and Theriogenology, College of Veterinary Medicine, University of Agriculture Makurdi, Makurdi, Nigeria
| | - Philip M Dawuda
- Department of Animal Science, Faculty of Agriculture, National University of Lesotho, Maseru, South Africa
| | - Adebowale E Salako
- Department of Animal Science, Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria
| | - Samia Kdidi
- Livestock and Wildlife Laboratory, Institut des Régions Arides, Université de Gabes, Route El Djorf, Km 22.5, 4119, Medenine, Tunisia
| | - Mohamed Habib Yahyaoui
- Livestock and Wildlife Laboratory, Institut des Régions Arides, Université de Gabes, Route El Djorf, Km 22.5, 4119, Medenine, Tunisia
| |
Collapse
|
2
|
Zeineldin M, Cox-Struble H, Camp P, Farrell D, Pritchard R, Thacker TC, Lehman K. National Prevalence of Caprine Prion Protein Genetic Variability at Codons 146, 211, and 222 in Goat Herds in the United States. Vet Sci 2023; 11:13. [PMID: 38250919 PMCID: PMC10818752 DOI: 10.3390/vetsci11010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024] Open
Abstract
Scrapie is a neurodegenerative disease that impacts sheep and goats, characterized by gradual and progressive changes in neurological function. Recent research shows that the scrapie incubation period is significantly influenced by specific variations in amino acids within the prion protein gene (PRNP). The objective of this study was to estimate the national prevalence of caprine PRNP genetic variability at codons 146, 211, and 222 in goat populations across the United States. A total of 3052 blood, ear tissue, and brain tissue samples were collected from goats from 50 states. The participating states were categorized into four Veterinary Service (VS) district regions. The samples underwent DNA extraction, and the PRNP variants corresponding to codons 146, 211, and 222 were amplified and sequenced. The analysis of PRNP variants, when compared to the PRNP reference sequence, revealed seven alleles in twelve genotypes. The homozygous 146NN, 211RR, and 222QQ alleles, which have been linked to an increased risk of scrapie, were found to be the most prevalent among all the goats. The heterozygous 222QK, 211RQ, 146SD, 146ND, and 146NS alleles and the homozygous 222KK, 146SS, and 146DD alleles, known to be associated with reduced scrapie susceptibility and a prolonged incubation period after experimental challenge, were found in 1.098% (222QK), 2.33% (211RQ), 0.58% (146SD), 3.13% (146ND), 20.68% (146NS), 0.005% (222KK), 3.31% (146SS), and 0.67% (146DD) of goats, respectively. The 222QK allele was found most frequently in goats tested from the east (VS District 1, 1.59%) and southwest (VS District 4, 1.08%) regions, whereas the 211RQ allele was found most often in goats tested from the Midwest (VS District 2, 8.03%) and east (VS District 1, 6.53%) regions. The 146NS allele was found most frequently in goats tested from the northwest (VS District 3, 29.02%) and southwest (VS District 4, 20.69%) regions. Our results showed that the prevalence of less susceptible genotypes at PRNP codon 146 may be sufficient to use genetic susceptibility testing in some herds. This may reduce the number of goats removed as part of a herd clean-up plan and may promote the selective breeding goats for less susceptible alleles in high-risk herds at the national level.
Collapse
Affiliation(s)
- Mohamed Zeineldin
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA 50010, USA; (H.C.-S.); (P.C.); (D.F.)
- Department of Animal Medicine, College of Veterinary Medicine, Benha University, Benha 13511, Egypt
| | - Heather Cox-Struble
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA 50010, USA; (H.C.-S.); (P.C.); (D.F.)
| | - Patrick Camp
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA 50010, USA; (H.C.-S.); (P.C.); (D.F.)
| | - David Farrell
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA 50010, USA; (H.C.-S.); (P.C.); (D.F.)
| | - Randy Pritchard
- Strategy and Policy, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO 80521, USA
| | - Tyler C. Thacker
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA 50010, USA; (H.C.-S.); (P.C.); (D.F.)
| | - Kimberly Lehman
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA 50010, USA; (H.C.-S.); (P.C.); (D.F.)
| |
Collapse
|
3
|
Adeola AC, Bello SF, Abdussamad AM, Mark AI, Sanke OJ, Onoja AB, Nneji LM, Abdullahi N, Olaogun SC, Rogo LD, Mangbon GF, Pedro SL, Hiinan MP, Mukhtar MM, Ibrahim J, Saidu H, Dawuda PM, Bala RK, Abdullahi HL, Salako AE, Kdidi S, Yahyaoui MH, Yin TT. Scrapie-associated polymorphisms of the prion protein gene (PRNP) in Nigerian native goats. Gene X 2023; 855:147121. [PMID: 36535463 DOI: 10.1016/j.gene.2022.147121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Scrapie is a fatal prion protein disease stiffly associated with single nucleotide polymorphism (SNPs) of the prion protein gene (PRNP). The prevalence of this deadly disease has been reported in small ruminants, including goats. The Nigerian goats are hardy, trypano-tolerant, and contribute to the protein intake of the increasing population. Although scrapie has been reported in Nigerian goats, there is no study on the polymorphism of the PRNP gene. Herein, we evaluated the genetic and allele distributions of PRNP polymorphism in 132 Nigerian goats and compared them with publicly available studies on scrapie-affected goats. We utilized Polyphen-2, PROVEAN and AMYCO programs to examine structural variations produced by the non-synonymous SNPs. Our study revealed 29 SNPs in Nigerian goats, of which 14 were non-synonymous, and 23 were novel. There were significant differences (P < 0.001) in the allele frequencies of PRNP codons 139, 146, 154 and 193 in Nigerian goats compared with scrapie-affected goats, except for Northern Italian goats at codon 154. Based on the prediction by Polyphen-2, R139S and N146S were 'benign', R154H was 'probably damaging', and T193I was 'possibly damaging'. In contrast, PROVEAN predicted 'neutral' for all non-synonymous SNPs, while AMYCO showed a similar amyloid propensity of PRNP for resistant haplotype and two haplotypes of Nigerian goats. Our study is the first to investigate the polymorphism of scrapie-related genes in Nigerian goats.
Collapse
Affiliation(s)
- Adeniyi C Adeola
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China; Centre for Biotechnology Research, Bayero University, Kano, Nigeria.
| | - Semiu F Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Abdussamad M Abdussamad
- Centre for Biotechnology Research, Bayero University, Kano, Nigeria; Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Bayero University, Kano, Nigeria
| | - Akanbi I Mark
- Ministry of Agriculture and Rural Development, Secretariat, Ibadan, Nigeria
| | - Oscar J Sanke
- Taraba State Ministry of Agriculture and Natural Resources, Jalingo, Nigeria
| | - Anyebe B Onoja
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Lotanna M Nneji
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, United States
| | - Nasiru Abdullahi
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Sunday C Olaogun
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Lawal D Rogo
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Health Sciences, Bayero University, Kano, Nigeria
| | | | | | - Manasseh P Hiinan
- Small Ruminant Section, Solomon Kesinton Agro-Allied Limited Iperu-Remo, Ogun State, Nigeria
| | - Muhammad M Mukhtar
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Jebi Ibrahim
- Department of Veterinary Surgery and Theriogenology, College of Veterinary Medicine, University of Agriculture Makurdi, Makurdi, Nigeria
| | - Hayatu Saidu
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Philip M Dawuda
- Department of Animal Science, Faculty of Agriculture, National University of Lesotho, South Africa
| | - Rukayya K Bala
- Centre for Biotechnology Research, Bayero University, Kano, Nigeria
| | - Hadiza L Abdullahi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Bayero University, Kano, Nigeria; Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Adebowale E Salako
- Department of Animal Science, Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria
| | - Samia Kdidi
- Livestock and Wildlife Laboratory, Institut des Régions Arides, Université de Gabes, Route El Djorf, Km 22.5, Medenine 4119, Tunisia
| | - Mohamed Habib Yahyaoui
- Livestock and Wildlife Laboratory, Institut des Régions Arides, Université de Gabes, Route El Djorf, Km 22.5, Medenine 4119, Tunisia
| | - Ting-Ting Yin
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
4
|
Pakpahan S, Widayanti R, Artama WT, Budisatria IGS, Lühken G. Genetic variability of the prion protein gene in Indonesian goat breeds. Trop Anim Health Prod 2023; 55:87. [PMID: 36806784 PMCID: PMC9938069 DOI: 10.1007/s11250-023-03486-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 01/23/2023] [Indexed: 02/19/2023]
Abstract
Scrapie is a naturally occurring transmissible spongiform encephalopathy in sheep and goats. Resistance or susceptibility of small ruminants to classical scrapie is influenced by polymorphisms in the prion protein gene (PRNP). PRNP variability in Indonesian indigenous goat breeds has not been investigated so far and therefore was the goal of this study. Sanger sequencing of the PRNP gene coding region in 72 goats of the seven Indonesian breeds Kacang, Gembrong, Samosir, Kejobong, Benggala, Jawarandu, and Peranakan Etawah revealed three amino acid substitutions, namely W102G, H143R, and S240P. Some silent mutations were also found at codons 42 (a/g), 138 (c/t), and 179 (g/t). The PRNP alleles K222 and D/S146 known to have significant protective effects on resistance to classical scrapie in goats were not detected. The allele R143, which may have a moderate protective effect, had a frequency of 12% among the analyzed Indonesian goat breeds. While R143 was missing in Kacang and Benggala, its frequency was highest in the breed Gembrong (32%). No scrapie cases have been reported in Indonesia until now. However, in the case that selection for protective PRNP variants would become a breeding goal, the analyzed breeds will not be very useful resources. Other goat breeds which are present in the country should be investigated regarding resistance to scrapie, too.
Collapse
Affiliation(s)
- Suhendra Pakpahan
- Research Center for Applied Zoology, Research Organization for Life Sciences, National Research and Innovation Agency (BRIN), Jl. Jakarta-Bogor Km.46, Cibinong, 16911 West Java Indonesia
| | - Rini Widayanti
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, 55281 Indonesia
| | - Wayan Tunas Artama
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, 55281 Indonesia
| | - I. Gede Suparta Budisatria
- Department of Animal Production, Faculty of Animal Science, Gadjah Mada University, Yogyakarta, 55281 Indonesia
| | - Gesine Lühken
- Institute of Animal Breeding and Genetics, Justus-Liebig University, 35390, Giessen, Germany.
| |
Collapse
|
5
|
Gurau MR, Negru E, Ionescu T, Udriste AA, Cornea CP, Baraitareanu S. Genetic Polymorphism at 15 Codons of the Prion Protein Gene in 156 Goats from Romania. Genes (Basel) 2022; 13:genes13081316. [PMID: 35893054 PMCID: PMC9394368 DOI: 10.3390/genes13081316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Background: The variability of prion protein gene (PRNP) codons and the frequency of alleles (K222, D146, and S146) that appear to confer genetic resistance to classical scrapie are still unknown in several goat populations/breeds prevalent in Romania. This work aims to assess the genetic polymorphism at 15 PRNP codons in Romanian goat populations to inform the development of goat breeding programs for scrapie resistance. Methods: Whole blood and hair follicles from Carpathian (50), French Alpine (53), and Banat’s White (53) breed goats were sampled to extract genomic DNA for genetic analyses and Sanger sequencing. In the targeted goat groups, one classical scrapie-positive Banat’s White goat was included. Results: The codons without polymorphisms were G37G, W102W, N146N, R151R, S173S, and I218I. The following non-synonymous polymorphisms of PRNP were recorded: P110P, P110S, P110T, T110T, G127G, G127S, I142I, I142M, T142I, H143H, P143P, R143R, R154R, H154R, P168P, Q168Q, Q211Q, Q211R, Q222Q, H222Q, K222K, S240S, P240P, P240S, and S240P. Conclusions: PRNP polymorphism was recorded in 60% (9/15) of codons. The scrapie-positive Banat’s White goat had G37G, W102W, T110T, G127G, I142I, H143H, N146N, R151R, R154R, P168P, S173S, R211R, I218I, Q222Q, and S240S. The K222 allele had a frequency of 6% (3/50) in Carpathian, 9.43% (5/53) in Banat’s White, and 15.09% (8/53) in French Alpine. Therefore, the polymorphisms detected in this sample of Romanian goat breeds are too rare to design a breeding program at the current time.
Collapse
Affiliation(s)
- Maria Rodica Gurau
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, District 5, 050097 Bucharest, Romania; (M.R.G.); (E.N.); (T.I.)
| | - Elena Negru
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, District 5, 050097 Bucharest, Romania; (M.R.G.); (E.N.); (T.I.)
| | - Teodor Ionescu
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, District 5, 050097 Bucharest, Romania; (M.R.G.); (E.N.); (T.I.)
| | - Anca Amalia Udriste
- Laboratory of Molecular Plant Physiology, Research Center for Studies of Food Quality and Agricultural Products, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, District 1, 011464 Bucharest, Romania;
| | - Călina Petruța Cornea
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, District 1, 011464 Bucharest, Romania;
| | - Stelian Baraitareanu
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, District 5, 050097 Bucharest, Romania; (M.R.G.); (E.N.); (T.I.)
- Correspondence:
| |
Collapse
|
6
|
Gelasakis AI, Boukouvala E, Babetsa M, Katharopoulos E, Palaska V, Papakostaki D, Giadinis ND, Loukovitis D, Langeveld JPM, Ekateriniadou LV. Polymorphisms of Codons 110, 146, 211 and 222 at the Goat PRNP Locus and Their Association with Scrapie in Greece. Animals (Basel) 2021; 11:ani11082340. [PMID: 34438796 PMCID: PMC8388637 DOI: 10.3390/ani11082340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022] Open
Abstract
Scrapie is considered an endemic disease in both sheep and goats in Greece. However, contrary to sheep, in goats more than one prion protein (PrP) polymorphism has been recognized as a candidate for resistance breeding against the disease. For an impression, candidates which are circulating, (i) brain samples (n = 525) from scrapie-affected (n = 282) and non-affected (n = 243) animals within the national surveillance program, and (ii) individual blood samples (n = 1708) from affected (n = 241) and non-affected (n = 1467) herds, in a large part of mainland Greece and its islands, were collected and assayed. A dedicated Taqman method was used to test for amino acid polymorphisms 110T/P, 146N/S/D, 211R/Q, and 222Q/K. Highly prevalent genotypes were 110TT, 146NN, 211RR, and 222QQ. The frequencies of polymorphisms in blood and negative brain samples for codons 110P, 211Q, and 222K were 4.0%, 3.0%, and 1.9%, respectively, while 146D (0.7%) was present only on Karpathos island. Codon 110P was exclusively found in scrapie-negative brains, and homozygous 110P/P in two scrapie-negative goats. It is concluded that breeding programs in Karpathos could focus on codon 146D, while in other regions carriers of the 110P and 222K allele should be sought. Case-control and challenge studies are now necessary to elucidate the most efficient breeding strategies.
Collapse
Affiliation(s)
- Athanasios I. Gelasakis
- Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, 11855 Athens, Greece;
| | - Evridiki Boukouvala
- Veterinary Research Institute, ELGO-DIMITRA, 54124 Thessaloniki, Greece; (E.B.); (M.B.); (E.K.)
| | - Maria Babetsa
- Veterinary Research Institute, ELGO-DIMITRA, 54124 Thessaloniki, Greece; (E.B.); (M.B.); (E.K.)
| | | | - Vayia Palaska
- National Reference Laboratory for TSEs, Ministry of Agricultural Development and Food, 41110 Larissa, Greece;
| | - Dimitra Papakostaki
- Veterinary Center of Thessaloniki, Ministry of Agricultural Development and Food, 54627 Thessaloniki, Greece;
| | - Nektarios D. Giadinis
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece;
| | | | - Jan P. M. Langeveld
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR), 8221 RA Lelystad, The Netherlands;
| | - Loukia V. Ekateriniadou
- Veterinary Research Institute, ELGO-DIMITRA, 54124 Thessaloniki, Greece; (E.B.); (M.B.); (E.K.)
- Correspondence:
| |
Collapse
|
7
|
Genetic Variation in the Prion Protein Gene ( PRNP) of Two Tunisian Goat Populations. Animals (Basel) 2021; 11:ani11061635. [PMID: 34073078 PMCID: PMC8228439 DOI: 10.3390/ani11061635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/17/2023] Open
Abstract
Simple Summary Goat production is contributing to the economic and social development of rural areas in arid lands, within harsh conditions of Southern Tunisia. In this geographic zone, there are two caprine populations: the native goat population and the crossed goat population. Genotyping goats for the prion protein gene (PRNP) allows us to estimate their level of genetic susceptibility to scrapie disease. In the present work, the Sanger sequencing method of the entire PRNP coding sequence was used to determine the different PRNP genotypes and haplotypes in two populations (116 animals). This study represents the first investigation on goats’ PRNP genetic variability in Tunisia, and the results are useful in the design of national breeding programs. Abstract Scrapie is a fatal prion disease. It belongs to transmissible spongiform encephalopathies (TSEs), and occurs in sheep and goats. Similarly, to ovine species, the prion protein gene (PRNP) plays a major role in conferring resistance or susceptibility to TSE in goats. This study assesses the variability of PRNP in native and crossed-breed goat populations raised in the Southeast of Tunisia and provides information on the distribution of PRNP haplotypes and genotypes in these goat populations. A total of 116 unrelated goats including 82 native and 34 crossed-breed goats were screened for PRNP polymorphisms using Sanger sequencing. Sequence analysis revealed 10 non-synonymous polymorphisms (G37V, M137I, R139S, I142M, H143R, N146D, R154H, R211Q, Q222K, and S240P), giving rise to 12 haplotypes and 23 genotypes. Moreover, four silent mutations were detected at codons 30, 42, 138, and 179; the former was reported for the first time in goat (nucleotide 60 c→t). Interestingly, the PrP variants associated with resistance (D146 and K222) or with a prolonged incubation time of goat to scrapie (M142, R143, H154, Q211) were absent or detected with low frequencies except for H154 variant, which is present with high frequency (1%, 1%, 4%, 0%, 88%, and 6%, respectively, for native goats, and 0%, 1%, 0%, 1%, 78%, and 1%, respectively, for crossed goats). The analysis of PRNP polymorphisms of goats raised in other regions of the country will be useful in getting a global view of PRNP genetic variability and the feasibility of goat breeding programs in Tunisia.
Collapse
|
8
|
Won SY, Kim YC, Jeong BH. Evaluation of proteinase K-resistant prion protein (PrPres) in Korean native black goats carrying a potential scrapie-susceptible haplotype of the prion protein gene (PRNP). Acta Vet Hung 2021; 69:88-93. [PMID: 33844641 DOI: 10.1556/004.2021.00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/08/2021] [Indexed: 11/19/2022]
Abstract
Prion disease is a fatal neurodegenerative disease with a broad host range in humans and animals. It is caused by proteinase K-resistant prion protein (PrPres). In previous studies, a heterogeneous infection in Cervidae and Caprinae was reported. Chronic wasting disease (CWD) has been frequently reported as the only prion disease in Korea that occurs in livestock. Thus, there is a possibility of transmission of CWD to Korean native black goats. However, PrPres has not been investigated thus far in Korean native black goats. We found strong linkage disequilibrium between c.126G>A and c.414T>C (r2 = 1) and between c.718C>T and c.126G>A (r2 = 0.638). In addition, the haplotype GTGTAAAC (representing codons 42, 102, 127, 138, 143, 146, 218 and 240) showed the highest frequency with 45.1%. Among 41 Korean native black goats, 20 animals (48.78%) were homozygous for the susceptible haplotypes (histidine at codon 143, asparagine at codon 146 and arginine at codon 154). Interestingly, we did not detect PrPres bands in any of the tested animals, including the 20 animals carrying potential scrapie susceptible haplotypes.
Collapse
Affiliation(s)
- Sae-Young Won
- 1Korea Zoonosis Research Institute, Jeonbuk National University, 820-120 Hana-ro, Iksan, Jeonbuk 54531, Republic of Korea
- 2Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk, Republic of Korea
| | - Yong-Chan Kim
- 1Korea Zoonosis Research Institute, Jeonbuk National University, 820-120 Hana-ro, Iksan, Jeonbuk 54531, Republic of Korea
- 2Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk, Republic of Korea
| | - Byung-Hoon Jeong
- 1Korea Zoonosis Research Institute, Jeonbuk National University, 820-120 Hana-ro, Iksan, Jeonbuk 54531, Republic of Korea
- 2Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk, Republic of Korea
| |
Collapse
|
9
|
Torricelli M, Sebastiani C, Ciullo M, Ceccobelli S, Chiappini B, Vaccari G, Capocefalo A, Conte M, Giovannini S, Lasagna E, Sarti FM, Biagetti M. PRNP Polymorphisms in Eight Local Goat Populations/Breeds from Central and Southern Italy. Animals (Basel) 2021; 11:ani11020333. [PMID: 33525718 PMCID: PMC7911694 DOI: 10.3390/ani11020333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
In goats, as in sheep, genotypes of the prion protein gene (PRNP) can influence animals' susceptibility to scrapie. Since the polymorphic codons in sheep are well known, a genetic selection plan has been implemented in Europe, in order to reduce the prevalence of susceptible genotypes to scrapie. In Italy, no breeding plan for scrapie resistance in goats has been adopted, yet. Likewise, according to the most recent modification of Regulation EU 999/2001 (Regulation EU 772/2020) of the European Commission (EU), based on all the available experimental and in field data, K222, D146 and S146 polymorphisms could be used as scrapie resistance alleles in genetic management both in scrapie outbreaks and in disease prevention. In order to collect data on the variability of PRNP, the present study aimed to analyze the sequence of the PRNP gene in eight Italian local goat populations/breeds reared in central and southern Italy (Bianca Monticellana, Capestrina, Facciuta della Valnerina, Fulva del Lazio, Garganica, Grigia Ciociara, Grigia Molisana, and Teramana), some of which were investigated for the first time; moreover, two cosmopolitan breeds (Alpine and Saanen) were included. Blood samples were collected from 219 goats. Genomic DNA was extracted from whole blood. DNA was used as template in PCR amplification of the entire PRNP open reading frame (ORF). Purified amplicons have been sequenced and aligned to Capra hircus PRNP. Particularly, the alleles carrying the resistance-related 222 K polymorphism occurred in all populations with a frequency between 2.5% and 12.5%. An additional resistance allele carrying the S146 variant was observed with a frequency of 3.7% only in the Alpine breed. For three of the estimated alleles, we could not establish if the found double polymorphisms in heterozygosis were in phase, due to technical limitations. In this context, in addition to selective culling in scrapie outbreaks according to the European regulation in force, in the future, selection plans could be adopted to deal with scrapie and to control its diffusion, meanwhile paying attention to preserve a high variability of PRNP.
Collapse
Affiliation(s)
- Martina Torricelli
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche-Togo Rosati (IZSUM), Via Salvemini 1, 06126 Perugia, Italy; (M.T.); (C.S.); (M.C.)
| | - Carla Sebastiani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche-Togo Rosati (IZSUM), Via Salvemini 1, 06126 Perugia, Italy; (M.T.); (C.S.); (M.C.)
| | - Marcella Ciullo
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche-Togo Rosati (IZSUM), Via Salvemini 1, 06126 Perugia, Italy; (M.T.); (C.S.); (M.C.)
| | - Simone Ceccobelli
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | - Barbara Chiappini
- Dipartimento di Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.C.); (G.V.); (A.C.); (M.C.)
| | - Gabriele Vaccari
- Dipartimento di Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.C.); (G.V.); (A.C.); (M.C.)
| | - Antonio Capocefalo
- Dipartimento di Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.C.); (G.V.); (A.C.); (M.C.)
| | - Michela Conte
- Dipartimento di Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.C.); (G.V.); (A.C.); (M.C.)
| | - Samira Giovannini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, 06121 Perugia, Italy; (S.G.); (E.L.); (F.M.S.)
| | - Emiliano Lasagna
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, 06121 Perugia, Italy; (S.G.); (E.L.); (F.M.S.)
| | - Francesca Maria Sarti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, 06121 Perugia, Italy; (S.G.); (E.L.); (F.M.S.)
| | - Massimo Biagetti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche-Togo Rosati (IZSUM), Via Salvemini 1, 06126 Perugia, Italy; (M.T.); (C.S.); (M.C.)
- Correspondence:
| |
Collapse
|
10
|
Migliore S, Puleio R, Loria GR. Scrapie Control in EU Goat Population: Has the Last Gap Been Overcome? Front Vet Sci 2020; 7:581969. [PMID: 33134362 PMCID: PMC7550459 DOI: 10.3389/fvets.2020.581969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sergio Migliore
- Istituto Zooprofilattico Sperimentale Della Sicilia "A. Mirri", Palermo, Italy
| | - Roberto Puleio
- Istituto Zooprofilattico Sperimentale Della Sicilia "A. Mirri", Palermo, Italy
| | - Guido Ruggero Loria
- Istituto Zooprofilattico Sperimentale Della Sicilia "A. Mirri", Palermo, Italy
| |
Collapse
|
11
|
Kim DJ, Kim YC, Kim AD, Jeong BH. Novel Polymorphisms and Genetic Characteristics of the Prion Protein Gene ( PRNP) in Dogs-A Resistant Animal of Prion Disease. Int J Mol Sci 2020; 21:ijms21114160. [PMID: 32532135 PMCID: PMC7311962 DOI: 10.3390/ijms21114160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) have been reported in a wide range of species. However, TSE infection in natural cases has never been reported in dogs. Previous studies have reported that polymorphisms of the prion protein gene (PRNP) have a direct impact on the susceptibility of TSE. However, studies on polymorphisms of the canine PRNP gene are very rare in dogs. We examined the genotype, allele, and haplotype frequencies of canine PRNP in 204 dogs using direct sequencing and analyzed linkage disequilibrium (LD) using Haploview version 4.2. In addition, to evaluate the impact of nonsynonymous polymorphisms on the function of prion protein (PrP), we carried out in silico analysis using PolyPhen-2, PROVEAN, and PANTHER. Furthermore, we analyzed the structure of PrP and hydrogen bonds according to alleles of nonsynonymous single nucleotide polymorphisms (SNPs) using the Swiss-Pdb Viewer program. Finally, we predicted the impact of the polymorphisms on the aggregation propensity of dog PrP using AMYCO. We identified a total of eight polymorphisms, including five novel SNPs and one insertion/deletion polymorphism, and found strong LDs and six major haplotypes among eight polymorphisms. In addition, we identified significantly different distribution of haplotypes among eight dog breeds, however, the kinds of identified polymorphisms were different among each dog breed. We predicted that p.64_71del HGGGWGQP, Asp182Gly, and Asp182Glu polymorphisms can impact the function and/or structure of dog PrP. Furthermore, the number of hydrogen bonds of dog PrP with the Glu182 and Gly182 alleles were predicted to be less than those with the Asp182 allele. Finally, Asp163Glu and Asp182Gly showed more aggregation propensity than wild-type dog PrP. These results suggest that nonsynonymous SNPs, Asp182Glu and Asp182Gly, can influence the stability of dog PrP and confer the possibility of TSE infection in dogs.
Collapse
Affiliation(s)
- Dong-Ju Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk 54531, Korea; (D.-J.K.); (Y.-C.K.)
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
| | - Yong-Chan Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk 54531, Korea; (D.-J.K.); (Y.-C.K.)
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
| | - An-Dang Kim
- Cool-Pet Animal Hospital, Anyang, Gyeonggi 14066, Korea;
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk 54531, Korea; (D.-J.K.); (Y.-C.K.)
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
- Correspondence: ; Tel.: 82-63-900-4040; Fax: 82-63-900-4012
| |
Collapse
|
12
|
Potential scrapie-associated polymorphisms of the prion protein gene (PRNP) in Korean native black goats. Sci Rep 2019; 9:15293. [PMID: 31653880 PMCID: PMC6814802 DOI: 10.1038/s41598-019-51621-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 10/02/2019] [Indexed: 11/08/2022] Open
Abstract
Small ruminants, including sheep and goats are natural hosts of scrapie, and the progression of scrapie pathogenesis is strongly influenced by polymorphisms in the prion protein gene (PRNP). Although Korean native goats have been consumed as meat and health food, the evaluation of the susceptibility to scrapie in these goats has not been performed thus far. Therefore, we investigated the genotype and allele frequencies of PRNP polymorphisms in 211 Korean native goats and compared them with those in scrapie-affected animals from previous studies. We found a total of 12 single nucleotide polymorphisms (SNPs) including 10 nonsynonymous and 2 synonymous SNPs in Korean native goats. Significant differences in allele frequencies of PRNP codons 143 and 146 were found between scrapie-affected goats and Korean native goats (p < 0.01). By contrast, in PRNP codons 168, 211 and 222, there were no significant differences in the genotype and allele frequencies between scrapie-affected animals and Korean native goats. To evaluate structural changes caused by nonsynonymous SNPs, PolyPhen-2, PROVEAN and AMYCO analyses were performed. PolyPhen-2 predicted “possibly damaging” for W102G and R154H, “probably damaging” for G127S. AMYCO predicted relatively low for amyloid propensity of prion protein in Korean native black goats. This is the first study to evaluate the scrapie sensitivity and the first in silico evaluation of nonsynonymous SNPs in Korean native black goats.
Collapse
|
13
|
Kim YC, Kim SK, Jeong BH. Scrapie susceptibility-associated indel polymorphism of shadow of prion protein gene (SPRN) in Korean native black goats. Sci Rep 2019; 9:15261. [PMID: 31649311 PMCID: PMC6813300 DOI: 10.1038/s41598-019-51625-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022] Open
Abstract
Prion diseases in sheep and goats are called scrapie and belong to a group of transmissible spongiform encephalopathies (TSEs) caused by the abnormal misfolding of the prion protein encoded by the prion protein gene (PRNP). The shadow of the prion protein gene (SPRN) is the only prion gene family member that shows a protein expression profile similar to that of the PRNP gene in the central nervous system. In addition, genetic susceptibility of the SPRN gene has been reported in variant Creutzfeldt-Jakob disease (CJD), bovine spongiform encephalopathy (BSE) and scrapie. However, genetic studies of the SPRN gene have not been carried out in Korean native black goats. Here, we investigated the genotype and allele frequencies of SPRN polymorphisms in 213 Korean native black goats and compared these polymorphisms with those previously reported for scrapie-affected animals. We found a total of 6 polymorphisms including 1 nonsynonymous single nucleotide polymorphism (SNP) and 1 synonymous SNP in the open reading frame (ORF) region and 3 SNPs and 1 indel polymorphism (c.495_496insCTCCC) in the 3' untranslated region (UTR) by direct DNA sequencing. A significant difference in the allele frequency of the c.495_496insCTCCC indel polymorphism was found between the Italian scrapie-affected goats and the Korean native black goats (P < 0.001). Furthermore, there was a significant difference in the allele frequencies of the c.495_496insCTCCC indel polymorphism between Italian healthy goats and Korean native black goats (P < 0.001). To evaluate the biological impact of the novel nonsynonymous SNP c.416G > A (Arg139Gln), we carried out PROVEAN analysis. PROVEAN predicted the SNP as 'Neutral' with a score of -0.297. To the best of our knowledge, this is the first genetic study of the SPRN gene in Korean native black goats.
Collapse
Affiliation(s)
- Yong-Chan Kim
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, 54531, Republic of Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Seon-Kwan Kim
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, 54531, Republic of Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, 54531, Republic of Korea.
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
14
|
Akis I, Oztabak K, Atmaca G, Esen Gursel F, Ates A, Yardibi H, Gurgoze S, Durak MH, Erez I, Un C. PRNP gene polymorphisms in main indigenous Turkish goat breeds. Trop Anim Health Prod 2019; 52:793-802. [PMID: 31630310 DOI: 10.1007/s11250-019-02070-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/06/2019] [Indexed: 11/30/2022]
Abstract
The polymorphisms of the PRNP gene influence the susceptibility to scrapie in goats. In this study, caprine PRNP gene was analysed in a total of 249 individuals from three main indigenous goat breeds of Turkey: Anatolian Black, Angora and Kilis. We focused on the Anatolian Black breed, which represents 97% of the goat population in Turkey and compared the data of samples originated from different geographical regions. Eight polymorphisms were determined, given rise to 12 haplotypes. Allele, genotype and haplotype frequencies of the polymorphisms at codons 142, 143, 146, 154, 171, 211, 222 and 240 were calculated. Alleles associated to resistance to scrapie were found to be relatively rare in all breeds. The resistance allele 222K was absent in Turkish breeds. Other resistance-associated alleles: 146D, 146S, 154H and 171R were observed with low frequencies. The results of this study, which cover the mainly bred indigenous goats in Turkey, present the distribution of PRNP polymorphisms. Very low frequencies of resistance-associated alleles show the susceptibility to scrapie. The resistance-associated alleles S and D of codon 146 might be accepted as candidate alleles, due to their relative higher frequencies observed in the present study. A breeding program aiming to increase particularly the frequency of 146S might be applied. Predictions about impacts of a long-term breeding programme based on low initial allele frequencies and regarding its possible adverse effects are warranted. Our results might be a database for future breeding programmes, which should be carefully designed with adequate levels of genetic resistance and acceptable timeframe.
Collapse
Affiliation(s)
- Iraz Akis
- Department of Biochemistry, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Kemal Oztabak
- Department of Biochemistry, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gizem Atmaca
- Department of Biochemistry, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Feraye Esen Gursel
- Department of Biochemistry, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Atila Ates
- Department of Biochemistry, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hasret Yardibi
- Department of Biochemistry, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sema Gurgoze
- Department of Biochemistry, Faculty of Veterinary Medicine, Dicle University, Diyarbakir, Turkey
| | - M Hanifi Durak
- Department of Biochemistry, Faculty of Veterinary Medicine, Dicle University, Diyarbakir, Turkey
| | - Ibrahim Erez
- Department of Zootechnics, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Cemal Un
- Department of Biology, Faculty of Science, Ege University, Izmir, Turkey
| |
Collapse
|
15
|
Vouraki S, Gelasakis AI, Alexandri P, Boukouvala E, Ekateriniadou LV, Banos G, Arsenos G. Genetic profile of scrapie codons 146, 211 and 222 in the PRNP gene locus in three breeds of dairy goats. PLoS One 2018; 13:e0198819. [PMID: 29879210 PMCID: PMC5991713 DOI: 10.1371/journal.pone.0198819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/27/2018] [Indexed: 11/29/2022] Open
Abstract
Polymorphisms at PRNP gene locus have been associated with resistance against classical scrapie in goats. Genetic selection on this gene within appropriate breeding programs may contribute to the control of the disease. The present study characterized the genetic profile of codons 146, 211 and 222 in three dairy goat breeds in Greece. A total of 766 dairy goats from seven farms were used. Animals belonged to two indigenous Greek, Eghoria (n = 264) and Skopelos (n = 287) and a foreign breed, Damascus (n = 215). Genomic DNA was extracted from blood samples from individual animals. Polymorphisms were detected in these codons using Real-Time PCR analysis and four different Custom TaqMan® SNP Genotyping Assays. Genotypic, allelic and haplotypic frequencies were calculated based on individual animal genotypes. Chi-square tests were used to examine Hardy-Weinberg equilibrium state and compare genotypic distribution across breeds. Genetic distances among the three breeds, and between these and 30 breeds reared in other countries were estimated based on haplotypic frequencies using fixation index FST with Arlequin v3.1 software; a Neighbor-Joining tree was created using PHYLIP package v3.695. Level of statistical significance was set at P = 0.01. All scrapie resistance-associated alleles (146S, 146D, 211Q and 222K) were detected in the studied population. Significant frequency differences were observed between the indigenous Greek and Damascus breeds. Alleles 222K and 146S had the highest frequency in the two indigenous and the Damascus breed, respectively (ca. 6.0%). The studied breeds shared similar haplotypic frequencies with most South Italian and Turkish breeds but differed significantly from North-Western European, Far East and some USA goat breeds. Results suggest there is adequate variation in the PRNP gene locus to support breeding programs for enhanced scrapie resistance in goats reared in Greece. Genetic comparisons among goat breeds indicate that separate breeding programs should apply to the two indigenous and the imported Damascus breeds.
Collapse
Affiliation(s)
- Sotiria Vouraki
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios I. Gelasakis
- Veterinary Research Institute of Thessaloniki, Hellenic Agricultural Organization Demeter, Thessaloniki, Greece
| | - Panoraia Alexandri
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evridiki Boukouvala
- Veterinary Research Institute of Thessaloniki, Hellenic Agricultural Organization Demeter, Thessaloniki, Greece
| | - Loukia V. Ekateriniadou
- Veterinary Research Institute of Thessaloniki, Hellenic Agricultural Organization Demeter, Thessaloniki, Greece
| | - Georgios Banos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Scotland’s Rural College and The Roslin Institute, University of Edinburgh, Scotland, United Kingdom
| | - Georgios Arsenos
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
16
|
Sacchi P, Rasero R, Ru G, Aiassa E, Colussi S, Ingravalle F, Peletto S, Perrotta MG, Sartore S, Soglia D, Acutis P. Predicting the impact of selection for scrapie resistance on PRNP genotype frequencies in goats. Vet Res 2018; 49:26. [PMID: 29510738 PMCID: PMC5840724 DOI: 10.1186/s13567-018-0518-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/03/2018] [Indexed: 11/10/2022] Open
Abstract
The European Union has implemented breeding programmes to increase scrapie resistance in sheep. A similar approach can be applied also in goats since the K222 allele provides a level of resistance equivalent to that of ARR in sheep. The European Food Safety Authority stated that breeding for resistance could be offered as an option for Member States to control classical scrapie in goats. We assessed the impact of different breeding strategies on PRNP genotype frequencies using a mathematical model that describes in detail the evolution of K222 in two goat breeds, Chamois Coloured and Saanen. Different patterns of age structure and replacement rate were modelled as factors affecting response to selection. Breeding for scrapie resistance can be implemented in goats, even though the initial K222 frequencies in these breeds are not particularly favourable and the rate at which the resistant animals increase, both breeding and slaughtered for meat production, is slow. If the goal is not to achieve the fixation of resistance allele, it is advisable to carry out selection only until a desired frequency of K222-carriers has been attained. Nucleus selection vs. selection on the overall populations is less expensive but takes longer to reach the desired output. The programme performed on the two goat breeds serves as a model of the response the selection could have in other breeds that show different initial frequencies and population structure. In this respect, the model has a general applicability.
Collapse
Affiliation(s)
- Paola Sacchi
- Department of Veterinary Science, Torino University, Turin, Italy
| | - Roberto Rasero
- Department of Veterinary Science, Torino University, Turin, Italy
| | - Giuseppe Ru
- Italian Reference Centre for Animal Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Eleonora Aiassa
- Italian Reference Centre for Animal Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Silvia Colussi
- Italian Reference Centre for Animal Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Francesco Ingravalle
- Italian Reference Centre for Animal Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Simone Peletto
- Italian Reference Centre for Animal Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| | - Maria Gabriella Perrotta
- Direzione generale della sanità animale e dei farmaci veterinari, Ministero della Salute, Rome, Italy
| | - Stefano Sartore
- Department of Veterinary Science, Torino University, Turin, Italy
| | - Dominga Soglia
- Department of Veterinary Science, Torino University, Turin, Italy
| | - Pierluigi Acutis
- Italian Reference Centre for Animal Transmissible Spongiform Encephalopathies, Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d’Aosta, Turin, Italy
| |
Collapse
|
17
|
Cinar MU, Schneider DA, Waldron DF, O'Rourke KI, White SN. Goats singly heterozygous for PRNP S146 or K222 orally inoculated with classical scrapie at birth show no disease at ages well beyond 6 years. Vet J 2018; 233:19-24. [PMID: 29486874 DOI: 10.1016/j.tvjl.2017.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 10/18/2022]
Abstract
Scrapie is a transmissible spongiform encephalopathy of sheep and goats, and scrapie eradication programs in many parts of the world rely on strong genetic resistance to classical scrapie in sheep. However, the utility of putative resistance alleles in goats has been a focus of research because goats can transmit scrapie to sheep and may serve as a scrapie reservoir. Prior work showed that disease-free survival time was significantly extended in orally inoculated goats singly heterozygous for prion amino acid substitutions S146 or K222, but average durations were only around 3 years post-inoculation. The aim of this study was to investigate whether extended survival would exceed 6 years, which represents the productive lifetimes of most commercial goats. While all control homozygotes were clinically affected by an average of <2 years, none of the NS146 or QK222 goats developed clinical scrapie or had PrPSc-positive rectal biopsies. Several NS146 and QK222 goats developed other conditions unrelated to scrapie, but tissue accumulation of PrPSc was not detected in any of these animals. The NS146 heterozygotes have remained disease-free for an average of 2734days (approximately 7.5 years), the longest duration of any classical scrapie challenge experiment with any genotype to date. The QK222 heterozygotes have remained disease-free for an average of 2450days (approximately 6.7 years), the longest reported average duration for QK222 goats challenged with classical scrapie. This research is ongoing, but the current results demonstrate S146 and K222 confer strong resistance to classical scrapie in goats.
Collapse
Affiliation(s)
- M U Cinar
- Department of Veterinary Microbiology and Pathology, Washington State University, 3003 ADBF, WSU, Pullman, WA 99164, USA; Erciyes University, Faculty of Agriculture, Department of Animal Science, Kayseri 38039, Turkey
| | - D A Schneider
- Department of Veterinary Microbiology and Pathology, Washington State University, 3003 ADBF, WSU, Pullman, WA 99164, USA; United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, 3003 ADBF, WSU, Pullman, WA 99164, USA
| | - D F Waldron
- Texas AgriLife Research, San Angelo, TX 76901, USA
| | - K I O'Rourke
- Department of Veterinary Microbiology and Pathology, Washington State University, 3003 ADBF, WSU, Pullman, WA 99164, USA; United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, 3003 ADBF, WSU, Pullman, WA 99164, USA
| | - S N White
- Department of Veterinary Microbiology and Pathology, Washington State University, 3003 ADBF, WSU, Pullman, WA 99164, USA; United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, 3003 ADBF, WSU, Pullman, WA 99164, USA; Center for Reproductive Biology, Washington State University, 3003 ADBF, WSU, Pullman, WA 99164, USA.
| |
Collapse
|
18
|
Kanata E, Arsenakis M, Sklaviadis T. Caprine PrP variants harboring Asp-146, His-154 and Gln-211 alleles display reduced convertibility upon interaction with pathogenic murine prion protein in scrapie infected cells. Prion 2017; 10:391-408. [PMID: 27537339 DOI: 10.1080/19336896.2016.1199312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Scrapie, the prion disease of sheep and goats, is a devastating malady of small ruminants. Due to its infectious nature, epidemic outbreaks may occur in flocks/herds consisting of highly susceptible animals. Field studies identified scrapie-protective caprine PrP variants, harboring specific single amino acid changes (Met-142, Arg-143, Asp-146, Ser-146, His-154, Gln-211 and Lys-222). Their effects are under further evaluation, and aim to determine the most protective allele. We assessed some of these variants (Asp-146, His-154, Gln-211 and Lys-222), after their exogenous expression as murine-caprine chimeras in a scrapie- infected murine cell line. We report that exogenously expressed PrPs undergo conformational conversion upon interaction with the endogenous pathological murine prion protein (PrPSC), which results in the detection of goat-specific and partially PK-resistant moieties. These moieties display a PK-resistance pattern distinct from the one detected in natural goat scrapie cases. Within this cellular model, distinct conformational conversion potentials were assigned to the tested variants. Molecules carrying the Asp-146, His-154 and Gln-211 alleles showed significantly lower conversion levels compared to wild type, confirming their protective effects against scrapie. Although we utilized a heterologous conversion system, this is to our knowledge, the first study of caprine PrP variants in a cellular context of scrapie, that confirms the protective effects of some of the studied alleles.
Collapse
Affiliation(s)
- Eirini Kanata
- a Department of Genetics , Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki , Thessaloniki , Greece.,b School of Pharmacy , Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Minas Arsenakis
- a Department of Genetics , Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Theodoros Sklaviadis
- b School of Pharmacy , Aristotle University of Thessaloniki , Thessaloniki , Greece
| |
Collapse
|
19
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Gironés R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Skandamis P, Speybroeck N, Simmons M, Kuile BT, Threlfall J, Wahlström H, Acutis PL, Andreoletti O, Goldmann W, Langeveld J, Windig JJ, Ortiz Pelaez A, Snary E. Genetic resistance to transmissible spongiform encephalopathies (TSE) in goats. EFSA J 2017; 15:e04962. [PMID: 32625625 PMCID: PMC7010077 DOI: 10.2903/j.efsa.2017.4962] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Breeding programmes to promote resistance to classical scrapie, similar to those for sheep in existing transmissible spongiform encephalopathies (TSE) regulations, have not been established in goats. The European Commission requested a scientific opinion from EFSA on the current knowledge of genetic resistance to TSE in goats. An evaluation tool, which considers both the weight of evidence and strength of resistance to classical scrapie of alleles in the goat PRNP gene, was developed and applied to nine selected alleles of interest. Using the tool, the quality and certainty of the field and experimental data are considered robust enough to conclude that the K222, D146 and S146 alleles both confer genetic resistance against classical scrapie strains known to occur naturally in the EU goat population, with which they have been challenged both experimentally and under field conditions. The weight of evidence for K222 is greater than that currently available for the D146 and S146 alleles and for the ARR allele in sheep in 2001. Breeding for resistance can be an effective tool for controlling classical scrapie in goats and it could be an option available to member states, both at herd and population levels. There is insufficient evidence to assess the impact of K222, D146 and S146 alleles on susceptibility to atypical scrapie and bovine spongiform encephalopathy (BSE), or on health and production traits. These alleles are heterogeneously distributed across the EU Member States and goat breeds, but often at low frequencies (< 10%). Given these low frequencies, high selection pressure may have an adverse effect on genetic diversity so any breeding for resistance programmes should be developed at Member States, rather than EU level and their impact monitored, with particular attention to the potential for any negative impact in rare or small population breeds.
Collapse
|
20
|
Mazza M, Guglielmetti C, Ingravalle F, Brusadore S, Langeveld JPM, Ekateriniadou LV, Andréoletti O, Casalone C, Acutis PL. Low fraction of the 222K PrP variant in the protease-resistant moiety of PrPres in heterozygous scrapie positive goats. J Gen Virol 2017; 98:1963-1967. [PMID: 28691895 PMCID: PMC5656779 DOI: 10.1099/jgv.0.000843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The presence of lysine (K) at codon 222 has been associated with resistance to classical scrapie in goats, but few scrapie cases have been identified in 222Q/K animals. To investigate the contribution of the 222K variant to PrPres formation in natural and experimental Q/K scrapie cases, we applied an immunoblotting method based on the use of two different monoclonal antibodies, F99/97.6.1 and SAF84, chosen for their different affinities to 222K and 222Q PrP variants. Our finding that PrPres seems to be formed nearly totally by the 222Q variant provides evidence that the 222K PrP variant confers resistance to conversion to PrPres formation and reinforces the view that this mutation has a protective role against classical scrapie in goats.
Collapse
Affiliation(s)
- Maria Mazza
- Italian Reference Centre for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Chiara Guglielmetti
- Italian Reference Centre for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Francesco Ingravalle
- Biostatistic, Epidemiology and Risk Analysis Unit, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Sonia Brusadore
- Italian Reference Centre for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | | | - Loukia V Ekateriniadou
- National Agricultural Research Foundation, Veterinary Research Institute, Thessaloniki, Greece
| | - Olivier Andréoletti
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Cristina Casalone
- Italian Reference Centre for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Pier Luigi Acutis
- Italian Reference Centre for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| |
Collapse
|
21
|
A cross-sectional study of PRNP gene in two native Sicilian goat populations in Italy: a relation between prion gene polymorphisms and scrapie incidence. J Genet 2017; 96:319-325. [PMID: 28674232 DOI: 10.1007/s12041-017-0776-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative diseases affecting humans and animals, and scrapie in small ruminants is considered the archetype of TSEs. Derivata di Siria is a native dairy goat of Sicily (south Italy), which is related to Syrian goat breeds. Scrapie disease is considered endemic in Sicily since 1997, following the administration of an infected vaccine.Derivata di Siria goatswere involved in six of 66 scrapie-infected flocks in Sicily. Prion protein gene (PRNP) analysis revealed that none of the scrapie cases carried the p.Gln222Lys variant. Sequencing of PRNP in this goat population showed a high frequency (15%) of p.Gln222Lys variant confirming its association with scrapie resistance. PRNP polymorphisms were also analysed in the population of Pantelleria, a small Sicilian Island, where scrapie has never been reported. The native goat breed 'Pantesca' was maintained up to almost 80 years and the size of the sheep population on this island has historically been very low. Currently, a crossbreed goat population of 253 heads is present on the island. PRNP genotyping of Pantelleria goats showed genetic variation, with low presence of wild-type goats and the lack of protective alleles. These data reinforce the association between PRNP polymorphisms in small ruminants and scrapie incidence.
Collapse
|
22
|
Srithayakumar V, Mitchell GB, White BN. Identification of amino acid variation in the prion protein associated with classical scrapie in Canadian dairy goats. BMC Vet Res 2016; 12:59. [PMID: 27005313 PMCID: PMC4804529 DOI: 10.1186/s12917-016-0684-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A clear association of amino acid variation in the prion protein gene (PRNP) with susceptibility and resistance to classical scrapie exists in sheep, but not in goats. In this study we examined DNA sequence variation in the PRNP of 149 animals from two scrapie-infected herds of Saanen dairy goats, and identified 6 non-synonymous variants in the coding region. RESULTS In the larger herd, all of the 54 scrapie-affected goats tested had at least one allele with the arginine (R) codon at position 211, with 52 being homozygous for that variant. No animal homozygous for the glutamine (Q) codon at 211 were affected and only two heterozygotes (R/Q) were affected. A weak association was found at position 146 and no significant associations were found with amino acid variation at the remaining four variant positions (142, 143, 222 and 240), however, the allelic variation was low. Similar patterns were observed in the second scrapie-affected herd. CONCLUSION We also evaluated previous studies on goat herds affected with scrapie and this relationship of R susceptibility and Q resistance at 211 was present independent of the genotypes at the other positions including 222. The fact that glutamine at 211 provides a significant protective property to scrapie irrespective of the other positions could be important for breeding strategies aimed at improving herd resistance to scrapie, while maintaining important productivity traits.
Collapse
Affiliation(s)
- Vythegi Srithayakumar
- Natural Resources DNA Profiling and Forensics Centre, DNA Building, Trent University, 2140 East Bank Drive, Peterborough, ON, Canada. .,Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G2P5, Canada.
| | - Gordon B Mitchell
- National and OIE Reference Laboratory for Scrapie and CWD, Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, ON, Canada
| | - Bradley N White
- Natural Resources DNA Profiling and Forensics Centre, DNA Building, Trent University, 2140 East Bank Drive, Peterborough, ON, Canada
| |
Collapse
|
23
|
Goldmann W, Marier E, Stewart P, Konold T, Street S, Langeveld J, Windl O, Ortiz-Pelaez A. Prion protein genotype survey confirms low frequency of scrapie-resistant K222 allele in British goat herds. Vet Rec 2016; 178:168. [PMID: 26755614 PMCID: PMC4789823 DOI: 10.1136/vr.103521] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2015] [Indexed: 11/03/2022]
Abstract
Scrapie in goats is a transmissible, fatal prion disease, which is endemic in the British goat population. The recent success in defining caprine PRNP gene variants that provide resistance to experimental and natural classical scrapie has prompted the authors to conduct a survey of PRNP genotypes in 10 goat breeds and 52 herds to find goats with the resistant K222 allele. They report here the frequencies in 1236 tested animals of the resistance-associated K222 and several other alleles by breed and herd. Eight animals were found to be heterozygous QK222 goats (0.64 per cent genotype frequency, 95 per cent CI 0.28 to 1.27 per cent) but no homozygous KK222 goats were detected. The K222 allele was found in Saanen, Toggenburg and Anglo-Nubian goats. The fact that only a few goats with the K222 allele have been identified does not preclude the possibility to design and implement successful breeding programmes at national level.
Collapse
Affiliation(s)
- W Goldmann
- The Roslin Institute and R(D)SVS University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - E Marier
- Animal and Plant Health Agency Weybridge, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - P Stewart
- The Roslin Institute and R(D)SVS University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - T Konold
- Animal and Plant Health Agency Weybridge, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - S Street
- Animal and Plant Health Agency Weybridge, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - J Langeveld
- Central Veterinary Institute part of Wageningen UR (CVI) Department of Infection Biology, P.O. Box 65, 8200 AB Lelystad, The Netherlands
| | - O Windl
- Animal and Plant Health Agency Weybridge, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - A Ortiz-Pelaez
- Animal and Plant Health Agency Weybridge, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
24
|
Madsen-Bouterse SA, Schneider DA, Dassanayake RP, Truscott TC, Zhuang D, Kumpula-McWhirter N, O'Rourke KI. PRNP variants in goats reduce sensitivity of detection of PrP(Sc) by immunoassay. J Vet Diagn Invest 2016; 27:332-43. [PMID: 26038481 DOI: 10.1177/1040638715585865] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Diagnostic analyses often employ single antibody systems but are potentially limited by epitope sequence variation. United States regulatory testing for scrapie primarily uses antibody F99/97.6.1 for immunohistochemistry (IHC) of the prion protein associated with scrapie (PrP(Sc)). Whereas the epitope bound by F99/97.6.1 is highly conserved in sheep, a polymorphism in caprine PRNP results in a glutamine to lysine change at codon 222 and affects PrP detection. This study evaluated the performance of immunoassays (Western blot and IHC) in the presence of PRNP polymorphisms observed in U.S. goat populations. Effects of naturally occurring caprine prion protein alterations at codons 142, 143, 146, 154, or 222 were first evaluated using bacterially expressed recombinant normal cellular prion protein (rec-PrP(C)) and commercially available antibodies (F99/97.6.1, F89/160.1.5, L42, and SAF84). Detection of rec-PrP(C) using F89/160.1.5 was reduced by alterations at 142 and 143; this was also observed in brain PrP(C) from goats expressing these PRNP variants. Effect of allelic variation at 222 was confirmed by Western blot with F99/97.6.1. No differences were observed with L42 or SAF84. IHC of brain demonstrated reduced signal with F89/160.1.5 in animals heterozygous at 143. Decreasing F89/160.1.5 titers were used to demonstrate the impact of PrP(Sc) immunolabeling in preclinical goats and as a surrogate for F99/97.6.1 detection in 222 variants. In the absence of epitope-relevant knowledge of individual goat PRNP, a multi-antibody approach or an antibody that binds an invariant site may provide a more robust immunoassay of PrP(Sc) in classical scrapie, thus reducing the likelihood of false-negative results due to allelic variation.
Collapse
Affiliation(s)
- Sally A Madsen-Bouterse
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA (Madsen-Bouterse, Schneider, Dassanayake, Kumpula-McWhirter, O'Rourke)Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA (Schneider, Truscott, Zhuang)
| | - David A Schneider
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA (Madsen-Bouterse, Schneider, Dassanayake, Kumpula-McWhirter, O'Rourke)Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA (Schneider, Truscott, Zhuang)
| | - Rohana P Dassanayake
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA (Madsen-Bouterse, Schneider, Dassanayake, Kumpula-McWhirter, O'Rourke)Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA (Schneider, Truscott, Zhuang)
| | - Thomas C Truscott
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA (Madsen-Bouterse, Schneider, Dassanayake, Kumpula-McWhirter, O'Rourke)Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA (Schneider, Truscott, Zhuang)
| | - Dongyue Zhuang
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA (Madsen-Bouterse, Schneider, Dassanayake, Kumpula-McWhirter, O'Rourke)Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA (Schneider, Truscott, Zhuang)
| | - Nancy Kumpula-McWhirter
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA (Madsen-Bouterse, Schneider, Dassanayake, Kumpula-McWhirter, O'Rourke)Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA (Schneider, Truscott, Zhuang)
| | - Katherine I O'Rourke
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA (Madsen-Bouterse, Schneider, Dassanayake, Kumpula-McWhirter, O'Rourke)Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA (Schneider, Truscott, Zhuang)
| |
Collapse
|
25
|
Aguilar-Calvo P, Fast C, Tauscher K, Espinosa JC, Groschup MH, Nadeem M, Goldmann W, Langeveld J, Bossers A, Andreoletti O, Torres JM. Effect of Q211 and K222 PRNP Polymorphic Variants in the Susceptibility of Goats to Oral Infection With Goat Bovine Spongiform Encephalopathy. J Infect Dis 2015; 212:664-72. [PMID: 25722297 DOI: 10.1093/infdis/jiv112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/13/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The prion protein-encoding gene (PRNP) is one of the major determinants for scrapie occurrence in sheep and goats. However, its effect on bovine spongiform encephalopathy (BSE) transmission to goats is not clear. METHODS Goats harboring wild-type, R/Q211 or Q/K222 PRNP genotypes were orally inoculated with a goat-BSE isolate to assess their relative susceptibility to BSE infection. Goats were killed at different time points during the incubation period and after the onset of clinical signs, and their brains as well as several peripheral tissues were analyzed for the accumulation of pathological prion protein (PrP(Sc)) and prion infectivity by mouse bioassay. RESULTS R/Q211 goats displayed delayed clinical signs compared with wild-type goats. Deposits of PrP(Sc) were detected only in brain, whereas infectivity was present in peripheral tissues too. In contrast, none of the Q/K222 goats showed any evidence of clinical prion disease. No PrP(Sc) accumulation was observed in their brains or peripheral tissues, but very low infectivity was detected in some tissues very long after inoculation (44-45 months). CONCLUSIONS These results demonstrate that transmission of goat BSE is genotype dependent, and they highlight the pivotal protective effect of the K222 PRNP variant in the oral susceptibility of goats to BSE.
Collapse
Affiliation(s)
| | - Christine Fast
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer, Greifswald-InselRiems
| | - Kerstin Tauscher
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer, Greifswald-InselRiems
| | | | - Martin H Groschup
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer, Greifswald-InselRiems
| | - Muhammad Nadeem
- Department of Pathology, University of Veterinary Medicine Hannover, Germany
| | - Wilfred Goldmann
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Jan Langeveld
- Central Veterinary Institute, Wageningen UR, Lelystad, The Netherlands
| | - Alex Bossers
- Central Veterinary Institute, Wageningen UR, Lelystad, The Netherlands
| | - Olivier Andreoletti
- UMR INRA-ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, France
| | - Juan-María Torres
- Centro de Investigación en Sanidad Animal, Valdeolmos, Madrid, Spain
| |
Collapse
|
26
|
Aguilar-Calvo P, García C, Espinosa JC, Andreoletti O, Torres JM. Prion and prion-like diseases in animals. Virus Res 2014; 207:82-93. [PMID: 25444937 DOI: 10.1016/j.virusres.2014.11.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/06/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022]
Abstract
Transmissible spongiform encephalopaties (TSEs) are fatal neurodegenerative diseases characterized by the aggregation and accumulation of the misfolded prion protein in the brain. Other proteins such as β-amyloid, tau or Serum Amyloid-A (SAA) seem to share with prions some aspects of their pathogenic mechanism; causing a variety of so called prion-like diseases in humans and/or animals such as Alzheimer's, Parkinson's, Huntington's, Type II diabetes mellitus or amyloidosis. The question remains whether these misfolding proteins have the ability to self-propagate and transmit in a similar manner to prions. In this review, we describe the prion and prion-like diseases affecting animals as well as the recent findings suggesting the prion-like transmissibility of certain non-prion proteins.
Collapse
Affiliation(s)
| | - Consolación García
- Centro de Investigación en Sanidad Animal (CISA-INIA), 28130 Valdeolmos, Madrid, Spain
| | - Juan Carlos Espinosa
- Centro de Investigación en Sanidad Animal (CISA-INIA), 28130 Valdeolmos, Madrid, Spain
| | - Olivier Andreoletti
- INRA, UMR 1225, Interactions Hôtes Agents Pathogènes, École Nationale Vétérinaire de Toulouse, 23 chemin des Capelles, 31076 Toulouse Cedex, France
| | - Juan María Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), 28130 Valdeolmos, Madrid, Spain.
| |
Collapse
|
27
|
Kanata E, Humphreys-Panagiotidis C, Giadinis ND, Papaioannou N, Arsenakis M, Sklaviadis T. Perspectives of a scrapie resistance breeding scheme targeting Q211, S146 and K222 caprine PRNP alleles in Greek goats. Vet Res 2014; 45:43. [PMID: 24717012 PMCID: PMC4030296 DOI: 10.1186/1297-9716-45-43] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/20/2014] [Indexed: 11/10/2022] Open
Abstract
The present study investigates the potential use of the scrapie-protective Q211 S146 and K222 caprine PRNP alleles as targets for selective breeding in Greek goats. Genotyping data from a high number of healthy goats with special emphasis on bucks, revealed high frequencies of these alleles, while the estimated probabilities of disease occurrence in animals carrying these alleles were low, suggesting that they can be used for selection. Greek goats represent one of the largest populations in Europe. Thus, the considerations presented here are an example of the expected effect of such a scheme on scrapie occurrence and on stakeholders.
Collapse
Affiliation(s)
| | | | | | | | | | - Theodoros Sklaviadis
- Department of Pharmaceutical Sciences, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
28
|
Abstract
UNLABELLED The prion protein-encoding gene (prnp) strongly influences the susceptibility of small ruminants to transmissible spongiform encephalopathies (TSEs). Hence, selective breeding programs have been implemented to increase sheep resistance to scrapie. For goats, epidemiological and experimental studies have provided some association between certain polymorphisms of the cellular prion protein (PrP(C)) and resistance to TSEs. Among them, the Q/K polymorphism at PrP(C) codon 222 (Q/K222) yielded the most promising results. In this work, we investigated the individual effects of the K222-PrP(C) variant on the resistance/susceptibility of goats to TSEs. For that purpose, we generated two transgenic mouse lines, expressing either the Q222 (wild type) or K222 variant of goat PrP(C). Both mouse lines were challenged intracerebrally with a panel of TSE isolates. Transgenic mice expressing the wild-type (Q222) allele were fully susceptible to infection with all tested isolates, whereas transgenic mice expressing similar levels of the K222 allele were resistant to all goat scrapie and cattle BSE isolates but not to goat BSE isolates. Finally, heterozygous K/Q222 mice displayed a reduced susceptibility to the tested panel of scrapie isolates. These results demonstrate a highly protective effect of the K222 variant against a broad panel of different prion isolates and further reinforce the argument supporting the use of this variant in breeding programs to control TSEs in goat herds. IMPORTANCE The objective of this study was to determine the role of the K222 variant of the prion protein (PrP) in the susceptibility/resistance of goats to transmissible spongiform encephalopathies (TSEs). Results showed that transgenic mice expressing the goat K222-PrP polymorphic variant are resistant to scrapie and bovine spongiform encephalopathy (BSE) agents. This protective effect was also observed in heterozygous Q/K222 animals. Therefore, the single amino acid exchange from Q to K at codon 222 of the cellular prion protein provides resistance against TSEs. All the results presented here support the view that the K222 polymorphic variant is a good candidate for selective breeding programs to control and eradicate scrapie in goat herds.
Collapse
|
29
|
Mazza M, Guglielmetti C, Pagano M, Sciuto S, Ingravalle F, Martucci F, Caramelli M, Acutis PL. Lysine at position 222 of the goat prion protein inhibits the binding of monoclonal antibody F99/97.6.1. J Vet Diagn Invest 2013; 24:971-5. [PMID: 22914824 DOI: 10.1177/1040638712457352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Prion protein (PrP) is encoded by the PRNP gene, which is highly polymorphic in goats, with polymorphisms encoding amino acid substitutions at the protein level. In the current study, the reactivity of monoclonal antibody (mAb) F99/97.6.1 in binding PrP from goats polymorphic at PRNP codon 222 was investigated. Nervous tissue from 30 scrapie-negative goats with 3 different genotypes (222Q/Q, 222Q/K, and 222K/K) was analyzed by Western blot using mAbs P4 and F99/97.6.1. Although PrP was detected in all 30 samples by mAb P4, detection of PrP by mAb F99/97.6.1 was limited to 222Q/Q (12/12). No PrP was detected by mAb F99/97.6.1 in the 222K/K samples (n = 6), and the signal intensity of mAb F99/97.6.1 for PrP was lower for the 222Q/K samples (12/12 samples). To further investigate these results, additional Western blot analyses were performed, and the PrP signals detected by mAbs F99/97.6.1 and SAF84 were then quantified. The mean F99/SAF84 ratio (± standard deviation) calculated for the 222Q/Q group was 0.73 ± 1.26, and the mean for the 222Q/K group was 0.27 ± 1.31. Statistical analysis of these values evidenced statistically significant differences between the 222Q/Q and 222Q/K samples. The results of the study thus revealed an inhibition by lysine at position 222 on the binding of mAb F99/97.6.1 to goat PrP. This has implications for the use of mAb F99/97.6.1 for diagnostic purposes. Because the 222K allele could be a target for genetic selection in goats, the differential reactivity of mAb F99/97.6.1 could be exploited with a genotyping test setup.
Collapse
Affiliation(s)
- Maria Mazza
- Italian Reference Centre for TSEs, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148-10154, Turin, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Genetic variability of PRNP in Chinese indigenous goats. Biochem Genet 2012; 51:211-22. [PMID: 23264231 DOI: 10.1007/s10528-012-9556-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
Polymorphism of the prion protein gene (PRNP) is usually associated with scrapie susceptibility or resistance. To determine the variability of PRNP in Chinese indigenous goat breeds, we isolated genomic DNA from goat blood and amplified and sequenced the coding region of the gene. We identified 10 polymorphic sites that gave rise to 28 haplotypes. Clear frequency differences were found between northern and southern breeds and confirmed by genetic distance analysis, except for the Tangshan dairy goat. Phylogeographic analysis supported the idea that northern and southern breeds might be considered separate clusters, except for the Tangshan dairy goat. The finding of significant differences in allele distribution in northern and southern goats, especially if involved in modulating resistance/susceptibility, needs to be carefully considered for the feasibility of selection plans for resistance to scrapie.
Collapse
|
31
|
Benestad SL, Austbø L, Tranulis MA, Espenes A, Olsaker I. Healthy goats naturally devoid of prion protein. Vet Res 2012; 43:87. [PMID: 23249298 PMCID: PMC3542104 DOI: 10.1186/1297-9716-43-87] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/23/2012] [Indexed: 11/10/2022] Open
Abstract
Prion diseases such as scrapie in small ruminants, bovine spongiform encephalopathy (BSE) in cattle and Creutzfeldt-Jakob disease (CJD) in man, are fatal neurodegenerative disorders. These diseases result from the accumulation of misfolded conformers of the host-encoded prion protein (PrP) in the central nervous system. To date naturally-occurring PrP free animals have not been reported. Here we describe healthy non-transgenic animals, Norwegian Dairy Goats, lacking prion protein due to a nonsense mutation early in the gene. These animals are predicted to be resistant to prion disease and will be valuable for research and for production of prion-free products.
Collapse
Affiliation(s)
- Sylvie L Benestad
- Norwegian Veterinary Institute, P,O,Box 750, Sentrum, Oslo, 0106, Norway.
| | | | | | | | | |
Collapse
|
32
|
Lan X, Zhao H, Li Z, Li A, Lei C, Chen H, Pan C. A novel 28-bp insertion–deletion polymorphism within goat PRNP gene and its association with production traits in Chinese native breeds. Genome 2012; 55:547-52. [DOI: 10.1139/g2012-040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, a novel 28-bp insertion–deletion (indel) polymorphism (AJ298878:g.47836–47853insCCTCAGACACTGAGTCTCCCCAACAGCA) was found in goat prion protein (PRNP) gene in 2373 goats from 13 Chinese native breeds. The frequencies of allele “ins” varied from 0.500 to 1.000 in different breeds. The establishment of association of the 28-bp indel polymorphism with production traits was performed in Inner Mongolia white cashmere (IMWC) and Xinong Sannen dairy (XNSN) breeds. Two significant associations between this polymorphism and 1-year-old body mass (P = 0.011) and average body mass (P = 0.024) were observed in IMWC breed, as well as wool thickness of 3-year-olds (P < 0.001). Furthermore, the novel 28-bp indel polymorphism was significantly associated with total solids in the evening (%) (P = 0.009) and milk yield (P = 0.016) in XNSN breed. These findings suggested that the 28-bp indel polymorphism was a potential DNA marker for eliminating or selecting preferred individuals in relation to production traits in goat marker-assisted selection breeding while carrying out preventing scrapie project.
Collapse
Affiliation(s)
- X.Y. Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - H.Y. Zhao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Z.J. Li
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - A.M. Li
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - C.Z. Lei
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - H. Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - C.Y. Pan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
33
|
Resistance to classical scrapie in experimentally challenged goats carrying mutation K222 of the prion protein gene. Vet Res 2012; 43:8. [PMID: 22296670 PMCID: PMC3296670 DOI: 10.1186/1297-9716-43-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 02/01/2012] [Indexed: 11/23/2022] Open
Abstract
Susceptibility of sheep to scrapie, a transmissible spongiform encephalopathy of small ruminants, is strongly influenced by polymorphisms of the prion protein gene (PRNP). Breeding programs have been implemented to increase scrapie resistance in sheep populations; though desirable, a similar approach has not yet been applied in goats. European studies have now suggested that several polymorphisms can modulate scrapie susceptibility in goats: in particular, PRNP variant K222 has been associated with resistance in case-control studies in Italy, France and Greece. In this study we investigated the resistance conferred by this variant using a natural Italian goat scrapie isolate to intracerebrally challenge five goats carrying genotype Q/Q 222 (wild type) and five goats carrying genotype Q/K 222. By the end of the study, all five Q/Q 222 goats had died of scrapie after a mean incubation period of 19 months; one of the five Q/K 222 goats died after 24 months, while the other four were alive and apparently healthy up to the end of the study at 4.5 years post-challenge. All five of these animals were found to be scrapie negative. Statistical analysis showed that the probability of survival of the Q/K 222 goats versus the Q/Q 222 goats was significantly higher (p = 0.002). Our study shows that PRNP gene mutation K222 is strongly associated with resistance to classical scrapie also in experimental conditions, making it a potentially positive target for selection in the frame of breeding programs for resistance to classical scrapie in goats.
Collapse
|