1
|
Wu J, Lu Q, Hou J, Qiu Y, Tian M, Wang L, Gao K, Yang X, Jiang Z. Baicalein inhibits PRRSV through direct binding, targeting EGFR, and enhancing immune response. Vet Res 2025; 56:16. [PMID: 39833939 PMCID: PMC11748510 DOI: 10.1186/s13567-024-01440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/27/2024] [Indexed: 01/22/2025] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) presents significant economic challenges to the global pork industry due to its ability to mutate rapidly. The current commercial vaccines have limited effectiveness, and there are strict restrictions on the use of antiviral chemical drugs. Therefore, it is urgent to identify new strategies for preventing and controlling PRRSV infections. Baicalein, a flavonoid derived from Scutellaria baicalensis, has gained attention for its potential antiviral properties. However, there is little information about the effects and mechanisms of baicalein in relation to PRRSV. In this study, a network pharmacology analysis identified seven potential targets of baicalein against PRRSV, with the epidermal growth factor receptor (EGFR) emerging as the core target. The results of molecular docking and dynamics (MD) simulations confirmed that baicalein has a high binding affinity for EGFR, with a measured value of - 7.935 kcal/mol. Additionally, both in vitro (EC50 = 10.20 μg/mL) and in vivo (2.41 mg/kg) experiments were conducted to assess the effectiveness of baicalein against PRRSV. Notably, baicalein was found to inhibit various stages of the PRRSV replication cycle and could directly bind to PRRSV in vitro. Baicalein inhibited the entry of PRRSV by blocking EGFR phosphorylation and the downstream PI3K-AKT signaling pathway. This was confirmed by a decrease in the expression of p-EGFR/EGFR, p-AKT/AKT, PI3K, and SRC following treatment with baicalein. Additionally, baicalein significantly enhanced the immune response in piglets infected with PRRSV. In conclusion, this study suggests that baicalein may be a promising pharmaceutical candidate for preventing and controlling PRRS, offering new insights into the antiviral potential of Chinese herbal medicine.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Qi Lu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Jing Hou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Yueqin Qiu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Min Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Li Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Kaiguo Gao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Xuefen Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China.
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China.
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| |
Collapse
|
2
|
Chang X, Ma J, Zhou Y, Xiao S, Xiao X, Fang L. Development of a Ferritin Protein Nanoparticle Vaccine with PRRSV GP5 Protein. Viruses 2024; 16:991. [PMID: 38932282 PMCID: PMC11209462 DOI: 10.3390/v16060991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) presents a significant threat to the global swine industry. The development of highly effective subunit nanovaccines is a promising strategy for preventing PRRSV variant infections. In this study, two different types of ferritin (Ft) nanovaccines targeting the major glycoprotein GP5, named GP5m-Ft and (Bp-IVp)3-Ft, were constructed and evaluated as vaccine candidates for PRRSV. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) demonstrated that both purified GP5m-Ft and (Bp-IVp)3-Ft proteins could self-assemble into nanospheres. A comparison of the immunogenicity of GP5m-Ft and (Bp-IVp)3-Ft with an inactivated PRRSV vaccine in BALB/c mice revealed that mice immunized with GP5m-Ft exhibited the highest ELISA antibody levels, neutralizing antibody titers, the lymphocyte proliferation index, and IFN-γ levels. Furthermore, vaccination with the GP5m-Ft nanoparticle effectively protected piglets against a highly pathogenic PRRSV challenge. These findings suggest that GP5m-Ft is a promising vaccine candidate for controlling PRRS.
Collapse
Affiliation(s)
- Xinjian Chang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.M.); (Y.Z.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jun Ma
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.M.); (Y.Z.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yanrong Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.M.); (Y.Z.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.M.); (Y.Z.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xun Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.M.); (Y.Z.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.M.); (Y.Z.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
3
|
Elahi SM, Nazemi-Moghaddam N, Gilbert R. Protease-deleted adenovirus as an alternative for replication-competent adenovirus vector. Virology 2023; 586:67-75. [PMID: 37487327 DOI: 10.1016/j.virol.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/22/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
For cancer therapy and vaccination an amplified expression of the therapeutic gene is desired. Previously, we have developed a single-cycle adenovirus vector (SC-AdV) by deleting the adenovirus protease (PS) gene. In order to keep the E1 region intact within the PS-deleted adenoviruses, we examined the insertion of two transgenes under the control of a constitutive or inducible promoters. These were inserted between E4 and the right inverted terminal repeat in a wide variety of backbones with various combinations of PS, E3 and E4 deletion. Our data showed that PS-deleted adenoviruses, expressed transgenes as strongly as replication-competent AdVs in HEK293A and a variant of HeLa cells. In a head-to-head comparison in four human cell lines, we demonstrated that SC-AdV, was comparable for transgene expression efficacy with its replication-competent counterpart. However, the SC-AdV expresses its transgene 10 to 16,000 times higher than its replication-defective counterpart.
Collapse
Affiliation(s)
- S Mehdy Elahi
- Department of Production Platforms & Analytics, National Research Council Canada, Building Montreal, Montreal, Canada.
| | - Nazila Nazemi-Moghaddam
- Department of Production Platforms & Analytics, National Research Council Canada, Building Montreal, Montreal, Canada.
| | - Rénald Gilbert
- Department of Production Platforms & Analytics, National Research Council Canada, Building Montreal, Montreal, Canada; Department of Bioengineering McGill University, Montréal, Canada.
| |
Collapse
|
4
|
Tu T, Pang M, Jiang D, Zhou Y, Wu X, Yao X, Luo Y, Yang Z, Ren M, Lu A, Zhang G, Yu Y, Wang Y. Development of a Real-Time TaqMan RT-PCR Assay for the Detection of NADC34-like Porcine Reproductive and Respiratory Syndrome Virus. Vet Sci 2023; 10:vetsci10040279. [PMID: 37104434 PMCID: PMC10141196 DOI: 10.3390/vetsci10040279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
NADC34-like porcine reproductive and respiratory syndrome virus first appeared in 2017 in a herd of pigs in Liaoning Province, China. The virus was subsequently found in other provinces. Given the potential for this virus to cause an epidemic, rapid, sensitive, and specific detection of NADC34-like PRRSV is required. The virus' ORF5 gene was artificially synthesized based on a Chinese reference strain, and specific primers/probes for the ORF5 gene were designed. Then, the amplified target fragment was cloned into the pMD19-T vector, and a series of diluted recombinant plasmids were used to generate a standard curve. An optimized real-time TaqMan RT-PCR method was established. The method was highly specific for NADC34-like PRRSV, without cross-reactions with other non-targeted pig viruses. The detection limit of this assay was 101 copies/μL. The method had an efficiency of 98.8%, a squared regression value (R2) of 0.999, and showed a linear range of 103-108 copies/μL of DNA per reaction. This method was shown to be analytically specific and sensitive with a low intra- and inter-assay coefficient of variation (<1.40%). A total of 321 clinical samples were tested using the established method, and four were shown to be positive (1.24%). This study confirmed the existence of NADC34-like PRRSV and HP-PRRSV co-infection in Sichuan and provided a promising alternative tool for the rapid detection of NADC34-like PRRSV.
Collapse
Affiliation(s)
- Teng Tu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Maonan Pang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Dike Jiang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - You Zhou
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xulong Wu
- Chengdu Agricultural College, Chengdu 611130, China
| | - Xueping Yao
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Luo
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zexiao Yang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Meishen Ren
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yin Wang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
5
|
Makau DN, Prieto C, Martínez-Lobo FJ, Paploski IAD, VanderWaal K. Predicting Antigenic Distance from Genetic Data for PRRSV-Type 1: Applications of Machine Learning. Microbiol Spectr 2023; 11:e0408522. [PMID: 36511691 PMCID: PMC9927307 DOI: 10.1128/spectrum.04085-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
The control of porcine reproductive and respiratory syndrome (PRRS) remains a significant challenge due to the genetic and antigenic variability of the causative virus (PRRSV). Predominantly, PRRSV management includes using vaccines and live virus inoculations to confer immunity against PRRSV on farms. While understanding cross-protection among strains is crucial for the continued success of these interventions, understanding how genetic diversity translates to antigenic diversity remains elusive. We developed machine learning algorithms to estimate antigenic distance in silico, based on genetic sequence data, and identify differences in specific amino acid sites associated with antigenic differences between viruses. First, we obtained antigenic distance estimates derived from serum neutralization assays cross-reacting PRRSV monospecific antisera with virus isolates from 27 PRRSV1 viruses circulating in Europe. Antigenic distances were weakly to moderately associated with ectodomain amino acid distance for open reading frames (ORFs) 2 to 4 (ρ < 0.2) and ORF5 (ρ = 0.3), respectively. Dividing the antigenic distance values at the median, we then categorized the sera-virus pairs into two levels: low and high antigenic distance (dissimilarity). In the machine learning models, we used amino acid distances in the ectodomains of ORFs 2 to 5 and site-wise amino acid differences between the viruses as potential predictors of antigenic dissimilarity. Using mixed-effect gradient boosting models, we estimated the antigenic distance (high versus low) between serum-virus pairs with an accuracy of 81% (95% confidence interval, 76 to 85%); sensitivity and specificity were 86% and 75%, respectively. We demonstrate that using sequence data we can estimate antigenic distance and potential cross-protection between PRRSV1 strains. IMPORTANCE Understanding cross-protection between cocirculating PRRSV1 strains is crucial to reducing losses associated with PRRS outbreaks on farms. While experimental studies to determine cross-protection are instrumental, these in vivo studies are not always practical or timely for the many cocirculating and emerging PRRSV strains. In this study, we demonstrate the ability to rapidly estimate potential immunologic cross-reaction between different PRRSV1 strains in silico using sequence data routinely collected by production systems. These models can provide fast turn-around information crucial for improving PRRS management decisions such as selecting vaccines/live virus inoculation to be used on farms and assessing the risk of outbreaks by emerging strains on farms previously exposed to certain PRRSV strains and vaccine development among others.
Collapse
Affiliation(s)
- Dennis N. Makau
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, USA
| | - Cinta Prieto
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | - I. A. D. Paploski
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, USA
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, USA
| |
Collapse
|
6
|
Fragoso-Saavedra M, Ramírez-Estudillo C, Peláez-González DL, Ramos-Flores JO, Torres-Franco G, Núñez-Muñoz L, Marcelino-Pérez G, Segura-Covarrubias MG, González-González R, Ruiz-Medrano R, Xoconostle-Cázares B, Gayosso-Vázquez A, Reyes-Maya S, Ramírez-Andoney V, Alonso-Morales RA, Vega-López MA. Combined Subcutaneous-Intranasal Immunization With Epitope-Based Antigens Elicits Binding and Neutralizing Antibody Responses in Serum and Mucosae Against PRRSV-2 and SARS-CoV-2. Front Immunol 2022; 13:848054. [PMID: 35432364 PMCID: PMC9008747 DOI: 10.3389/fimmu.2022.848054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
New vaccine design approaches, platforms, and immunization strategies might foster antiviral mucosal effector and memory responses to reduce asymptomatic infection and transmission in vaccinated individuals. Here, we investigated a combined parenteral and mucosal immunization scheme to induce local and serum antibody responses, employing the epitope-based antigens 3BT and NG19m. These antigens target the important emerging and re-emerging viruses PRRSV-2 and SARS-CoV-2, respectively. We assessed two versions of the 3BT protein, which contains conserved epitopes from the GP5 envelope protein of PRRSV-2: soluble and expressed by the recombinant baculovirus BacDual-3BT. On the other hand, NG19m, comprising the receptor-binding motif of the S protein of SARS-CoV-2, was evaluated as a soluble recombinant protein only. Vietnamese mini-pigs were immunized employing different inoculation routes: subcutaneous, intranasal, or a combination of both (s.c.-i.n.). Animals produced antigen-binding and neut1ralizing antibodies in serum and mucosal fluids, with varying patterns of concentration and activity, depending on the antigen and the immunization schedule. Soluble 3BT was a potent immunogen to elicit binding and neutralizing antibodies in serum, nasal mucus, and vaginal swabs. The vectored immunogen BacDual-3BT induced binding antibodies in serum and mucosae, but PRRSV-2 neutralizing activity was found in nasal mucus exclusively when administered intranasally. NG19m promoted serum and mucosal binding antibodies, which showed differing neutralizing activity. Only serum samples from subcutaneously immunized animals inhibited RBD-ACE2 interaction, while mini-pigs inoculated intranasally or via the combined s.c.-i.n. scheme produced subtle neutralizing humoral responses in the upper and lower respiratory mucosae. Our results show that intranasal immunization, alone or combined with subcutaneous delivery of epitope-based antigens, generates local and systemic binding and neutralizing antibodies. Further investigation is needed to evaluate the capability of the induced responses to prevent infection and reduce transmission.
Collapse
Affiliation(s)
- Mario Fragoso-Saavedra
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Carmen Ramírez-Estudillo
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Diana L. Peláez-González
- Unidad de Producción y Experimentación de Animales de Laboratorio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Jorge O. Ramos-Flores
- Unidad de Producción y Experimentación de Animales de Laboratorio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gustavo Torres-Franco
- Unidad de Producción y Experimentación de Animales de Laboratorio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Leandro Núñez-Muñoz
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gabriel Marcelino-Pérez
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - María G. Segura-Covarrubias
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Rogelio González-González
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Roberto Ruiz-Medrano
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Beatriz Xoconostle-Cázares
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Amanda Gayosso-Vázquez
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Silvia Reyes-Maya
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Vianey Ramírez-Andoney
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Rogelio A. Alonso-Morales
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Marco A. Vega-López
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
7
|
Chang YH, Lin MW, Chien MC, Ke GM, Wu IE, Lin RL, Lin CY, Hu YC. Polyplex nanomicelle delivery of self-amplifying RNA vaccine. J Control Release 2021; 338:694-704. [PMID: 34509585 DOI: 10.1016/j.jconrel.2021.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
Self-amplifying RNA (SaRNA) is a burgeoning platform that exploits the replication machinery of alphaviruses such as Venezuelan equine encephalitis (VEE) virus or Sindbis virus (SIN). SaRNA has been used for development of human vaccines, but has not been evaluated for porcine vaccine development. Porcine reproductive and respiratory syndrome virus (PRRSV) causes tremendous economic losses to the worldwide pork industry, but current vaccines trigger delayed neutralizing antibody response and confer only partial protection. Here we first compared two SaRNA systems based on VEE and SIN, and demonstrated that in vitro transcribed VEE-based SaRNA conferred prolonged reporter gene expression and RNA amplification in pig cells with low cytotoxicity, but SIN-based SaRNA imparted evident cytotoxicity and limited gene expression in pig cells. Transfection of VEE-based SaRNA that encodes the major PRRSV antigen dNGP5 (SaRNA-dNGP5) conferred persistent expression for at least 28 days in pig cells. We next complexed SaRNA-dNGP5 with the polyaspartamide block copolymer PEG-PAsp(TEP) to form polyplex nanomicelle with high packaging efficiency and narrow size distribution. The polyplex nanomicelle enabled sustained dNGP5 expression and secretion in vitro. Compared with the commercial PRRS vaccine, nanomicelle delivery of SaRNA-dNGP5 into animal models accelerated the induction of potent neutralizing antibodies with minimal side effects, and elicited stronger IL-4 and IFN-γ responses against homologous and heterologous PRRSV. These properties tackle the problems of current vaccines and implicate the potential of SaRNA-dNGP5 nanomicelle as an effective PRRS vaccine.
Collapse
Affiliation(s)
- Yi-Hao Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Mei-Wei Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 300, Taiwan
| | - Ming-Chen Chien
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Guan-Ming Ke
- Graduate Institute of Animal Vaccine Technology, National Ping Tung University of Science and Technology, Pingtung, Taiwan 912
| | - I-En Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ren-Li Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chin-Yu Lin
- Institute of New Drug Development, China Medical University, Taichung 404, Taiwan.
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
8
|
Akter F, Roychoudhury P, Dutta TK, Subudhi PK, Kumar S, Gali JM, Behera P, Singh YD. Isolation and molecular characterization of GP5 glycoprotein gene of Betaarterivirus suid 2 from Mizoram, India. Virusdisease 2021; 32:748-756. [PMID: 34458505 PMCID: PMC8378527 DOI: 10.1007/s13337-021-00735-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a serious swine disease causing great economic impact worldwide. The emergence of highly pathogenic strains in Asian countries is associated with large scale mortality in all age groups of pigs besides the classical presentation of severe respiratory distress, pneumonia, and a series of reproductive disorders in sows, like late-term abortion, premature farrowing, and an increased number of stillborn piglets. The present study was designed with the aim of isolation and characterization of the Betaarterivirus suid 2 from outbreaks in Mizoram in primary porcine alveolar macrophage and subsequently characterized the GP5 gene sequence of the isolate in terms of phylogenetic analysis and deduce amino acid sequence comparison. Virus propagation was performed in the porcine alveolar macrophage (PAM) primary cell culture and confirmed by immunoperoxidase test, FAT, and nested RT-PCR. The full-length GP5 gene (603nt) was amplified from the isolate and subsequently cloned and sequenced (MN928985). Phylogenetic analysis and sequence comparison of the present isolate was found to have similarity 98.7-98.8% with Myanmar HP-PRRS strains, 98-98.5% with Vietnam strains, 98.2-98.3% with China strains, indicating a close lineage with highly pathogenic PRRS strains. In deduced amino acid sequence analysis, one mutation was found in the primary neutralizing epitope (PNE) at position 39L → I39 and one more mutation was also found in the decoy epitope (DCE) at position 30 N → D30. The amino acid at this position is an N-linked glycosylation site, and mutation of the N-linked glycosylation is an immune escaped strategy adopted by this virus causing a persistent infection in the natural host.
Collapse
Affiliation(s)
- Fatema Akter
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, CAU, Aizawl, Mizoram India
| | - Parimal Roychoudhury
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, CAU, Aizawl, Mizoram India
| | - Tapan Kumar Dutta
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, CAU, Aizawl, Mizoram India
| | - Prasant Kumar Subudhi
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, CAU, Aizawl, Mizoram India
| | - Sanjeev Kumar
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, CAU, Aizawl, Mizoram India
| | - Jagan Mohanarao Gali
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Sciences and Animal Husbandry, CAU, Aizawl, Mizoram India
| | - Parthasarathi Behera
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Sciences and Animal Husbandry, CAU, Aizawl, Mizoram India
| | - Yengkhom Damodar Singh
- Department of Veterinary Pathology, College of Veterinary Sciences and Animal Husbandry, CAU, Aizawl, Mizoram India
| |
Collapse
|
9
|
Jung BK, Kim HR, Jang H, Chang KS. Replacing the decoy epitope of PCV2 capsid protein with epitopes of GP3 and/or GP5 of PRRSV enhances the immunogenicity of bivalent vaccines in mice. J Virol Methods 2020; 284:113928. [PMID: 32650038 DOI: 10.1016/j.jviromet.2020.113928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 04/15/2020] [Accepted: 07/04/2020] [Indexed: 11/18/2022]
Abstract
Porcine circovirus type 2 (PCV2) is the causative agent of postweaning multisystemic wasting syndrome (PMWS), porcine dermatitis and nephropathy syndrome (PDNS), and reproductive failure and causes economic losses in the domestic swine industry. The decoy epitope (169-180 amino acid (aa)) of the PCV2 capsid (Cap) protein is an immunodominant epitope and diverts the immune response away from protective epitopes. The mixed infection of PCV2 and porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most common co-infections in the pig industry and shows more severe clinical symptoms. Linear B-cell antigenic epitopes of PRRSV GP3 epitope Ⅰ (61-72aa) and PRRSV GP5 epitope Ⅳ (187-200aa) efficiently elicited neutralizing antibodies against PRRSV. The recombinant baculovirus expressing the Cap protein (Bac-Cap) was modified by replacing the decoy epitope of the Cap protein with either the PRRSV GP3 epitope Ⅰ, the PRRSV GP5 epitope Ⅳ, or the PRRSV GP3 epitope Ⅰ- GP5 epitope Ⅳ to produce the recombinant baculoviruses Bac-Cap-GP3, Bac-Cap-GP5 and Bac-Cap-GP35. The four recombinant baculoviruses were successfully established and characterized as demonstrated with western blot analysis and immunofluorescence assay. Immunogenicities of the four recombinant baculoviruses in mice were tested in sera harvested at 21 and 42 days post-primary immunization. The titers of antibodies in the sera were determined by a PCV2-specific enzyme-linked immunosorbent assay (ELISA) and a serum neutralization assay. The serum IFN-γ levels were measured by indirect ELISA. The results showed that Bac-Cap-GP3, Bac-Cap-GP5, and Bac-Cap-GP35 elicited higher GP3/GP5 and Cap antibody titers than the Bac-Cap. Virus neutralization test also confirmed that the serum from the Bac-Cap-GP3 immunized mice had high levels of the both PCV2 and PRRSV neutralization antibodies. These findings collectively demonstrated that substituting the decoy epitope of the PCV2 capsid substituted with PRRSV epitopes could be developed into an effective vaccine against PCV2.
Collapse
Affiliation(s)
- Bo-Kyoung Jung
- Department of Clinical Laboratory Science, Catholic University of Pusan, Busan, 48513, Republic of Korea; Libentech Co. LTD, C-722 Daedeok BIZ Center, Techno 4-ro, 17 Yuseong-gu, Daejeon, 34013, Republic of Korea.
| | - Hye-Ran Kim
- Department of Clinical Laboratory Science, College of Medical Sciences, Daegu Haany University, Daegu, 38610, Republic of Korea.
| | - Huyn Jang
- Libentech Co. LTD, C-722 Daedeok BIZ Center, Techno 4-ro, 17 Yuseong-gu, Daejeon, 34013, Republic of Korea.
| | - Kyung-Soo Chang
- Department of Clinical Laboratory Science, Catholic University of Pusan, Busan, 48513, Republic of Korea.
| |
Collapse
|
10
|
Elizondo-Quiroga D, Zapata-Cuellar L, Uribe-Flores JA, Gaona-Bernal J, Camacho-Villegas TA, Manuel-Cabrera CA, Trujillo-Ortega ME, Ramírez-Hernández G, Herradora-Lozano MA, Mercado-García MDC, Gutiérrez Ortega A. An Escherichia coli-Expressed Porcine Reproductive and Respiratory Syndrome Virus Chimeric Protein Induces a Specific Immunoglobulin G Response in Immunized Piglets. Viral Immunol 2019; 32:370-382. [PMID: 31644382 DOI: 10.1089/vim.2019.0047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) still poses a threat to the swine industry worldwide. Currently, commercial vaccines against PRRSV, which consist of modified live or inactivated virus, reduce symptoms and viremia in immunized pigs, but efficacy against heterologous strains is variable. This has led to the development of subunit vaccines that contain viral antigens that show the highest variability. In this work, a chimeric protein comprising short amino acid sequences from glycoprotein 3 (GP3), glycoprotein 4 (GP4), glycoprotein 5 (GP5), and M (matrix protein) proteins of PRRSV was designed and expressed in Escherichia coli. This protein, designated as PRRSVchim, was purified by immobilized metal affinity chromatography and evaluated. PRRSVchim was identified by immunoglobulin G (IgG) presence in serum samples from PRRSV-positive pigs. Also, the protein probed to be antigenic in immunized mice and piglets and provided some degree of protection against challenge with a PRRSV field isolate. These results show the potential of PRRSVchim protein for both PRRSV diagnostic and immunoprophylaxis.
Collapse
Affiliation(s)
- Darwin Elizondo-Quiroga
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Lorena Zapata-Cuellar
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - José Alberto Uribe-Flores
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Jorge Gaona-Bernal
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Tanya Amanda Camacho-Villegas
- CONACYT-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | | | - María Elena Trujillo-Ortega
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gerardo Ramírez-Hernández
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Marco Antonio Herradora-Lozano
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - María Del Cármen Mercado-García
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Abel Gutiérrez Ortega
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| |
Collapse
|
11
|
Development of a cucumber green mottle mosaic virus-based expression vector for the production in cucumber of neutralizing epitopes against a devastating animal virus. J Virol Methods 2019; 269:18-25. [PMID: 30954462 DOI: 10.1016/j.jviromet.2019.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 11/23/2022]
Abstract
Virus-based expression systems have been widely exploited for the production of recombinant proteins in plants during the last thirty years. Advances in technology have boosted scale-up manufacturing of plant-made pharmaceuticals to high levels, via the complementation of transient expression and viral vectors. This combination allows proteins of interest to be produced in plants within a matter of days and thus, is well suited for the development of plant-made vaccines or therapeutics against emerging infectious diseases and potential bioterrorism agents. Several plant-based products are currently in varying stages of clinical development. To investigate the viability of virus-based expression systems for plant-made vaccines against porcine reproductive and respiratory syndrome virus (PRRSV), the most devastating threat to the pork industry in Canada, we cloned the full-length genome of a cucumber green mottle mosaic virus (CGMMV) isolate and developed a CGMMV-based expression vector. We further employed this vector to express the neutralizing epitope (NE) of PRRSV glycoprotein 5 (GP5) in cucumber leaves via agroinfiltration. The coding region of the GP5 NE was inserted downstream of the open reading frame for coat protein (CP) and expressed by a readthrough mechanism. The chimeric virus particles were stable and the expression levels reached as high as 35.84 mg/kg of cucumber leaf fresh weight. This study offers a promising solution to the production of a low cost, versatile and robust vaccine for oral administration against PRRSV through a chimeric virus particle display system.
Collapse
|
12
|
Liu P, Bai Y, Jiang X, Zhou L, Yuan S, Yao H, Yang H, Sun Z. High reversion potential of a cell-adapted vaccine candidate against highly pathogenic porcine reproductive and respiratory syndrome. Vet Microbiol 2018; 227:133-142. [PMID: 30473344 DOI: 10.1016/j.vetmic.2018.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 12/19/2022]
Abstract
Modified live vaccine (MLV) based on highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) is prone to quick reversion of virulence upon circulating in host animals. The objective of this study was to evaluate the virulence reversion potential of HP-PRRSV MLV and to identify elements within the HP-PRRSV genome contributing to this phenomenon. A blind passage, cell-adaptation strategy was attempted to attenuate a HP-PRRSV strain JX143, which was isolated during the atypical PRRS outbreak in 2006. Two attenuated candidates passage 87 (JXM87) and passage 105 (JXM105) used as MLVs showed the best balance of safety and efficacy in 4 week-old piglets (unpublished data). Two studies were performed during which the candidates were assessed for reversion to virulence through five back passages in susceptible piglets (21 ± 3 days of age). Both study results showed increase in clinical signs, pyrexia and lung lesions as well as decreased average daily weight gain as of passage 3 in susceptible pigs clearly, and it indicated that both candidates regained virulence, irrespective of the passage level. Increase in respective parameters was accompanied by increase in viremia in piglets: JXM87 virus titer increased from Passage 1 (P1) 4.40 Lg TCID50/mL to P4 5.75 Lg TCID50/mL, and JXM105 virus titer increased from P1 3.78 Lg TCID50/mL to P4 6.42 Lg TCID50/mL. Next generation sequencing (NGS) was performed on clinical samples (serum, lung tissue) from P4 animals. Sequence analysis comparing P4 materials with their parental strains revealed 10 amino acid mutations in 4 proteins for JXM87 and 14 amino acid mutations in 9 proteins for JXM105, respectively. Interestingly, five amino acid mutations were identical for the two candidates, which were located in nsp1β, GP5a and nsp10 coding regions, suggesting nsp1β, GP5a and nsp10 could contribute to virulence in HP-PRRSV.
Collapse
Affiliation(s)
- Ping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Xuanwu District, Nanjing, 210095, China; Asian Veterinary Research and Development Center, Boehringer Ingelheim (China) Investment Co., Ltd., Pudong District, Shanghai, 201203, China
| | - Yajun Bai
- Asian Veterinary Research and Development Center, Boehringer Ingelheim (China) Investment Co., Ltd., Pudong District, Shanghai, 201203, China
| | - Xiaohong Jiang
- Asian Veterinary Research and Development Center, Boehringer Ingelheim (China) Investment Co., Ltd., Pudong District, Shanghai, 201203, China
| | - Lei Zhou
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Shishan Yuan
- Asian Veterinary Research and Development Center, Boehringer Ingelheim (China) Investment Co., Ltd., Pudong District, Shanghai, 201203, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Xuanwu District, Nanjing, 210095, China.
| | - Hanchun Yang
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100193, China.
| | - Zhi Sun
- Asian Veterinary Research and Development Center, Boehringer Ingelheim (China) Investment Co., Ltd., Pudong District, Shanghai, 201203, China.
| |
Collapse
|
13
|
Kroll J, Piontkowski M, Rathkjen PH, Orveillon FX, Kraft C, Duran OG. Long duration of immunity against a type 1 heterologous PRRS virus challenge in pigs immunised with a novel PRRS MLV vaccine: a randomised controlled study. Porcine Health Manag 2018; 4:11. [PMID: 29785280 PMCID: PMC5954457 DOI: 10.1186/s40813-018-0087-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/26/2018] [Indexed: 02/01/2023] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) is widespread in commercial pig farms worldwide, and has a significant cost to the swine industry. Herd owners need a vaccine that will confer long-lasting immunity to prevent PRRSV infection and transmission. The studies described here evaluated duration of immunity conferred by a European-derived PRRS (isolate 94,881) modified live virus (MLV) vaccine, Ingelvac PRRSFLEX® EU, at 20, 24, and 26 weeks post-vaccination. Primary endpoints were the assessment of gross and histological lung lesions and viral RNA load in lung tissue 10 days following heterologous PRRSV challenge. Secondary endpoints included clinical observations, average daily weight gain (ADWG) and viral RNA load in serum 10 days post-challenge. Three blinded, vaccination-challenge efficacy studies were performed using separate cohorts of pigs (n = 56 per study). Pigs received either Ingelvac PRRSFLEX® EU (Group 1) or placebo (Groups 2 and 3). Groups 1 and 2 were subsequently challenged with heterologous European PRRSV isolate 205,817 at 20, 24 or 26 weeks post-vaccination. Results Mean gross lung lesion scores were significantly lower in Group 1 than in Group 2 at 24 and 26 weeks (p < 0.0001), but not at 20 weeks (p = 0.299). Significantly lower mean histological lung lesion scores were observed in Group 1 versus Group 2 at 20 (p = 0.0065), 24 (p < 0.0001) and 26 weeks (p < 0.0001). Mean viral RNA load in lung tissue was significantly lower in Group 1 than in Group 2 (p < 0.0001) at 20 (p < 0.0001), 24 (p < 0.0001) and 26 weeks (p < 0.0001). Cumulative viral RNA loads in serum during days 1–10 post-challenge were significantly lower in Group 1 than in Group 2 (p < 0.0001) in all studies. A significant increase in ADWG was observed in Group 1 compared with Group 2 at 20 weeks (p = 0.0027) and 24 weeks (p = 0.0004), but not at 26 weeks (p = 0.1041). There were no significant differences in clinical signs post-challenge in any study. Conclusion These results suggest that Ingelvac PRRSFLEX® EU confers long-term immunity to European heterologous PRRSV, which is maintained up to 26 weeks after vaccination, corresponding to the expected lifespan of commercial pigs.
Collapse
Affiliation(s)
- Jeremy Kroll
- Boehringer Ingelheim Animal Health, 2412 South Loop Dr, Ames, IA 50010 USA
| | - Mike Piontkowski
- Boehringer Ingelheim Animal Health, 2621 North Belt Highway, St. Joseph, MO 64506 USA
| | - Poul H Rathkjen
- 3Boehringer Ingelheim Vetmedica GmbH, Binger Straße 173, 55216 Ingelheim, Germany
| | | | - Christian Kraft
- Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG, Bemeroder Str. 31, 30559 Hannover, Germany
| | - Oliver G Duran
- 3Boehringer Ingelheim Vetmedica GmbH, Binger Straße 173, 55216 Ingelheim, Germany
| |
Collapse
|
14
|
Hernández J, Rascón-Castelo E, Bray J, Lokhandwala S, Mwangi W. Immunogenicity of a recombinant adenovirus expressing porcine reproductive and respiratory syndrome virus polyepitopes. Vet Microbiol 2017; 212:7-15. [PMID: 29173591 DOI: 10.1016/j.vetmic.2017.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 12/27/2022]
Abstract
The objective of this work was to evaluate the immunogenicity of a chimeric antigen containing characterized PRRSV epitopes. A synthetic gene, designated HEJ, encoding defined epitopes was used to generate a recombinant adenovirus designed Ad-HEJ. The chimeric antigen included T-cell epitopes from structural and nonstructural proteins, and a neutralizing B-cell epitope. Following a homologous prime-boost immunization, the Ad-HEJ virus elicited significant (p<0.05) epitope-specific IFN-γ responses compared to sham-treatment. Two weeks post-challenge, this response was significantly (p<0.05) higher compared to the negative control treatment. IFN-γ response to PRRSV stimulation in vitro were observed in both groups only after challenge. Antibodies against PRRSV and peptides were detectable following prime-boost immunization in the Ad-HEJ treatment group and the responses increased post-challenge against the virus and against most of the peptides. All the swine were viremic one week post-challenge, but four weeks later, five out of the seven Ad-HEJ vaccinees had cleared the PRRSV, whereas only two of the six negative controls had cleared the virus. The outcome suggests that the adenovirus expressing defined epitopes induced a strong immune response against the peptides, but this response was not sufficient to confer protection against PRRSV challenge.
Collapse
Affiliation(s)
- Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo A.C (CIAD, A.C.), Hermosillo, Sonora, Mexico.
| | - Edgar Rascón-Castelo
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo A.C (CIAD, A.C.), Hermosillo, Sonora, Mexico
| | - Jocelyn Bray
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Shehnaz Lokhandwala
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
15
|
Pathogenicity and antigenicity of a novel NADC30-like strain of porcine reproductive and respiratory syndrome virus emerged in China. Vet Microbiol 2016; 197:93-101. [PMID: 27938690 DOI: 10.1016/j.vetmic.2016.11.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 11/11/2016] [Accepted: 11/12/2016] [Indexed: 01/14/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has spread globally and caused huge economic loss. In recent years, a new kind of highly pathogenic NADC30-like strain has emerged in China. However, the pathogenicity and antigenicity of the virus are not well understood. In this study, PRRSV strain FJ1402 was isolated from piglets with clinical signs in Fujian Province in China in 2014. The complete genomic sequence analysis showed that it arose from recombination of North America NADC30 strain and highly pathogenic PRRSV (HP-PRRSV) in China. Experiment in piglets showed that FJ1402 had similar virulence to HP-PRRSV strain BB0907. The commercial PRRSV modified live vaccines TJM-F92 and R98 could partly provide protective efficacy against FJ1402 challenge in piglets. This should be helpful for preventing and controlling this disease in the future.
Collapse
|
16
|
Evaluation of the Cross-Protective Efficacy of a Chimeric Porcine Reproductive and Respiratory Syndrome Virus Constructed Based on Two Field Strains. Viruses 2016; 8:v8080240. [PMID: 27556483 PMCID: PMC4997602 DOI: 10.3390/v8080240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/27/2016] [Accepted: 08/16/2016] [Indexed: 11/17/2022] Open
Abstract
One of the major hurdles to porcine reproductive and respiratory syndrome (PRRS) vaccinology is the limited or no cross-protection conferred by current vaccines. To overcome this challenge, a PRRS chimeric virus (CV) was constructed using an FL12-based cDNA infectious clone in which open reading frames (ORFs) 3-4 and ORFs 5-6 were replaced with the two Korean field isolates K08-1054 and K07-2273,respectively. This virus was evaluated as a vaccine candidate to provide simultaneous protection against two genetically distinct PRRS virus (PRRSV) strains. Thirty PRRS-negative three-week-old pigs were divided into five groups and vaccinated with CV, K08-1054, K07-2273, VR-2332, or a mock inoculum. At 25 days post-vaccination (dpv), the pigs in each group were divided further into two groups and challenged with either K08-1054 or K07-2273. All of the pigs were observed until 42 dpv and were euthanized for pathological evaluation. Overall, the CV-vaccinated group exhibited higher levels of tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and interleukin-12 (IL-12) expression and of serum virus-neutralizing antibodies compared with the other groups after vaccination and also demonstrated better protection levels against both viruses compared with the challenge control group. Based on these results, it was concluded that CV might be an effective vaccine model that can confer a broader range of cross-protection to various PRRSV strains.
Collapse
|
17
|
Mokhtar H, Pedrera M, Frossard JP, Biffar L, Hammer SE, Kvisgaard LK, Larsen LE, Stewart GR, Somavarapu S, Steinbach F, Graham SP. The Non-structural Protein 5 and Matrix Protein Are Antigenic Targets of T Cell Immunity to Genotype 1 Porcine Reproductive and Respiratory Syndrome Viruses. Front Immunol 2016; 7:40. [PMID: 26909080 PMCID: PMC4755262 DOI: 10.3389/fimmu.2016.00040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/26/2016] [Indexed: 01/01/2023] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is the cause of one of the most economically important diseases affecting swine worldwide. Efforts to develop a next-generation vaccine have largely focused on envelope glycoproteins to target virus-neutralizing antibody responses. However, these approaches have failed to demonstrate the necessary efficacy to progress toward market. T cells are crucial to the control of many viruses through cytolysis and cytokine secretion. Since control of PRRSV infection is not dependent on the development of neutralizing antibodies, it has been proposed that T cell-mediated immunity plays a key role. Therefore, we hypothesized that conserved T cell antigens represent prime candidates for the development a novel PRRS vaccine. Antigens were identified by screening a proteome-wide synthetic peptide library with T cells from cohorts of pigs rendered immune by experimental infections with a closely related (subtype 1) or divergent (subtype 3) PRRSV-1 strain. Dominant T cell IFN-γ responses were directed against the non-structural protein 5 (NSP5), and to a lesser extent, the matrix (M) protein. The majority of NSP5-specific CD8 T cells and M-specific CD4 T cells expressed a putative effector memory phenotype and were polyfunctional as assessed by coexpression of TNF-α and mobilization of the cytotoxic degranulation marker CD107a. Both antigens were generally well conserved among strains of both PRRSV genotypes. Thus, M and NSP5 represent attractive vaccine candidate T cell antigens, which should be evaluated further in the context of PRRSV vaccine development.
Collapse
Affiliation(s)
- Helen Mokhtar
- Virology Department, Animal and Plant Health Agency, Addlestone, UK; Department of Microbial and Cellular Sciences, University of Surrey, Guildford, UK
| | - Miriam Pedrera
- Virology Department, Animal and Plant Health Agency , Addlestone , UK
| | | | - Lucia Biffar
- Virology Department, Animal and Plant Health Agency , Addlestone , UK
| | - Sabine E Hammer
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine Vienna , Vienna , Austria
| | - Lise K Kvisgaard
- National Veterinary Institute, Technical University of Denmark , Frederiksberg , Denmark
| | - Lars E Larsen
- National Veterinary Institute, Technical University of Denmark , Frederiksberg , Denmark
| | - Graham R Stewart
- Department of Microbial and Cellular Sciences, University of Surrey , Guildford , UK
| | | | - Falko Steinbach
- Virology Department, Animal and Plant Health Agency , Addlestone , UK
| | - Simon P Graham
- Virology Department, Animal and Plant Health Agency , Addlestone , UK
| |
Collapse
|
18
|
Abstract
In approaching the development of a veterinary vaccine, researchers must choose from a bewildering array of options that can be combined to enhance benefit. The choice and combination of options is not just driven by efficacy, but also consideration of the cost, practicality, and challenges faced in licensing the product. In this review we set out the different choices faced by veterinary vaccine developers, highlight some issues, and propose some pressing needs to be addressed.
Collapse
Affiliation(s)
- Mark A Chambers
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, UK.
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK.
| | - Simon P Graham
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, UK
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Roberto M La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, UK
| |
Collapse
|
19
|
Roques E, Lessard M, Archambault D. The Cholera Toxin B Subunit (CTB) Fused to the Porcine Arterivirus Matrix M and GP5 Envelope Proteins Fails to Enhance the GP5-Specific Antibody Response in Pigs Immunized with Adenovectors. Mol Biotechnol 2015; 57:701-8. [PMID: 25801418 DOI: 10.1007/s12033-015-9861-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus of the Arteriviridae family. As the current commercial vaccines are incompletely protective effective against PRRSV infection, we developed a vaccine strategy using replicating but non-disseminating adenovectors (rAdVs) expressing the PRRSV M matrix protein in fusion with the neutralizing major epitope-carrying GP5 envelope protein (Roques et al. in Vet Res 44:17, 2013). Although production of GP5-specific antibodies (Abs) was observed, no PRRSV-specific neutralizing Abs (NAbs) were induced in pigs given the rAdVs expressing M-GP5 or M-GP5m (GP5m being a mutant form of GP5). Nevertheless, partial protection was observed in the M-GP5m-rAdV-inoculated pigs experimentally infected with PRRSV. Here, we determined the impact of the cholera toxin B subunit (CTB, known for its adjuvant effect) in fusion with the C-terminus of M-GP5m on the Ab response to PRRSV. Three-week-old pigs were immunized twice both intramuscularly and intranasally at 3-week intervals with rAdV-expressing the green fluorescent protein (rAdV-GFP), rAdV-M-GP5m, or rAdV-M-GP5m-CTB. Pigs immunized with rAdV-M-GP5m showed a high level of serum GP5-specific Abs (as determined by an indirect ELISA). In contrast, CTB in fusion with M-GP5m had an unexpected severe negative impact on GP5-specific Ab production. PRRSV-specific NAbs could not be detected in any pigs of all groups.
Collapse
Affiliation(s)
- Elodie Roques
- Department of Biological Sciences, University of Québec at Montréal, Succursale Centre-Ville, P.O. Box 8888, Montreal, QC, H3C 3P8, Canada
| | | | | |
Collapse
|
20
|
Girard A, Roques E, Massie B, Archambault D. Flagellin in fusion with human rotavirus structural proteins exerts an adjuvant effect when delivered with replicating but non-disseminating adenovectors through the intrarectal route. Mol Biotechnol 2014; 56:394-407. [PMID: 24271565 DOI: 10.1007/s12033-013-9723-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human rotavirus (HRV) is the worldwide leading cause of gastroenteritis in young children. Two live attenuated HRV vaccines have been approved since 2006. However, these live vaccines still have potential risks including reversion of virulence. Adenoviruses are suitable vectors for mucosal administration of subunit vaccines. In addition to the adjuvant effect of certain adenovirus components, the use of an adjuvant like flagellin is also another means to increase the immune response to the immunogen. The aim of this study was to determine whether flagellin in fusion with HRV structural proteins stimulates the innate immune response and enhances the HRV-specific immune response when delivered through the intrarectal route with replicating but non-disseminating adenovector (R-AdV). Salmonella typhimurium flagellin B (FljB) in fusion with HRV VP4Δ::VP7 protein induced IL-1β production in J774A.1 macrophages exposed to the R-AdV. Intrarectal administration of R-AdVs expressing either VP4Δ::VP7 or VP4Δ::VP7::FljB in BALB/c mice resulted in HRV-specific mixed Th1/Th2 immune responses. The HRV-specific antibody response elicited with the use of R-AdV expressing VP4Δ::VP7::FljB was higher than that with R-AdV expressing VP4Δ::VP7. The results also show that the replication capability of R-AdVs contributed to enhance the HRV-specific immune response as compared with that obtained with non-replicative AdVs. This work lays the foundation for using the R-AdV system and FljB-adjuvanted formulation to elicit a mucosal immune response specific to HRV.
Collapse
Affiliation(s)
- Aurélie Girard
- Department of Biological Sciences, University of Québec at Montréal, P.O. Box 8888, Succursale Centre-Ville, Montreal, QC, H3C 3P8, Canada
| | | | | | | |
Collapse
|
21
|
Wu F, Peng K, Tian J, Xu X, Zhou E, Chen H. Immune Response to Fc Tagged GP5 Glycoproteins of Porcine Reproductive and Respiratory Syndrome Virus. Viral Immunol 2014; 27:343-9. [DOI: 10.1089/vim.2014.0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fang Wu
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Kefeng Peng
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Jiao Tian
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Xiaodong Xu
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| | - Enmin Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, People's Republic of China
| | - Hongying Chen
- College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|