1
|
Zhang X, Liu L, Wang J, Liang L, Wang X, Wang G, He Z, Cui X, Du H, Pang B, Li J. The alternation of halobenzoquinone disinfection byproduct on toxicogenomics of DNA damage and repair in uroepithelial cells. ENVIRONMENT INTERNATIONAL 2024; 183:108407. [PMID: 38150806 DOI: 10.1016/j.envint.2023.108407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Halobenzoquinones (HBQs) were recently discovered as an emerging class of drinking water disinfection byproducts with carcinogenic concern. However, the molecular mechanism underlying HBQs-induced DNA damage is not clear. In this study, we integrated in vitro genotoxicity, computational toxicology, and the quantitative toxicogenomic analysis of HBQs on DNA damage/repair pathways in human bladder epithelial cells SV-HUC-1. The results showed that HBQs could induce cytotoxicity with the descending order as 2,6-DIBQ > 2,6-DCBQ ≈ 2,6-DBBQ. Also, HBQs can increase DNA damage in SV-HUC-1 cells and thus generate genotoxicity. However, there is no significant difference in genotoxicity among the three HBQs. The results of molecular docking and molecular dynamics simulation further confirmed that HBQs had high binding fractions and stability to DNA. Toxicogenomic analysis indicated that HBQs interfered with DNA repair pathways, mainly affecting base excision repair, nucleotide excision repair and homologous recombination repair. These results have provided new insights into the underlying molecular mechanisms of HBQs-induced DNA damage, and contributed to the understanding of the relationship between exposure to DBPs and risks of developing bladder cancer.
Collapse
Affiliation(s)
- Xu Zhang
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Lifang Liu
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Jun Wang
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Lanqian Liang
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Xu Wang
- School of Public Health, Jilin University, Changchun, Jilin 130021, China; College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Gaihua Wang
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Ziqiao He
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Xueting Cui
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Haiying Du
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Bo Pang
- School of Public Health, Jilin University, Changchun, Jilin 130021, China.
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
2
|
Characterization and comparative transcriptome analyses of Salmonella enterica Enteritidis strains possessing different chlorine tolerance profiles. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Maucourt B, Vuilleumier S, Bringel F. Transcriptional regulation of organohalide pollutant utilisation in bacteria. FEMS Microbiol Rev 2020; 44:189-207. [PMID: 32011697 DOI: 10.1093/femsre/fuaa002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
Organohalides are organic molecules formed biotically and abiotically, both naturally and through industrial production. They are usually toxic and represent a health risk for living organisms, including humans. Bacteria capable of degrading organohalides for growth express dehalogenase genes encoding enzymes that cleave carbon-halogen bonds. Such bacteria are of potential high interest for bioremediation of contaminated sites. Dehalogenase genes are often part of gene clusters that may include regulators, accessory genes and genes for transporters and other enzymes of organohalide degradation pathways. Organohalides and their degradation products affect the activity of regulatory factors, and extensive genome-wide modulation of gene expression helps dehalogenating bacteria to cope with stresses associated with dehalogenation, such as intracellular increase of halides, dehalogenase-dependent acid production, organohalide toxicity and misrouting and bottlenecks in metabolic fluxes. This review focuses on transcriptional regulation of gene clusters for dehalogenation in bacteria, as studied in laboratory experiments and in situ. The diversity in gene content, organization and regulation of such gene clusters is highlighted for representative organohalide-degrading bacteria. Selected examples illustrate a key, overlooked role of regulatory processes, often strain-specific, for efficient dehalogenation and productive growth in presence of organohalides.
Collapse
Affiliation(s)
- Bruno Maucourt
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Stéphane Vuilleumier
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Françoise Bringel
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| |
Collapse
|
4
|
Li J, Moe B, Liu Y, Li XF. Halobenzoquinone-Induced Alteration of Gene Expression Associated with Oxidative Stress Signaling Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6576-6584. [PMID: 29737854 DOI: 10.1021/acs.est.7b06428] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Halobenzoquinones (HBQs) are emerging disinfection byproducts (DBPs) that effectively induce reactive oxygen species and oxidative damage in vitro. However, the impacts of HBQs on oxidative-stress-related gene expression have not been investigated. In this study, we examined alterations in the expression of 44 genes related to oxidative-stress-induced signaling pathways in human uroepithelial cells (SV-HUC-1) upon exposure to six HBQs. The results show the structure-dependent effects of HBQs on the studied gene expression. After 2 h of exposure, the expression levels of 9 to 28 genes were altered, while after 8 h of exposure, the expression levels of 29 to 31 genes were altered. Four genes ( HMOX1, NQO1, PTGS2, and TXNRD1) were significantly upregulated by all six HBQs at both exposure time points. Ingenuity pathway analysis revealed that the Nrf2 pathway was significantly responsive to HBQ exposure. Other canonical pathways responsive to HBQ exposure included GSH redox reductions, superoxide radical degradation, and xenobiotic metabolism signaling. This study has demonstrated that HBQs significantly alter the gene expression of oxidative-stress-related signaling pathways and contributes to the understanding of HBQ-DBP-associated toxicity.
Collapse
Affiliation(s)
- Jinhua Li
- Department of Health Toxicology, School of Public Health , Jilin University , Changchun , Jilin , China 130021
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G3
| | - Birget Moe
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G3
- Alberta Centre for Toxicology, Department of Physiology and Pharmacology, Faculty of Medicine , University of Calgary , Calgary , Alberta , Canada T2N 4N1
| | - Yanming Liu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G3
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G3
| |
Collapse
|
5
|
Ward WO, Swartz CD, Hanley NM, DeMarini DM. Transcriptional characterization of Salmonella TA100 in log and stationary phase: influence of growth phase on mutagenicity of MX. Mutat Res 2010; 692:19-25. [PMID: 20691712 DOI: 10.1016/j.mrfmmm.2010.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/20/2010] [Accepted: 07/28/2010] [Indexed: 05/29/2023]
Abstract
The Salmonella mutagenicity assay can be performed using cells that are in different growth phases. Thus, the plate-incorporation assay involves plating stationary-phase cells with the mutagen, after which the cells undergo a brief lag phase and, consequently, are exposed to the mutagen and undergo mutagenesis while in the logarithmic (log) phase. In contrast, a liquid-suspension assay involves exposure of either log- or stationary-phase cells to the mutagen for a specified period of time, sometimes followed by a wash, resulting in the cells growing in medium in the absence of the mutagen. To explore global gene expression in Salmonella, and to test for possible effects of growth phase and transcriptional status on mutagenesis, we performed microarray analysis on cells of Salmonella strain TA100 exposed to the drinking-water mutagen MX in either the log or stationary phase. The genes in functional pathways involving amino acid transport and metabolism and energy metabolism were expressed differentially in log-phase cells, whereas genes in functional pathways involving protein trafficking, cell envelope, and two-component systems using common signal transduction were expressed differentially in stationary-phase cells. More than 90% of the ribosomal-protein biosynthesis genes were up-regulated in stationary- versus log-phase cells. MX was equally mutagenic to cells in log- and stationary-phase growth when the results were expressed as mutant frequencies (revertants/survivors/μM), but it was twice as mutagenic in stationary-phase cells when the results were expressed as mutant yields (revertants/nmole or revertants/μM). There was a complex transcriptional response underlying these results, with mucA/B being greatly up-regulated in log-phase cells but umuC/D up-regulated in stationary-phase cells. The transcriptional state of TA100 cells at the time of mutagen treatment may influence the outcome of mutagen treatment.
Collapse
Affiliation(s)
- William O Ward
- U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | | | | |
Collapse
|
6
|
Muellner MG, Attene-Ramos MS, Hudson ME, Wagner ED, Plewa MJ. Human cell toxicogenomic analysis of bromoacetic acid: a regulated drinking water disinfection by-product. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:205-14. [PMID: 19753638 DOI: 10.1002/em.20530] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The disinfection of drinking water is a major achievement in protecting the public health. However, current disinfection methods also generate disinfection by-products (DBPs). Many DBPs are cytotoxic, genotoxic, teratogenic, and carcinogenic and represent an important class of environmentally hazardous chemicals that may carry long-term human health implications. The objective of this research was to integrate in vitro toxicology with focused toxicogenomic analysis of the regulated DBP, bromoacetic acid (BAA) and to evaluate modulation of gene expression involved in DNA damage/repair and toxic responses, with nontransformed human cells. We generated transcriptome profiles for 168 genes with 30 min and 4 hr exposure times that did not induce acute cytotoxicity. Using qRT-PCR gene arrays, the levels of 25 transcripts were modulated to a statistically significant degree in response to a 30 min treatment with BAA (16 transcripts upregulated and nine downregulated). The largest changes were observed for RAD9A and BRCA1. The majority of the altered transcript profiles are genes involved in DNA repair, especially the repair of double strand DNA breaks, and in cell cycle regulation. With 4 hr of treatment the expression of 28 genes was modulated (12 upregulated and 16 downregulated); the largest fold changes were in HMOX1 and FMO1. This work represents the first nontransformed human cell toxicogenomic study with a regulated drinking water disinfection by-product. These data implicate double strand DNA breaks as a feature of BAA exposure. Future toxicogenomic studies of DBPs will further strengthen our limited knowledge in this growing area of drinking water research.
Collapse
Affiliation(s)
- Mark G Muellner
- College of Agricultural, Consumer and Environmental Sciences, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
7
|
Ward WO, Swartz CD, Hanley NM, Whitaker JW, Franzén R, DeMarini DM. Mutagen structure and transcriptional response: induction of distinct transcriptional profiles in Salmonella TA100 by the drinking-water mutagen MX and its homologues. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:69-79. [PMID: 19598237 DOI: 10.1002/em.20512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The relationship between chemical structure and biological activity has been examined for various compounds and endpoints for decades. To explore this question relative to global gene expression, we performed microarray analysis of Salmonella TA100 after treatment under conditions of mutagenesis by the drinking-water mutagen MX and two of its structural homologues, BA-1, and BA-4. Approximately 50% of the genes expressed differentially following MX treatment were unique to MX; the corresponding percentages for BA-1 and BA-4 were 91 and 80, respectively. Among these mutagens, there was no overlap of altered Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways or RegulonDB regulons. Among the 25 Comprehensive Microbial Resource functions altered by these mutagens, only four were altered by more than one mutagen. Thus, the three structural homologues produced distinctly different transcriptional profiles, with none having a single altered KEGG pathway in common. We tested whether structural similarity between a xenobiotic and endogenous metabolites could explain transcriptional changes. For the 830 intracellular metabolites in Salmonella that we examined, BA-1 had a high degree of structural similarity to 2-isopropylmaleate, which is the substrate for isopropylmalate isomerase. The transcription of the gene for this enzyme was suppressed twofold in BA-1-treated cells. Finally, the distinct transcriptional responses of the three structural homologues were not predicted by a set of phenotypic anchors, including mutagenic potency, cytotoxicity, mutation spectra, and physicochemical properties. Ultimately, explanations for varying transcriptional responses induced by compounds with similar structures await an improved understanding of the interactions between small molecules and the cellular machinery.
Collapse
Affiliation(s)
- William O Ward
- Integrated Systems Toxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | | | | | | | | | | |
Collapse
|
8
|
King LC, Hester SD, Warren SH, DeMarini DM. Induction of abasic sites by the drinking-water mutagen MX in Salmonella TA100. Chem Biol Interact 2009; 180:340-3. [PMID: 19539801 DOI: 10.1016/j.cbi.2009.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 02/19/2009] [Accepted: 02/19/2009] [Indexed: 11/17/2022]
Abstract
Mutagen X (MX) is a chlorinated furanone that accounts for more of the mutagenic activity of drinking water than any other disinfection by-product. It is one of the most potent base-substitution mutagens in the Salmonella (Ames) mutagenicity assay, producing primarily GC to TA mutations in TA100. MX does not produce stable DNA adducts in cellular or acellular DNA. However, theoretical calculations predict that it might induce abasic sites, which it does in supercoiled plasmid DNA but not in rodents. To investigate the ability of MX to induce abasic sites in cellular DNA, we used an aldehydic site assay to detect abasic sites in DNA from Salmonella TA100 cells treated for 1.5 h with MX. At 0, 2.3, and 4.6 microM, MX induced mutant frequencies (revertants/10(6) survivors) and percent survivals of 2 (100%), 14.9 (111%), and 59.3 (45%), respectively. The frequencies of abasic sites (sites/10(5) nucleotides) for the control and two concentrations were 5.9, 6.2, and 9.7, respectively, with the frequency at the highest concentration being significant (P<0.001). These results provide some evidence for the ability of MX to induce abasic sites in cellular DNA. However, the lack of a dose response makes it unclear whether this DNA damage underlies the mutagenic activity of MX.
Collapse
Affiliation(s)
- Leon C King
- Environmental Carcinogenesis Division, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | | | | |
Collapse
|
9
|
Puttamreddy S, Carruthers MD, Madsen ML, Minion FC. Transcriptome Analysis of Organisms with Food Safety Relevance. Foodborne Pathog Dis 2008; 5:517-29. [DOI: 10.1089/fpd.2008.0112] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Supraja Puttamreddy
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa
| | - Michael D. Carruthers
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa
| | - Melissa L. Madsen
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa
| | - F. Chris Minion
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa
| |
Collapse
|