1
|
Alhammadi SHA, Baby B, Antony P, Jobe A, Humaid RSM, Alhammadi FJA, Vijayan R. Modeling the Binding of Anticancer Peptides and Mcl-1. Int J Mol Sci 2024; 25:6529. [PMID: 38928234 PMCID: PMC11203456 DOI: 10.3390/ijms25126529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Mcl-1 (myeloid cell leukemia 1), a member of the Bcl-2 family, is upregulated in various types of cancer. Peptides representing the BH3 (Bcl-2 homology 3) region of pro-apoptotic proteins have been demonstrated to bind the hydrophobic groove of anti-apoptotic Mcl-1, and this interaction is responsible for regulating apoptosis. Structural studies have shown that, while there is high overall structural conservation among the anti-apoptotic Bcl-2 (B-cell lymphoma 2) proteins, differences in the surface groove of these proteins facilitates binding specificity. This binding specificity is crucial for the mechanism of action of the Bcl-2 family in regulating apoptosis. Bim-based peptides bind specifically to the hydrophobic groove of Mcl-1, emphasizing the importance of these interactions in the regulation of cell death. Molecular docking was performed with BH3-like peptides derived from Bim to identify high affinity peptides that bind to Mcl-1 and to understand the molecular mechanism of their interactions. The interactions of three identified peptides, E2gY, E2gI, and XXA1_F3dI, were further evaluated using 250 ns molecular dynamics simulations. Conserved hydrophobic residues of the peptides play an important role in their binding and the structural stability of the complexes. Understanding the molecular basis of interaction of these peptides will assist in the development of more effective Mcl-1 specific inhibitors.
Collapse
Affiliation(s)
- Shamsa Husain Ahmed Alhammadi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Bincy Baby
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Priya Antony
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Amie Jobe
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Raghad Salman Mohammed Humaid
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Fatema Jumaa Ahmed Alhammadi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- The Big Data Analytics Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
2
|
Li G, Du Z, Shen P, Zhang J. Novel MeON-glycosides of ursolic acid: Synthesis, antitumor evaluation, and mechanism studies. Fitoterapia 2023; 169:105595. [PMID: 37355050 DOI: 10.1016/j.fitote.2023.105595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
Ursolic acid (UA) is a pentacyclic triterpenoid widely found in in medicinal plants, edible plants, fruits, and flowers. The great interest in this bioactive compound is related to the positive effects in human health. However, its limited solubility, moderate biological activity and poor bioavailability limit the potential and further applications of UA. Here, we explored the efficacy of MeON-Glycosides of UA in inhibiting tumor cell proliferation. A number of compounds showed significant antitumor activity against tested five cancer cell lines. Among them, compound 2a exhibited the most potent activity against HepG2 cells with IC50 values of 3.1 ± 0.5 μM. Especially, compound 2a could induce HepG2 cells apoptosis and reduce mitochondrial membrane potential. Western blot analysis showed that compound 2a up-regulated Bax, cleaved caspase-3/9, cleaved PARP levels and down-regulated Bcl-2 level of HepG2 cells. These results indicated that compound 2a could obviously induce the apoptosis of HepG2 cells. At the same time, compound 2a significantly decreased the expression of p-AKT and p-mTOR, which indicated that compound 2a might exert its cytotoxic effect by targeting PI3K/AKT/mTOR signaling pathway. Moreover, the in silico ADME predictions showed that compound 2a has improved water solubility and other properties. Thus, compound 2a may be a promising antitumor candidate, which may be potentially used to prevent or treat cancers.
Collapse
Affiliation(s)
- Guolong Li
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xianyang, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Zhichao Du
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Pingping Shen
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Jian Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
3
|
Wang P, Zhu H, Liu J, Xie S, Xu S, Chen Y, Xu J, Zhao Y, Zhu Z, Xu J. Design, synthesis, and biological evaluation of novel protopanoxadiol derivatives based PROTACs technology for the treatment of lung cancer. Bioorg Chem 2023; 131:106327. [PMID: 36549254 DOI: 10.1016/j.bioorg.2022.106327] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Protopanoxadiol is a key active ingredient derived from Panax ginseng that is well-known to exhibit anti-tumor activity. Previous research focused on the natural protopanaxadiol derivative AD-1 has demonstrated that it possesses broad spectrum anti-tumor activities in vitro and in vivo. However, its limited activity, selectivity, and cell permeability have impeded its therapeutic application. Herein, a series of novel AD-1 derivatives were designed and synthesized based on proteolysis-targeting chimera (PROTAC) technology by linking AD-1 at the C-3 and C-12 positions with pomalidomide through linkers of alkyl chain of differing lengths to achieve the goal of improving the efficacy of the parent compound. Among these synthesized PROTACs, the representative compound A05 exhibited the most potent anti-proliferative activity against A549 cells. Furthermore, mechanistic studies revealed that compound A05 was able to suppress MDM2 expression, disrupt interactions between p53 and MDM2 and readily induce apoptotic death via the mitochondrial apoptosis pathway. Moreover, the in vivo assays revealed that compound A05 exhibited both anti-proliferative and anti-metastatic activities in the zebrafish tumor xenograft model with A549 cells. Together, our findings suggest that AD-1 based PROTACs associated with the degradation of MDM2 may have promising effects for the treatment of lung cancer and this work provide a foundation for future efforts to develop novel anti-tumor agents from natural products.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Huajian Zhu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Jianmin Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Shaowen Xie
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yu Chen
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jing Xu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuqing Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China.
| | - Zheying Zhu
- School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
4
|
In Vitro Anti-Colorectal Cancer and Anti-Microbial Effects of Pinus roxburghii and Nauplius graveolens Extracts Modulated by Apoptotic Gene Expression. SEPARATIONS 2022. [DOI: 10.3390/separations9120393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The use of phytochemicals is gaining increasing attention for treating cancer morbidity with minimal burden side effects. This study evaluated the cytotoxicity and antimicrobial activities of Pinus roxburghii branch (P. roxburghii) and Nauplius graveolens (N. graveolens) extracts in vitro. Cell viability was estimated using MTT assay. DNA fragmentation was determined to detect apoptotic pathway initiation. Mechanistically, the apoptotic pathway was tracked by estimating the relative mRNA expression levels of the Bcl-2, Bax, Cas3, NF-κB, and PI3k genes by qRT-PCR. P. roxburghii exhibited moderate antioxidant activity, while N. graveolens possessed highly significant (p < 0.05) scavenging activity against DPPH and ABTS assays. HPLC analysis demonstrated that catechin and chlorogenic acid were the predominant polyphenolic compounds in P. roxburghii and N. graveolens, respectively. The P. roxburghii and N. graveolens extracts inhibited the viability of HCT-116 cells with IC50 values of 30.6 µg mL−1 and 26.5 µg mL−1, respectively. DNA fragmentation analysis showed that the proposed extracts induced apoptosis in HCT-116 cells. Moreover, the IC50 doses of the selected extracts significantly (p < 0.05) upregulated Bax and cleaved Cas-3, and downregulated Bcl-2, NF-κB, and PI3k genes versus the GAPDH gene as a housekeeping gene in comparison to the control group. The Bax/Bcl-2 ratio was raised upon treatment. The mentioned extracts exhibited antimicrobial action against all tested bacteria and fungi. The highest antibacterial effect was recorded against E. coli, with inhibition zones of 12.0 and 11.2 mm for P. roxburghii and N. graveolens, respectively. On the other hand, the highest antifungal action was registered for Penicillium verrucosum and A. niger, with inhibition zones of 9.8 and 9.2 mm for the tested extracts, respectively. In conclusion, the outcomes of this study indicate that P. roxburghii and N. graveolens extracts could potentially be used as anticancer, antibacterial, and antifungal agents.
Collapse
|
5
|
Wang WY, Yang ZH, Li AL, Liu QS, Sun Y, Gu W. Design, synthesis, anticancer activity and mechanism studies of novel 2-amino-4-aryl-pyrimidine derivatives of ursolic acid. NEW J CHEM 2022. [DOI: 10.1039/d1nj05294b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A series of novel 2-amino-4-aryl-pyrimidine derivatives of ursolic acid were designed, synthesized, and evaluated for their anticancer activities against four cancer cell lines (MCF-7, HeLa, HepG2, and A549) and a human hepatocyte cell line (LO2) via MTT assay.
Collapse
Affiliation(s)
- Wen-Yan Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Zi-Hui Yang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - A-Liang Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Qing-Song Liu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yue Sun
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
6
|
Wang WY, Wu WY, Li AL, Liu QS, Sun Y, Gu W. Synthesis, anticancer evaluation and mechanism studies of novel indolequinone derivatives of ursolic acid. Bioorg Chem 2021; 109:104705. [PMID: 33618252 DOI: 10.1016/j.bioorg.2021.104705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/15/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022]
Abstract
A series of novel indolequinone derivatives of ursolic acid bearing ester, hydrazide, or amide moieties were designed, synthesized, and screened for their in vitro antiproliferative activities against three cancer cell lines (MCF-7, HeLa, and HepG2) and a normal gastric mucosal cell line (Ges-1). A number of compounds showed significant activity against tested cancer cell lines. Among them, compound 6t exhibited the most potent activity against three cancer cell lines with IC50 values of 1.66 ± 0.21, 3.16 ± 0.24, and 10.35 ± 1.63 µM, respectively, and considerably lower cytotoxicity to Ges-1 cells. Especially, compound 6t could arrest cell cycle at S phase, suppress the migration of MCF-7 cells, elevate intracellular reactive oxygen species (ROS) level, and decrease mitochondrial membrane potential. Western blot analysis showed that compound 6t upregulated Bax, cleaved caspase-3/9, cleaved PARP levels and downregulated Bcl-2 level of MCF-7 cells. All these results indicated that compound 6t could significantly induce the apoptosis of MCF-7 cells. Meanwhile, compound 6t markedly decreased p-AKT and p-mTOR expression, which revealed that compound 6t probably exerted its cytotoxicity through targeting PI3K/AKT/mTOR signaling pathway. Therefore, compound 6t could be a promising lead for the discovery of novel anticancer agents.
Collapse
Affiliation(s)
- Wen-Yan Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Wen-Yi Wu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - A-Liang Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qing-Song Liu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yue Sun
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
7
|
Shen L, Xia M, Zhang Y, Luo H, Dong D, Sun L. Mitochondrial integration and ovarian cancer chemotherapy resistance. Exp Cell Res 2021; 401:112549. [PMID: 33640393 DOI: 10.1016/j.yexcr.2021.112549] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
Ovarian cancer has been nicknamed the "silent killer". Most patients with ovarian cancer are diagnosed at an advanced stage of the disease for the first time because of its insignificant early clinical symptoms. In addition to the difficulty of early screening and delay in diagnosis, the high recurrence rate and relapsed refractory status of patients with ovarian cancer are also important factors for their high mortality. Patients with recurrent ovarian cancer often use neoadjuvant chemotherapy followed by surgery as the first choice. However, this is often accompanied by chemotherapy resistance, leading to treatment failure and a mortality rate of more than 90%. In the past, it was believed that the anti-tumor effect of chemotherapeutics represented by cisplatin was entirely attributable to its irreversible damage to DNA, but current research has found that it can inhibit cell growth and cytotoxicity via nuclear and cytoplasmic coordinated integration. As an important hub and integration platform for intracellular signal communication, mitochondria are responsible for multiple key factors during tumor occurrence and development, such as metabolic reprogramming, acquisition of metastatic ability, and chemotherapy drug response. The role of mitochondria in ovarian cancer chemotherapy resistance is becoming increasingly recognized. In this review, we discuss the cellular interactive regulatory network surrounding mitochondria, elucidate the mechanisms of tumor cell survival under chemotherapy, and discuss potential means of interfering with mitochondrial function as a novel anti-cancer therapy.
Collapse
Affiliation(s)
- Luyan Shen
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Meihui Xia
- Department of Obstetrics, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Zhang
- Laboratory Teaching Center of Basic Medicine, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Haoge Luo
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Delu Dong
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
8
|
Rational design, synthesis and biological evaluation of triphenylphosphonium-ginsenoside conjugates as mitochondria-targeting anti-cancer agents. Bioorg Chem 2020; 103:104150. [DOI: 10.1016/j.bioorg.2020.104150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/07/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
|
9
|
Xiao S, Wang X, Xu L, Li T, Cao J, Zhao Y. Novel panaxadiol triazole derivatives induce apoptosis in HepG-2 cells through the mitochondrial pathway. Bioorg Chem 2020; 102:104078. [DOI: 10.1016/j.bioorg.2020.104078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 12/17/2022]
|
10
|
Ma L, Wang X, Li W, Miao D, Li Y, Lu J, Zhao Y. Synthesis and anti-cancer activity studies of dammarane-type triterpenoid derivatives. Eur J Med Chem 2020; 187:111964. [PMID: 31862444 DOI: 10.1016/j.ejmech.2019.111964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 02/08/2023]
Abstract
Two series of novel derivatives of AD-2, an active ginsenoside derived from ginseng were designed and synthesized. Five human cancer cell lines (MGC-803, SGC-7901, A549, MCF-7, PC-3 cells) and one normal ovarian cell IOSE144 were employed to evaluate the anti-proliferative activity. Most of derivatives possessed obvious enhanced activity compared with AD-2. Among them, compound 4c displayed the most excellent activity in all tested cancer cell lines, especially A549 cells with an IC50 value of 1.07 ± 0.05 μM. The underlying mechanism study suggested that 4c induced S-phase arrest and apoptosis in A549 cells. Increasing the level of ROS and inducing collapse of MMP in cells treated with 4c were also proved. Moreover, Western blot analysis showed that the expression level of p53 and p21 were obviously increased. 4c could remarkably up-regulate the expression of cyt c in cytosol, the ratio of Bax to Bcl-2 and activate caspase-3/9/PARP. Besides, the expression level of MDM2 was remarkably decreased. The results indicated that 4c caused apoptosis through the mitochondrial pathway, which ROS generation was probably involved in, and had the potent to serve as anti-proliferative agent.
Collapse
Affiliation(s)
- Lu Ma
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xude Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wei Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dongyu Miao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yan Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jincai Lu
- Department of Medicinal Plant, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yuqing Zhao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China; Key Laboratory of Structure-based Drug Design &; Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
11
|
Abd-Rabou AA, Bharali DJ, Mousa SA. Viramidine-Loaded Galactosylated Nanoparticles Induce Hepatic Cancer Cell Apoptosis and Inhibit Angiogenesis. Appl Biochem Biotechnol 2019; 190:305-324. [PMID: 31346920 DOI: 10.1007/s12010-019-03090-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/05/2019] [Indexed: 01/19/2023]
Abstract
Current estimates indicate that hepatocarcinoma is the leading cause of death globally. There is interest in utilizing nanomedicine for cancer therapy to overcome side effects of chemo-interventions. Ribavirin, an antiviral nucleoside inhibitor, accumulates inside red blood cells, causing anemia. Its analog, viramidine, can concentrate within hepatocytes and spare red blood cells, thus limiting anemia. Hepatocarcinoma cells have a large number of asialoglycoprotein receptors on their membranes that can bind galactosyl-terminating solid lipid nanoparticles (Gal-SLN) and internalize them. Here, viramidine, 5-fluorouracil, and paclitaxel-loaded Gal-SLN were characterized inside cells. Cytotoxicities of free-drug, nano-void, and drug-loaded Gal-SLN were evaluated using HepG2 cells; over 3 days, cell viability was measured. To test the mechanistic pathway, we investigated in vitro apoptosis using flow cytometry and in ovo angiogenesis using the CAM assay. Results showed that 1 and 2 μM of the viramidine-encapsulated Gal-SLN had the highest cytotoxic effect, achieving 80% cell death with a steady increase over 3 days, with induction of apoptosis and reduction of necrosis and angiogenesis, compared to free-drugs. Gal-SLN application on breast cancer MCF-7 cells confirmed its specificity against liver cancer HepG2 cells. We conclude that viramidine-encapsulated Gal-SLN has anticancer and anti-angiogenic activities against hepatocarcinoma.
Collapse
Affiliation(s)
- Ahmed A Abd-Rabou
- Hormones Department, Medical Research Division, National Research Centre, Giza, 12622, Egypt.,Stem Cell Laboratory, Center of Excellence for Advanced Science, National Research Centre, Giza, 12622, Egypt
| | - Dhruba J Bharali
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, 12144, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, 12144, USA.
| |
Collapse
|
12
|
Potential Analysis and Preparation of Chitosan Oligosaccharides as Oral Nutritional Supplements of Cancer Adjuvant Therapy. Int J Mol Sci 2019; 20:ijms20040920. [PMID: 30791594 PMCID: PMC6412339 DOI: 10.3390/ijms20040920] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/14/2019] [Accepted: 02/17/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer is considered to have an adverse influence on health around the world. Chitosan, a linear polysaccharide that contains copolymers of β-1-4 linked d-glucosamine and N-acetyl-d-glucosamine units, has been widely used in the field of biomedicine, owing to its nontoxicity, biocompatibility, biodegradability, and hemocompatibility. This study was aimed at preparing the chitosan oligosaccharides (COS) and examining its ability on suppressing lung cancer in vitro and in vivo. Human non-small-cell lung cancer A549 cells model and C57BL/6 mice bearing lung cancer model were adopted. COS showed inhibition on the viability and proliferation of lung carcinoma cells (A549) in time-dependent manners, but no cytotoxicity to human liver cell (HL-7702). Moreover, COS could significantly increase Bax expression of A549 cells while decreasing Bcl-2 expression. COS supplementation significantly inhibited the growth of Lewis tissues and promoted necrosis of tumor cells in vivo. After treatment with COS, significantly elevated concentrations of Bax and reduced expression of Bcl-2 in tumor tissues, as well as elevated levels of TNF-α, IL-2, Fas and Fas-L in mice serum were observed (p < 0.05). In conclusion, COS had certain anti-tumor effects and potential application as a synergic functional food ingredient to prevent cancer.
Collapse
|
13
|
Schneiderova M, Naccarati A, Pardini B, Rosa F, Gaetano CD, Jiraskova K, Opattova A, Levy M, Veskrna K, Veskrnova V, Buchler T, Landi S, Vodicka P, Vymetalkova V. MicroRNA-binding site polymorphisms in genes involved in colorectal cancer etiopathogenesis and their impact on disease prognosis. Mutagenesis 2018; 32:533-542. [PMID: 29048575 DOI: 10.1093/mutage/gex026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
According to the Vogelstein's model of colorectal carcinogenesis, genetic variations in highly penetrant genes may be involved in the colorectal cancer (CRC) pathogenesis. Similarly, aberrant function and/or altered expression of microRNAs (miRNAs) often occur in CRC. In this context, polymorphisms in miRNA-binding sites (miRSNPs) may affect miRNA/target gene interaction, resulting in differential mRNA/protein expression and increased susceptibility to common diseases. To explore this phenomenon, we have mined the 3' untranslated regions (3'UTRs) of genes known to be frequently mutated in CRC to search for miRSNPs and tested their association with CRC risk and clinical outcome. Eight miRSNPs (rs1804191, rs397768, rs41116 in APC; rs1137918, s227091, rs4585 in ATM; rs712, rs1137282, rs61764370 in KRAS; rs8674 in PARP1 and rs16950113 in SMAD7) were tested for their association with CRC risk in a case-control study (1111 cases and 1469 healthy controls). The role of these miRSNPs was also investigated in relation to clinical outcome on a subset of patients with complete follow-up. rs8679 within PARP1 was associated with CRC risk and patients' survival. In the dominant model, carriers of at least one C allele were at a decreased risk of cancer (P = 0.05). The CC genotype in rs8679 was also associated with an increased risk of recurrence/progression in patients that received 5-FU-based chemotherapy (log-rank test P = 0.03). Carriers of the homozygous variant genotype TT for rs712 in KRAS gene were associated with a decreased risk of rectal cancer (odds ratio (OR) = 0.65, 95% confidence intervals (CI) 0.43-1.00, P = 0.05) while individuals with colon cancer carrying the heterozygous GT genotype showed a longer overall survival (OS) (P = 0.04). We provide the first evidence that variations in potential miRNA-binding target sites in the 3' UTR of PARP1 gene may modulate CRC risk and prognosis after therapy. Further studies are needed to replicate our finding and assess miRSNPs as predictive biomarkers in independent populations.
Collapse
Affiliation(s)
- Michaela Schneiderova
- Department of Surgery, General University Hospital in Prague, Prague 12800, Czech Republic
| | - Alessio Naccarati
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14200 Prague, Czech Republic
- Molecular and Genetic Epidemiology; Genomic Variation in Human Populations and Complex Diseases, IIGM Italian Institute for Genomic Medicine, Via Nizza 52, 10126 Turin, Italy
| | - Barbara Pardini
- Molecular and Genetic Epidemiology; Genomic Variation in Human Populations and Complex Diseases, IIGM Italian Institute for Genomic Medicine, Via Nizza 52, 10126 Turin, Italy
| | - Fabio Rosa
- Molecular and Genetic Epidemiology; Genomic Variation in Human Populations and Complex Diseases, IIGM Italian Institute for Genomic Medicine, Via Nizza 52, 10126 Turin, Italy
| | - Cornelia Di Gaetano
- Molecular and Genetic Epidemiology; Genomic Variation in Human Populations and Complex Diseases, IIGM Italian Institute for Genomic Medicine, Via Nizza 52, 10126 Turin, Italy
- Department of Medical Sciences, University of Turin, Via Verdi 8, 10124 Turin, Italy
| | - Katerina Jiraskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14200 Prague, Czech Republic
- Institute of Biology Medicine Genet., First Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08 Prague, Czech Republic
| | - Alena Opattova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14200 Prague, Czech Republic
- Institute of Biology Medicine Genet., First Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08 Prague, Czech Republic
| | - Miroslav Levy
- Department of Surgery, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic
| | - Karel Veskrna
- Department of Surgery, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic
| | - Veronika Veskrnova
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic
| | - Stefano Landi
- Department of Biology, University of Pisa, Via Derna 1, 56126 Pisa, Italy
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14200 Prague, Czech Republic
- Institute of Biology Medicine Genet., First Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08 Prague, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14200 Prague, Czech Republic
- Institute of Biology Medicine Genet., First Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08 Prague, Czech Republic
| |
Collapse
|
14
|
Gupta R, Ghosh S. JNK3 phosphorylates Bax protein and induces ability to form pore on bilayer lipid membrane. BIOCHIMIE OPEN 2017; 4:41-46. [PMID: 29450140 PMCID: PMC5801821 DOI: 10.1016/j.biopen.2017.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/01/2017] [Indexed: 11/15/2022]
Abstract
Bax is a pro-apoptotic cytosolic protein. In this work native (unphosphorylated) and JNK3 phosphorylated Bax proteins are studied on artificial bilayer membranes for pore formation. Phosphorylated Bax formed pore on the bilayer lipid membrane whereas native one does not. In cells undergoing apoptosis the pore formed by the phosphorylated Bax could be important in cytochrome c release from the mitochondrial intermembrane space to the cytosol. The low conductance (1.5 nS) of the open state of the phosphorylated Bax pore corresponds to pore diameter of 0.9 nm which is small to release cytochrome c (∼3.4 nm). We hypothesized that JNK3 phosphorylated Bax protein can form bigger pores after forming complexes with other mitochondrial proteins like VDAC, t-Bid etc. to release cytochrome c.
Collapse
Affiliation(s)
- Rajeev Gupta
- Department of Physiology, All India Institute of Medical Sciences, India
| | - Subhendu Ghosh
- Department of Biophysics, University of Delhi South Campus, India
| |
Collapse
|
15
|
Naik S, MacFarlane M, Sarin A. Notch4 Signaling Confers Susceptibility to TRAIL-Induced Apoptosis in Breast Cancer Cells. J Cell Biochem 2016; 116:1371-80. [PMID: 25704336 DOI: 10.1002/jcb.25094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 01/23/2015] [Indexed: 12/20/2022]
Abstract
Notch signaling has been established as a key regulator of cell fate in development, differentiation, and homeostasis. In breast cancers, increased Notch1 and Notch4 activity have been implicated in tumor progression and, accumulation of the intracellular domain of Notch4 (ICN4), reported in basal breast cancer cells. While, TNF-related apoptosis-inducing ligand (TRAIL) receptor agonists have demonstrated selectively in targeting tumor cells, the majority of primary tumors are resistant to TRAIL. This necessitates the identification of factors that might regulate TRAIL sensitivity. Here we investigate TRAIL sensitivity in tumor cells following the modulation of Notch (1 and 4) activity using siRNA-mediated depletions or ectopic expression of GFP-tagged constructs of the intracellular domains of Notch1 (ICN1) or Notch4 (ICN4). Our findings suggest that Notch4, but not Notch1 signaling, sensitizes breast tumor cells to TRAIL-induced apoptosis. ICN4-induced sensitization to TRAIL is characterized by CBF1-dependence. Apoptosis was mediated via caspase-8 activation and regulated by the Bcl-2 family pro-apoptotic proteins Bak and Bid. Finally, we present evidence that endogenous Notch4 activity regulates susceptibility to TRAIL in basal-like breast cancer cells but not in cell lines of luminal origin. These experiments reveal a hitherto unexplored Notch4-TRAIL signaling axis in breast cancer cells.
Collapse
Affiliation(s)
- Shambhavi Naik
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, Karnataka, India.,MRC Toxicology Unit, Hodgkin Building, Leicester, UK
| | | | - Apurva Sarin
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, Karnataka, India
| |
Collapse
|
16
|
Rajan S, Choi M, Nguyen QT, Ye H, Liu W, Toh HT, Kang C, Kamariah N, Li C, Huang H, White C, Baek K, Grüber G, Yoon HS. Structural transition in Bcl-xL and its potential association with mitochondrial calcium ion transport. Sci Rep 2015; 5:10609. [PMID: 26023881 PMCID: PMC4448555 DOI: 10.1038/srep10609] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/21/2015] [Indexed: 11/17/2022] Open
Abstract
Bcl-2 family proteins are key regulators for cellular homeostasis in response to apoptotic stimuli. Bcl-xL, an antiapoptotic Bcl-2 family member, undergoes conformational transitions, which leads to two conformational states: the cytoplasmic and membrane-bound. Here we present the crystal and small-angle X-ray scattering (SAXS) structures of Bcl-xL treated with the mild detergent n-Octyl β-D-Maltoside (OM). The detergent-treated Bcl-xL forms a dimer through three-dimensional domain swapping (3DDS) by swapping helices α6-α8 between two monomers. Unlike Bax, a proapoptotic member of the Bcl-2 family, Bcl-xL is not converted to 3DDS homodimer upon binding BH3 peptides and ABT-737, a BH3 mimetic drug. We also designed Bcl-xL mutants which cannot dimerize and show that these mutants reduced mitochondrial calcium uptake in MEF cells. This illustrates the structural plasticity in Bcl-xL providing hints toward the probable molecular mechanism for Bcl-xL to play a regulatory role in mitochondrial calcium ion transport.
Collapse
Affiliation(s)
- Sreekanth Rajan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Minjoo Choi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Quoc Toan Nguyen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Hong Ye
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Wei Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Hui Ting Toh
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - CongBao Kang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore 138669
| | - Neelagandan Kamariah
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Singapore 138671
| | - Chi Li
- Molecular Targets Program, James Graham Brown Center and Department of Medicine, Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Huiya Huang
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Carl White
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Kwanghee Baek
- Department of Genetic Engineering, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Singapore 138671
| | - Ho Sup Yoon
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- Department of Genetic Engineering, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea
| |
Collapse
|
17
|
Asmaa MJS, Al-Jamal HAN, Ang CY, Asan JM, Seeni A, Johan MF. Apoptosis Induction in MV4-11 and K562 Human Leukemic Cells by Pereskia sacharosa (Cactaceae) Leaf Crude Extract. Asian Pac J Cancer Prev 2014; 15:475-81. [DOI: 10.7314/apjcp.2014.15.1.475] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
18
|
Cheng MR, Li Q, Wan T, He B, Han J, Chen HX, Yang FX, Wang W, Xu HZ, Ye T, Zha BB. Galactosylated chitosan/5-fluorouracil nanoparticles inhibit mouse hepatic cancer growth and its side effects. World J Gastroenterol 2012; 18:6076-87. [PMID: 23155336 PMCID: PMC3496884 DOI: 10.3748/wjg.v18.i42.6076] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 07/18/2012] [Accepted: 07/28/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the curative effect of galactosylated chitosan (GC)/5-fluorouracil (5-FU) nanoparticles in liver caner mice and its side effects.
METHODS: The GC/5-FU nanoparticle is a nanomaterial made by coupling GC and 5-FU. The release experiment was performed in vitro. The orthotropic liver cancer mouse models were established and divided into control, GC, 5-FU and GC/5-FU groups. Mice in the control and GC group received an intravenous injection of 200 μL saline and GC, respectively. Mice in the 5-FU and GC/5-FU groups received 200 μL (containing 0.371 mg 5-FU) 5-FU and GC/5-FU, respectively. The tumor weight and survival time were observed. The cell cycle and apoptosis in tumor tissues were monitored by flow cytometry. The expression of p53, Bax, Bcl-2, caspase-3 and poly adenosine 50-diphosphate-ribose polymerase 1 (PARP-1) was detected by immunohistochemistry, reverse transcription-polymerase chain reaction and Western blot. The serum blood biochemical parameters and cytotoxic activity of natural killer (NK) cell and cytotoxicity T lymphocyte (CTL) were measured.
RESULTS: The GC/5-FU nanoparticle is a sustained release system. The drug loading was 6.12% ± 1.36%, the encapsulation efficiency was 81.82% ± 5.32%, and the Zeta potential was 10.34 ± 1.43 mV. The tumor weight in the GC/5-FU group (0.4361 ± 0.1153 g vs 1.5801 ± 0.2821 g, P < 0.001) and the 5-FU (0.7932 ± 0.1283 g vs 1.5801 ± 0.2821 g, P < 0.001) was significantly lower than that in the control group; GC/5-FU treatment can significantly lower the tumor weight (0.4361 ± 0.1153 g vs 0.7932 ± 0.1283 g, P < 0.001), and the longest median survival time was seen in the GC/5-FU group, compared with the control (12 d vs 30 d, P < 0.001), GC (13 d vs 30 d, P < 0.001) and 5-FU groups (17 d vs 30 d, P < 0.001). Flow cytometry revealed that compared with the control, GC/5-FU caused a higher rate of G0-G1 arrest (52.79% ± 13.42% vs 23.92% ± 9.09%, P = 0.014 ) and apoptosis (2.55% ± 1.10% vs 11.13% ± 11.73%, P < 0.001) in hepatic cancer cells. Analysis of the apoptosis pathways showed that GC/5-FU upregulated the expression of p53 at both the protein and the mRNA levels, which in turn lowered the ratio of Bcl-2/Bax expression; this led to the release of cytochrome C into the cytosol from the mitochondria and the subsequent activation of caspase-3. Upregulation of caspase-3 expression decreased the PARP-1 at both the mRNA and the protein levels, which contributed to apoptosis. 5-FU increased the levels of aspartate aminotransferase and alanine aminotransferase, and decreased the numbers of platelet, white blood cell and lymphocyte and cytotoxic activities of CTL and NK cells, however, there were no such side effects in the GC/5-FU group.
CONCLUSION: GC/5-FU nanoparticles can significantly inhibit the growth of liver cancer in mice via the p53 apoptosis pathway, and relieve the side effects and immunosuppression of 5-FU.
Collapse
|
19
|
Cheng M, He B, Wan T, Zhu W, Han J, Zha B, Chen H, Yang F, Li Q, Wang W, Xu H, Ye T. 5-Fluorouracil nanoparticles inhibit hepatocellular carcinoma via activation of the p53 pathway in the orthotopic transplant mouse model. PLoS One 2012; 7:e47115. [PMID: 23077553 PMCID: PMC3471936 DOI: 10.1371/journal.pone.0047115] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/12/2012] [Indexed: 12/13/2022] Open
Abstract
Biodegradable polymer nanoparticle drug delivery systems provide targeted drug delivery, improved pharmacokinetic and biodistribution, enhanced drug stability and fewer side effects. These drug delivery systems are widely used for delivering cytotoxic agents. In the present study, we synthesized GC/5-FU nanoparticles by combining galactosylated chitosan (GC) material with 5-FU, and tested its effect on liver cancer in vitro and in vivo. The in vitro anti-cancer effects of this sustained release system were both dose- and time-dependent, and demonstrated higher cytotoxicity against hepatic cancer cells than against other cell types. The distribution of GC/5-FU in vivo revealed the greatest accumulation in hepatic cancer tissues. GC/5-FU significantly inhibited tumor growth in an orthotropic liver cancer mouse model, resulting in a significant reduction in tumor weight and increased survival time in comparison to 5-FU alone. Flow cytometry and TUNEL assays in hepatic cancer cells showed that GC/5-FU was associated with higher rates of G0-G1 arrest and apoptosis than 5-FU. Analysis of apoptosis pathways indicated that GC/5-FU upregulates p53 expression at both protein and mRNA levels. This in turn lowers Bcl-2/Bax expression resulting in mitochondrial release of cytochrome C into the cytosol with subsequent caspase-3 activation. Upregulation of caspase-3 expression decreased poly ADP-ribose polymerase 1 (PARP-1) at mRNA and protein levels, further promoting apoptosis. These findings indicate that sustained release of GC/5-FU nanoparticles are more effective at targeting hepatic cancer cells than 5-FU monotherapy in the mouse orthotropic liver cancer mouse model.
Collapse
Affiliation(s)
- Mingrong Cheng
- Department of General Surgery, Zhoupu Hospital of Shanghai Pudong New Area, Shanghai, China
- Department of General Surgery, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Bing He
- Department of General Surgery, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Tao Wan
- Biomedical Materials and Engineering Center, Wuhan University of Technology, Wuhan, China
| | - Weiping Zhu
- Department of General Surgery, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Jiang Han
- Department of General Surgery, Zhoupu Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Bingbing Zha
- Department of Endocrine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Houxiang Chen
- Biomedical Materials and Engineering Center, Wuhan University of Technology, Wuhan, China
| | - Fengxiao Yang
- Biomedical Materials and Engineering Center, Wuhan University of Technology, Wuhan, China
| | - Qing Li
- Department of General Medicine, Pujiang Hospital of Shanghai Fifth People’s Hospital, Shanghai, China
| | - Wei Wang
- Department of General Surgery, Zhoupu Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Hongzhi Xu
- Department of General Surgery, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Tao Ye
- Department of General Surgery, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Koshy C, Parthiban M, Sowdhamini R. 100 ns Molecular Dynamics Simulations to Study Intramolecular Conformational Changes in Bax. J Biomol Struct Dyn 2010; 28:71-83. [DOI: 10.1080/07391102.2010.10507344] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Abstract
Ion channels located in the outer and inner mitochondrial membranes are key regulators of cellular signaling for life and death. Permeabilization of mitochondrial membranes is one of the most critical steps in the progression of several cell death pathways. The mitochondrial apoptosis-induced channel (MAC) and the mitochondrial permeability transition pore (mPTP) play major roles in these processes. Here, the most recent progress and current perspectives about the roles of MAC and mPTP in mitochondrial membrane permeabilization during cell death are presented. The crosstalk signaling of MAC and mPTP formation/activation mediated by cytosolic Ca(2+) signaling, Bcl-2 family proteins, and other mitochondrial ion channels is also discussed. Understanding the mechanisms that regulate opening and closing of MAC and mPTP has revealed new therapeutic targets that potentially could control cell death in pathologies such as cancer, ischemia/reperfusion injuries, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Shin-Young Ryu
- Department of Basic Sciences, New York University College of Dentistry, New York, USA
| | | | | | | | | |
Collapse
|
22
|
Peixoto PM, Ryu SY, Kinnally KW. Mitochondrial ion channels as therapeutic targets. FEBS Lett 2010; 584:2142-52. [PMID: 20178788 PMCID: PMC2872129 DOI: 10.1016/j.febslet.2010.02.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/12/2010] [Accepted: 02/16/2010] [Indexed: 12/31/2022]
Abstract
The study of mitochondrial ion channels changed our perception of these double-wrapped organelles from being just the power house of a cell to the guardian of a cell's fate. Mitochondria communicate with the cell through these special channels. Most of the time, the message is encoded by ion flow across the mitochondrial outer and inner membranes. Potassium, sodium, calcium, protons, nucleotides, and proteins traverse the mitochondrial membranes in an exquisitely regulated manner to control a myriad of processes, from respiration and mitochondrial morphology to cell proliferation and cell death. This review is an update on both well established and putative mitochondrial channels regarding their composition, function, regulation, and therapeutic potential.
Collapse
Affiliation(s)
| | - Shin-Young Ryu
- New York University College of Dentistry, New York, NY, 10002
| | | |
Collapse
|
23
|
Martinez-Caballero S, Dejean LM, Kinnally MS, Oh KJ, Mannella CA, Kinnally KW. Assembly of the mitochondrial apoptosis-induced channel, MAC. J Biol Chem 2009; 284:12235-45. [PMID: 19261612 DOI: 10.1074/jbc.m806610200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although Bcl-2 family proteins control intrinsic apoptosis, the mechanisms underlying this regulation are incompletely understood. Patch clamp studies of mitochondria isolated from cells deficient in one or both of the pro-apoptotic proteins Bax and Bak show that at least one of the proteins must be present for formation of the cytochrome c-translocating channel, mitochondrial apoptosis-induced channel (MAC), and that the single channel behaviors of MACs containing exclusively Bax or Bak are similar. Truncated Bid catalyzes MAC formation in isolated mitochondria containing Bax and/or Bak with a time course of minutes and does not require VDAC1 or VDAC3. Mathematical analysis of the stepwise changes in conductance associated with MAC formation is consistent with pore assembly by a barrel-stave model. Assuming the staves are two transmembrane alpha-helices in Bax and Bak, mature MAC pores would typically contain approximately 9 monomers and have diameters of 5.5-6 nm. The mitochondrial permeability data are inconsistent with formation of lipidic pores capable of transporting megadalton-sized macromolecules as observed with recombinant Bax in liposomes.
Collapse
Affiliation(s)
- Sonia Martinez-Caballero
- Department of Basic Sciences, New York University College of Dentistry, New York, New York 10010, USA
| | | | | | | | | | | |
Collapse
|
24
|
The alpha-5 helix of Bax is sensitive to ubiquitin-dependent degradation. Biochem Biophys Res Commun 2008; 371:10-5. [PMID: 18395515 DOI: 10.1016/j.bbrc.2008.03.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 03/20/2008] [Indexed: 11/22/2022]
Abstract
The pro-apoptotic protein Bax is instable in many cancer cells but the mechanism of Bax degradation remains unclear. Four different lengths of deductive Bax degradation sensitive (BDS) sequences within BH3-BH1 region, BDS-1 (Bax 67-124), BDS-3 (Bax 74-107), BDS-5 (Bax 67-107), and BDS-7 (Bax 74-124), were tested for the susceptibility to ubiquitin-dependent degradation. Both BDS-1 and BDS-7 which contain the alpha5 helix, a putative pore-forming domain of Bax, are sensitive to proteasome-dependent degradation and ubiquitin-conjugation. The Bax alpha5-deletion mutant (Bax-Deltaalpha5) was stable and also maintained its apoptosis-inducing ability. Deletion of helices alpha1 and part of alpha2 (Bax-Delta1-66) or helices alpha3 and alpha4 (Bax-Deltaalpha3,4) did not affect the sensitivity to degradation. However, Bax-Delta1-66 mutant was not able to induce apoptosis. Thus, we propose that the alpha5 helix of Bax is sensitive to ubiquitin-dependent degradation. Moreover, Bax mutant retains its pro-apoptosis ability when the alpha5 helix is deleted.
Collapse
|