1
|
Grigoryan EN. Impact of Microgravity and Other Spaceflight Factors on Retina of Vertebrates and Humans In Vivo and In Vitro. Life (Basel) 2023; 13:1263. [PMID: 37374046 PMCID: PMC10305389 DOI: 10.3390/life13061263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Spaceflight (SF) increases the risk of developmental, regenerative, and physiological disorders in animals and humans. Astronauts, besides bone loss, muscle atrophy, and cardiovascular and immune system alterations, undergo ocular disorders affecting posterior eye tissues, including the retina. Few studies revealed abnormalities in the development and changes in the regeneration of eye tissues in lower vertebrates after SF and simulated microgravity. Under microgravity conditions, mammals show disturbances in the retinal vascular system and increased risk of oxidative stress that can lead to cell death in the retina. Animal studies provided evidence of gene expression changes associated with cellular stress, inflammation, and aberrant signaling pathways. Experiments using retinal cells in microgravity-modeling systems in vitro additionally indicated micro-g-induced changes at the molecular level. Here, we provide an overview of the literature and the authors' own data to assess the predictive value of structural and functional alterations for developing countermeasures and mitigating the SF effects on the human retina. Further emphasis is given to the importance of animal studies on the retina and other eye tissues in vivo and retinal cells in vitro aboard spacecraft for understanding alterations in the vertebrate visual system in response to stress caused by gravity variations.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
2
|
Theotokis P, Manthou ME, Deftereou TE, Miliaras D, Meditskou S. Addressing Spaceflight Biology through the Lens of a Histologist-Embryologist. Life (Basel) 2023; 13:life13020588. [PMID: 36836946 PMCID: PMC9965490 DOI: 10.3390/life13020588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Embryogenesis and fetal development are highly delicate and error-prone processes in their core physiology, let alone if stress-associated factors and conditions are involved. Space radiation and altered gravity are factors that could radically affect fertility and pregnancy and compromise a physiological organogenesis. Unfortunately, there is a dearth of information examining the effects of cosmic exposures on reproductive and proliferating outcomes with regard to mammalian embryonic development. However, explicit attention has been given to investigations exploring discrete structures and neural networks such as the vestibular system, an entity that is viewed as the sixth sense and organically controls gravity beginning with the prenatal period. The role of the gut microbiome, a newly acknowledged field of research in the space community, is also being challenged to be added in forthcoming experimental protocols. This review discusses the data that have surfaced from simulations or actual space expeditions and addresses developmental adaptations at the histological level induced by an extraterrestrial milieu.
Collapse
Affiliation(s)
- Paschalis Theotokis
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Dimosthenis Miliaras
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Soultana Meditskou
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|
3
|
Hariom SK, Nelson EJR. Effects of short-term hypergravity on hematopoiesis and vasculogenesis in embryonic zebrafish. LIFE SCIENCES IN SPACE RESEARCH 2022; 34:21-29. [PMID: 35940686 DOI: 10.1016/j.lssr.2022.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Microgravity and hypergravity-induced changes affect both molecular and organismal responses as demonstrated in various animal models. In addition to its inherent advantages, zebrafish have been shown to be incredibly resilient to altered gravity conditions. To understand the effects of altered gravity on animal physiology, especially the cardiovascular system, we used 2 h centrifugations to simulate short-term hypergravity and investigated its effects on zebrafish development. Morphological and in situ hybridization observations show a comparable overall development in both control and treated embryos. Spatiotemporal analysis revealed varied gene expression patterns across different developmental times. Genes driving primitive hematopoiesis (tal1, gata1) and vascular specificity (vegf, etv2) displayed an early onset of expression following hypergravity exposure. Upregulated expression of hematopoiesis-linked genes, such as runx1, cmyb, nos, and pdgf family demonstrate short-term hypergravity to be a factor inducing definitive hematopoiesis through a combinatorial mechanism. We speculate that these short-term hypergravity-induced physiological changes in the developing zebrafish embryos constitute a rescue mechanism to regain homeostasis.
Collapse
Affiliation(s)
- Senthil Kumar Hariom
- SMV124A, Gene Therapy Laboratory, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN 632 014, India
| | - Everette Jacob Remington Nelson
- SMV124A, Gene Therapy Laboratory, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN 632 014, India.
| |
Collapse
|
4
|
Rosa JT, Laizé V, Gavaia PJ, Cancela ML. Fish Models of Induced Osteoporosis. Front Cell Dev Biol 2021; 9:672424. [PMID: 34179000 PMCID: PMC8222987 DOI: 10.3389/fcell.2021.672424] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
Osteopenia and osteoporosis are bone disorders characterized by reduced bone mineral density (BMD), altered bone microarchitecture and increased bone fragility. Because of global aging, their incidence is rapidly increasing worldwide and novel treatments that would be more efficient at preventing disease progression and at reducing the risk of bone fractures are needed. Preclinical studies are today a major bottleneck to the collection of new data and the discovery of new drugs, since they are commonly based on rodent in vivo systems that are time consuming and expensive, or in vitro systems that do not exactly recapitulate the complexity of low BMD disorders. In this regard, teleost fish, in particular zebrafish and medaka, have recently emerged as suitable alternatives to study bone formation and mineralization and to model human bone disorders. In addition to the many technical advantages that allow faster and larger studies, the availability of several fish models that efficiently mimic human osteopenia and osteoporosis phenotypes has stimulated the interest of the academia and industry toward a better understanding of the mechanisms of pathogenesis but also toward the discovery of new bone anabolic or antiresorptive compounds. This mini review recapitulates the in vivo teleost fish systems available to study low BMD disorders and highlights their applications and the recent advances in the field.
Collapse
Affiliation(s)
- Joana T Rosa
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,S2 AQUA - Sustainable and Smart Aquaculture Collaborative Laboratory, Olhão, Portugal
| | - Paulo J Gavaia
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,GreenCoLab - Associação Oceano Verde, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.,Algarve Biomedical Center, University of Algarve, Faro, Portugal
| |
Collapse
|
5
|
Grigoryan EN, Radugina EA. Behavior of Stem-Like Cells, Precursors for Tissue Regeneration in Urodela, Under Conditions of Microgravity. Stem Cells Dev 2019; 28:423-437. [PMID: 30696352 DOI: 10.1089/scd.2018.0220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We summarize data from our experiments on stem-like cell-dependent regeneration in amphibians in microgravity. Considering its deleterious effect on many tissues, we asked whether microgravity is compatible with reparative processes, specifically activation and proliferation of source cells. Experiments were conducted using tailed amphibians, which combine profound regenerative capabilities with high robustness, allowing an in vivo study of lens, retina, limb, and tail regeneration in challenging settings of spaceflight. Microgravity promoted stem-like cell proliferation to a varying extent (up to 2-fold), and it seemed to speed up source cell dedifferentiation, as well as sequential differentiation in retina, lens, and limb, leading to formation of bigger and more developed regenerates than in 1g controls. It also promoted proliferation and hypertrophy of Müller glial cells, eliciting a response similar to reactive gliosis. A significant increase in stem-like cell proliferation was mostly beneficial for regeneration and only in rare cases caused moderate tissue growth abnormalities. It is important that microgravity yielded a lasting effect even if applied before operations. We hypothesize on the potential mechanisms of gravity-dependent changes in stem-like cell behavior, including fibroblast growth factor 2 signaling pathway and heat shock proteins, which were affected in our experimental settings. Taken together, our data indicate that microgravity does not disturb the natural regenerative potential of newt stem-like cells, and, depending on the system, even stimulates their dedifferentiation, proliferation, and differentiation. We discuss these data along with publications on mammalian stem cell behavior in vitro and invertebrate regeneration in vivo in microgravity. In vivo data are very scarce and require further research using contemporary methods of cell behavior analysis to elucidate mechanisms of stem cell response to altered gravity. They are relevant for both practical applications, such as managing human reparative responses in spaceflight, and fundamental understanding of stem cell biology.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - Elena A Radugina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Franz-Odendaal TA, Edsall SC. Long-Term Effects of Simulated Microgravity and Vibration Exposure on Skeletal Development in Zebrafish. Stem Cells Dev 2018; 27:1278-1286. [DOI: 10.1089/scd.2017.0266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
| | - Sara C. Edsall
- Department of Biology, Mount Saint Vincent University, Nova Scotia, Canada
| |
Collapse
|
7
|
Ogneva IV, Loktev SS, Sychev VN. Cytoskeleton structure and total methylation of mouse cardiac and lung tissue during space flight. PLoS One 2018; 13:e0192643. [PMID: 29768411 PMCID: PMC5955502 DOI: 10.1371/journal.pone.0192643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 01/26/2018] [Indexed: 12/27/2022] Open
Abstract
The purpose of this work was to evaluate the protein and mRNA expression levels of multiple cytoskeletal proteins in the cardiac and lung tissue of mice that were euthanized onboard the United States Orbital Segment of the International Space Station 37 days after the start of the SpaceX-4 mission (September 2014, USA). The results showed no changes in the cytoskeletal protein content in the cardiac and lung tissue of the mice, but there were significant changes in the mRNA expression levels of the associated genes, which may be due to an increase in total genome methylation. The mRNA expression levels of DNA methylases, the cytosine demethylases Tet1 and Tet3, histone acetylase and histone deacetylase did not change, and the mRNA expression level of cytosine demethylase Tet2 was significantly decreased.
Collapse
Affiliation(s)
- Irina V. Ogneva
- Cell Biophysics Lab, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
- I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- * E-mail:
| | - Sergey S. Loktev
- Cell Biophysics Lab, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Vladimir N. Sychev
- Cell Biophysics Lab, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Chowdhury B, Seetharam A, Wang Z, Liu Y, Lossie AC, Thimmapuram J, Irudayaraj J. A Study of Alterations in DNA Epigenetic Modifications (5mC and 5hmC) and Gene Expression Influenced by Simulated Microgravity in Human Lymphoblastoid Cells. PLoS One 2016; 11:e0147514. [PMID: 26820575 PMCID: PMC4731572 DOI: 10.1371/journal.pone.0147514] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 01/05/2016] [Indexed: 12/22/2022] Open
Abstract
Cells alter their gene expression in response to exposure to various environmental changes. Epigenetic mechanisms such as DNA methylation are believed to regulate the alterations in gene expression patterns. In vitro and in vivo studies have documented changes in cellular proliferation, cytoskeletal remodeling, signal transduction, bone mineralization and immune deficiency under the influence of microgravity conditions experienced in space. However microgravity induced changes in the epigenome have not been well characterized. In this study we have used Next-generation Sequencing (NGS) to profile ground-based “simulated” microgravity induced changes on DNA methylation (5-methylcytosine or 5mC), hydroxymethylation (5-hydroxymethylcytosine or 5hmC), and simultaneous gene expression in cultured human lymphoblastoid cells. Our results indicate that simulated microgravity induced alterations in the methylome (~60% of the differentially methylated regions or DMRs are hypomethylated and ~92% of the differentially hydroxymethylated regions or DHMRs are hyperhydroxymethylated). Simulated microgravity also induced differential expression in 370 transcripts that were associated with crucial biological processes such as oxidative stress response, carbohydrate metabolism and regulation of transcription. While we were not able to obtain any global trend correlating the changes of methylation/ hydroxylation with gene expression, we have been able to profile the simulated microgravity induced changes of 5mC over some of the differentially expressed genes that includes five genes undergoing differential methylation over their promoters and twenty five genes undergoing differential methylation over their gene-bodies. To the best of our knowledge, this is the first NGS-based study to profile epigenomic patterns induced by short time exposure of simulated microgravity and we believe that our findings can be a valuable resource for future explorations.
Collapse
Affiliation(s)
- Basudev Chowdhury
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, United States of America
- Bindley Biosciences Center, Discovery Park, Purdue University, West Lafayette IN, 47907, United States of America
| | - Arun Seetharam
- Bioinformatics Core, Purdue University, West Lafayette, IN, 47907, United States of America
| | - Zhiping Wang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine Indianapolis, Indianapolis, IN, 46202, United States of America
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine Indianapolis, Indianapolis, IN, 46202, United States of America
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine Indianapolis, Indianapolis, IN, 46202, United States of America
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine Indianapolis, Indianapolis, IN, 46202, United States of America
| | - Amy C. Lossie
- Bindley Biosciences Center, Discovery Park, Purdue University, West Lafayette IN, 47907, United States of America
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, United States of America
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, West Lafayette, IN, 47907, United States of America
- * E-mail: (JI); (JT)
| | - Joseph Irudayaraj
- Bindley Biosciences Center, Discovery Park, Purdue University, West Lafayette IN, 47907, United States of America
- Department of Agriculture and Biological Engineering, Purdue University, West Lafayette, IN, 47907, United States of America
- * E-mail: (JI); (JT)
| |
Collapse
|
9
|
Rea G, Cristofaro F, Pani G, Pascucci B, Ghuge SA, Corsetto PA, Imbriani M, Visai L, Rizzo AM. Microgravity-driven remodeling of the proteome reveals insights into molecular mechanisms and signal networks involved in response to the space flight environment. J Proteomics 2015; 137:3-18. [PMID: 26571091 DOI: 10.1016/j.jprot.2015.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED Space is a hostile environment characterized by high vacuum, extreme temperatures, meteoroids, space debris, ionospheric plasma, microgravity and space radiation, which all represent risks for human health. A deep understanding of the biological consequences of exposure to the space environment is required to design efficient countermeasures to minimize their negative impact on human health. Recently, proteomic approaches have received a significant amount of attention in the effort to further study microgravity-induced physiological changes. In this review, we summarize the current knowledge about the effects of microgravity on microorganisms (in particular Cupriavidus metallidurans CH34, Bacillus cereus and Rhodospirillum rubrum S1H), plants (whole plants, organs, and cell cultures), mammalian cells (endothelial cells, bone cells, chondrocytes, muscle cells, thyroid cancer cells, immune system cells) and animals (invertebrates, vertebrates and mammals). Herein, we describe their proteome's response to microgravity, focusing on proteomic discoveries and their future potential applications in space research. BIOLOGICAL SIGNIFICANCE Space experiments and operational flight experience have identified detrimental effects on human health and performance because of exposure to weightlessness, even when currently available countermeasures are implemented. Many experimental tools and methods have been developed to study microgravity induced physiological changes. Recently, genomic and proteomic approaches have received a significant amount of attention. This review summarizes the recent research studies of the proteome response to microgravity inmicroorganisms, plants, mammalians cells and animals. Current proteomic tools allow large-scale, high-throughput analyses for the detection, identification, and functional investigation of all proteomes. Understanding gene and/or protein expression is the key to unlocking the mechanisms behind microgravity-induced problems and to finding effective countermeasures to spaceflight-induced alterations but also for the study of diseases on earth. Future perspectives are also highlighted.
Collapse
Affiliation(s)
- Giuseppina Rea
- Institute of Crystallography, National Research Council of Italy (CNR), Via Salaria km 29.300, 00015 Monterotondo Scalo, Rome, Italy
| | - Francesco Cristofaro
- Department of Molecular Medicine, Center for Health Technologies (CHT), University of Pavia, Via Taramelli 3/b, 27100 Pavia, Italy
| | - Giuseppe Pani
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via D. Trentacoste 2, 20134 Milan, Italy
| | - Barbara Pascucci
- Institute of Crystallography, National Research Council of Italy (CNR), Via Salaria km 29.300, 00015 Monterotondo Scalo, Rome, Italy
| | - Sandip A Ghuge
- Institute of Crystallography, National Research Council of Italy (CNR), Via Salaria km 29.300, 00015 Monterotondo Scalo, Rome, Italy
| | - Paola Antonia Corsetto
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via D. Trentacoste 2, 20134 Milan, Italy
| | - Marcello Imbriani
- Department of Public Health, Experimental Medicine and Forensics, University of Pavia, V.le Forlanini 8, Pavia, Italy; Department of Occupational Medicine, Toxicology and Environmental Risks, S. Maugeri Foundation, IRCCS, Via S. Boezio 28, 27100 Pavia, Italy
| | - Livia Visai
- Department of Molecular Medicine, Center for Health Technologies (CHT), University of Pavia, Via Taramelli 3/b, 27100 Pavia, Italy; Department of Occupational Medicine, Toxicology and Environmental Risks, S. Maugeri Foundation, IRCCS, Via S. Boezio 28, 27100 Pavia, Italy.
| | - Angela M Rizzo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via D. Trentacoste 2, 20134 Milan, Italy
| |
Collapse
|
10
|
Aceto J, Nourizadeh-Lillabadi R, Marée R, Dardenne N, Jeanray N, Wehenkel L, Aleström P, van Loon JJWA, Muller M. Zebrafish Bone and General Physiology Are Differently Affected by Hormones or Changes in Gravity. PLoS One 2015; 10:e0126928. [PMID: 26061167 PMCID: PMC4465622 DOI: 10.1371/journal.pone.0126928] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/09/2015] [Indexed: 11/18/2022] Open
Abstract
Teleost fish such as zebrafish (Danio rerio) are increasingly used for physiological, genetic and developmental studies. Our understanding of the physiological consequences of altered gravity in an entire organism is still incomplete. We used altered gravity and drug treatment experiments to evaluate their effects specifically on bone formation and more generally on whole genome gene expression. By combining morphometric tools with an objective scoring system for the state of development for each element in the head skeleton and specific gene expression analysis, we confirmed and characterized in detail the decrease or increase of bone formation caused by a 5 day treatment (from 5dpf to 10 dpf) of, respectively parathyroid hormone (PTH) or vitamin D3 (VitD3). Microarray transcriptome analysis after 24 hours treatment reveals a general effect on physiology upon VitD3 treatment, while PTH causes more specifically developmental effects. Hypergravity (3g from 5dpf to 9 dpf) exposure results in a significantly larger head and a significant increase in bone formation for a subset of the cranial bones. Gene expression analysis after 24 hrs at 3g revealed differential expression of genes involved in the development and function of the skeletal, muscular, nervous, endocrine and cardiovascular systems. Finally, we propose a novel type of experimental approach, the "Reduced Gravity Paradigm", by keeping the developing larvae at 3g hypergravity for the first 5 days before returning them to 1g for one additional day. 5 days exposure to 3g during these early stages also caused increased bone formation, while gene expression analysis revealed a central network of regulatory genes (hes5, sox10, lgals3bp, egr1, edn1, fos, fosb, klf2, gadd45ba and socs3a) whose expression was consistently affected by the transition from hyper- to normal gravity.
Collapse
Affiliation(s)
- Jessica Aceto
- Laboratory for Organogenesis and Regeneration, GIGA- Research, University of Liège, B-4000, Liège, Sart-Tilman, Belgium
| | | | - Raphael Marée
- GIGA & Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium
| | - Nadia Dardenne
- Unité de soutien méth. en Biostatistique et Epidémiologie, University of Liège, B23, Sart Tilman, Liège, Belgium
| | - Nathalie Jeanray
- Laboratory for Organogenesis and Regeneration, GIGA- Research, University of Liège, B-4000, Liège, Sart-Tilman, Belgium
| | - Louis Wehenkel
- GIGA & Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium
| | - Peter Aleström
- BasAM, Norwegian University of Life Sciences, Vetbio, 0033 Dep, Oslo, Norway
| | - Jack J. W. A. van Loon
- DESC (Dutch Experiment Support Center), Department of Oral and Maxillofacial Surgery / Oral Pathology, VU University Medical Center & Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
- ESA-ESTEC, TEC-MMG, NL-2200 AG, Noordwijk, The Netherlands
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration, GIGA- Research, University of Liège, B-4000, Liège, Sart-Tilman, Belgium
| |
Collapse
|
11
|
Edsall SC, Franz-Odendaal TA. An assessment of the long-term effects of simulated microgravity on cranial neural crest cells in zebrafish embryos with a focus on the adult skeleton. PLoS One 2014; 9:e89296. [PMID: 24586670 PMCID: PMC3930699 DOI: 10.1371/journal.pone.0089296] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/20/2014] [Indexed: 11/20/2022] Open
Abstract
It is becoming increasingly important to address the long-term effects of exposure to simulated microgravity as the potential for space tourism and life in space become prominent topics amongst the World's governments. There are several studies examining the effects of exposure to simulated microgravity on various developmental systems and in various organisms; however, few examine the effects beyond the juvenile stages. In this study, we expose zebrafish embryos to simulated microgravity starting at key stages associated with cranial neural crest cell migration. We then analyzed the skeletons of adult fish. Gross observations and morphometric analyses show that exposure to simulated microgravity results in stunted growth, reduced ossification and severe distortion of some skeletal elements. Additionally, we investigated the effects on the juvenile skull and body pigmentation. This study determines for the first time the long-term effects of embryonic exposure to simulated microgravity on the developing skull and highlights the importance of studies investigating the effects of altered gravitational forces.
Collapse
Affiliation(s)
- Sara C. Edsall
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
12
|
He W, Ye L, Li S, Liu H, Wang Q, Fu X, Han W, Chen Z. Stirred suspension culture improves embryoid body formation and cardiogenic differentiation of genetically modified embryonic stem cells. Biol Pharm Bull 2012; 35:308-16. [PMID: 22382315 DOI: 10.1248/bpb.35.308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Embryonic stem cells (ESCs) can propagate unlimitedly in vitro and differentiate into cardiomyocytes, which have been proposed as unlimited cell sources for cardiac cell therapy. This was limited by difficulties in large-scale generation of pure cardiomyocytes. In this study, we used stirred bioreactors to optimize the differentiation condition for mass production of embryoid bodies (EBs) derived from genetically modified mouse ESCs. Stirred suspension culture could more efficiently produce EBs and have a more uniform EB population without large necrotic centers, compared with the conventional static culture. Importantly, the cardiac-specific gene expressions (GATA binding protein 4, α-cardiac myosin heavy chain and myosin light chain-2v) were increased within EBs cultured in stirred bioreactor. Stirred suspension culture significantly increased the proportion of spontaneously contracting EBs, yielded a greater percentage of α-sarcomeric actinin-positive cells detected via flow cytometry, and harvested relatively more cardiomyocytes after G418 selection. Stirred suspension culture provided a more ideal culture condition facilitating the growth of EBs and enhancing the cardiogenic differentiation of genetically modified ESCs, which may be valuable in large-scale generation of pure cardiomyocytes.
Collapse
Affiliation(s)
- Wenjun He
- Department of Cell Engineering, Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Lindsey BW, Dumbarton TC, Moorman SJ, Smith FM, Croll RP. Effects of simulated microgravity on the development of the swimbladder and buoyancy control in larval zebrafish (Danio rerio). ACTA ACUST UNITED AC 2011; 315:302-13. [DOI: 10.1002/jez.677] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 12/29/2010] [Accepted: 02/07/2011] [Indexed: 11/06/2022]
|
14
|
Moorman SJ, Shorr AZ. The primary cilium as a gravitational force transducer and a regulator of transcriptional noise. Dev Dyn 2008; 237:1955-9. [PMID: 18366139 DOI: 10.1002/dvdy.21493] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Circumstantial evidence has suggested that the primary cilium might function as a gravity sensor. Direct evidence of its gravity-sensing function has recently been provided by studies of rohon beard neurons. These neurons showed changes in the variability of gene expression levels that are linked to the cyclic changes in the Earth's gravitational field due to the Sun and Moon. These cyclic changes also cause the tides. Rohon beard neurons, after the primary cilia have been selectively destroyed, no longer show changes in gene expression variability linked to the cyclic changes in Earth's gravitational field. After the neurons regrow their primary cilia, the link between variability in gene expression levels and the Earth's changing gravitational field returns. This suggests two new functions for the primary cilia, detecting the cyclical changes in the Earth's gravitational field and transducing those changes into changes in the variability (stochastic nature) of gene expression.
Collapse
Affiliation(s)
- Stephen J Moorman
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|
15
|
Marquette ML, Byerly D, Sognier M. The effects of three-dimensional cell culture on single myoblasts. In Vitro Cell Dev Biol Anim 2008; 44:105-14. [DOI: 10.1007/s11626-007-9078-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 12/07/2007] [Indexed: 01/09/2023]
|
16
|
zur Nieden NI, Cormier JT, Rancourt DE, Kallos MS. Embryonic stem cells remain highly pluripotent following long term expansion as aggregates in suspension bioreactors. J Biotechnol 2007; 129:421-32. [PMID: 17306403 DOI: 10.1016/j.jbiotec.2007.01.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 12/08/2006] [Accepted: 01/03/2007] [Indexed: 10/23/2022]
Abstract
Increasing attention has been drawn towards pluripotent embryonic stem cells (ESCs) and their potential use as the primary material in various tissue engineering applications. Successful clinical implementation of this technology would require a quality controlled reproducible culture system for the expansion of the cells to be used in the generation of functional tissues. Recently, we showed that suspension bioreactors could be used in the regulated large-scale expansion of highly pluripotent murine ESCs. The current study illustrates that these bioreactor protocols can be adapted for long term culture and that murine ESC cultures remain highly undifferentiated, when serially passaged in suspension bioreactors for extended periods. Flow cytometry analysis and gene expression profiles of several pluripotency markers, in addition to colony and embryoid body (EB) formation tests were conducted at the start and end of the experiment and all showed that the ESC cultures remained highly undifferentiated over extended culture time in suspension. In vivo teratoma formation and in vitro differentiation into neural, cardiomyocyte, osteoblast and chondrocyte lineages, performed at the end of the long term culture, further supported the presence of functional and undifferentiated ESCs in the expanded population. Overall, this system enables the controlled expansion of highly pluripotent murine ESC populations.
Collapse
Affiliation(s)
- Nicole I zur Nieden
- Institute of Maternal & Child Health, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | |
Collapse
|
17
|
Renn J, Winkler C, Schartl M, Fischer R, Goerlich R. Zebrafish and medaka as models for bone research including implications regarding space-related issues. PROTOPLASMA 2006; 229:209-14. [PMID: 17180503 DOI: 10.1007/s00709-006-0215-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 11/20/2005] [Indexed: 05/10/2023]
Abstract
Teleost fish develop bones directly from mesenchymal condensations and from cartilage precursors. At the cellular level, the involved cell populations share many features with their mammalian counterparts. In addition, several genes are already described in fish showing high homology in amino acid sequence and expression with the corresponding genes of tetrapods that are involved in bone metabolism. Therefore, analysis of the underlying molecular mechanism in fish, in particular zebrafish and medaka, will increase the knowledge in teleosts. Furthermore, it will help to identify novel genes and regulatory pathways of bone homeostasis and skeletal disorders also in higher vertebrates, including disorders caused by altered gravity.
Collapse
Affiliation(s)
- J Renn
- Department of Molecular Biotechnology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany.
| | | | | | | | | |
Collapse
|
18
|
Shimada N, Moorman SJ. Changes in gravitational force cause changes in gene expression in the lens of developing zebrafish. Dev Dyn 2006; 235:2686-94. [PMID: 16894605 DOI: 10.1002/dvdy.20901] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Gravity has been a constant physical factor during the evolution and development of life on Earth. We have been studying effects of simulated microgravity on gene expression in transgenic zebrafish embryos expressing gfp under the influence of gene-specific promoters. In this study, we assessed the effect of microgravity on the expression of the heat shock protein 70 (hsp70) gene in lens during development using transgenic zebrafish embryos expressing gfp under the control of hsp70 promoter/enhancer. Hsp70:gfp expression was up-regulated (45%) compared with controls during the developmental period that included the lens differentiation stage. This increase was lens specific, because the entire embryo showed only a 4% increase in gfp expression. Northern blot and in situ hybridization analysis indicated that the hsp70:gfp expression recapitulated endogenous hsp70 mRNA expression. Hypergravity exposure also increased hsp70 expression during the same period. In situ hybridization analysis for two lens-specific crystallin genes revealed that neither micro- nor hypergravity affected the expression level of betaB1-crystallin, a non-hsp gene used as a marker for lens differentiation. However, hypergravity changed the expression level of alphaA-crystallin, a member of the small hsp gene family. Terminal deoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick end-labeling (TUNEL) assay analysis showed that altered-gravity (Deltag) decreased apoptosis in lens during the same period and the decrease correlated with the up-regulation of hsp70 expression, suggesting that elimination of nuclei from differentiating lens fiber cells was suppressed probably through hsp70 up-regulation. These results support the idea that Deltag influences hsp70 expression and differentiation in lens-specific and developmental period specific manners and that hsp family genes play a specific role in the response to Deltag.
Collapse
Affiliation(s)
- Naoko Shimada
- Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, Piscataway, New Jersey, USA
| | | |
Collapse
|