1
|
Cheong SS, Luis TC, Stewart M, Hillier R, Hind M, Dean CH. A method for TAT-Cre recombinase-mediated floxed allele modification in ex vivo tissue slices. Dis Model Mech 2023; 16:dmm050267. [PMID: 37828896 PMCID: PMC10629676 DOI: 10.1242/dmm.050267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023] Open
Abstract
Precision-cut lung slices (PCLS) are used for a variety of applications. However, methods to manipulate genes in PCLS are currently limited. We developed a new method, TAT-Cre recombinase-mediated floxed allele modification in tissue slices (TReATS), to induce highly effective and temporally controlled gene deletion or activation in ex vivo PCLS. Treatment of PCLS from Rosa26-flox-stop-flox-EYFP mice with cell-permeant TAT-Cre recombinase induced ubiquitous EYFP protein expression, indicating successful Cre-mediated excision of the upstream loxP-flanked stop sequence. Quantitative real-time PCR confirmed induction of EYFP. We successfully replicated the TReATS method in PCLS from Vangl2flox/flox mice, leading to the deletion of loxP-flanked exon 4 of the Vangl2 gene. Cre-treated Vangl2flox/flox PCLS exhibited cytoskeletal abnormalities, a known phenotype caused by VANGL2 dysfunction. We report a new method that bypasses conventional Cre-Lox breeding, allowing rapid and highly effective gene manipulation in ex vivo tissue models.
Collapse
Affiliation(s)
- Sek-Shir Cheong
- National Heart and Lung Institute (NHLI), Imperial College London, London SW7 2AZ, UK
| | - Tiago C. Luis
- Centre for Inflammatory Diseases, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Michelle Stewart
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Rosie Hillier
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Matthew Hind
- National Heart and Lung Institute (NHLI), Imperial College London, London SW7 2AZ, UK
- National Institute for Health Research (NIHR) Respiratory Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust, London SW3 6NP, UK
| | - Charlotte H. Dean
- National Heart and Lung Institute (NHLI), Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
2
|
Moinho TM, Tavares MR, Campos AM, Frazão R, Metzger M, Donato J. Simple method to induce denaturation of fluorescent proteins in free-floating brain slices. J Neurosci Methods 2022; 371:109500. [DOI: 10.1016/j.jneumeth.2022.109500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
|
3
|
Liu J, Shui SL. Delivery methods for site-specific nucleases: Achieving the full potential of therapeutic gene editing. J Control Release 2016; 244:83-97. [PMID: 27865852 DOI: 10.1016/j.jconrel.2016.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/30/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022]
|
4
|
Song WT, Zhang XY, Xia XB. Atoh7 promotes the differentiation of Müller cells-derived retinal stem cells into retinal ganglion cells in a rat model of glaucoma. Exp Biol Med (Maywood) 2015; 240:682-90. [PMID: 25710928 DOI: 10.1177/1535370214560965] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 09/30/2014] [Indexed: 01/10/2023] Open
Abstract
Glaucoma is one of the leading eye diseases resulting in blindness due to the death of retinal ganglion cells. This study aimed to develop novel protocol to promote the differentiation of retinal Müller cells into ganglion cells in vivo in a rat model of glaucoma. The stem cells dedifferentiated from rat retinal Müller cells were randomized to receive transfection with empty lentivirus PGC-FU-GFP or lentivirus PGC-FU-Atoh7-GFP, or no transfection. The stem cells were induced further to differentiate. Ocular hypertension was induced using laser photocoagulation. The eyes were injected with Atoh7 expression vector lentivirus PGC-FU-Atoh7-GFP. Eyeball frozen sections, immunohistochemistry, RT-PCR, Western bolt, and apoptosis assay were performed. We found that the proportion of ganglion cells differentiated from Atoh7-tranfected stem cells was significantly higher than that of the other two groups. The mean intraocular pressure of glaucomatous eyes was elevated significantly compared with those of contralateral eyes. Some retinal Müller cells in the inner nuclear layer entered the mitotic cell cycle in rat chronic ocular hypertension glaucoma model. Atoh7 contributes to the differentiation of retinal Müller cells into retinal ganglion cells in rat model of glaucoma. In conclusion, Atoh7 promotes the differentiation of Müller cells-derived retinal stem cells into retinal ganglion cells in a rat model of glaucoma, thus opening up a new avenue for gene therapy and optic nerve regeneration in glaucoma.
Collapse
Affiliation(s)
- Wei-tao Song
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xue-yong Zhang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiao-bo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
5
|
Song WT, Zeng Q, Xia XB, Xia K, Pan Q. Atoh7 promotes retinal Müller cell differentiation into retinal ganglion cells. Cytotechnology 2014; 68:267-77. [PMID: 25108422 DOI: 10.1007/s10616-014-9777-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 07/24/2014] [Indexed: 11/28/2022] Open
Abstract
Glaucoma is one of the leading eye diseases due to the death of retinal ganglion cells. Increasing evidence suggests that retinal Müller cells exhibit the characteristics of retinal progenitor cells and can differentiate to neurons in injured retinas under certain conditions. However, the number of ganglion cells differentiated from retinal Müller cells falls far short of therapeutic needs. This study aimed to promote the differentiation of retinal Müller cells into ganglion cells by introducing Atoh7 into the stem cells dedifferentiated from retinal Müller cells. Rat retinal Müller cells were isolated and dedifferentiated into stem cells, which were transfected with PEGFP-N1 or PEGFP-N1-Atoh7 vector, and then further induced to differentiate into ganglion cells. The proportion of ganglion cells differentiated from Atoh7-tranfected stem cells was significantly higher than that of control transfected or untransfected cells. In summary, Atoh7 promotes the differentiation of retinal Müller cells into retinal ganglion cells. This may open a new avenue for gene therapy of glaucoma by promoting optic nerve regeneration.
Collapse
Affiliation(s)
- Wei-Tao Song
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qi Zeng
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiao-Bo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Kun Xia
- State Key Lab of Medical Genetics of China, Central South University, Changsha, China
| | - Qian Pan
- State Key Lab of Medical Genetics of China, Central South University, Changsha, China
| |
Collapse
|
6
|
Reekmans K, Praet J, Daans J, Reumers V, Pauwels P, Van der Linden A, Berneman ZN, Ponsaerts P. Current challenges for the advancement of neural stem cell biology and transplantation research. Stem Cell Rev Rep 2012; 8:262-78. [PMID: 21537994 DOI: 10.1007/s12015-011-9266-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transplantation of neural stem cells (NSC) is hoped to become a promising primary or secondary therapy for the treatment of various neurodegenerative disorders of the central nervous system (CNS), as demonstrated by multiple pre-clinical animal studies in which functional recovery has already been demonstrated. However, for NSC therapy to be successful, the first challenge will be to define a transplantable cell population. In the first part of this review, we will briefly discuss the main features of ex vivo culture and characterisation of NSC. Next, NSC grafting itself may not only result in the regeneration of lost tissue, but more importantly has the potential to improve functional outcome through many bystander mechanisms. In the second part of this review, we will briefly discuss several pre-clinical studies that contributed to a better understanding of the therapeutic potential of NSC grafts in vivo. However, while many pre-clinical animal studies mainly report on the clinical benefit of NSC grafting, little is known about the actual in vivo fate of grafted NSC. Therefore, the third part of this review will focus on non-invasive imaging techniques for monitoring cellular grafts in the brain under in vivo conditions. Finally, as NSC transplantation research has evolved during the past decade, it has become clear that the host micro-environment itself, either in healthy or injured condition, is an important player in defining success of NSC grafting. The final part of this review will focus on the host environmental influence on survival, migration and differentiation of grafted NSC.
Collapse
Affiliation(s)
- Kristien Reekmans
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
7
|
High-efficiency transient transduction of human embryonic stem cell-derived neurons with baculoviral vectors. Mol Ther 2009; 17:1585-93. [PMID: 19532141 DOI: 10.1038/mt.2009.124] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Transient genetic manipulation of human neurons without chromosomal integration of the transgene would be valuable but has been challenging due to the quiescent nature of these postmitotic cells. In this study, we developed a set of baculoviral vectors for transient transduction in nondividing neurons derived from human embryonic stem cells (hESCs). Using a baculoviral vector equipped with the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE), we observed a quick onset of transgene expression as early as day 1 after baculoviral transduction and a high efficiency of up to 80%. Strong transgene expression in the cultured human neurons was observed for more than 1 month and the signal was easily detectable even after 3 months. Using two baculoviral vectors carrying different transgenes, we found that co-transduction at a single neuron level was possible. After transplantation into the brain of nude mice, the baculovirus-transduced human neurons were integrated into the mouse brain and maintained transgene expression for at least 4 weeks, portending the usefulness of this technique in assisting neural transplantation. Therefore, by mediating efficient transient gene expression, baculoviral vectors can provide useful tools for both basic gene function studies in human neurons and therapeutic applications of these cells.
Collapse
|
8
|
Li L, Pang D, Chen L, Wang T, Nie D, Yan S, Ouyang H. Establishment of a transgenic pig fetal fibroblast reporter cell line for monitoring Cre recombinase activity. DNA Cell Biol 2009; 28:303-8. [PMID: 19348589 DOI: 10.1089/dna.2008.0821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The pig is considered to be the most suitable nonhuman source of organs for xenotransplantation and is widely used as a model of human disease. The Cre-LoxP system provides a powerful means of cell- or tissue-specific deletion of a targeted gene in cells or tissues of interest. Pigs expressing Cre recombinase have a profound impact on the study of gene function and the generation of animal models of human diseases. To monitor Cre recombinase expression in vivo, it is important to create reporter strains. As a first step in the production of such transgenic pigs, we generated porcine fetal fibroblast cell lines conditionally expressing the gene for enhanced green fluorescent protein (EGFP). The EGFP gene is expressed only after Cre-mediated excision of LoxP-flanked stop sequences. These fetal fibroblast cell lines will be of great value for constructing reporter transgenic pigs.
Collapse
Affiliation(s)
- Li Li
- Department of Animal Biotechnology, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, P.R. China
| | | | | | | | | | | | | |
Collapse
|
9
|
Geoffroy CG, Critchley JA, Castro DS, Ramelli S, Barraclough C, Descombes P, Guillemot F, Raineteau O. Engineering of dominant active basic helix-loop-helix proteins that are resistant to negative regulation by postnatal central nervous system antineurogenic cues. Stem Cells 2009; 27:847-56. [PMID: 19350686 DOI: 10.1002/stem.17] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neural precursor cells (NPCs) are present in most regions of the adult central nervous system (CNS). Using NPCs in a therapeutical perspective, that is, to regenerate CNS tissue after injury or in neurodegenerative diseases, will require the efficient manipulation of their fate. Proneural gene overexpression in NPCs represents a promising strategy to promote neuronal differentiation. The activity of the proneural proteins is, however, context-dependent and can be inhibited/modulated by binding with other bHLH (basic helix-loop-helix) or HLH transcription factors. In this study, we show that the two proneural proteins, Ngn2 and Mash1, are differentially sensitive to negative regulation by gliogenic factors or a gliogenic substrate (i.e., postnatal spinal cord slices). Coexpressing E-proteins with proneural proteins was efficient to rescue proneural proteins neurogenic activity, suggesting a central role for E-protein sequestration in mediating postnatal CNS gliogenic inhibition. Tethering of proneural proteins with E47 further insulated Mash1 from negative environmental influences whereas this strategy was not successful with Ngn2, suggesting that mechanisms of inhibition differ in between these two proneural proteins. Our results demonstrate that a better understanding of proneural protein modulation by environmental cues is a prerequisite to develop innovative approaches that will permit the manipulation of the fate of NPCs in the adult CNS after trauma or disease.
Collapse
Affiliation(s)
- Cédric G Geoffroy
- Brain Repair Centre, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|