1
|
Soldado F, López de Jesús M, Beitia M, González-Burguera I, Ocerin G, Elejaga-Jimeno A, Saumell-Esnaola M, Barrondo S, Oraa J, Sallés J, Delgado D, García Del Caño G, Sánchez M. Effects of intramuscular administration of Platelet-Rich Plasma on denervated muscle after peripheral nerve injury. Connect Tissue Res 2025; 66:10-25. [PMID: 39729391 DOI: 10.1080/03008207.2024.2446888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE After peripheral nerve injury (PNI), prolonged denervation of the target muscle prevents adequate reinnervation even if the nerve is repaired. The aim of this work is to analyze the effect of intramuscular Platelet-Rich Plasma (PRP) in a denervated muscle due to PNI.Materials and. METHODS An irreversible PNI was generated in the common peroneal nerve of 80 Wistar rats by nerve resection. Animals were divided into groups: non-treatment (NT), saline (S) and PRP (PRP). 200 uL of saline (S group) and PRP (PRP group) were infiltrated intramuscularly into the tibialis anterior muscle on a weekly basis, from surgery to sacrifice (at 2, 4 and 7 weeks). Muscles were histologically processed for immunofluorescence and Western blotting. Effects on nicotinic acetylcholine receptor (nAChR), satellite cells (SC) and myogenin expression were analyzed. Comparisons were performed by two-way analysis of variance (ANOVA). RESULTS PRP had a platelet concentration 1.5-fold higher than blood, without erythrocytes and leukocytes. The PRP group had a higher percentage weight than the S and NT groups (p < 0.05). The levels of nAChRα1 and nAChRε subunit were lower in the PRP group relative to the NT and S (p < 0.05), while the nAChRγ subunit showed an increase in the PRP group (p < 0.05). The activation of SCs was higher in the PRP group compared to NT and S groups (p < 0.05). CONCLUSION PRP treatment can modulate NMJ configuration as well as key myogenic regulatory factors in denervated muscle, enhancing SC activation while mitigating muscle atrophy.
Collapse
Affiliation(s)
- Francisco Soldado
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
| | - Maider López de Jesús
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Bioaraba, Cellular and Molecular Neuropharmacology, Vitoria-Gasteiz, Spain
| | - Maider Beitia
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
| | - Imanol González-Burguera
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Garazi Ocerin
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Ainhoa Elejaga-Jimeno
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Miquel Saumell-Esnaola
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Bioaraba, Cellular and Molecular Neuropharmacology, Vitoria-Gasteiz, Spain
| | - Sergio Barrondo
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Jaime Oraa
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
| | - Joan Sallés
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Diego Delgado
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
| | - Gontzal García Del Caño
- Bioaraba, Cellular and Molecular Neuropharmacology, Vitoria-Gasteiz, Spain
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Mikel Sánchez
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
| |
Collapse
|
2
|
Zammit PS. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol 2017; 72:19-32. [PMID: 29127046 DOI: 10.1016/j.semcdb.2017.11.011] [Citation(s) in RCA: 502] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/19/2022]
Abstract
Discovery of the myogenic regulatory factor family of transcription factors MYF5, MYOD, Myogenin and MRF4 was a seminal step in understanding specification of the skeletal muscle lineage and control of myogenic differentiation during development. These factors are also involved in specification of the muscle satellite cell lineage, which becomes the resident stem cell compartment inadult skeletal muscle. While MYF5, MYOD, Myogenin and MRF4 have subtle roles in mature muscle, they again play a crucial role in directing satellite cell function to regenerate skeletal muscle: linking the genetic control of developmental and regenerative myogenesis. Here, I review the role of the myogenic regulatory factors in developing and mature skeletal muscle, satellite cell specification and muscle regeneration.
Collapse
Affiliation(s)
- Peter S Zammit
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK.
| |
Collapse
|
3
|
Aoyama S, Shibata S. The Role of Circadian Rhythms in Muscular and Osseous Physiology and Their Regulation by Nutrition and Exercise. Front Neurosci 2017; 11:63. [PMID: 28261043 PMCID: PMC5306200 DOI: 10.3389/fnins.2017.00063] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/27/2017] [Indexed: 01/13/2023] Open
Abstract
The mammalian circadian clock regulates the day and night cycles of various physiological functions. The circadian clock system consists of a central clock in the suprachiasmatic nucleus (SCN) of the hypothalamus and peripheral clocks in peripheral tissues. According to the results of circadian transcriptomic studies in several tissues, the majority of rhythmic genes are expressed in a tissue-specific manner and are influenced by tissue-specific circadian rhythms. Here we review the diurnal variations of musculoskeletal functions and discuss the impact of the circadian clock on homeostasis in skeletal muscle and bone. Peripheral clocks are controlled by not only photic stimulation from the central clock in the SCN but also by external cues, such as feeding and exercise. In this review, we discuss the effects of feeding and exercise on the circadian clock and diurnal variation of musculoskeletal functions. We also discuss the therapeutic potential of chrono-nutrition and chrono-exercise on circadian disturbances and the failure of homeostasis in skeletal muscle and bone.
Collapse
Affiliation(s)
- Shinya Aoyama
- Organization for University Research Initiatives, Waseda UniversityTokyo, Japan; Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda UniversityTokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University Tokyo, Japan
| |
Collapse
|
4
|
Chandra S, Terragni J, Zhang G, Pradhan S, Haushka S, Johnston D, Baribault C, Lacey M, Ehrlich M. Tissue-specific epigenetics in gene neighborhoods: myogenic transcription factor genes. Hum Mol Genet 2015; 24:4660-73. [PMID: 26041816 PMCID: PMC4512632 DOI: 10.1093/hmg/ddv198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022] Open
Abstract
Myogenic regulatory factor (MRF) genes, MYOD1, MYOG, MYF6 and MYF5, are critical for the skeletal muscle lineage. Here, we used various epigenome profiles from human myoblasts (Mb), myotubes (Mt), muscle and diverse non-muscle samples to elucidate the involvement of multigene neighborhoods in the regulation of MRF genes. We found more far-distal enhancer chromatin associated with MRF genes in Mb and Mt than previously reported from studies in mice. For the MYF5/MYF6 gene-pair, regions of Mb-associated enhancer chromatin were located throughout the adjacent 236-kb PTPRQ gene even though Mb expressed negligible amounts of PTPRQ mRNA. Some enhancer chromatin regions inside PTPRQ in Mb were also seen in PTPRQ mRNA-expressing non-myogenic cells. This suggests dual-purpose PTPRQ enhancers that upregulate expression of PTPRQ in non-myogenic cells and MYF5/MYF6 in myogenic cells. In contrast, the myogenic enhancer chromatin regions distal to MYOD1 were intergenic and up to 19 kb long. Two of them contain small, known MYOD1 enhancers, and one displayed an unusually high level of 5-hydroxymethylcytosine in a quantitative DNA hydroxymethylation assay. Unexpectedly, three regions of MYOD1-distal enhancer chromatin in Mb and Mt overlapped enhancer chromatin in umbilical vein endothelial cells, which might upregulate a distant gene (PIK3C2A). Lastly, genes surrounding MYOG were preferentially transcribed in Mt, like MYOG itself, and exhibited nearby myogenic enhancer chromatin. These neighboring chromatin regions may be enhancers acting in concert to regulate myogenic expression of multiple adjacent genes. Our findings reveal the very different and complex organization of gene neighborhoods containing closely related transcription factor genes.
Collapse
Affiliation(s)
- Sruti Chandra
- Program in Human Genetics, Tulane Cancer Center, and Center for Bioinformatics and Genomics, Tulane Health Sciences Center, New Orleans, LA 70122, USA
| | | | | | | | - Stephen Haushka
- Department of Biochemistry, University of Washington, Seattle, WA 98109, USA, and
| | - Douglas Johnston
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Carl Baribault
- Tulane Cancer Center and Department of Mathematics, Tulane Health Sciences Center and Tulane University, New Orleans, LA 70122, USA
| | - Michelle Lacey
- Tulane Cancer Center and Department of Mathematics, Tulane Health Sciences Center and Tulane University, New Orleans, LA 70122, USA
| | - Melanie Ehrlich
- Program in Human Genetics, Tulane Cancer Center, and Center for Bioinformatics and Genomics, Tulane Health Sciences Center, New Orleans, LA 70122, USA,
| |
Collapse
|
5
|
Xing H, Zhou M, Assinck P, Liu N. Electrical stimulation influences satellite cell differentiation after sciatic nerve crush injury in rats. Muscle Nerve 2015; 51:400-11. [PMID: 24947716 DOI: 10.1002/mus.24322] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2014] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Electrical stimulation is often used to prevent muscle atrophy and preserve contractile function, but its effects on the satellite cell population after nerve injury are not well understood. In this study we aimed to determine whether satellite cell differentiation is affected by electrical stimulation after nerve crush. METHODS The sciatic nerves of Sprague-Dawley (SD) rats were crushed. Half of the injured rats received daily electrical stimulation of the gastrocnemius muscle, and the others did not. Tests for detecting paired box protein 7 (Pax7), myogenic differentiation antigen (MyoD), embryonic myosin heavy chain (eMyHC), and force production were performed 2, 4, and 6 weeks after injury. RESULTS More Pax7+/MyoD+ nuclei in stimulated muscles were observed than in non-stimulated muscles. eMyHC expression was elevated in stimulated muscles and correlated positively with enhanced force production. CONCLUSIONS Increased satellite cell differentiation is correlated with preserved muscle function in response to electrical stimulation after nerve injury.
Collapse
Affiliation(s)
- Huayi Xing
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, PR China
| | | | | | | |
Collapse
|
6
|
Hamed M, Khilji S, Chen J, Li Q. Stepwise acetyltransferase association and histone acetylation at the Myod1 locus during myogenic differentiation. Sci Rep 2014; 3:2390. [PMID: 23928680 PMCID: PMC3738969 DOI: 10.1038/srep02390] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/10/2013] [Indexed: 02/08/2023] Open
Abstract
While chromatin modifications can offer a useful readout for enhancer activities, it is less clear whether these modification marks are a cause or consequence of transcription factor occupancy and enhancer activation. We have examined in details the temporal events of acetyltransferase associations and histone acetylations at different regulatory regions of the Myod1 locus. Our studies demonstrate that the histone acetyltransferase (HAT) p300 is stepwise enriched at distinct Myod1 regulatory regions during myogenic differentiation. This enrichment of p300 is associated with increased histone acetylation in a discrete pattern. Inhibition of p300 HAT activity impedes myogenic differentiation, which is coupled with decreased histone acetylation at specific Myod1 regulatory regions. We show for the first time that p300 is directly involved in the early regulation of Myod1 enhancer, and provide molecular insights into how p300 HAT activity and histone acetylation are related to enhancer activation and, consequently, gene transcription.
Collapse
Affiliation(s)
- Munerah Hamed
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
7
|
Dessalle K, Euthine V, Chanon S, Delarichaudy J, Fujii I, Rome S, Vidal H, Nemoz G, Simon C, Lefai E. SREBP-1 transcription factors regulate skeletal muscle cell size by controlling protein synthesis through myogenic regulatory factors. PLoS One 2012; 7:e50878. [PMID: 23226416 PMCID: PMC3511457 DOI: 10.1371/journal.pone.0050878] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/25/2012] [Indexed: 12/26/2022] Open
Abstract
SREBP-1 are ubiquitously expressed transcription factors, strongly expressed in lipogenic tissues where they regulate several metabolic processes like fatty acid synthesis. In skeletal muscle, SREBP-1 proteins regulate the expression of hundreds of genes, and we previously showed that their overexpression induced muscle atrophy together with a combined lack of expression of myogenic regulatory factors. Here we present evidences that SREBP-1 regulate muscle protein synthesis through the downregulation of the expression of MYOD1, MYOG and MEF2C factors. In myotubes overexpressing SREBP-1, restoring the expression of myogenic factors prevented atrophy and rescued protein synthesis, without affecting SREBP-1 action on atrogenes and proteolysis. Our results point out the roles of MRFs in the maintenance of the protein content and cell size in adult muscle fibre, and contribute to decipher the mechanisms by which SREBP-1 regulate muscle mass.
Collapse
Affiliation(s)
- Kevin Dessalle
- CarMeN Laboratory, INSERM U1060, INRA 1235, University Lyon1, Oullins, France
| | - Vanessa Euthine
- CarMeN Laboratory, INSERM U1060, INRA 1235, University Lyon1, Oullins, France
| | - Stéphanie Chanon
- CarMeN Laboratory, INSERM U1060, INRA 1235, University Lyon1, Oullins, France
| | | | - Isao Fujii
- Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto-city, Japan
| | - Sophie Rome
- CarMeN Laboratory, INSERM U1060, INRA 1235, University Lyon1, Oullins, France
| | - Hubert Vidal
- CarMeN Laboratory, INSERM U1060, INRA 1235, University Lyon1, Oullins, France
| | - Georges Nemoz
- CarMeN Laboratory, INSERM U1060, INRA 1235, University Lyon1, Oullins, France
| | - Chantal Simon
- CarMeN Laboratory, INSERM U1060, INRA 1235, University Lyon1, Oullins, France
| | - Etienne Lefai
- CarMeN Laboratory, INSERM U1060, INRA 1235, University Lyon1, Oullins, France
- * E-mail:
| |
Collapse
|
8
|
Abstract
In 1961, the satellite cell was first identified when electron microscopic examination of skeletal muscle demonstrated a cell wedged between the plasma membrane of the muscle fiber and the basement membrane. In recent years it has been conclusively demonstrated that the satellite cell is the primary cellular source for muscle regeneration and is equipped with the potential to self renew, thus functioning as a bona fide skeletal muscle stem cell (MuSC). As we move past the 50(th) anniversary of the satellite cell, we take this opportunity to discuss the current state of the art and dissect the unknowns in the MuSC field.
Collapse
|
9
|
Wang D, Bai X, Tian Q, Lai Y, Lin EA, Shi Y, Mu X, Feng JQ, Carlson CS, Liu CJ. GEP constitutes a negative feedback loop with MyoD and acts as a novel mediator in controlling skeletal muscle differentiation. Cell Mol Life Sci 2012; 69:1855-73. [PMID: 22179841 PMCID: PMC3319484 DOI: 10.1007/s00018-011-0901-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 11/22/2011] [Accepted: 11/28/2011] [Indexed: 01/16/2023]
Abstract
Granulin-epithelin precursor (GEP) is an autocrine growth factor that has been implicated in embryonic development, tissue repair, tumorigenesis, and inflammation. Here we report that GEP was expressed in skeletal muscle tissue and its level was differentially altered in the course of C2C12 myoblast fusion. The GEP expression during myoblast fusion was a consequence of MyoD transcription factor binding to several E-box (CANNTG) sequences in the 5'-flanking regulatory region of GEP gene, followed by transcription. Recombinant GEP potently inhibited myotube formation from C2C12 myoblasts whereas the knockdown of endogenous of GEP via a siRNA approach accelerated the fusion of myoblasts to myotubes. Interestingly, the muscle fibers of GEP knockdown mice were larger in number but noticeably smaller in size when compared to the wild-type. Mechanistic studies revealed that during myoblast fusion, the addition of GEP led to remarkable reductions in the expressions of muscle-specific transcription factors, including MyoD. In addition, the regulation of myotube formation by GEP is mediated by the anti-myogenic factor JunB, which is upregulated following GEP stimulation. Thus, GEP growth factor, JunB, and MyoD transcription factor form a regulatory loop and act in concert in the course of myogenesis.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
- Department of Orthopedics, Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Xiaohui Bai
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
- Department of Otorhinolaryngology Head and Neck Surgery, Provincial Hospital affiliated to Shandong University, Jinan 250021, China
| | - Qingyun Tian
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
| | - Yongjie Lai
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
| | - Edward A. Lin
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
| | - Yongxiang Shi
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
| | - Xiaodong Mu
- Stem Cell Research Center, Children’s Hospital of Pittsburgh and Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219
| | - Jian Q. Feng
- Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, TX 75246
| | - Cathy S. Carlson
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - Chuan-ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
10
|
Abstract
Muscle progenitor cell (MPC) activity is exercise responsive. Post resistance-exercise alterations in myogenic messenger RNAs (mRNAs) found by us and others may initiate these events. However, these mRNA data in the absence of microscopic MPC activity data have limited this interpretation. Alternatively, with our acute exercise data as our basis, we propose that these genes may control other hypertrophic processes in postmitotic fibers.
Collapse
|
11
|
Xiong WM, Huang JH, Xie L, Qiao Y, Lu XM, Peng JC, Hu JJ. Overexpression of MyoD Attenuates Denervated Rat Skeletal Muscle Atrophy and Dysfunction. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/nm.2012.34048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Leiter JRS, Peeler J, Anderson JE. Exercise-induced muscle growth is muscle-specific and age-dependent. Muscle Nerve 2011; 43:828-38. [PMID: 21607967 DOI: 10.1002/mus.21965] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Sarcopenia, and the importance of satellite cells (SCs) in muscle growth led us to examine the effects of exercise and age on SC activation and gene expression. METHODS Eight- and 18-month-old mice were either sedentary or underwent 3 weeks of exercise (N = 24). Body mass, distance traveled, and grip strength were recorded at weekly intervals. The extensor digitorum longus (EDL), tibialis anterior (TA), gastrocnemius (GAST), and quadriceps (QUAD) muscles were analyzed along with muscle fiber area, SC activation, neuronal nitric oxide synthase (NOS-I), MyoD, and myostatin protein content. RESULTS Older mice demonstrated decreased body mass, grip strength, and fiber area, but these changes were not affected by exercise. The QUAD muscle from young mice demonstrated an exercise-induced increase in SC activation and NOS-I and downregulation of myostatin. CONCLUSIONS Exercise-induced activation of SCs and regulation of gene expression are muscle-specific and age-dependent. Perturbed sensitivity to exercise in older mice provides insight into sarcopenia and potential treatments.
Collapse
Affiliation(s)
- Jeff R S Leiter
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
13
|
Hinits Y, Williams VC, Sweetman D, Donn TM, Ma TP, Moens CB, Hughes SM. Defective cranial skeletal development, larval lethality and haploinsufficiency in Myod mutant zebrafish. Dev Biol 2011; 358:102-12. [PMID: 21798255 DOI: 10.1016/j.ydbio.2011.07.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/12/2011] [Indexed: 11/18/2022]
Abstract
Myogenic regulatory factors of the myod family (MRFs) are transcription factors essential for mammalian skeletal myogenesis. Here we show that a mutation in the zebrafish myod gene delays and reduces early somitic and pectoral fin myogenesis, reduces miR-206 expression, and leads to a persistent reduction in somite size until at least the independent feeding stage. A mutation in myog, encoding a second MRF, has little obvious phenotype at early stages, but exacerbates the loss of somitic muscle caused by lack of Myod. Mutation of both myod and myf5 ablates all skeletal muscle. Haploinsufficiency of myod leads to reduced embryonic somite muscle bulk. Lack of Myod causes a severe reduction in cranial musculature, ablating most muscles including the protractor pectoralis, a putative cucullaris homologue. This phenotype is accompanied by a severe dysmorphology of the cartilaginous skeleton and failure of maturation of several cranial bones, including the opercle. As myod expression is restricted to myogenic cells, the data show that myogenesis is essential for proper skeletogenesis in the head.
Collapse
Affiliation(s)
- Yaniv Hinits
- Randall Division for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Myogenic differentiation of mesenchymal stem cells co-cultured with primary myoblasts. Cell Biol Int 2011; 35:397-406. [PMID: 20946104 DOI: 10.1042/cbi20100417] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
TE (tissue engineering) of skeletal muscle is a promising method to reconstruct loss of muscle tissue. This study evaluates MSCs (mesenchymal stem cells) as new cell source for this application. As a new approach to differentiate the MSCs towards the myogenic lineage, co-cultivation with primary myoblasts has been developed and the myogenic potential of GFP (green fluorescent protein)-transduced rat MSC co-cultured with primary rat myoblasts was assessed by ICC (immunocytochemistry). Myogenic potential of MSC was analysed by ICC, FACS and qPCR (quantitative PCR). MSC-myoblast fusion phenomena leading to hybrid myotubes were evaluated using a novel method to evaluate myotube fusion ratios based on phase contrast and fluorescence microscopy. Furthermore, MSC constitutively expressed the myogenic markers MEF2 (myogenic enhancer factor 2) and α-sarcomeric actin, and MEF2 expression was up-regulated upon co-cultivation with primary myoblasts and the addition of myogenic medium supplements. Significantly higher numbers of MSC nuclei were involved in myotube formations when bFGF (basic fibroblast growth factor) and dexamethasone were added to co-cultures. In summary, we have determined optimal co-culture conditions for MSC myogenic differentiation up to myotube formations as a promising step towards applicability of MSC as a cell source for skeletal muscle TE as well as other muscle cell-based therapies.
Collapse
|
15
|
Meinen S, Lin S, Thurnherr R, Erb M, Meier T, Rüegg MA. Apoptosis inhibitors and mini-agrin have additive benefits in congenital muscular dystrophy mice. EMBO Mol Med 2011; 3:465-79. [PMID: 21674808 PMCID: PMC3377088 DOI: 10.1002/emmm.201100151] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/29/2011] [Accepted: 05/17/2011] [Indexed: 11/18/2022] Open
Abstract
Mutations in LAMA2 cause a severe form of congenital muscular dystrophy, called MDC1A. Studies in mouse models have shown that transgenic expression of a designed, miniaturized form of the extracellular matrix molecule agrin (‘mini-agrin’) or apoptosis inhibition by either overexpression of Bcl2 or application of the pharmacological substance omigapil can ameliorate the disease. Here, we tested whether mini-agrin and anti-apoptotic agents act on different pathways and thus exert additive benefits in MDC1A mouse models. By combining mini-agrin with either transgenic Bcl2 expression or oral omigapil application, we show that the ameliorating effect of mini-agrin, which acts by restoring the mechanical stability of muscle fibres and, thereby, reduces muscle fibre breakdown and concomitant fibrosis, is complemented by apoptosis inhibitors, which prevent the loss of muscle fibres. Treatment of mice with both agents results in improved muscle regeneration and increased force. Our results show that the combination of mini-agrin and anti-apoptosis treatment has beneficial effects that are significantly bigger than the individual treatments and suggest that such a strategy might also be applicable to MDC1A patients.
Collapse
|
16
|
Manzano R, Toivonen JM, Oliván S, Calvo AC, Moreno-Igoa M, Muñoz MJ, Zaragoza P, García-Redondo A, Osta R. Altered Expression of Myogenic Regulatory Factors in the Mouse Model of Amyotrophic Lateral Sclerosis. NEURODEGENER DIS 2011; 8:386-96. [DOI: 10.1159/000324159] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 01/05/2011] [Indexed: 12/14/2022] Open
|
17
|
Osborn DPS, Li K, Hinits Y, Hughes SM. Cdkn1c drives muscle differentiation through a positive feedback loop with Myod. Dev Biol 2010; 350:464-75. [PMID: 21147088 DOI: 10.1016/j.ydbio.2010.12.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/01/2010] [Accepted: 12/03/2010] [Indexed: 01/15/2023]
Abstract
Differentiation often requires conversion of analogue signals to a stable binary output through positive feedback. Hedgehog (Hh) signalling promotes myogenesis in the vertebrate somite, in part by raising the activity of muscle regulatory factors (MRFs) of the Myod family above a threshold. Hh is known to enhance MRF expression. Here we show that Hh is also essential at a second step that increases Myod protein activity, permitting it to promote Myogenin expression. Hh acts by inducing expression of cdkn1c (p57(Kip2)) in slow muscle precursor cells, but neither Hh nor Cdkn1c is required for their cell cycle exit. Cdkn1c co-operates with Myod to drive differentiation of several early zebrafish muscle fibre types. Myod in turn up-regulates cdkn1c, thereby providing a positive feedback loop that switches myogenic cells to terminal differentiation.
Collapse
Affiliation(s)
- Daniel P S Osborn
- King's College London, Randall Division for Cell and Molecular Biophysics, London, UK
| | | | | | | |
Collapse
|
18
|
Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell 2010; 143:35-45. [PMID: 20887891 DOI: 10.1016/j.cell.2010.09.004] [Citation(s) in RCA: 369] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/01/2010] [Accepted: 08/20/2010] [Indexed: 11/22/2022]
Abstract
Maintenance of skeletal muscle structure and function requires innervation by motor neurons, such that denervation causes muscle atrophy. We show that myogenin, an essential regulator of muscle development, controls neurogenic atrophy. Myogenin is upregulated in skeletal muscle following denervation and regulates expression of the E3 ubiquitin ligases MuRF1 and atrogin-1, which promote muscle proteolysis and atrophy. Deletion of myogenin from adult mice diminishes expression of MuRF1 and atrogin-1 in denervated muscle and confers resistance to atrophy. Mice lacking histone deacetylases (HDACs) 4 and 5 in skeletal muscle fail to upregulate myogenin and also preserve muscle mass following denervation. Conversely, forced expression of myogenin in skeletal muscle of HDAC mutant mice restores muscle atrophy following denervation. Thus, myogenin plays a dual role as both a regulator of muscle development and an inducer of neurogenic atrophy. These findings reveal a specific pathway for muscle wasting and potential therapeutic targets for this disorder.
Collapse
|
19
|
Carvajal JJ, Rigby PWJ. Regulation of gene expression in vertebrate skeletal muscle. Exp Cell Res 2010; 316:3014-8. [PMID: 20633554 DOI: 10.1016/j.yexcr.2010.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/28/2010] [Accepted: 07/03/2010] [Indexed: 11/26/2022]
Abstract
During embryonic development the integration of numerous synergistic signalling pathways turns a single cell into a multicellular organism with specialized cell types and highly structured, organized tissues. To achieve this, cells must grow, proliferate, differentiate and die according to their spatiotemporal position. Unravelling the mechanisms by which a cell adopts the correct fate in response to its local environment remains one of the fundamental goals of biological research. In vertebrates skeletal myogenesis is coordinated by the activation of the myogenic regulatory factors (MRFs) in response to signals that are interpreted by their associated regulatory elements in different precursor cells during development. The MRFs trigger a cascade of transcription factors and downstream structural genes, ultimately resulting in the generation of one of the fundamental histotypes. In this review we discuss the regulation of the different MRFs in relation to their position in the myogenic cascade, the changes in the general transcriptional machinery during muscle differentiation and the emerging importance of miRNA regulation in skeletal myogenesis.
Collapse
Affiliation(s)
- Jaime J Carvajal
- Section of Gene Function and Regulation, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, England.
| | | |
Collapse
|
20
|
Donghui C, Shicai C, Wei W, Fei L, Jianjun J, Gang C, Hongliang Z. Functional modulation of satellite cells in long-term denervated human laryngeal muscle. Laryngoscope 2009; 120:353-8. [DOI: 10.1002/lary.20796] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|