1
|
Nguidi M, Gomes V, Vullo C, Rodrigues P, Rotondo M, Longaray M, Catelli L, Martínez B, Campos A, Carvalho E, Orovboni VO, Keshinro SO, Simão F, Gusmão L. Impact of patrilocality on contrasting patterns of paternal and maternal heritage in Central-West Africa. Sci Rep 2024; 14:15653. [PMID: 38977763 PMCID: PMC11231350 DOI: 10.1038/s41598-024-65428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Despite their ancient past and high diversity, African populations are the least represented in human population genetic studies. In this study, uniparental markers (mtDNA and Y chromosome) were used to investigate the impact of sociocultural factors on the genetic diversity and inter-ethnolinguistic gene flow in the three major Nigerian groups: Hausa (n = 89), Yoruba (n = 135) and Igbo (n = 134). The results show a distinct history from the maternal and paternal perspectives. The three Nigerian groups present a similar substrate for mtDNA, but not for the Y chromosome. The two Niger-Congo groups, Yoruba and Igbo, are paternally genetically correlated with populations from the same ethnolinguistic affiliation. Meanwhile, the Hausa is paternally closer to other Afro-Asiatic populations and presented a high diversity of lineages from across Africa. When expanding the analyses to other African populations, it is observed that language did not act as a major barrier to female-mediated gene flow and that the differentiation of paternal lineages is better correlated with linguistic than geographic distances. The results obtained demonstrate the impact of patrilocality, a common and well-established practice in populations from Central-West Africa, in the preservation of the patrilineage gene pool and in the affirmation of identity between groups.
Collapse
Affiliation(s)
- Masinda Nguidi
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil.
| | - Verónica Gomes
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Carlos Vullo
- DNA Forensic Laboratory, Equipo Argentino de Antropología Forense (EAAF), Córdoba, Argentina
| | - Pedro Rodrigues
- Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Martina Rotondo
- DNA Forensic Laboratory, Equipo Argentino de Antropología Forense (EAAF), Córdoba, Argentina
| | - Micaela Longaray
- DNA Forensic Laboratory, Equipo Argentino de Antropología Forense (EAAF), Córdoba, Argentina
| | - Laura Catelli
- DNA Forensic Laboratory, Equipo Argentino de Antropología Forense (EAAF), Córdoba, Argentina
| | - Beatriz Martínez
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Afonso Campos
- Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Elizeu Carvalho
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Victoria O Orovboni
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | | | - Filipa Simão
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Oill AMT, Handley C, Howell EK, Stone AC, Mathew S, Wilson MA. Genomic analysis reveals geography rather than culture as the predominant factor shaping genetic variation in northern Kenyan human populations. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 178:488-503. [PMID: 36790743 PMCID: PMC9949739 DOI: 10.1002/ajpa.24521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVES The aim of this study was to characterize the genetic relationships within and among four neighboring ethnolinguistic groups in northern Kenya in light of cultural relationships to understand the extent to which geography and culture shape patterns of genetic variation. MATERIALS AND METHODS We collected DNA and demographic information pertaining to aspects of social identity and heritage from 572 individuals across the Turkana, Samburu, Waso Borana, and Rendille of northern Kenya. We sampled individuals across a total of nine clans from these four groups and, additionally, three territorial sections within the Turkana and successfully genotyped 376 individuals. RESULTS Here we report that geography predominately shapes genetic variation within and among human groups in northern Kenya. We observed a clinal pattern of genetic variation that mirrors the overall geographic distribution of the individuals we sampled. We also found relatively higher rates of intermarriage between the Rendille and Samburu and evidence of gene flow between them that reflect these higher rates of intermarriage. Among the Turkana, we observed strong recent genetic substructuring based on territorial section affiliation. Within ethnolinguistic groups, we found that Y chromosome haplotypes do not consistently cluster by natal clan affiliation. Finally, we found that sampled populations that are geographically closer have lower genetic differentiation, and that cultural similarity does not predict genetic similarity as a whole across these northern Kenyan populations. DISCUSSION Overall, the results from this study highlight the importance of geography, even on a local geographic scale, in shaping observed patterns of genetic variation in human populations.
Collapse
Affiliation(s)
- Angela M. Taravella Oill
- School of Life Sciences, Arizona State University, Tempe, AZ 85287 USA,Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287 USA
| | - Carla Handley
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287 USA
| | - Emma K. Howell
- School of Life Sciences, Arizona State University, Tempe, AZ 85287 USA,Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287 USA
| | - Anne C. Stone
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287 USA,School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287 USA,Institute of Human Origins, Arizona State University, Tempe, AZ 85287, USA
| | - Sarah Mathew
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287 USA,Institute of Human Origins, Arizona State University, Tempe, AZ 85287, USA,Co-corresponding authors
| | - Melissa A. Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287 USA,Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287 USA,Co-corresponding authors
| |
Collapse
|
3
|
Mendisco F, Pemonge MH, Romon T, Lafleur G, Richard G, Courtaud P, Deguilloux MF. Tracing the genetic legacy in the French Caribbean islands: A study of mitochondrial and Y-chromosome lineages in the Guadeloupe archipelago. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 170:507-518. [PMID: 31599974 DOI: 10.1002/ajpa.23931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 08/22/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The history of the Caribbean region is marked by numerous and various successive migration waves that resulted in a global blending of African, European, and Amerindian lineages. As the origin and genetic composition of the current population of French Caribbean islands has not been studied to date, we used both mitochondrial DNA and Y-chromosome markers to complete the characterization of the dynamics of admixture in the Guadeloupe archipelago. MATERIALS AND METHODS We sequenced the mitochondrial hypervariable regions and genotyped mitochondrial and Y-chromosomal single nucleotide polymorphisms (SNPs) of 198 individuals from five localities of the Guadeloupe archipelago. RESULTS The maternal haplogroups revealed a blend of 85% African lineages (mainly traced to Western, West-Central, and South-Eastern Africa), 12.5% Eurasian lineages, and 0.5% Amerindian lineages. We highlighted disequilibria between European paternal contribution (44%) and European maternal contribution (7%), pointing out an important sexual asymmetry. Finally, the estimated Native American component was strikingly low and supported the near-extinction of native lineages in the region. DISCUSSION We confirmed that all historically known migratory events indeed left a visible genetic imprint in the contemporary Caribbean populations. The data gathered clearly demonstrated the significant impact of the transatlantic slave trade on the Guadeloupean population's constitution. Altogether, the data in our study confirm that in the Caribbean region, human population variation is correlated with colonial and postcolonial policies and unique island histories.
Collapse
Affiliation(s)
- Fanny Mendisco
- University of Bordeaux, UMR 5199 PACEA, Allée Geoffroy de St Hilaire, Pessac, France
| | - Marie-Hélène Pemonge
- University of Bordeaux, UMR 5199 PACEA, Allée Geoffroy de St Hilaire, Pessac, France
| | - Thomas Romon
- University of Bordeaux, UMR 5199 PACEA, Allée Geoffroy de St Hilaire, Pessac, France.,Centre de Gourbeyre, Institut National de Recherches Archéologiques Préventives Guadeloupe, Gourbeyre, France
| | - Gérard Lafleur
- Archives Départementales de la Guadeloupe, Société D'histoire de la Guadeloupe, Basse-Terre, France
| | - Gérard Richard
- Centre de Gourbeyre, Institut National de Recherches Archéologiques Préventives Guadeloupe, Gourbeyre, France
| | - Patrice Courtaud
- University of Bordeaux, UMR 5199 PACEA, Allée Geoffroy de St Hilaire, Pessac, France
| | | |
Collapse
|
4
|
Y-chromosomal Status of Six Indo-European-speaking Arab Subpopulations in Chaharmahal and Bakhtiari Province, Iran. IRANIAN JOURNAL OF PUBLIC HEALTH 2018; 47:435-440. [PMID: 29845033 PMCID: PMC5971182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND We analyzed the Y-chromosome haplogroups of six documented Arab subpopulations that accommodated separately in different counties of Chaharmahal and Bakhtiari Province but nowadays speak Indo-European language (Luri and Farsi). METHODS This was an outcome study conducted in 2015 to test whether there was any genetic relatedness among some Indo-European-speaking Arab subpopulation accommodated in a geographically similar region, Chaharmahal and Bakhtiari Province, Iran. Seven main Y-chromosome bi-allelic markers were genotyped in six documented Arab subpopulations. Therefore, after DNA extraction from blood samples, PCR reaction carried out by designed primers for J1-M267, J2-M172, and J-M304, I-M170, IJ-M429, F-M89 and K-M9 markers. Then PCR products after quality control on agarose gel were sequenced. RESULTS Most subjects (83.3%) belonged to F-M89 haplogroup. These subjects belonged to K-M9 (40%), J2-M172 (40%) and I-M170 (20%). Generally, there were at least three genetically distinct ancestors with a divergence date of about 22200 yr for I, 429000 for J and 47400 before present for K haplogroup and may show separate historical migrations of studied populations. As the most recent common ancestor (MRCA) of most of these populations, haplogroup F, lived about 40000-50000 yr ago, the data do not support a nearly close genetic relationship among all of these populations. However, there were populations with same haplogroups J2 (n=2), K (n=2), or with a closer MRCA, IJ haplogroups, among I and J2 haplogroups. Finding haplogroup I, a specific European haplogroup, among Arab populations was not expected. CONCLUSION Identification of various haplogroups in Arab subpopulations despite its small area and geographically conserved region of this part of Iranian plateau was unexpected.
Collapse
|
5
|
Primativo G, Ottoni C, Biondi G, Serafino S, Martínez-Labarga C, Larmuseau MHD, Scardi M, Decorte R, Rickards O. Bight of Benin: a Maternal Perspective of Four Beninese Populations and their Genetic Implications on the American Populations of African Ancestry. Ann Hum Genet 2017; 81:78-90. [PMID: 28205221 DOI: 10.1111/ahg.12186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/03/2017] [Indexed: 12/01/2022]
Abstract
The understanding of the first movements of the ancestral populations within the African continent is still unclear, particularly in West Africa, due to several factors that have shaped the African genetic pool across time. To improve the genetic representativeness of the Beninese population and to better understand the patterns of human settlement inside West Africa and the dynamics of peopling of the Democratic Republic of Benin, we analyzed the maternal genetic variation of 193 Beninese individuals belonging to Bariba, Berba, Dendi, and Fon populations. Results support the oral traditions indicating that the western neighbouring populations have been the ancestors of the first Beninese populations, and the extant genetic structure of the Beninese populations is most likely the result of admixture between populations from neighbouring countries and native people. The present findings highlight how the Beninese populations contributed to the gene pool of the extant populations of some American populations of African ancestry. This strengthens the hypothesis that the Bight of Benin was not only an assembly point for the slave trade during the Trans-Atlantic Slave Trade but also an important slave trapping area.
Collapse
Affiliation(s)
| | - Claudio Ottoni
- Department of Imaging and Pathology, Center for Archaeological Sciences, KU Leuven - University of Leuven, Leuven, Belgium.,Laboratory of Forensic Genetics and Molecular Archaeology, University Hospitals Leuven, Leuven, Belgium
| | - Gianfranco Biondi
- Department of Clinical Medicine, Public Health, Life and Environment, University of L'Aquila, L'Aquila, Italy
| | - Sara Serafino
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy.,Department of Public Health and Infectious Diseases, University of Rome Sapienza, Rome, Italy
| | | | - Maarten H D Larmuseau
- Department of Imaging and Pathology, Center for Archaeological Sciences, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Biology, Laboratory of Socioecology and Social Evolution, KU Leuven - University of Leuven, Leuven, Belgium
| | - Michele Scardi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Ronny Decorte
- Department of Imaging and Pathology, Center for Archaeological Sciences, KU Leuven - University of Leuven, Leuven, Belgium.,Laboratory of Forensic Genetics and Molecular Archaeology, University Hospitals Leuven, Leuven, Belgium
| | - Olga Rickards
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
6
|
Ansari-Pour N, Moñino Y, Duque C, Gallego N, Bedoya G, Thomas MG, Bradman N. Palenque de San Basilio in Colombia: genetic data support an oral history of a paternal ancestry in Congo. Proc Biol Sci 2016; 283:20152980. [PMID: 27030413 DOI: 10.1098/rspb.2015.2980] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/29/2016] [Indexed: 11/12/2022] Open
Abstract
The Palenque, a black community in rural Colombia, have an oral history of fugitive African slaves founding a free village near Cartagena in the seventeenth century. Recently, linguists have identified some 200 words in regular use that originate in a Kikongo language, with Yombe, mainly spoken in the Congo region, being the most likely source. The non-recombining portion of the Y chromosome (NRY) and mitochondrial DNA were analysed to establish whether there was greater similarity between present-day members of the Palenque and Yombe than between the Palenque and 42 other African groups (for all individuals,n= 2799) from which forced slaves might have been taken. NRY data are consistent with the linguistic evidence that Yombe is the most likely group from which the original male settlers of Palenque came. Mitochondrial DNA data suggested substantial maternal sub-Saharan African ancestry and a strong founder effect but did not associate Palenque with any particular African group. In addition, based on cultural data including inhabitants' claims of linguistic differences, it has been hypothesized that the two districts of the village (Abajo and Arriba) have different origins, with Arriba founded by men originating in Congo and Abajo by those born in Colombia. Although significant genetic structuring distinguished the two from each other, no supporting evidence for this hypothesis was found.
Collapse
Affiliation(s)
- Naser Ansari-Pour
- Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | | | | | - Natalia Gallego
- School of Health Sciences, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Gabriel Bedoya
- Universidad de Antioquia UdeA, Calle 70 No 52-21 Medellín, Colombia
| | - Mark G Thomas
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Neil Bradman
- Henry Stewart Group, 29/30 Little Russell Street, London, UK
| |
Collapse
|
7
|
Messina F, Scano G, Contini I, Martínez-Labarga C, De Stefano GF, Rickards O. Linking between genetic structure and geographical distance: Study of the maternal gene pool in the Ethiopian population. Ann Hum Biol 2016; 44:53-69. [PMID: 26883569 DOI: 10.3109/03014460.2016.1155646] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background The correlation between genetics and geographical distance has already been examined through the study of the dispersion of human populations, especially in terms of uniparental genetic markers. Aim The present work characterises, at the level of the mitochondrial DNA (mtDNA), two new samples of Amhara and Oromo populations from Ethiopia to evaluate the possible pattern of distribution for mtDNA variation and to test the hypothesis of the Isolation-by-Distance (IBD) model among African, European and Middle-Eastern populations. Subjects and methods This study analysed 173 individuals belonging to two ethnic groups of Ethiopia, Amhara and Oromo, by assaying HVS-I and HVS-II of mtDNA D-loop and informative coding region SNPs of mtDNA. Results The analysis suggests a relationship between genetic and geographic distances, affirming that the mtDNA pool of Africa, Europe and the Middle East might be coherent with the IBD model. Moreover, the mtDNA gene pools of the Sub-Saharan African and Mediterranean populations were very different. Conclusion In this study the pattern of mtDNA distribution, beginning with the Ethiopian plateau, was tested in the IBD model. It could be affirmed that, on a continent scale, the mtDNA pool of Africa, Europe and the Middle East might fall under the IBD model.
Collapse
Affiliation(s)
- Francesco Messina
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Giuseppina Scano
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Irene Contini
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Cristina Martínez-Labarga
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Gian Franco De Stefano
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Olga Rickards
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| |
Collapse
|
8
|
Cerezo M, Gusmão L, Černý V, Uddin N, Syndercombe-Court D, Gómez-Carballa A, Göbel T, Schneider PM, Salas A. Comprehensive Analysis of Pan-African Mitochondrial DNA Variation Provides New Insights into Continental Variation and Demography. J Genet Genomics 2015; 43:133-43. [PMID: 27020033 DOI: 10.1016/j.jgg.2015.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/30/2015] [Accepted: 09/15/2015] [Indexed: 01/15/2023]
Abstract
Africa is the cradle of all human beings, and although it has been the focus of a number of genetic studies, there are many questions that remain unresolved. We have performed one of the largest and most comprehensive meta-analyses of mitochondrial DNA (mtDNA) lineages carried out in the African continent to date. We generated high-throughput mtDNA single nucleotide polymorphism (SNP) data (230 SNPs) from 2024 Africans, where more than 500 of them were additionally genotyped for the control region. These data were analyzed together with over 12,700 control region profiles collected from the literature, representing more than 300 population samples from Africa. Insights into the African homeland of humans are discussed. Phylogeographic patterns for the African continent are shown at a high phylogeographic resolution as well as at the population and regional levels. The deepest branch of the mtDNA tree, haplogroup L0, shows the highest sub-haplogroup diversity in Southeast and East Africa, suggesting this region as the homeland for modern humans. Several demographic estimates point to the coast as a facilitator of human migration in Africa, but the data indicate complex patterns, perhaps mirroring the effect of recent continental-scaled demographic events in re-shaping African mtDNA variability.
Collapse
Affiliation(s)
- María Cerezo
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Medicina Legal, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia 15782, Spain; The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Leonor Gusmão
- DNA Diagnostic Laboratory, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil; IPATIMUP Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200-465, Portugal
| | - Viktor Černý
- Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague 118-01, Czech Republic
| | - Nabeel Uddin
- Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, UK
| | | | - Alberto Gómez-Carballa
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Medicina Legal, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia 15782, Spain
| | - Tanja Göbel
- Institute of Legal Medicine, Medical Faculty, University of Cologne, Cologne D-50823, Germany
| | - Peter M Schneider
- Institute of Legal Medicine, Medical Faculty, University of Cologne, Cologne D-50823, Germany
| | - Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Medicina Legal, Facultade de Medicina, Universidade de Santiago de Compostela, Galicia 15782, Spain.
| |
Collapse
|
9
|
Fortes-Lima C, Brucato N, Croze M, Bellis G, Schiavinato S, Massougbodji A, Migot-Nabias F, Dugoujon JM. Genetic population study of Y-chromosome markers in Benin and Ivory Coast ethnic groups. Forensic Sci Int Genet 2015; 19:232-237. [PMID: 26275614 DOI: 10.1016/j.fsigen.2015.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/17/2015] [Accepted: 07/31/2015] [Indexed: 11/29/2022]
Abstract
Ninety-six single nucleotide polymorphisms (SNPs) and seventeen short tandem repeat (STRs) were investigated on the Y-chromosome of 288 unrelated healthy individuals from populations in Benin (Bariba, Yoruba, and Fon) and the Ivory Coast (Ahizi and Yacouba). We performed a multidimensional scaling analysis based on FST and RST genetic distances using a large extensive database of sub-Saharan African populations. There is more genetic homogeneity in Ivory Coast populations compared with populations from Benin. Notably, the Beninese Yoruba are significantly differentiated from neighbouring groups, but also from the Yoruba from Nigeria (FST>0.05; P<0.01). The Y-chromosome dataset presented here provides new valuable data to understand the complex genetic diversity and human male demographic events in West Africa.
Collapse
Affiliation(s)
- Cesar Fortes-Lima
- Evolutionary Medicine Group, Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse, UMR 5288, Centre National de la Recherche Scientifique (CNRS), Université Toulouse 3-Paul-Sabatier, Toulouse, France
| | - Nicolas Brucato
- Leiden University Center for Linguistics, Leiden, the Netherlands
| | - Myriam Croze
- Section of Evolutionary Biology, Department of Biology II, University of Munich, 82152 Planegg-Martinsried, Germany
| | - Gil Bellis
- Institut National d'Etudes Démographiques, Paris, France
| | - Stephanie Schiavinato
- Evolutionary Medicine Group, Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse, UMR 5288, Centre National de la Recherche Scientifique (CNRS), Université Toulouse 3-Paul-Sabatier, Toulouse, France
| | - Achille Massougbodji
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Cotonou, Bénin
| | - Florence Migot-Nabias
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Cotonou, Bénin; Institut de Recherche pour le Développement, UMR 216 Mère et enfant face aux infections tropicales, 4 avenue de l'Observatoire, 75006 Paris, France; COMUE Sorbonne Paris Cité, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Jean-Michel Dugoujon
- Evolutionary Medicine Group, Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse, UMR 5288, Centre National de la Recherche Scientifique (CNRS), Université Toulouse 3-Paul-Sabatier, Toulouse, France.
| |
Collapse
|
10
|
Abstract
The genetic trait of lactase persistence is attributable to allelic variants in an enhancer region upstream of the lactase gene, LCT. To date, five different functional alleles, −13910*T, −13907*G, −13915*G, −14009*G and −14010*C, have been identified. The co-occurrence of several of these alleles in Ethiopian lactose digesters leads to a pattern of sequence diversity characteristic of a ‘soft selective sweep’. Here we hypothesise that throughout Africa, where multiple functional alleles co-exist, the enhancer diversity will be greater in groups who are traditional milk drinkers than in non-milk drinkers, as the result of this sort of parallel selection. Samples from 23 distinct groups from 10 different countries were examined. Each group was classified ‘Yes ‘or ‘No’ for milk-drinking, and ethnicity, language spoken and geographic location were recorded. Predicted lactase persistence frequency and enhancer diversity were, as hypothesised, higher in the milk drinkers than the non-milk-drinkers, but this was almost entirely accounted for by the Afro-Asiatic language speaking peoples of east Africa. The other groups, including the ‘Nilo-Saharan language speaking’ milk-drinkers, show lower frequencies of LP and lower diversity, and there was a north-east to south-west decline in overall diversity. Amongst the Afro-Asiatic (Cushitic) language speaking Oromo, however, the geographic cline was not evident and the southern pastoralist Borana showed much higher LP frequency and enhancer diversity than the other groups. Together these results reflect the effects of parallel selection, the stochastic processes of the occurrence and spread of the mutations, and time depth of milk drinking tradition.
Collapse
|
11
|
Vilar MG, Melendez C, Sanders AB, Walia A, Gaieski JB, Owings AC, Schurr TG. Genetic diversity in Puerto Rico and its implications for the peopling of the Island and the West Indies. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2014; 155:352-68. [PMID: 25043798 DOI: 10.1002/ajpa.22569] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 01/05/2023]
Abstract
Puerto Rico and the surrounding islands rest on the eastern fringe of the Caribbean's Greater Antilles, located less than 100 miles northwest of the Lesser Antilles. Puerto Ricans are genetic descendants of pre-Columbian peoples, as well as peoples of European and African descent through 500 years of migration to the island. To infer these patterns of pre-Columbian and historic peopling of the Caribbean, we characterized genetic diversity in 326 individuals from the southeastern region of Puerto Rico and the island municipality of Vieques. We sequenced the mitochondrial DNA (mtDNA) control region of all of the samples and the complete mitogenomes of 12 of them to infer their putative place of origin. In addition, we genotyped 121 male samples for 25 Y-chromosome single nucleotide polymorphism and 17 STR loci. Approximately 60% of the participants had indigenous mtDNA haplotypes (mostly from haplogroups A2 and C1), while 25% had African and 15% European haplotypes. Three A2 sublineages were unique to the Greater Antilles, one of which was similar to Mesoamerican types, while C1b haplogroups showed links to South America, suggesting that people reached the island from the two distinct continental source areas. However, none of the male participants had indigenous Y-chromosomes, with 85% of them instead being European/Mediterranean and 15% sub-Saharan African in origin. West Eurasian Y-chromosome short tandem repeat haplotypes were quite diverse and showed similarities to those observed in southern Europe, North Africa and the Middle East. These results attest to the distinct, yet equally complex, pasts for the male and female ancestors of modern day Puerto Ricans.
Collapse
Affiliation(s)
- Miguel G Vilar
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA, 19104-6398
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Gomez F, Hirbo J, Tishkoff SA. Genetic variation and adaptation in Africa: implications for human evolution and disease. Cold Spring Harb Perspect Biol 2014; 6:a008524. [PMID: 24984772 DOI: 10.1101/cshperspect.a008524] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Because modern humans originated in Africa and have adapted to diverse environments, African populations have high levels of genetic and phenotypic diversity. Thus, genomic studies of diverse African ethnic groups are essential for understanding human evolutionary history and how this leads to differential disease risk in all humans. Comparative studies of genetic diversity within and between African ethnic groups creates an opportunity to reconstruct some of the earliest events in human population history and are useful for identifying patterns of genetic variation that have been influenced by recent natural selection. Here we describe what is currently known about genetic variation and evolutionary history of diverse African ethnic groups. We also describe examples of recent natural selection in African genomes and how these data are informative for understanding the frequency of many genetic traits, including those that cause disease susceptibility in African populations and populations of recent African descent.
Collapse
Affiliation(s)
- Felicia Gomez
- Department of Genetics and Biology, School of Medicine and School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104 Hominid Paleobiology Doctoral Program and The Center for the Advanced Study of Hominid Paleobiology, Department of Anthropology, The George Washington University, Washington, D.C. 20052
| | - Jibril Hirbo
- Department of Genetics and Biology, School of Medicine and School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Sarah A Tishkoff
- Department of Genetics and Biology, School of Medicine and School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
13
|
Norman PJ, Hollenbach JA, Nemat-Gorgani N, Guethlein LA, Hilton HG, Pando MJ, Koram KA, Riley EM, Abi-Rached L, Parham P. Co-evolution of human leukocyte antigen (HLA) class I ligands with killer-cell immunoglobulin-like receptors (KIR) in a genetically diverse population of sub-Saharan Africans. PLoS Genet 2013; 9:e1003938. [PMID: 24204327 PMCID: PMC3814319 DOI: 10.1371/journal.pgen.1003938] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/16/2013] [Indexed: 02/06/2023] Open
Abstract
Interactions between HLA class I molecules and killer-cell immunoglobulin-like receptors (KIR) control natural killer cell (NK) functions in immunity and reproduction. Encoded by genes on different chromosomes, these polymorphic ligands and receptors correlate highly with disease resistance and susceptibility. Although studied at low-resolution in many populations, high-resolution analysis of combinatorial diversity of HLA class I and KIR is limited to Asian and Amerindian populations with low genetic diversity. At the other end of the spectrum is the West African population investigated here: we studied 235 individuals, including 104 mother-child pairs, from the Ga-Adangbe of Ghana. This population has a rich diversity of 175 KIR variants forming 208 KIR haplotypes, and 81 HLA-A, -B and -C variants forming 190 HLA class I haplotypes. Each individual we studied has a unique compound genotype of HLA class I and KIR, forming 1-14 functional ligand-receptor interactions. Maintaining this exceptionally high polymorphism is balancing selection. The centromeric region of the KIR locus, encoding HLA-C receptors, is highly diverse whereas the telomeric region encoding Bw4-specific KIR3DL1, lacks diversity in Africans. Present in the Ga-Adangbe are high frequencies of Bw4-bearing HLA-B*53:01 and Bw4-lacking HLA-B*35:01, which otherwise are identical. Balancing selection at key residues maintains numerous HLA-B allotypes having and lacking Bw4, and also those of stronger and weaker interaction with LILRB1, a KIR-related receptor. Correspondingly, there is a balance at key residues of KIR3DL1 that modulate its level of cell-surface expression. Thus, capacity to interact with NK cells synergizes with peptide binding diversity to drive HLA-B allele frequency distribution. These features of KIR and HLA are consistent with ongoing co-evolution and selection imposed by a pathogen endemic to West Africa. Because of the prevalence of malaria in the Ga-Adangbe and previous associations of cerebral malaria with HLA-B*53:01 and KIR, Plasmodium falciparum is a candidate pathogen.
Collapse
Affiliation(s)
- Paul J. Norman
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| | - Jill A. Hollenbach
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Neda Nemat-Gorgani
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lisbeth A. Guethlein
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Hugo G. Hilton
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Marcelo J. Pando
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Kwadwo A. Koram
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Eleanor M. Riley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Laurent Abi-Rached
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Centre National de la Recherche Scientifique, Laboratoire d'Analyse, Topologie, Probabilités - Unité Mixte de Recherche 7353, Equipe ATIP, Aix-Marseille Université, Marseille, France
| | - Peter Parham
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
14
|
Sanchez-Faddeev H, Pijpe J, van der Hulle T, Meij HJ, van der Gaag KJ, Slagboom PE, Westendorp RGJ, de Knijff P. The influence of clan structure on the genetic variation in a single Ghanaian village. Eur J Hum Genet 2013; 21:1134-9. [PMID: 23443025 PMCID: PMC3778349 DOI: 10.1038/ejhg.2013.12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 12/18/2012] [Accepted: 01/10/2013] [Indexed: 11/09/2022] Open
Abstract
Socioeconomic and cultural factors are thought to have an important role in influencing human population genetic structure. To explain such population structure differences, most studies analyse genetic differences among widely dispersed human populations. In contrast, we have studied the genetic structure of an ethnic group occupying a single village in north-eastern Ghana. We found a markedly skewed male population substructure because of an almost complete lack of male gene flow among Bimoba clans in this village. We also observed a deep male substructure within one of the clans in this village. Among all males, we observed only three Y-single-nucleotide polymorphism (SNP) haplogroups: E1b1a*-M2, E1b1a7a*-U174 and E1b1a8a*-U209, P277, P278. In contrast to the marked Y-chromosomal substructure, mitochondrial DNA HVS-1 sequence variation and autosomal short-tandem repeats variation patterns indicate high genetic diversities and a virtually random female-mediated gene flow among clans. On the extreme micro-geographical scale of this single Bimoba village, correspondence between the Y-chromosome lineages and clan membership could be due to the combined effects of the strict patrilocal and patrilineal structure. If translated to larger geographic scales, our results would imply that the extent of variation in uniparentally inherited genetic markers, which are typically associated with historical migration on a continental scale, could equally likely be the result of many small and different cumulative effects of social factors such as clan membership that act at a local scale. Such local scale effects should therefore be considered in genetic studies, especially those that use uniparental markers, before making inferences about human history at large.
Collapse
Affiliation(s)
- Hernando Sanchez-Faddeev
- 1] Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands [2] Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ancient substructure in early mtDNA lineages of southern Africa. Am J Hum Genet 2013; 92:285-92. [PMID: 23332919 DOI: 10.1016/j.ajhg.2012.12.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/29/2012] [Accepted: 12/19/2012] [Indexed: 01/29/2023] Open
Abstract
Among the deepest-rooting clades in the human mitochondrial DNA (mtDNA) phylogeny are the haplogroups defined as L0d and L0k, which are found primarily in southern Africa. These lineages are typically present at high frequency in the so-called Khoisan populations of hunter-gatherers and herders who speak non-Bantu languages, and the early divergence of these lineages led to the hypothesis of ancient genetic substructure in Africa. Here we update the phylogeny of the basal haplogroups L0d and L0k with 500 full mtDNA genome sequences from 45 southern African Khoisan and Bantu-speaking populations. We find previously unreported subhaplogroups and greatly extend the amount of variation and time-depth of most of the known subhaplogroups. Our major finding is the definition of two ancient sublineages of L0k (L0k1b and L0k2) that are present almost exclusively in Bantu-speaking populations from Zambia; the presence of such relic haplogroups in Bantu speakers is most probably due to contact with ancestral pre-Bantu populations that harbored different lineages than those found in extant Khoisan. We suggest that although these populations went extinct after the immigration of the Bantu-speaking populations, some traces of their haplogroup composition survived through incorporation into the gene pool of the immigrants. Our findings thus provide evidence for deep genetic substructure in southern Africa prior to the Bantu expansion that is not represented in extant Khoisan populations.
Collapse
|
16
|
Levin PJ, Visco AG, Shah SH, Fulton RG, Wu JM. Characterizing the phenotype of advanced pelvic organ prolapse. Female Pelvic Med Reconstr Surg 2012; 18:299-302. [PMID: 22983275 PMCID: PMC3505456 DOI: 10.1097/spv.0b013e31826a53de] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Genetic studies require a clearly defined phenotype to reach valid conclusions. Our aim was to characterize the phenotype of advanced prolapse by comparing women with stage III to IV prolapse with controls without prolapse. METHODS Based on the pelvic organ prolapse quantification examination, women with stage 0 to stage I prolapse (controls) and those with stage III to stage IV prolapse (cases) were prospectively recruited as part of a genetic epidemiologic study. Data regarding sociodemographics; medical, obstetric, and surgical history; family history; and body mass index were obtained by a questionnaire administered by a trained coordinator and abstracted from electronic medical records. RESULTS There were 275 case patients with advanced prolapse and 206 controls with stage 0 to stage I prolapse. Based on our recruitment strategy, the women were younger than the controls (64.7 ± 10.1 vs 68.6 ± 10.4 years; P<0.001); cases were also more likely to have had one or more vaginal deliveries (96.0% vs 82.0%; P<0.001). There were no differences in race, body mass index, and constipation. Regarding family history, cases were more likely to report that either their mother and/or sister(s) had prolapse (44.8% vs 16.9%, P<0.001). In a logistic regression model, vaginal parity (odds ratio, 4.05; 95% confidence interval, 1.67-9.85) and family history of prolapse (odds ratio, 3.74; 95% confidence interval, 2.16-6.46) remained significantly associated with advanced prolapse. CONCLUSIONS Vaginal parity and a family history of prolapse are more common in women with advanced prolapse compared to those without prolapse. These characteristics are important in phenotyping advanced prolapse, suggesting that these data should be collected in future genetic epidemiologic studies.
Collapse
Affiliation(s)
- Pamela J. Levin
- Division of Urogynecology, Department of Obstetrics and Gynecology Duke University, Durham, NC
| | - Anthony G. Visco
- Division of Urogynecology, Department of Obstetrics and Gynecology Duke University, Durham, NC
| | - Svati H. Shah
- Center for Human Genetics Duke University, Durham, NC
- Division of Cardiology, Department of Medicine, Duke University, Durham, NC
| | - Rebekah G. Fulton
- Division of Urogynecology, Department of Obstetrics and Gynecology Duke University, Durham, NC
| | - Jennifer M. Wu
- Division of Urogynecology, Department of Obstetrics and Gynecology Duke University, Durham, NC
| |
Collapse
|
17
|
Evidence from Y-chromosome analysis for a late exclusively eastern expansion of the Bantu-speaking people. Eur J Hum Genet 2012; 21:423-9. [PMID: 22892538 DOI: 10.1038/ejhg.2012.176] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The expansion of the Bantu-speaking people (EBSP) during the past 3000-5000 years is an event of great importance in the history of humanity. Anthropology, archaeology, linguistics and, in recent decades, genetics have been used to elucidate some of the events and processes involved. Although it is generally accepted that the EBSP has its origin in the so-called Bantu Homeland situated in the area of the border between Nigeria and the Grassfields of Cameroon, and that it followed both western and eastern routes, much less is known about the number and dates of those expansions, if more than one. Mitochondrial, Y-chromosome and autosomal DNA analyses have been carried out in attempts to understand the demographic events that have taken place. There is an increasing evidence that the expansion was a more complex process than originally thought and that neither a single demographic event nor an early split between western and eastern groups occurred. In this study, we analysed unique event polymorphism and short tandem repeat variation in non-recombining Y-chromosome haplogroups contained within the E1b1a haplogroup, which is exclusive to individuals of recent African ancestry, in a large, geographically widely distributed, set of sub-Saharan Africans (groups=43, n=2757), all of whom, except one Nilo-Saharan-speaking group, spoke a Niger-Congo language and most a Bantu tongue. Analysis of diversity and rough estimates of times to the most recent common ancestors of haplogroups provide evidence of multiple expansions along eastern and western routes and a late, exclusively eastern route, expansion.
Collapse
|
18
|
Abu-Amero KK, Hauser MA, Mohamed G, Liu Y, Gibson J, Gonzalez AM, Akafo S, Allingham RR. Mitochondrial genetic background in Ghanaian patients with primary open-angle glaucoma. Mol Vis 2012; 18:1955-9. [PMID: 22876121 PMCID: PMC3413447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 07/14/2012] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Prevalence rates for primary open-angle glaucoma (POAG) are significantly higher in Africans than in European or Asians. It has been reported recently that mitochondrial DNA (mtDNA) lineages of African origin, excluding L2, conferred susceptibility to POAG in Saudi Arabia. This prompted us to test the role of mtDNA haplogroups in the incidence of POAG in the Ghanaian population who has a high frequency of L2 lineages. METHODS DNA was extracted from two independent cohorts of clinically diagnosed POAG patients (n=373) and healthy controls (n=451). All patients and controls were from Accra and Tema (the southern region of Ghana). The hypervariable region-I (HVS-I) and coding regions comprising mtDNA haplogroup diagnostic polymorphisms were polymerase chain reaction (PCR) amplified and sequenced in all patients and controls and the haplotypes obtained were assorted into haplogroups and their frequencies compared between cohorts. RESULTS No statistically significant differences were found in mtDNA haplogroup frequencies between POAG patients and matched controls in this cohort for the various mtDNA haplogroups tested. CONCLUSIONS In this Ghanaian cohort, mtDNA haplogroups do not seem to confer susceptibility to POAG.
Collapse
Affiliation(s)
- Khaled K. Abu-Amero
- Ophthalmic Genetics Laboratory, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia,Department of Ophthalmology, College of Medicine, University of Florida, Jacksonville, FL
| | - Michael A. Hauser
- Center for Human Genetics, Duke University Medical Center, Durham, NC
| | - Gamal Mohamed
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, U.K
| | - Yutao Liu
- Center for Human Genetics, Duke University Medical Center, Durham, NC
| | - Jason Gibson
- Center for Human Genetics, Duke University Medical Center, Durham, NC
| | - Ana M. Gonzalez
- Área de Genética, Departamento de Parasitología, Ecología y Genética, Facultad de Biología, Universidad de La Laguna (ULL), La Laguna (Tenerife), Spain
| | - Stephen Akafo
- Department of Ophthalmology, University of Ghana, Accra, Ghana
| | - R. Rand Allingham
- Center for Human Genetics, Duke University Medical Center, Durham, NC,Department of Ophthalmology, Duke University Eye Center, Durham, NC
| |
Collapse
|
19
|
Simms TM, Wright MR, Hernandez M, Perez OA, Ramirez EC, Martinez E, Herrera RJ. Y-chromosomal diversity in Haiti and Jamaica: Contrasting levels of sex-biased gene flow. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2012; 148:618-31. [DOI: 10.1002/ajpa.22090] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 04/04/2012] [Indexed: 11/06/2022]
|
20
|
Cerezo M, Achilli A, Olivieri A, Perego UA, Gómez-Carballa A, Brisighelli F, Lancioni H, Woodward SR, López-Soto M, Carracedo Á, Capelli C, Torroni A, Salas A. Reconstructing ancient mitochondrial DNA links between Africa and Europe. Genome Res 2012; 22:821-6. [PMID: 22454235 PMCID: PMC3337428 DOI: 10.1101/gr.134452.111] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/29/2012] [Indexed: 11/25/2022]
Abstract
Mitochondrial DNA (mtDNA) lineages of macro-haplogroup L (excluding the derived L3 branches M and N) represent the majority of the typical sub-Saharan mtDNA variability. In Europe, these mtDNAs account for <1% of the total but, when analyzed at the level of control region, they show no signals of having evolved within the European continent, an observation that is compatible with a recent arrival from the African continent. To further evaluate this issue, we analyzed 69 mitochondrial genomes belonging to various L sublineages from a wide range of European populations. Phylogeographic analyses showed that ~65% of the European L lineages most likely arrived in rather recent historical times, including the Romanization period, the Arab conquest of the Iberian Peninsula and Sicily, and during the period of the Atlantic slave trade. However, the remaining 35% of L mtDNAs form European-specific subclades, revealing that there was gene flow from sub-Saharan Africa toward Europe as early as 11,000 yr ago.
Collapse
Affiliation(s)
- María Cerezo
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela, 15782 Galicia, Spain
| | - Alessandro Achilli
- Dipartimento di Biologia Cellulare e Ambientale, Università di Perugia, 06123 Perugia, Italy
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27100 Pavia, Italy
| | - Ugo A. Perego
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27100 Pavia, Italy
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah 84115, USA
| | - Alberto Gómez-Carballa
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela, 15782 Galicia, Spain
| | - Francesca Brisighelli
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela, 15782 Galicia, Spain
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Hovirag Lancioni
- Dipartimento di Biologia Cellulare e Ambientale, Università di Perugia, 06123 Perugia, Italy
| | - Scott R. Woodward
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah 84115, USA
| | - Manuel López-Soto
- Instituto Nacional de Toxicología y Ciencias Forenses, 41018 Sevilla, Spain
| | - Ángel Carracedo
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela, 15782 Galicia, Spain
| | - Cristian Capelli
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27100 Pavia, Italy
| | - Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela, 15782 Galicia, Spain
| |
Collapse
|
21
|
Interdisciplinary approach to the demography of Jamaica. BMC Evol Biol 2012; 12:24. [PMID: 22360861 PMCID: PMC3299582 DOI: 10.1186/1471-2148-12-24] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 02/23/2012] [Indexed: 11/22/2022] Open
Abstract
Background The trans-Atlantic slave trade dramatically changed the demographic makeup of the New World, with varying regions of the African coast exploited differently over roughly a 400 year period. When compared to the discrete mitochondrial haplotype distribution of historically appropriate source populations, the unique distribution within a specific source population can prove insightful in estimating the contribution of each population. Here, we analyzed the first hypervariable region of mitochondrial DNA in a sample from the Caribbean island of Jamaica and compared it to aggregated populations in Africa divided according to historiographically defined segments of the continent's coastline. The results from these admixture procedures were then compared to the wealth of historic knowledge surrounding the disembarkation of Africans on the island. Results In line with previous findings, the matriline of Jamaica is almost entirely of West African descent. Results from the admixture analyses suggest modern Jamaicans share a closer affinity with groups from the Gold Coast and Bight of Benin despite high mortality, low fecundity, and waning regional importation. The slaves from the Bight of Biafra and West-central Africa were imported in great numbers; however, the results suggest a deficit in expected maternal contribution from those regions. Conclusions When considering the demographic pressures imposed by chattel slavery on Jamaica during the slave era, the results seem incongruous. Ethnolinguistic and ethnographic evidence, however, may explain the apparent non-random levels of genetic perseverance. The application of genetics may prove useful in answering difficult demographic questions left by historically voiceless groups.
Collapse
|
22
|
Simms TM, Martinez E, Herrera KJ, Wright MR, Perez OA, Hernandez M, Ramirez EC, McCartney Q, Herrera RJ. Paternal lineages signal distinct genetic contributions from British Loyalists and continental Africans among different Bahamian islands. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 146:594-608. [DOI: 10.1002/ajpa.21616] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 08/05/2011] [Indexed: 02/02/2023]
|
23
|
Fendt L, Röck A, Zimmermann B, Bodner M, Thye T, Tschentscher F, Owusu-Dabo E, Göbel TMK, Schneider PM, Parson W. MtDNA diversity of Ghana: a forensic and phylogeographic view. Forensic Sci Int Genet 2011; 6:244-9. [PMID: 21723214 PMCID: PMC3314991 DOI: 10.1016/j.fsigen.2011.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/13/2011] [Accepted: 05/26/2011] [Indexed: 11/03/2022]
Abstract
West Africa is characterized by a migration history spanning more than 150,000 years. Climate changes but also political circumstances were responsible for several early but also recent population movements that shaped the West African mitochondrial landscape. The aim of the study was to establish a Ghanaian mtDNA dataset for forensic purposes and to investigate the diversity of the Ghanaian population sample with respect to surrounding populations. We sequenced full mitochondrial control regions of 193 Akan people from Ghana and excluded two apparently close maternally related individuals due to preceding kinship testing. The remaining dataset comprising 191 sequences was applied as etalon for quasi-median network analysis and was subsequently combined with 99 additional control region sequences from surrounding West African countries. All sequences were incorporated into the EMPOP database enriching the severely underrepresented African mtDNA pool. For phylogeographic considerations, the Ghanaian haplotypes were compared to those of 19 neighboring populations comprising a total number of 6198 HVS1 haplotypes. We found extensive genetic admixture between the Ghanaian lineages and those from adjacent populations diminishing with geographical distance. The extent of genetic admixture reflects the long but also recent history of migration waves within West Africa mainly caused by changing environmental conditions. Also, evidence for potential socio-economical influences such as trade routes is provided by the occurrence of U6b and U6d sequences found in Dubai but also in Tunisia leading to the African West Coast via Mauritania and Senegal but also via Niger, Nigeria to Cameroon.
Collapse
Affiliation(s)
- Liane Fendt
- Institute of Legal Medicine, Innsbruck Medical University, Muellerstrasse 44, 6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Montano V, Ferri G, Marcari V, Batini C, Anyaele O, Destro-Bisol G, Comas D. The Bantu expansion revisited: a new analysis of Y chromosome variation in Central Western Africa. Mol Ecol 2011; 20:2693-708. [PMID: 21627702 DOI: 10.1111/j.1365-294x.2011.05130.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The current distribution of Bantu languages is commonly considered to be a consequence of a relatively recent population expansion (3-5kya) in Central Western Africa. While there is a substantial consensus regarding the centre of origin of Bantu languages (the Benue River Valley, between South East Nigeria and Western Cameroon), the identification of the area from where the population expansion actually started, the relation between the processes leading to the spread of languages and peoples and the relevance of local migratory events remain controversial. In order to shed new light on these aspects, we studied Y chromosome variation in a broad dataset of populations encompassing Nigeria, Cameroon, Gabon and Congo. Our results evidence an evolutionary scenario which is more complex than had been previously thought, pointing to a marked differentiation of Cameroonian populations from the rest of the dataset. In fact, in contrast with the current view of Bantu speakers as a homogeneous group of populations, we observed an unexpectedly high level of interpopulation genetic heterogeneity and highlighted previously undetected diversity for lineages associated with the diffusion of Bantu languages (E1b1a (M2) sub-branches). We also detected substantial differences in local demographic histories, which concord with the hypotheses regarding an early diffusion of Bantu languages into the forest area and a subsequent demographic expansion and migration towards eastern and western Africa.
Collapse
Affiliation(s)
- Valeria Montano
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Ottoni C, Larmuseau MHD, Vanderheyden N, Martínez-Labarga C, Primativo G, Biondi G, Decorte R, Rickards O. Deep into the roots of the Libyan Tuareg: a genetic survey of their paternal heritage. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 145:118-24. [PMID: 21312181 DOI: 10.1002/ajpa.21473] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 11/23/2010] [Indexed: 11/05/2022]
Abstract
Recent genetic studies of the Tuareg have begun to uncover the origin of this semi-nomadic northwest African people and their relationship with African populations. For centuries they were caravan traders plying the trade routes between the Mediterranean coast and south-Saharan Africa. Their origin most likely coincides with the fall of the Garamantes who inhabited the Fezzan (Libya) between the 1st millennium BC and the 5th century AD. In this study we report novel data on the Y-chromosome variation in the Libyan Tuareg from Al Awaynat and Tahala, two villages in Fezzan, whose maternal genetic pool was previously characterized. High-resolution investigation of 37 Y-chromosome STR loci and analysis of 35 bi-allelic markers in 47 individuals revealed a predominant northwest African component (E-M81, haplogroup E1b1b1b) which likely originated in the second half of the Holocene in the same ancestral population that contributed to the maternal pool of the Libyan Tuareg. A significant paternal contribution from south-Saharan Africa (E-U175, haplogroup E1b1a8) was also detected, which may likely be due to recent secondary introduction, possibly through slavery practices or fusion between different tribal groups. The difference in haplogroup composition between the villages of Al Awaynat and Tahala suggests that founder effects and drift played a significant role in shaping the genetic pool of the Libyan Tuareg.
Collapse
Affiliation(s)
- Claudio Ottoni
- Laboratory of Forensic Genetics and Molecular Archaeology, Universitaire Ziekenhuizen, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
de Filippo C, Barbieri C, Whitten M, Mpoloka SW, Gunnarsdóttir ED, Bostoen K, Nyambe T, Beyer K, Schreiber H, de Knijff P, Luiselli D, Stoneking M, Pakendorf B. Y-chromosomal variation in sub-Saharan Africa: insights into the history of Niger-Congo groups. Mol Biol Evol 2010; 28:1255-69. [PMID: 21109585 DOI: 10.1093/molbev/msq312] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Technological and cultural innovations as well as climate changes are thought to have influenced the diffusion of major language phyla in sub-Saharan Africa. The most widespread and the richest in diversity is the Niger-Congo phylum, thought to have originated in West Africa ∼ 10,000 years ago (ya). The expansion of Bantu languages (a family within the Niger-Congo phylum) ∼ 5,000 ya represents a major event in the past demography of the continent. Many previous studies on Y chromosomal variation in Africa associated the Bantu expansion with haplogroup E1b1a (and sometimes its sublineage E1b1a7). However, the distribution of these two lineages extends far beyond the area occupied nowadays by Bantu-speaking people, raising questions on the actual genetic structure behind this expansion. To address these issues, we directly genotyped 31 biallelic markers and 12 microsatellites on the Y chromosome in 1,195 individuals of African ancestry focusing on areas that were previously poorly characterized (Botswana, Burkina Faso, Democratic Republic of Congo, and Zambia). With the inclusion of published data, we analyzed 2,736 individuals from 26 groups representing all linguistic phyla and covering a large portion of sub-Saharan Africa. Within the Niger-Congo phylum, we ascertain for the first time differences in haplogroup composition between Bantu and non-Bantu groups via two markers (U174 and U175) on the background of haplogroup E1b1a (and E1b1a7), which were directly genotyped in our samples and for which genotypes were inferred from published data using linear discriminant analysis on short tandem repeat (STR) haplotypes. No reduction in STR diversity levels was found across the Bantu groups, suggesting the absence of serial founder effects. In addition, the homogeneity of haplogroup composition and pattern of haplotype sharing between Western and Eastern Bantu groups suggests that their expansion throughout sub-Saharan Africa reflects a rapid spread followed by backward and forward migrations. Overall, we found that linguistic affiliations played a notable role in shaping sub-Saharan African Y chromosomal diversity, although the impact of geography is clearly discernible.
Collapse
Affiliation(s)
- Cesare de Filippo
- Max Planck Research Group on Comparative Population Linguistics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|