1
|
Huang W, Hu S, Zhu Y, Liu S, Zhou X, Fang Y, Lu Y, Wang R. Metagenomic surveillance and comparative genomic analysis of Chlamydia psittaci in patients with pneumonia. Front Microbiol 2023; 14:1157888. [PMID: 37323913 PMCID: PMC10265514 DOI: 10.3389/fmicb.2023.1157888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Chlamydia psittaci, a strictly intracellular bacterium, is an underestimated etiologic agent leading to infections in a broad range of animals and mild illness or pneumonia in humans. In this study, the metagenomes of bronchoalveolar lavage fluids from the patients with pneumonia were sequenced and highly abundant C. psittaci was found. The target-enriched metagenomic reads were recruited to reconstruct draft genomes with more than 99% completeness. Two C. psittaci strains from novel sequence types were detected and these were closely related to the animal-borne isolates derived from the lineages of ST43 and ST28, indicating the zoonotic transmissions of C. psittaci would benefit its prevalence worldwide. Comparative genomic analysis combined with public isolate genomes revealed that the pan-genome of C. psittaci possessed a more stable gene repertoire than those of other extracellular bacteria, with ~90% of the genes per genome being conserved core genes. Furthermore, the evidence for significantly positive selection was identified in 20 virulence-associated gene products, particularly bacterial membrane-embedded proteins and type three secretion machines, which may play important roles in the pathogen-host interactions. This survey uncovered novel strains of C. psittaci causing pneumonia and the evolutionary analysis characterized prominent gene candidates involved in bacterial adaptation to immune pressures. The metagenomic approach is of significance to the surveillance of difficult-to-culture intracellular pathogens and the research into molecular epidemiology and evolutionary biology of C. psittaci.
Collapse
Affiliation(s)
- Weifeng Huang
- Department of Intensive Care Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuqin Hu
- Department of Critical Care Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Yongzhe Zhu
- Department of Microbiology, Navy Medical University, Shanghai, China
| | - Shijia Liu
- Department of Pulmonary Disease, PLA 905 Hospital, Shanghai, China
| | - Xingya Zhou
- Genoxor Medical Science and Technology Inc., Shanghai, China
| | - Yuan Fang
- Genoxor Medical Science and Technology Inc., Shanghai, China
| | - Yihan Lu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| | - Ruilan Wang
- Department of Critical Care Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| |
Collapse
|
2
|
Andrianto E, Kasai A. Wolbachia in Black Spiny Whiteflies and Their New Parasitoid Wasp in Japan: Evidence of the Distinct Infection Status on Aleurocanthus camelliae Cryptic Species Complex. INSECTS 2022; 13:insects13090788. [PMID: 36135489 PMCID: PMC9502694 DOI: 10.3390/insects13090788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/12/2022] [Accepted: 08/27/2022] [Indexed: 05/21/2023]
Abstract
Wolbachia, an alphaproteobacterial reproductive parasite, can cause profound mitochondrial divergence in insects, which might eventually be a part of cryptic speciation. Aleurocanthus camelliae is a cryptic species complex consisting of several morphospecies and/or haplotypes that are genetically different but morphologically indistinctive. However, little is known about the Wolbachia infection status in these tea and Citrus pests. Thus, this study aimed to profile the diversity and phenotypic characteristics of Wolbachia natural infections in the A. camelliae cryptic species complex. A monophyletic strain of Wolbachia that infected the A. camelliae cryptic species complex (wAlec) with different patterns was discovered. Whiteflies that are morphologically identical to Aleurocanthus spiniferus (Aleurocanthus cf. A. spiniferus in Eurya japonica and A. spiniferus in Citrus) were grouped into uninfected populations, whereas the fixed infection was detected in A. camelliae B1 from Theaceae. The rapid evolution of wAlec was also found to occur through a high recombination event, which produced subgroups A and B in wAlec. It may also be associated with the non-cytoplasmic incompatibility (CI) phenotype of wAlec due to undetectable CI-related genes from phage WO (WOAlec). The current discovery of a novel cryptic species of A. camelliae led to a discussion about the oscillation hypothesis, which may provide insights on cryptic speciation, particularly on how specialization and host expansion have been recorded among these species. This study also identified a parasitoid wasp belonging to the genus Eretmocerus in A. camelliae, for the first time in Japan.
Collapse
Affiliation(s)
- Eko Andrianto
- Science of Biological Environment, The United Graduate School of Agricultural Science (UGSAS), Gifu University, Gifu City 501-1193, Japan
- Correspondence: ; Tel./Fax: +81-054-238-4790
| | - Atsushi Kasai
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka City 422-8528, Japan
| |
Collapse
|
3
|
Zhou J, Ren H, Hu M, Zhou J, Li B, Kong N, Zhang Q, Jin Y, Liang L, Yue J. Characterization of Burkholderia cepacia Complex Core Genome and the Underlying Recombination and Positive Selection. Front Genet 2020; 11:506. [PMID: 32528528 PMCID: PMC7253759 DOI: 10.3389/fgene.2020.00506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/24/2020] [Indexed: 11/13/2022] Open
Abstract
Recombination and positive selection are two key factors that play a vital role in pathogenic microorganisms’ population adaptation and diversification. The Burkholderia cepacia complex (Bcc) represents bacterial species with high similarity, which can cause severe infections among cases suffering from the chronic granulomatous disorder and cystic fibrosis (CF). At present, no genome-wide study has been carried out focusing on investigating the core genome of Bcc associated with the two evolutionary forces. The general characteristics of the core genome of Bcc species remain scarce as well. In this study, we explored the core orthologous genes of 116 Bcc strains using comparative genomic analysis and studied the two adaptive evolutionary forces: recombination and positive selection. We estimated 1005 orthogroups consisting entirely of single copy genes. These single copy orthologous genes in some Cluster of Orthologous Groups (COG) categories showed significant differences in the comparison of several evolutionary properties, and the encoding proteins were relatively simple and compact. Our findings showed that 5.8% of the core orthologous genes strongly supported recombination; in the meantime, 1.1% supported positive selection. We found that genes involved in protein synthesis as well as material transport and metabolism are favored by selection pressure. More importantly, homologous recombination contributed more genetic variation to a large number of genes and largely maintained the genetic cohesion in Bcc. This high level of recombination between Bcc species blurs their taxonomic boundaries, which leads Bcc species to be difficult or impossible to distinguish phenotypically and genotypically.
Collapse
Affiliation(s)
- Jianglin Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Hongguang Ren
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Mingda Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Jing Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Beiping Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Na Kong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Qi Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yuan Jin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Long Liang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Junjie Yue
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
4
|
Comparative Genomics of Actinobacillus pleuropneumoniae Serotype 8 Reveals the Importance of Prophages in the Genetic Variability of the Species. Int J Genomics 2020; 2020:9354204. [PMID: 32149072 PMCID: PMC7049842 DOI: 10.1155/2020/9354204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/03/2020] [Indexed: 12/30/2022] Open
Abstract
Actinobacillus pleuropneumoniae is the etiologic agent of porcine pleuropneumonia. Currently, there are 18 different serotypes; the serotype 8 is the most widely distributed in the United States, Canada, United Kingdom, and southeastern Brazil. In this study, genomes of seven A. pleuropneumoniae serotype 8 clinical isolates were compared to the other genomes of twelve serotypes. The analyses of serotype 8 genomes resulted in a set of 2352 protein-coding sequences. Of these sequences, 76.6% are present in all serotypes, 18.5% are shared with some serotypes, and 4.9% were differential. This differential portion was characterized as a series of hypothetical and regulatory protein sequences: mobile element sequence. Synteny analysis demonstrated possible events of gene recombination and acquisition by horizontal gene transfer (HGT) in this species. A total of 30 sequences related to prophages were identified in the genomes. These sequences represented 0.3 to 3.5% of the genome of the strains analyzed, and 16 of them contained complete prophages. Similarity analysis between complete prophage sequences evidenced a possible HGT with species belonging to the family Pasteurellaceae. Thus, mobile genetic elements, such as prophages, are important components of the differential portion of the A. pleuropneumoniae genome and demonstrate a central role in the evolution of the species. This study represents the first study done to understand the genome of A. pleuropneumoniae serotype 8.
Collapse
|
5
|
Maděránková D, Mikalová L, Strouhal M, Vadják Š, Kuklová I, Pospíšilová P, Krbková L, Koščová P, Provazník I, Šmajs D. Identification of positively selected genes in human pathogenic treponemes: Syphilis-, yaws-, and bejel-causing strains differ in sets of genes showing adaptive evolution. PLoS Negl Trop Dis 2019; 13:e0007463. [PMID: 31216284 PMCID: PMC6602244 DOI: 10.1371/journal.pntd.0007463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 07/01/2019] [Accepted: 05/14/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Pathogenic treponemes related to Treponema pallidum are both human (causing syphilis, yaws, bejel) and animal pathogens (infections of primates, venereal spirochetosis in rabbits). A set of 11 treponemal genome sequences including those of five Treponema pallidum ssp. pallidum (TPA) strains (Nichols, DAL-1, Mexico A, SS14, Chicago), four T. p. ssp. pertenue (TPE) strains (CDC-2, Gauthier, Samoa D, Fribourg-Blanc), one T. p. ssp. endemicum (TEN) strain (Bosnia A) and one strain (Cuniculi A) of Treponema paraluisleporidarum ecovar Cuniculus (TPeC) were tested for the presence of positively selected genes. METHODOLOGY/PRINCIPAL FINDINGS A total of 1068 orthologous genes annotated in all 11 genomes were tested for the presence of positively selected genes using both site and branch-site models with CODEML (PAML package). Subsequent analyses with sequences obtained from 62 treponemal draft genomes were used for the identification of positively selected amino acid positions. Synthetic biotinylated peptides were designed to cover positively selected protein regions and these peptides were tested for reactivity with the patient's syphilis sera. Altogether, 22 positively selected genes were identified in the TP genomes and TPA sets of positively selected genes differed from TPE genes. While genetic variability among TPA strains was predominantly present in a number of genetic loci, genetic variability within TPE and TEN strains was distributed more equally along the chromosome. Several syphilitic sera were shown to react with some peptides derived from the protein sequences evolving under positive selection. CONCLUSIONS/SIGNIFICANCE The syphilis-, yaws-, and bejel-causing strains differed relative to sets of positively selected genes. Most of the positively selected chromosomal loci were identified among the TPA treponemes. The local accumulation of genetic variability suggests that the diversification of TPA strains took place predominantly in a limited number of genomic regions compared to the more dispersed genetic diversity differentiating TPE and TEN strains. The identification of positively selected sites in tpr genes and genes encoding outer membrane proteins suggests their role during infection of human and animal hosts. The driving force for adaptive evolution at these loci thus appears to be the host immune response as supported by observed reactivity of syphilitic sera with some peptides derived from protein sequences showing adaptive evolution.
Collapse
Affiliation(s)
- Denisa Maděránková
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Lenka Mikalová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Strouhal
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Šimon Vadják
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Ivana Kuklová
- Department of Dermatology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Petra Pospíšilová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Krbková
- Department of Children's Infectious Diseases, Faculty of Medicine and University Hospital, Masaryk University, Brno, Czech Republic
| | - Pavlína Koščová
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Ivo Provazník
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
6
|
Stubenrauch CJ, Lithgow T. The TAM: A Translocation and Assembly Module of the β-Barrel Assembly Machinery in Bacterial Outer Membranes. EcoSal Plus 2019; 8. [PMID: 30816086 PMCID: PMC11573294 DOI: 10.1128/ecosalplus.esp-0036-2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Indexed: 04/08/2023]
Abstract
Assembly of proteins into the outer membrane is an essential process in the cell biology of bacteria. The integration of β-barrel proteins into the outer membrane is mediated by a system referred to as the β-barrel assembly machinery (BAM) that includes two related proteins: BamA in the BAM complex and TamA in the TAM (translocation and assembly module). Here we review what is known about the TAM in terms of its function and the structural architecture of its two subunits, TamA and TamB. By linking the energy transduction possibilities in the inner membrane to TamA in the outer membrane, the TAM provides additional capability to the β-barrel assembly machinery. Conservation of the TAM across evolutionary boundaries, and the presence of hybrid BAM/TAM complexes in some bacterial lineages, adds insight to our growing understanding of how bacterial outer membranes are built.
Collapse
Affiliation(s)
- Christopher J Stubenrauch
- Infection & Immunity Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Clayton 3800, Australia
| | - Trevor Lithgow
- Infection & Immunity Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Clayton 3800, Australia
| |
Collapse
|
7
|
Bochkareva OO, Moroz EV, Davydov II, Gelfand MS. Genome rearrangements and selection in multi-chromosome bacteria Burkholderia spp. BMC Genomics 2018; 19:965. [PMID: 30587126 PMCID: PMC6307245 DOI: 10.1186/s12864-018-5245-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 11/14/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The genus Burkholderia consists of species that occupy remarkably diverse ecological niches. Its best known members are important pathogens, B. mallei and B. pseudomallei, which cause glanders and melioidosis, respectively. Burkholderia genomes are unusual due to their multichromosomal organization, generally comprised of 2-3 chromosomes. RESULTS We performed integrated genomic analysis of 127 Burkholderia strains. The pan-genome is open with the saturation to be reached between 86,000 and 88,000 genes. The reconstructed rearrangements indicate a strong avoidance of intra-replichore inversions that is likely caused by selection against the transfer of large groups of genes between the leading and the lagging strands. Translocated genes also tend to retain their position in the leading or the lagging strand, and this selection is stronger for large syntenies. Integrated reconstruction of chromosome rearrangements in the context of strains phylogeny reveals parallel rearrangements that may indicate inversion-based phase variation and integration of new genomic islands. In particular, we detected parallel inversions in the second chromosomes of B. pseudomallei with breakpoints formed by genes encoding membrane components of multidrug resistance complex, that may be linked to a phase variation mechanism. Two genomic islands, spreading horizontally between chromosomes, were detected in the B. cepacia group. CONCLUSIONS This study demonstrates the power of integrated analysis of pan-genomes, chromosome rearrangements, and selection regimes. Non-random inversion patterns indicate selective pressure, inversions are particularly frequent in a recent pathogen B. mallei, and, together with periods of positive selection at other branches, may indicate adaptation to new niches. One such adaptation could be a possible phase variation mechanism in B. pseudomallei.
Collapse
Affiliation(s)
- Olga O. Bochkareva
- Kharkevich Institute for Information Transmission Problems, Moscow, Russia
- Center of Life Sciences Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Elena V. Moroz
- Kharkevich Institute for Information Transmission Problems, Moscow, Russia
| | - Iakov I. Davydov
- Department of Ecology and Evolution & Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Mikhail S. Gelfand
- Kharkevich Institute for Information Transmission Problems, Moscow, Russia
- Center of Life Sciences Skolkovo Institute of Science and Technology, Moscow, Russia
- Faculty of Computer Science, Higher School of Economics, Moscow, Russia
| |
Collapse
|
8
|
dos Santos LF, Costa Polveiro R, Scatamburlo Moreira T, Pereira Vidigal PM, Chang YF, Scatamburlo Moreira MA. Polymorphism analysis of the apxIA gene of Actinobacillus pleuropneumoniae serovar 5 isolated in swine herds from Brazil. PLoS One 2018; 13:e0208789. [PMID: 30562362 PMCID: PMC6298653 DOI: 10.1371/journal.pone.0208789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 11/26/2018] [Indexed: 11/30/2022] Open
Abstract
The bacterium Actinobacillus pleuropneumoniae is the etiological agent of Contagious Porcine Pleuropneumonia, a disease responsible for economic losses in the swine industry worldwide. A. pleuropneumoniae is capable of producing proteinaceous exotoxins responsible for inducing hemorrhagic lesions, one of which is ApxI. Few studies have conducted an in-depth evaluation of polymorphisms of the nucleotides that make up the ApxI toxin gene. Here we analyze the polymorphisms of the apxIA gene region of A. pleuropneumoniae serovar 5 isolated from swine in different regions in Brazil and report the results of molecular sequencing and phylogenetic analysis. Analysis of the apxIA gene in 60 isolates revealed the presence of genetic diversity and variability. The polymorphisms in the nucleotide sequences determined the grouping of the Brazilian sequences and five more sequences from the GenBank database into 14 different haplotypes, which formed three main groups and revealed the presence of mutations in the nucleotide sequences. The estimation of selection pressures suggests the occurrence of genetic variations by positive selective pressure on A. pleuropneumoniae in large groups of animals in relatively small spaces. These conditions presumably favor the horizontal dissemination of apxIA gene mutations within bacterial populations with host reservoirs. As a result, the same serovar can demonstrate different antigenic capacities due to mutations in the apxIA gene. These alterations in sequences of the apxIA gene could occur in other areas of countries with intense swine production, which could lead to differences in the pathogenicity and immunogenicity of each serovar and have implications for the clinical status or diagnosis of A. pleuropneumoniae.
Collapse
Affiliation(s)
- Lucas Fernando dos Santos
- Laboratory of Bacterial Diseases, Sector of Preventive Veterinary Medicine and Public Health, Veterinary Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Microbiologia Veterinária Especial LTDA (Microvet), Viçosa, Minas Gerais, Brazil
| | - Richard Costa Polveiro
- Laboratory of Bacterial Diseases, Sector of Preventive Veterinary Medicine and Public Health, Veterinary Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Thalita Scatamburlo Moreira
- Laboratory of Bacterial Diseases, Sector of Preventive Veterinary Medicine and Public Health, Veterinary Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Pedro Marcus Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Center of Biological Sciences, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Maria Aparecida Scatamburlo Moreira
- Laboratory of Bacterial Diseases, Sector of Preventive Veterinary Medicine and Public Health, Veterinary Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
9
|
Genes under positive selection in the core genome of pathogenic Bacillus cereus group members. INFECTION GENETICS AND EVOLUTION 2018; 65:55-64. [PMID: 30006047 DOI: 10.1016/j.meegid.2018.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 11/24/2022]
Abstract
In this comparative genomics study our aim was to unravel genes under positive selection in the core genome of the Bacillus cereus group. Indeed, the members of this group share close genetic relationships but display a rather large phenotypic and ecological diversity, providing a unique opportunity for studying how genomic changes reflect ecological adaptation during the divergence of a bacterial group. For this purpose, we screened ten completely sequenced genomes of four pathogenic Bacillus species, finding that 254 out of 3093 genes have codon sites with dN/dS (ω) values above one. These results remained unchanged after having disentangled the confounding effects of recombination and selection signature in a Bayesian framework. The presumably adaptive nucleotide polymorphisms are distributed over a wide range of biological functions, such as antibiotic resistance, DNA repair, nutrient uptake, metabolism, cell wall assembly and spore structure. Our results indicate that adaptation to animal hosts, whether as pathogens, saprophytes or symbionts, is the major driving force in the evolution of the Bacillus cereus group. Future work should seek to understand the evolutionary dynamics of both core and accessory genes in an integrative framework to ultimately unravel the key networks involved in host adaptation.
Collapse
|
10
|
Cao P, Guo D, Liu J, Jiang Q, Xu Z, Qu L. Genome-Wide Analyses Reveal Genes Subject to Positive Selection in Pasteurella multocida. Front Microbiol 2017; 8:961. [PMID: 28611758 PMCID: PMC5447721 DOI: 10.3389/fmicb.2017.00961] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/15/2017] [Indexed: 01/02/2023] Open
Abstract
Pasteurella multocida, a Gram-negative opportunistic pathogen, has led to a broad range of diseases in mammals and birds, including fowl cholera in poultry, pneumonia and atrophic rhinitis in swine and rabbit, hemorrhagic septicemia in cattle, and bite infections in humans. In order to better interpret the genetic diversity and adaptation evolution of this pathogen, seven genomes of P. multocida strains isolated from fowls, rabbit and pigs were determined by using high-throughput sequencing approach. Together with publicly available P. multocida genomes, evolutionary features were systematically analyzed in this study. Clustering of 70,565 protein-coding genes showed that the pangenome of 33 P. multocida strains was composed of 1,602 core genes, 1,364 dispensable genes, and 1,070 strain-specific genes. Of these, we identified a full spectrum of genes related to virulence factors and revealed genetic diversity of these potential virulence markers across P. multocida strains, e.g., bcbAB, fcbC, lipA, bexDCA, ctrCD, lgtA, lgtC, lic2A involved in biogenesis of surface polysaccharides, hsf encoding autotransporter adhesin, and fhaB encoding filamentous haemagglutinin. Furthermore, based on genome-wide positive selection scanning, a total of 35 genes were subject to strong selection pressure. Extensive analyses of protein subcellular location indicated that membrane-associated genes were highly abundant among all positively selected genes. The detected amino acid sites undergoing adaptive selection were preferably located in extracellular space, perhaps associated with bacterial evasion of host immune responses. Our findings shed more light on conservation and distribution of virulence-associated genes across P. multocida strains. Meanwhile, this study provides a genetic context for future researches on the mechanism of adaptive evolution in P. multocida.
Collapse
Affiliation(s)
- Peili Cao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| | - Dongchun Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| | - Jiasen Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| | - Qian Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| | - Zhuofei Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Liandong Qu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| |
Collapse
|
11
|
Rojas TCG, Lobo FP, Hongo JA, Vicentini R, Verma R, Maluta RP, da Silveira WD. Genome-Wide Survey of Genes Under Positive Selection in Avian Pathogenic Escherichia coli Strains. Foodborne Pathog Dis 2017; 14:245-252. [PMID: 28398866 DOI: 10.1089/fpd.2016.2219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The ability to obtain bacterial genomes from the same host has allowed for comparative studies that help in the understanding of the molecular evolution of specific pathotypes. Avian pathogenic Escherichia coli (APEC) is a group of extraintestinal strains responsible for causing colibacillosis in birds. APEC is also suggested to possess a role as a zoonotic agent. Despite its importance, APEC pathogenesis still has several cryptic pathogenic processes that need to be better understood. In this work, a genome-wide survey of eight APEC strains for genes with evidence of recombination revealed that ∼14% of the homologous groups evaluated present signs of recombination. Enrichment analyses revealed that nine Gene Ontology (GO) terms were significantly more represented in recombinant genes. Among these GO terms, several were noted to be ATP-related categories. The search for positive selection in these APEC genomes revealed 32 groups of homologous genes with evidence of positive selection. Among these groups, we found several related to cell metabolism, as well as several uncharacterized genes, beyond the well-known virulence factors ompC, lamB, waaW, waaL, and fliC. A GO term enrichment test showed a prevalence of terms related to bacterial cell contact with the external environment (e.g., viral entry into host cell, detection of virus, pore complex, bacterial-type flagellum filament C, and porin activity). Finally, the genes with evidence of positive selection were retrieved from genomes of non-APEC strains and tested as were done for APEC strains. The result revealed that none of the groups of genes presented evidence of positive selection, confirming that the analysis was effective in inferring positive selection for APEC and not for E. coli in general, which means that the study of the genes with evidence of positive selection identified in this study can contribute for the better understanding of APEC pathogenesis processes.
Collapse
Affiliation(s)
- Thaís Cabrera Galvão Rojas
- 1 Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas (UNICAMP) , Campinas, Brazil
| | - Francisco Pereira Lobo
- 2 Laboratório Multiusuário de Bioinformática, Embrapa Informática Agropecuária , Campinas, Brazil
| | - Jorge Augusto Hongo
- 2 Laboratório Multiusuário de Bioinformática, Embrapa Informática Agropecuária , Campinas, Brazil
| | - Renato Vicentini
- 3 Systems Biology Laboratory, Centre for Molecular Biology and Genetic Engineering, State University of Campinas (UNICAMP) , Campinas, Brazil
| | - Renu Verma
- 1 Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas (UNICAMP) , Campinas, Brazil
| | - Renato Pariz Maluta
- 1 Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas (UNICAMP) , Campinas, Brazil
| | - Wanderley Dias da Silveira
- 1 Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas (UNICAMP) , Campinas, Brazil
| |
Collapse
|
12
|
Browne P, Tamaki H, Kyrpides N, Woyke T, Goodwin L, Imachi H, Bräuer S, Yavitt JB, Liu WT, Zinder S, Cadillo-Quiroz H. Genomic composition and dynamics among Methanomicrobiales predict adaptation to contrasting environments. ISME JOURNAL 2016; 11:87-99. [PMID: 27552639 DOI: 10.1038/ismej.2016.104] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/13/2016] [Accepted: 06/22/2016] [Indexed: 11/09/2022]
Abstract
Members of the order Methanomicrobiales are abundant, and sometimes dominant, hydrogenotrophic (H2-CO2 utilizing) methanoarchaea in a broad range of anoxic habitats. Despite their key roles in greenhouse gas emissions and waste conversion to methane, little is known about the physiological and genomic bases for their widespread distribution and abundance. In this study, we compared the genomes of nine diverse Methanomicrobiales strains, examined their pangenomes, reconstructed gene flow and identified genes putatively mediating their success across different habitats. Most strains slowly increased gene content whereas one, Methanocorpusculum labreanum, evidenced genome downsizing. Peat-dwelling Methanomicrobiales showed adaptations centered on improved transport of scarce inorganic nutrients and likely use H+ rather than Na+ transmembrane chemiosmotic gradients during energy conservation. In contrast, other Methanomicrobiales show the potential to concurrently use Na+ and H+ chemiosmotic gradients. Analyses also revealed that the Methanomicrobiales lack a canonical electron bifurcation system (MvhABGD) known to produce low potential electrons in other orders of hydrogenotrophic methanogens. Additional putative differences in anabolic metabolism suggest that the dynamics of interspecies electron transfer from Methanomicrobiales syntrophic partners can also differ considerably. Altogether, these findings suggest profound differences in electron trafficking in the Methanomicrobiales compared with other hydrogenotrophs, and warrant further functional evaluations.
Collapse
Affiliation(s)
- Patrick Browne
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Nikos Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | | | - Hiroyuki Imachi
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Suzanna Bräuer
- Department of Biology, Appalachian State University, Boone, NC, USA
| | - Joseph B Yavitt
- Department of Natural Resources, Cornell University, Ithaca, NY, USA
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Stephen Zinder
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Hinsby Cadillo-Quiroz
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.,Swette Center for Environmental Biotechnology at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
13
|
Yu D, Yin Z, Li B, Jin Y, Ren H, Zhou J, Zhou W, Liang L, Yue J. Gene flow, recombination, and positive selection in Stenotrophomonas maltophilia: mechanisms underlying the diversity of the widespread opportunistic pathogen. Genome 2016; 59:1063-1075. [PMID: 27696900 DOI: 10.1139/gen-2016-0073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stenotrophomonas maltophilia is a global multidrug-resistant human opportunistic pathogen in clinical environments. Stenotrophomonas maltophilia is also ubiquitous in aqueous environments, soil, and plants. Various molecular typing methods have revealed that S. maltophilia exhibits high levels of phenotypic and genotypic diversity. However, information regarding the genomic diversity within S. maltophilia and the corresponding genetic mechanisms resulting in said diversity remain scarce. The genome sequences of 17 S. maltophilia strains were selected to investigate the mechanisms contributing to genetic diversity at the genome level. The core and large pan-genomes of the species were first estimated, resulting in a large, open pan-genome. A species phylogeny was also reconstructed based on 344 orthologous genes with one copy per genome, and the contribution of four evolutionary mechanisms to the species genome diversity was quantified: 15%-35% of the genes showed evidence for recombination, 0%-25% of the genes in one genome were likely gained, 0%-44% of the genes in some genomes were likely lost, and less than 0.3% of the genes in a genome were under positive selection pressures. We observed that, among the four main mechanisms, homologous recombination plays a key role in maintaining diversity in S. maltophilia. In this study, we provide an overview of evolution in S. maltophilia to provide a better understanding of its evolutionary dynamics and its relationship with genome diversity.
Collapse
Affiliation(s)
- Dong Yu
- a Beijing Institute of Biotechnology, Beijing, China.,b Institute of Translational Medicine, The Second Military Medical University, Shanghai, China
| | - Zhiqiu Yin
- a Beijing Institute of Biotechnology, Beijing, China.,c College of Life Science, Anhui University, Hefei, Anhui, China
| | - Beiping Li
- a Beijing Institute of Biotechnology, Beijing, China
| | - Yuan Jin
- a Beijing Institute of Biotechnology, Beijing, China
| | - Hongguang Ren
- a Beijing Institute of Biotechnology, Beijing, China
| | - Jing Zhou
- a Beijing Institute of Biotechnology, Beijing, China
| | - Wei Zhou
- a Beijing Institute of Biotechnology, Beijing, China
| | - Long Liang
- a Beijing Institute of Biotechnology, Beijing, China.,c College of Life Science, Anhui University, Hefei, Anhui, China
| | - Junjie Yue
- a Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
14
|
Hongo JA, de Castro GM, Cintra LC, Zerlotini A, Lobo FP. POTION: an end-to-end pipeline for positive Darwinian selection detection in genome-scale data through phylogenetic comparison of protein-coding genes. BMC Genomics 2015; 16:567. [PMID: 26231214 PMCID: PMC4521464 DOI: 10.1186/s12864-015-1765-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 07/10/2015] [Indexed: 11/29/2022] Open
Abstract
Background Detection of genes evolving under positive Darwinian evolution in genome-scale data is nowadays a prevailing strategy in comparative genomics studies to identify genes potentially involved in adaptation processes. Despite the large number of studies aiming to detect and contextualize such gene sets, there is virtually no software available to perform this task in a general, automatic, large-scale and reliable manner. This certainly occurs due to the computational challenges involved in this task, such as the appropriate modeling of data under analysis, the computation time to perform several of the required steps when dealing with genome-scale data and the highly error-prone nature of the sequence and alignment data structures needed for genome-wide positive selection detection. Results We present POTION, an open source, modular and end-to-end software for genome-scale detection of positive Darwinian selection in groups of homologous coding sequences. Our software represents a key step towards genome-scale, automated detection of positive selection, from predicted coding sequences and their homology relationships to high-quality groups of positively selected genes. POTION reduces false positives through several sophisticated sequence and group filters based on numeric, phylogenetic, quality and conservation criteria to remove spurious data and through multiple hypothesis corrections, and considerably reduces computation time thanks to a parallelized design. Our software achieved a high classification performance when used to evaluate a curated dataset of Trypanosoma brucei paralogs previously surveyed for positive selection. When used to analyze predicted groups of homologous genes of 19 strains of Mycobacterium tuberculosis as a case study we demonstrated the filters implemented in POTION to remove sources of errors that commonly inflate errors in positive selection detection. A thorough literature review found no other software similar to POTION in terms of customization, scale and automation. Conclusion To the best of our knowledge, POTION is the first tool to allow users to construct and check hypotheses regarding the occurrence of site-based evidence of positive selection in non-curated, genome-scale data within a feasible time frame and with no human intervention after initial configuration. POTION is available at http://www.lmb.cnptia.embrapa.br/share/POTION/. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1765-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jorge A Hongo
- Laboratório Multiusuário de Bioinformática, Embrapa Informática Agropecuária, Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Campinas, São Paulo, 13083-886, Brazil.
| | - Giovanni M de Castro
- Laboratório Multiusuário de Bioinformática, Embrapa Informática Agropecuária, Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Campinas, São Paulo, 13083-886, Brazil.
| | - Leandro C Cintra
- Laboratório Multiusuário de Bioinformática, Embrapa Informática Agropecuária, Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Campinas, São Paulo, 13083-886, Brazil.
| | - Adhemar Zerlotini
- Laboratório Multiusuário de Bioinformática, Embrapa Informática Agropecuária, Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Campinas, São Paulo, 13083-886, Brazil.
| | - Francisco P Lobo
- Laboratório Multiusuário de Bioinformática, Embrapa Informática Agropecuária, Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Campinas, São Paulo, 13083-886, Brazil.
| |
Collapse
|
15
|
Flores-López CA, Machado CA. Differences in inferred genome-wide signals of positive selection during the evolution of Trypanosoma cruzi and Leishmania spp. lineages: A result of disparities in host and tissue infection ranges? INFECTION GENETICS AND EVOLUTION 2015; 33:37-46. [DOI: 10.1016/j.meegid.2015.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/19/2015] [Accepted: 04/09/2015] [Indexed: 01/21/2023]
|
16
|
Xu Z, Zhou R. Genome-wide detection of selection and other evolutionary forces. Methods Mol Biol 2015; 1231:271-87. [PMID: 25343871 DOI: 10.1007/978-1-4939-1720-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As is well known, pathogenic microbes evolve rapidly to escape from the host immune system and antibiotics. Genetic variations among microbial populations occur frequently during the long-term pathogen-host evolutionary arms race, and individual mutation beneficial for the fitness can be fixed preferentially. Many recent comparative genomics studies have pointed out the importance of selective forces in the molecular evolution of bacterial pathogens. The public availability of large-scale next-generation sequencing data and many state-of-the-art statistical methods of molecular evolution enable us to scan genome-wide alignments for evidence of positive Darwinian selection, recombination, and other evolutionary forces operating on the coding regions. In this chapter, we describe an integrative analysis pipeline and its application to tracking featured evolutionary trajectories on the genome of an animal pathogen. The evolutionary analysis of the protein-coding part of the genomes will provide a wide spectrum of genetic variations that play potential roles in adaptive evolution of bacteria.
Collapse
Affiliation(s)
- Zhuofei Xu
- Section of Microbiology, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, 2200, Denmark,
| | | |
Collapse
|
17
|
Genome-wide evidence of positive selection in Bacteroides fragilis. Comput Biol Chem 2014; 52:43-50. [DOI: 10.1016/j.compbiolchem.2014.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 11/20/2022]
|
18
|
A genome-wide identification of genes undergoing recombination and positive selection in Neisseria. BIOMED RESEARCH INTERNATIONAL 2014; 2014:815672. [PMID: 25180194 PMCID: PMC4142384 DOI: 10.1155/2014/815672] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 01/01/2023]
Abstract
Currently, there is particular interest in the molecular mechanisms of adaptive evolution in bacteria. Neisseria is a genus of gram negative bacteria, and there has recently been considerable focus on its two human pathogenic species N. meningitidis and N. gonorrhoeae. Until now, no genome-wide studies have attempted to scan for the genes related to adaptive evolution. For this reason, we selected 18 Neisseria genomes (14 N. meningitidis, 3 N. gonorrhoeae and 1 commensal N. lactamics) to conduct a comparative genome analysis to obtain a comprehensive understanding of the roles of natural selection and homologous recombination throughout the history of adaptive evolution. Among the 1012 core orthologous genes, we identified 635 genes with recombination signals and 10 genes that showed significant evidence of positive selection. Further functional analyses revealed that no functional bias was found in the recombined genes. Positively selected genes are prone to DNA processing and iron uptake, which are essential for the fundamental life cycle. Overall, the results indicate that both recombination and positive selection play crucial roles in the adaptive evolution of Neisseria genomes. The positively selected genes and the corresponding amino acid sites provide us with valuable targets for further research into the detailed mechanisms of adaptive evolution in Neisseria.
Collapse
|
19
|
Yang XH, Zhu DH, Liu Z, Zhao L, Su CY. High levels of multiple infections, recombination and horizontal transmission of Wolbachia in the Andricus mukaigawae (Hymenoptera; Cynipidae) communities. PLoS One 2013; 8:e78970. [PMID: 24250820 PMCID: PMC3826730 DOI: 10.1371/journal.pone.0078970] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 09/18/2013] [Indexed: 11/21/2022] Open
Abstract
Wolbachia are maternally inherited endosymbiotic bacteria of arthropods and nematodes. In arthropods, they manipulate the reproduction of their hosts to facilitate their own spread in host populations, causing cytoplasmic incompatibility, parthenogenesis induction, feminization of genetic males and male-killing. In this study, we investigated Wolbachia infection and studied wsp (Wolbachia surface protein) sequences in three wasp species associated with the unisexual galls of A. mukaigawae with the aim of determining the transmission mode and the reason for multiple infections of Wolbachia. Frequency of Wolbachia infected populations for A. mukaigawae, Synergus japonicus (inquiline), and Torymus sp. (parasitoid) was 75%, 100%, and 100%, respectively. Multiple Wolbachia infections were detected in A. mukaigawae and S. japonicus, with 5 and 8 Wolbachia strains, respectively. The two host species shared 5 Wolbachia strains and were infected by identical strains in several locations, indicating horizontal transmission of Wolbachia. The transmission potentially takes place through gall tissues, which the larvae of both wasps feed on. Furthermore, three recombination events of Wolbachia were observed: the strains W8, W2 and W6 apparently have derived from W3 and W5a, W6 and W7, W4 and W9, respectively. W8 and W2 and their respective parental strains were detected in S. japonicus. W6 was detected with only one parent (W4) in S. japonicus; W9 was detected in Torymus sp., suggesting horizontal transmission between hosts and parasitoids. In conclusion, our research supports earlier studies that horizontal transmission of Wolbachia, a symbiont of the Rickettsiales order, may be plant-mediated or take place between hosts and parasitoids. Our research provides novel molecular evidence for multiple recombination events of Wolbachia in gall wasp communities. We suggest that genomic recombination and potential plant-mediated horizontal transmission may be attributable to the high levels of multiple Wolbachia infections observed in A. mukaigawae and S. japonicus.
Collapse
Affiliation(s)
- Xiao-Hui Yang
- Laboratory of Insect Behavior and Evolutionary Ecology, Central South University of Forestry and Technology, Changsha, China
| | - Dao-Hong Zhu
- Laboratory of Insect Behavior and Evolutionary Ecology, Central South University of Forestry and Technology, Changsha, China
- * E-mail:
| | - Zhiwei Liu
- Department of Biological Sciences, Eastern Illinois University, Charleston, Illinois, United States of America
| | - Ling Zhao
- Laboratory of Insect Behavior and Evolutionary Ecology, Central South University of Forestry and Technology, Changsha, China
| | - Cheng-Yuan Su
- Laboratory of Insect Behavior and Evolutionary Ecology, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
20
|
Alves JMP, Serrano MG, Maia da Silva F, Voegtly LJ, Matveyev AV, Teixeira MMG, Camargo EP, Buck GA. Genome evolution and phylogenomic analysis of Candidatus Kinetoplastibacterium, the betaproteobacterial endosymbionts of Strigomonas and Angomonas. Genome Biol Evol 2013; 5:338-50. [PMID: 23345457 PMCID: PMC3590767 DOI: 10.1093/gbe/evt012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It has been long known that insect-infecting trypanosomatid flagellates from the genera Angomonas and Strigomonas harbor bacterial endosymbionts (Candidatus Kinetoplastibacterium or TPE [trypanosomatid proteobacterial endosymbiont]) that supplement the host metabolism. Based on previous analyses of other bacterial endosymbiont genomes from other lineages, a stereotypical path of genome evolution in such bacteria over the duration of their association with the eukaryotic host has been characterized. In this work, we sequence and analyze the genomes of five TPEs, perform their metabolic reconstruction, do an extensive phylogenomic analyses with all available Betaproteobacteria, and compare the TPEs with their nearest betaproteobacterial relatives. We also identify a number of housekeeping and central metabolism genes that seem to have undergone positive selection. Our genome structure analyses show total synteny among the five TPEs despite millions of years of divergence, and that this lineage follows the common path of genome evolution observed in other endosymbionts of diverse ancestries. As previously suggested by cell biology and biochemistry experiments, Ca. Kinetoplastibacterium spp. preferentially maintain those genes necessary for the biosynthesis of compounds needed by their hosts. We have also shown that metabolic and informational genes related to the cooperation with the host are overrepresented amongst genes shown to be under positive selection. Finally, our phylogenomic analysis shows that, while being in the Alcaligenaceae family of Betaproteobacteria, the closest relatives of these endosymbionts are not in the genus Bordetella as previously reported, but more likely in the Taylorella genus.
Collapse
Affiliation(s)
- João M P Alves
- Department of Microbiology and Immunology and the Center for the Study of Biological Complexity, Virginia Commonwealth University, VA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Vos M, te Beek TAH, van Driel MA, Huynen MA, Eyre-Walker A, van Passel MWJ. ODoSE: a webserver for genome-wide calculation of adaptive divergence in prokaryotes. PLoS One 2013; 8:e62447. [PMID: 23671597 PMCID: PMC3646019 DOI: 10.1371/journal.pone.0062447] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/21/2013] [Indexed: 11/30/2022] Open
Abstract
Quantifying patterns of adaptive divergence between taxa is a major goal in the comparative and evolutionary study of prokaryote genomes. When applied appropriately, the McDonald-Kreitman (MK) test is a powerful test of selection based on the relative frequency of non-synonymous and synonymous substitutions between species compared to non-synonymous and synonymous polymorphisms within species. The webserver ODoSE (Ortholog Direction of Selection Engine) allows the calculation of a novel extension of the MK test, the Direction of Selection (DoS) statistic, as well as the calculation of a weighted-average Neutrality Index (NI) statistic for the entire core genome, allowing for systematic analysis of the evolutionary forces shaping core genome divergence in prokaryotes. ODoSE is hosted in a Galaxy environment, which makes it easy to use and amenable to customization and is freely available at www.odose.nl.
Collapse
Affiliation(s)
- Michiel Vos
- European Centre for Environment and Human Health, The University of Exeter Medical School, University of Exeter, Truro, United Kingdom
- * E-mail: (MV); (MWJvP)
| | - Tim A. H. te Beek
- Netherlands Bioinformatics Centre, Nijmegen, The Netherlands
- Centre for Molecular and Biomolecular Informatics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - Martijn A. Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Adam Eyre-Walker
- Centre for the Study of Evolution, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Mark W. J. van Passel
- Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands
- * E-mail: (MV); (MWJvP)
| |
Collapse
|
22
|
Shao ZQ, Zhang YM, Pan XZ, Wang B, Chen JQ. Insight into the evolution of the histidine triad protein (HTP) family in Streptococcus. PLoS One 2013; 8:e60116. [PMID: 23527301 PMCID: PMC3603884 DOI: 10.1371/journal.pone.0060116] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/21/2013] [Indexed: 12/19/2022] Open
Abstract
The Histidine Triad Proteins (HTPs), also known as Pht proteins in Streptococcus pneumoniae, constitute a family of surface-exposed proteins that exist in many pathogenic streptococcal species. Although many studies have revealed the importance of HTPs in streptococcal physiology and pathogenicity, little is known about their origin and evolution. In this study, after identifying all htp homologs from 105 streptococcal genomes representing 38 different species/subspecies, we analyzed their domain structures, positions in genome, and most importantly, their evolutionary histories. By further projecting this information onto the streptococcal phylogeny, we made several major findings. First, htp genes originated earlier than the Streptococcus genus and gene-loss events have occurred among three streptococcal groups, resulting in the absence of the htp gene in the Bovis, Mutans and Salivarius groups. Second, the copy number of htp genes in other groups of Streptococcus is variable, ranging from one to four functional copies. Third, both phylogenetic evidence and domain structure analyses support the division of two htp subfamilies, designated as htp I and htp II. Although present mainly in the pyogenic group and in Streptococcus suis, htp II members are distinct from htp I due to the presence of an additional leucine-rich-repeat domain at the C-terminus. Finally, htp genes exhibit a faster nucleotide substitution rate than do housekeeping genes. Specifically, the regions outside the HTP domains are under strong positive selection. This distinct evolutionary pattern likely helped Streptococcus to easily escape from recognition by host immunity.
Collapse
Affiliation(s)
- Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yan-Mei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiu-Zhen Pan
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Bin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
- * E-mail: (BW); (JQC)
| | - Jian-Qun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
- * E-mail: (BW); (JQC)
| |
Collapse
|
23
|
Protein domain repetition is enriched in Streptococcal cell-surface proteins. Genomics 2012; 100:370-9. [PMID: 22921469 DOI: 10.1016/j.ygeno.2012.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 08/02/2012] [Accepted: 08/07/2012] [Indexed: 11/20/2022]
Abstract
Tandem repetition of domain in protein sequence occurs in all three domains of life. It creates protein diversity and adds functional complexity in organisms. In this work, we analyzed 52 streptococcal genomes and found 3748 proteins contained domain repeats. Proteins not harboring domain repeats are significantly enriched in cytoplasm, whereas proteins with domain repeats are significantly enriched in cytoplasmic membrane, cell wall and extracellular locations. Domain repetition occurs most frequently in S. pneumoniae and least in S. thermophilus and S. pyogenes. DUF1542 is the highest repeated domain in a single protein, followed by Rib, CW_binding_1, G5 and HemolysinCabind. 3D structures of 24 repeat-containing proteins were predicted to investigate the structural and functional effect of domain repetition. Several repeat-containing streptococcal cell surface proteins are known to be virulence-associated. Surface-associated tandem domain-containing proteins without experimental functional characterization may be potentially involved in the pathogenesis of streptococci and deserve further investigation.
Collapse
|
24
|
Yahara K, Kawai M, Furuta Y, Takahashi N, Handa N, Tsuru T, Oshima K, Yoshida M, Azuma T, Hattori M, Uchiyama I, Kobayashi I. Genome-wide survey of mutual homologous recombination in a highly sexual bacterial species. Genome Biol Evol 2012; 4:628-40. [PMID: 22534164 PMCID: PMC3381677 DOI: 10.1093/gbe/evs043] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2012] [Indexed: 12/11/2022] Open
Abstract
The nature of a species remains a fundamental and controversial question. The era of genome/metagenome sequencing has intensified the debate in prokaryotes because of extensive horizontal gene transfer. In this study, we conducted a genome-wide survey of outcrossing homologous recombination in the highly sexual bacterial species Helicobacter pylori. We conducted multiple genome alignment and analyzed the entire data set of one-to-one orthologous genes for its global strains. We detected mosaic structures due to repeated recombination events and discordant phylogenies throughout the genomes of this species. Most of these genes including the "core" set of genes and horizontally transferred genes showed at least one recombination event. Taking into account the relationship between the nucleotide diversity and the minimum number of recombination events per nucleotide, we evaluated the recombination rate in every gene. The rate appears constant across the genome, but genes with a particularly high or low recombination rate were detected. Interestingly, genes with high recombination included those for DNA transformation and for basic cellular functions, such as biosynthesis and metabolism. Several highly divergent genes with a high recombination rate included those for host interaction, such as outer membrane proteins and lipopolysaccharide synthesis. These results provide a global picture of genome-wide distribution of outcrossing homologous recombination in a bacterial species for the first time, to our knowledge, and illustrate how a species can be shaped by mutual homologous recombination.
Collapse
Affiliation(s)
- Koji Yahara
- Division of Biostatistics, Graduate School of Medicine, Kurume University, Fukuoka, Japan
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Japan
| | - Mikihiko Kawai
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Japan
- Laboratory of Genome Informatics, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Yoshikazu Furuta
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Japan
| | - Noriko Takahashi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Japan
| | - Naofumi Handa
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Japan
| | - Takeshi Tsuru
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Japan
| | - Kenshiro Oshima
- Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Masaru Yoshida
- Department of Gastroenterology, Graduate School of Medicine, Kobe University, Chuo-ku, Hyogo, Japan
| | - Takeshi Azuma
- Department of Gastroenterology, Graduate School of Medicine, Kobe University, Chuo-ku, Hyogo, Japan
| | - Masahira Hattori
- Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Ikuo Uchiyama
- Laboratory of Genome Informatics, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Ichizo Kobayashi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Japan
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|