1
|
Yang Q, Lu Y. Heat Shock Protein 70 Genes Are Involved in the Thermal Tolerance of Hippodamia variegata. INSECTS 2024; 15:678. [PMID: 39336646 PMCID: PMC11431981 DOI: 10.3390/insects15090678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024]
Abstract
Previous studies have shown that the survival and reproduction of Hippodamia variegata are increasingly harmed by progressive increases in temperature (from 32 °C to 35 °C and 38 °C). In this study, transcriptome sequencing analysis was performed on H. variegata, after being exposed to different temperatures (from 32 to 38 °C) for 24 h, using high-throughput sequencing technology. We found the largest number of differentially expressed genes (DEGs) in the 35 °C vs. 32 °C group (1151) followed by the 38 °C vs. 32 °C group (1054) and then the 38 °C vs. 35 °C group (901), indicating that H. variegata expressed the largest number of newly mobilized genes under medium-high temperature (35 °C). Gene functional analysis showed that a large number of DEGs were involved in "Catalytic activity", "Oxidoreductase activity", "Metabolic pathways", and "Longevity regulating pathway-multiple species" gene groups. We randomly selected nine DEGs for validation using qRT-PCR. The results of qRT-PCR were consistent with the transcriptome data, confirming their reliability. Finally, the RNAi results showed that adult survival, longevity, and fecundity were lower in the group in which gene expression of the heat shock proteins (Hsp70-01 and Hsp68) was suppressed than in the control group (injection ds-GFP) at all the experimental temperatures (32, 35, and 38 °C). Our results indicate the important role of the heat shock proteins (Hsp70-01 and Hsp68) in resistance to high-temperature stress in H. variegata and provide a molecular basis for analyzing its thermotolerance mechanism.
Collapse
Affiliation(s)
- Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Doctoral Work Laboratory, Department of Agricultural and Animal Husbandry Engineering, Cangzhou Technical College, Cangzhou 061001, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
2
|
Li M, Yang X, Fan F, Ge Y, Hong D, Wang Z, Lu C, Chen S, Wei G. De novo genome assembly of Bradysia cellarum (Diptera: Sciaridae), a notorious pest in traditional special vegetables in China. INSECT MOLECULAR BIOLOGY 2022; 31:508-518. [PMID: 35389542 DOI: 10.1111/imb.12776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Bradysia cellarum (Diptera: Sciaridae) is a destructive vegetable insect pest infesting more than 30 species of host plants from seven families in Asia and Europe. B. cellarum causes grave problems in Chinese chive, which originated in China and is cultivated widely in East Asia. The B. cellarum infestation results in economic losses and subsequent severe food safety problems in farm productions, insecticide resistance and environmental pollution. The genomic and molecular information of B. cellarum to delineate the biological features, insecticide resistance, evolution remains poorly understood. Herein, we decode the whole genome of B. cellarum to delineate the underlying molecular mechanisms causing insecticide resistance. We constructed a highly reliable genome for B. cellarum using PacBio, Illumina and 10X Genomics sequencing platforms. The genome size of B. cellarum was 375.91 Mb with a contig N50 of 1.57 Mb. A total of 16,231 genes were identified, among which 93.8% were functionally annotated, and 42.06% were repeat sequences. According to phylogenetic analysis, B. cellarum diverged from the common ancestor of Drosophila melanogaster and Musca domestica ~139.3-191.0 million years ago. Moreover, some important genes responsible for significant insecticide resistance, such as cytochrome P450s, ABC transporters and those involved in glutathione metabolism, were expanded in B. cellarum. We assembled a high-quality B. cellarum genome to provide valuable insights into their life history strategies, insecticide resistance and biological behaviours. It also lays the foundation for exploring gene structure and functional evolution, as well as comparative genomics of B. cellarum and other model insect species.
Collapse
Affiliation(s)
- Mengyao Li
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Xiaofan Yang
- Plant protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, China
| | - Fan Fan
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Yafei Ge
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Dawei Hong
- College of Plant Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, Tibet, China
| | - Zhongyan Wang
- The Technical Education Centre of Nangong City, Xingtai, China
| | - Chenyan Lu
- College of Plant Science&Technology, Huazhong Agricultural University, Wuhan, China
| | - Suyi Chen
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Guoshu Wei
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
3
|
Yu EM, Yoshinaga T, Jalufka FL, Ehsan H, Mark Welch DB, Kaneko G. The complex evolution of the metazoan HSP70 gene family. Sci Rep 2021; 11:17794. [PMID: 34493758 PMCID: PMC8423806 DOI: 10.1038/s41598-021-97192-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/23/2021] [Indexed: 01/01/2023] Open
Abstract
The metazoan 70-kDa heat shock protein (HSP70) family contains several members localized in different subcellular compartments. The cytosolic members have been classified into inducible HSP70s and constitutive heat shock cognates (HSC70s), but their distinction and evolutionary relationship remain unclear because of occasional reports of “constitutive HSP70s” and the lack of cross-phylum comparisons. Here we provide novel insights into the evolution of these important molecular chaperones. Phylogenetic analyses of 125 full-length HSP70s from a broad range of phyla revealed an ancient duplication that gave rise to two lineages from which all metazoan cytosolic HSP70s descend. One lineage (A) contains a relatively small number of genes from many invertebrate phyla, none of which have been shown to be constitutively expressed (i.e., either inducible or unknown). The other lineage (B) included both inducible and constitutive genes from diverse phyla. Species-specific duplications are present in both lineages, and Lineage B contains well-supported phylum-specific clades for Platyhelminthes, Rotifera, Nematoda, Porifera/Cnidaria, and Chordata. Some genes in Lineage B have likely independently acquired inducibility, which may explain the sporadic distribution of “HSP70” or “HSC70” in previous phylogenetic analyses. Consistent with the diversification history within each group, inducible members show lower purifying selection pressure compared to constitutive members. These results illustrate the evolutionary history of the HSP70 family, encouraging us to propose a new nomenclature: “HSP70 + subcellular localization + linage + copy number in the organism + inducible or constitutive, if known.” e.g., HSP70cA1i for cytosolic Lineage A, copy 1, inducible.
Collapse
Affiliation(s)
- Er-Meng Yu
- School of Arts and Sciences, University of Houston-Victoria, Victoria, TX, USA.,Key Laboratory of Tropical and Subtropical Fishery Resource Application & Cultivation, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of CAFS, Guangzhou, China
| | | | - Frank L Jalufka
- School of Arts and Sciences, University of Houston-Victoria, Victoria, TX, USA
| | - Hashimul Ehsan
- School of Arts and Sciences, University of Houston-Victoria, Victoria, TX, USA
| | - David B Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.
| | - Gen Kaneko
- School of Arts and Sciences, University of Houston-Victoria, Victoria, TX, USA.
| |
Collapse
|
4
|
Evgen'ev MB. Heat shock proteins: a history of study in Russia. Cell Stress Chaperones 2021; 26:617-627. [PMID: 34184179 PMCID: PMC8275786 DOI: 10.1007/s12192-021-01219-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022] Open
Abstract
This review describes a brief history of the discovery and studies in Russia and associated countries of the main stress protein (Hsp70) that plays important roles both in the normal function of the cell and body as well as under various stressful stimuli. Research on this protein at the Institute of Molecular Biology (Moscow) began with the elucidation of its adaptive functions at the cellular level and at the level of the whole organism. These studies examined the function of Hsp70 under normal and extreme conditions using a wide range of model and non-model animal species, from Leishmania and Drosophila to camels and humans. These analyses made it possible to elucidate the primary regulations in the evolution and function of heat shock (HS) genes in the studied organisms. Next, we studied the structure and characteristic features of heat shock genes and proteins in species with contrasting habitat temperatures. The systems of Hsp70 expression and isolation we developed using various research objects allowed us to proceed to study the protective properties of human recombinant Hsp70 in normal-aging animal models as well as animal models experiencing sepsis, Alzheimer's disease, and stroke. The results obtained open the prospects of using recombinant Hsp70 for the treatment of various neuropathologies in humans. This review describes the logic and history of investigation of Hsp70 performed by one group of scientists from Engelhardt Institute of Molecular Biology, Russian Academy of Sciences. It was not the goal of this paper to give a comprehensive general picture of other similar studies carried out in Russia during this period.
Collapse
|
5
|
Perez R, Aron S. Adaptations to thermal stress in social insects: recent advances and future directions. Biol Rev Camb Philos Soc 2020; 95:1535-1553. [PMID: 33021060 DOI: 10.1111/brv.12628] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/20/2023]
Abstract
Thermal stress is a major driver of population declines and extinctions. Shifts in thermal regimes create new environmental conditions, leading to trait adaptation, population migration, and/or species extinction. Extensive research has examined thermal adaptations in terrestrial arthropods. However, little is known about social insects, despite their major role in ecosystems. It is only within the last few years that the adaptations of social insects to thermal stress have received attention. Herein, we discuss what is currently known about thermal tolerance and thermal adaptation in social insects - namely ants, termites, social bees, and social wasps. We describe the behavioural, morphological, physiological, and molecular adaptations that social insects have evolved to cope with thermal stress. We examine individual and collective responses to both temporary and persistent changes in thermal conditions and explore the extent to which individuals can exploit genetic variability to acclimatise. Finally, we consider the costs and benefits of sociality in the face of thermal stress, and we propose some future research directions that should advance our knowledge of individual and collective thermal adaptations in social insects.
Collapse
Affiliation(s)
- Rémy Perez
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Serge Aron
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
6
|
Garbuz DG, Sverchinsky D, Davletshin A, Margulis BA, Mitkevich V, Kulikov AM, Evgen'ev MB. The molecular chaperone Hsp70 from the thermotolerant Diptera species differs from the Drosophila paralog in its thermostability and higher refolding capacity at extreme temperatures. Cell Stress Chaperones 2019; 24:1163-1173. [PMID: 31664698 PMCID: PMC6882968 DOI: 10.1007/s12192-019-01038-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/22/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022] Open
Abstract
Previously, we demonstrated that species of the Stratiomyidae family exhibit higher tolerance to thermal stress in comparison with that of many representatives of Diptera, including Drosophila species. We hypothesized that species of this group inherited the specific structures of their chaperones from an ancestor of the Stratiomyidae family, and this enabled the descendants to colonize various extreme habitats. To explore this possibility, we cloned and expressed in Escherichia coli copies of the Hsp70 genes from Stratiomys singularior, a typical eurythermal species, and Drosophila melanogaster, for comparison. To investigate the thermal sensitivity of the chaperone function of the inducible 70-kDa heat shock proteins from these species, we used an in vitro refolding luciferase assay. We demonstrated that under conditions of elevated temperature, S. singularior Hsp70 exhibited higher reactivation activity in comparison with D. melanogaster Hsp70 and even human Hsp70. Similarly, S. singularior Hsp70 was significantly more thermostable and showed in vitro refolding activity after preheatment at higher temperatures than D. melanogaster paralog. Thermally induced unfolding experiments using differential scanning calorimetry indicated that Hsp70 from both Diptera species is formed by two domains with different thermal stabilities and that the ATP-binding domain of S. singularior is stable at temperatures 4 degrees higher than that of the D. melanogaster paralog. To the best of our knowledge, this study represents the first report that provides direct experimental data indicating that the evolutionary history of a species may result in adaptive changes in the structures of chaperones to enable them to elicit protective functions at extreme environments.
Collapse
Affiliation(s)
- David G Garbuz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, Russia, 119991
| | - Dmitry Sverchinsky
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia, 194064
| | - Artem Davletshin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, Russia, 119991
| | - Boris A Margulis
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia, 194064
| | - Vladimir Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, Russia, 119991
| | - Aleksei M Kulikov
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia, 119991
| | - Michael B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, Russia, 119991.
| |
Collapse
|
7
|
Affiliation(s)
- Samin Seddigh
- Department of Plant Protection, College of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| |
Collapse
|
8
|
Willot Q, Mardulyn P, Defrance M, Gueydan C, Aron S. Molecular chaperoning helps safeguarding mitochondrial integrity and motor functions in the Sahara silver ant Cataglyphis bombycina. Sci Rep 2018; 8:9220. [PMID: 29907755 PMCID: PMC6003908 DOI: 10.1038/s41598-018-27628-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/06/2018] [Indexed: 12/30/2022] Open
Abstract
The Sahara silver ant Cataglyphis bombycina is one of the world's most thermotolerant animals. Workers forage for heat-stricken arthropods during the hottest part of the day, when temperatures exceed 50 °C. However, the physiological adaptations needed to cope with such harsh conditions remain poorly studied in this desert species. Using transcriptomics, we screened for the most heat-responsive transcripts of C. bombycina with aim to better characterize the molecular mechanisms involved with macromolecular stability and cell survival to heat-stress. We identified 67 strongly and consistently expressed transcripts, and we show evidences of both evolutionary selection and specific heat-induction of mitochondrial-related molecular chaperones that have not been documented in Formicidae so far. This indicates clear focus of the silver ant's heat-shock response in preserving mitochondrial integrity and energy production. The joined induction of small heat-shock proteins likely depicts the higher requirement of this insect for proper motor function in response to extreme burst of heat-stresses. We discuss how those physiological adaptations may effectively help workers resist and survive the scorching heat and burning ground of the midday Sahara Desert.
Collapse
Affiliation(s)
- Quentin Willot
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, CP 160/12, Av. F.D. Roosevelt, 50, Brussels, 1050, Belgium.
| | - Patrick Mardulyn
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, CP 160/12, Av. F.D. Roosevelt, 50, Brussels, 1050, Belgium
| | - Matthieu Defrance
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Boulevard du Triomphe, Brussels, 1050, Belgium
| | - Cyril Gueydan
- Molecular Biology of the Gene, Université Libre de Bruxelles, Rue des Profs. Jeener et Brachet, 12, Gosselies, 6041, Belgium
| | - Serge Aron
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, CP 160/12, Av. F.D. Roosevelt, 50, Brussels, 1050, Belgium
| |
Collapse
|
9
|
Shilova VY, Zatsepina OG, Garbuz DG, Funikov SY, Zelentsova ES, Schostak NG, Kulikov AM, Evgen'ev MB. Heat shock protein 70 from a thermotolerant Diptera species provides higher thermoresistance to Drosophila larvae than correspondent endogenous gene. INSECT MOLECULAR BIOLOGY 2018; 27:61-72. [PMID: 28796386 DOI: 10.1111/imb.12339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Heat shock proteins (Hsp70s) from two Diptera species that drastically differ in their heat shock response and longevity were investigated. Drosophila melanogaster is characterized by the absence of Hsp70 and other hsps under normal conditions and the dramatic induction of hsp synthesis after temperature elevation. The other Diptera species examined belongs to the Stratiomyidae family (Stratiomys singularior) and exhibits high levels of inducible Hsp70 under normal conditions coupled with a thermotolerant phenotype and much longer lifespan. To evaluate the impact of hsp70 genes on thermotolerance and longevity, we made use of a D. melanogaster strain that lacks all hsp70 genes. We introduced single copies of either S. singularior or D. melanogaster hsp70 into this strain and monitored the obtained transgenic flies in terms of thermotolerance and longevity. We developed transgenic strains containing the S. singularior hsp70 gene under control of a D. melanogaster hsp70 promoter. Although these adult flies did synthesize the corresponding mRNA after heat shock, they were not superior to the flies containing a single copy of D. melanogaster hsp70 in thermotolerance and longevity. By contrast, Stratiomyidae Hsp70 provided significantly higher thermotolerance at the larval stage in comparison with endogenous Hsp70.
Collapse
Affiliation(s)
- V Y Shilova
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
- Institute of Cell Biophysics, RAS, Pushchino, Moscow, Russia
| | - O G Zatsepina
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - D G Garbuz
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - S Y Funikov
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - E S Zelentsova
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - N G Schostak
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - A M Kulikov
- Institute of Developmental Biology, RAS, Moscow, Russia
| | - M B Evgen'ev
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
- Institute of Cell Biophysics, RAS, Pushchino, Moscow, Russia
| |
Collapse
|
10
|
Chuvakova LN, Sharko FS, Nedoluzhko AV, Polilov AA, Prokhorchuk EB, Skryabin KG, Evgen’ev MB. Hsp70 genes of the Megaphragma amalphitanum (Hymenoptera: Trichogrammatidae) parasitic wasp. Mol Biol 2017. [DOI: 10.1134/s0026893317040094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
11
|
Garbuz DG, Evgen’ev MB. The evolution of heat shock genes and expression patterns of heat shock proteins in the species from temperature contrasting habitats. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417010069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Zatsepina OG, Przhiboro AA, Yushenova IA, Shilova V, Zelentsova ES, Shostak NG, Evgen'ev MB, Garbuz DG. A Drosophila heat shock response represents an exception rather than a rule amongst Diptera species. INSECT MOLECULAR BIOLOGY 2016; 25:431-449. [PMID: 27089053 DOI: 10.1111/imb.12235] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Heat shock protein 70 (Hsp70) is the major player that underlies adaptive response to hyperthermia in all organisms studied to date. We investigated patterns of Hsp70 expression in larvae of dipteran species collected from natural populations of species belonging to four families from different evolutionary lineages of the order Diptera: Stratiomyidae, Tabanidae, Chironomidae and Ceratopogonidae. All investigated species showed a Hsp70 expression pattern that was different from the pattern in Drosophila. In contrast to Drosophila, all of the species in the families studied were characterized by high constitutive levels of Hsp70, which was more stable than that in Drosophila. When Stratiomyidae Hsp70 proteins were expressed in Drosophila cells, they became as short-lived as the endogenous Hsp70. Interestingly, three species of Ceratopogonidae and a cold-water species of Chironomidae exhibited high constitutive levels of Hsp70 mRNA and high basal levels of Hsp70. Furthermore, two species of Tabanidae were characterized by significant constitutive levels of Hsp70 and highly stable Hsp70 mRNA. In most cases, heat-resistant species were characterized by a higher basal level of Hsp70 than more thermosensitive species. These data suggest that different trends were realized during the evolution of the molecular mechanisms underlying the regulation of the responses of Hsp70 genes to temperature fluctuations in the studied families.
Collapse
Affiliation(s)
- O G Zatsepina
- Engelgardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A A Przhiboro
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
- Tyumen State University, Tyumen, Russia
| | - I A Yushenova
- Engelgardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - V Shilova
- Engelgardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - E S Zelentsova
- Engelgardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - N G Shostak
- Engelgardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - M B Evgen'ev
- Engelgardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - D G Garbuz
- Engelgardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
13
|
Astakhova LN, Zatsepina OG, Funikov SY, Zelentsova ES, Schostak NG, Orishchenko KE, Evgen’ev MB, Garbuz DG. Activity of heat shock genes' promoters in thermally contrasting animal species. PLoS One 2015; 10:e0115536. [PMID: 25700087 PMCID: PMC4336284 DOI: 10.1371/journal.pone.0115536] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/25/2014] [Indexed: 01/14/2023] Open
Abstract
Heat shock gene promoters represent a highly conserved and universal system for the rapid induction of transcription after various stressful stimuli. We chose pairs of mammalian and insect species that significantly differ in their thermoresistance and constitutive levels of Hsp70 to compare hsp promoter strength under normal conditions and after heat shock (HS). The first pair includes the HSPA1 gene promoter of camel (Camelus dromedarius) and humans. It was demonstrated that the camel HSPA1A and HSPA1L promoters function normally in vitro in human cell cultures and exceed the strength of orthologous human promoters under basal conditions. We used the same in vitro assay for Drosophila melanogaster Schneider-2 (S2) cells to compare the activity of the hsp70 and hsp83 promoters of the second species pair represented by Diptera, i.e., Stratiomys singularior and D. melanogaster, which dramatically differ in thermoresistance and the pattern of Hsp70 accumulation. Promoter strength was also monitored in vivo in D. melanogaster strains transformed with constructs containing the S. singularior hsp70 ORF driven either by its own promoter or an orthologous promoter from the D. melanogaster hsp70Aa gene. Analysis revealed low S. singularior hsp70 promoter activity in vitro and in vivo under basal conditions and after HS in comparison with the endogenous promoter in D. melanogaster cells, which correlates with the absence of canonical GAGA elements in the promoters of the former species. Indeed, the insertion of GAGA elements into the S. singularior hsp70 regulatory region resulted in a dramatic increase in promoter activity in vitro but only modestly enhanced the promoter strength in the larvae of the transformed strains. In contrast with hsp70 promoters, hsp83 promoters from both of the studied Diptera species demonstrated high conservation and universality.
Collapse
Affiliation(s)
- Lyubov N. Astakhova
- Engelhardt Institute of Molecular Biology RAS, Vavilov str. 32, Moscow, 119991, Russia
| | - Olga G. Zatsepina
- Engelhardt Institute of Molecular Biology RAS, Vavilov str. 32, Moscow, 119991, Russia
| | - Sergei Yu. Funikov
- Engelhardt Institute of Molecular Biology RAS, Vavilov str. 32, Moscow, 119991, Russia
| | - Elena S. Zelentsova
- Engelhardt Institute of Molecular Biology RAS, Vavilov str. 32, Moscow, 119991, Russia
| | - Natalia G. Schostak
- Engelhardt Institute of Molecular Biology RAS, Vavilov str. 32, Moscow, 119991, Russia
| | - Konstantin E. Orishchenko
- Institute of Cytology and Genetics, The Siberian Branch of RAS, Prospekt Lavrentyeva 10,630090, Novosibirsk, Russia
| | - Michael B. Evgen’ev
- Engelhardt Institute of Molecular Biology RAS, Vavilov str. 32, Moscow, 119991, Russia
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, 142290, Russia
| | - David G. Garbuz
- Engelhardt Institute of Molecular Biology RAS, Vavilov str. 32, Moscow, 119991, Russia
| |
Collapse
|
14
|
Chen HL, Zhang HY, Throne JE, Zhu KY. Transcript analysis and expression profiling of three heat shock protein 70 genes in the ectoparasitoid Habrobracon hebetor (Hymenoptera: Braconidae). INSECT SCIENCE 2014; 21:415-428. [PMID: 23956228 DOI: 10.1111/1744-7917.12032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2013] [Indexed: 06/02/2023]
Abstract
Heat shock proteins (HSPs) are known as chaperones that help with folding of other proteins when cells are under environmental stresses. The upregulation of HSPs is essential for cold survival during insect diapause. The ectoparasitoid Habrobracon hebetor, a potential biological control agent, can enter reproductive diapause when reared at low temperature and short photoperiod. However, the expression of HSPs during diapause of H. hebetor has not been studied. In this study, we sequenced and characterized the full-length complementary DNAs of three Hsp70 genes (HhHsp70I, HhHsp70II and HhHsp70III) from H. hebetor. Their deduced amino acid sequences showed more than 80% identities to their counterparts from other insect species. However, the multiple sequence alignment among the three deduced amino acid sequences of HhHsp70s showed only 46% identities. A phylogenetic analysis of the three HhHsp70s and all other known Hsp70 sequences from Hymenoptera clustered all the Hsp70s into four groups, and the three HhHsp70s were distributed into three different groups. Real-time quantitative polymerase chain reaction analysis showed that the expression of the three HhHsp70 genes in H. hebetor reared at different conditions was quite different. HhHsp70I showed higher relative expression when H. hebetor were reared at 27.5°C than at two lower temperatures (17.5°C and 20°C) regardless of the photoperiod, whereas HhHsp70II showed higher expression when H. hebetor were reared at 20°C and 10 : 14 L : D than when reared at 17.5°C and either 16 : 8 L : D or 10 : 14 L : D. In contrast, HhHSP70III was expressed at similar levels regardless of the rearing conditions. These results may suggest functional differences among the three HhHsp70 genes in H. hebetor.
Collapse
Affiliation(s)
- Hao-Liang Chen
- State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Pests, Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan; Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China; USDA Agricultural Research Service, Center for Grain & Animal Health Research, Manhattan, KS, USA; Department of Entomology, Kansas State University, Manhattan, KS, USA
| | | | | | | |
Collapse
|
15
|
Yang C, Wang L, Wang J, Jiang Q, Qiu L, Zhang H, Song L. The polymorphism in the promoter of HSP70 gene is associated with heat tolerance of two congener endemic bay scallops (Argopecten irradians irradians and A. i. concentricus). PLoS One 2014; 9:e102332. [PMID: 25028964 PMCID: PMC4100766 DOI: 10.1371/journal.pone.0102332] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/17/2014] [Indexed: 11/18/2022] Open
Abstract
Background The heat shock protein 70 (HSP70) is one kind of molecular chaperones, which plays a key role in protein metabolism under normal and stress conditions. Methodology In the present study, the mRNA expressions of HSP70 under normal physiological condition and after acute heat stress were investigated in gills of two bay scallop populations (Argopecten irradians irradians and A. i. concentricus). The heat resistant scallops A. i. concentricus showed significantly lower basal level and higher induction of HSP70 compared with that of the heat sensitive scallops A. i. irradians. The promoter sequence of HSP70 gene from bay scallop (AiHSP70) was cloned and the polymorphisms within this region were investigated to analyze their association with heat tolerance. Totally 11 single nucleotide polymorphisms (SNPs) were identified, and four of them (−967, −480, −408 and −83) were associated with heat tolerance after HWE analysis and association analysis. Based on the result of linkage disequilibrium analysis, the in vitro transcriptional activities of AiHSP70 promoters with different genotype were further determined, and the results showed that promoter from A. i. concentricus exhibited higher transcriptional activity than that from A. i. irradians (P<0.05). Conclusions The results provided insights into the molecular mechanisms underlying the thermal adaptation of different congener endemic bay scallops, which suggested that the increased heat tolerance of A. i. concentricus (compared with A. i. irradians) was associated with the higher expression of AiHSP70. Meanwhile, the −967 GG, −480 AA, −408 TT and −83 AG genotypes could be potential markers for scallop selection breeding with higher heat tolerance.
Collapse
Affiliation(s)
- Chuanyan Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail: (LW); (LS)
| | - Jingjing Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Agricultural University, Qingdao, China
| | - Qiufen Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail: (LW); (LS)
| |
Collapse
|
16
|
Astakhova LN, Zatsepina OG, Evgen’ev MB, Garbuz DG. Comparative analysis of effectiveness of heat-shock promoters in two Diptera species. Mol Biol 2014. [DOI: 10.1134/s0026893314030029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Astakhova LN, Zatsepina OG, Przhiboro AA, Evgen'ev MB, Garbuz DG. Novel arrangement and comparative analysis of hsp90 family genes in three thermotolerant species of Stratiomyidae (Diptera). INSECT MOLECULAR BIOLOGY 2013; 22:284-296. [PMID: 23521688 DOI: 10.1111/imb.12020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The heat shock proteins belonging to the Hsp90 family (Hsp83 in Diptera) play a crucial role in the protection of cells due to their chaperoning functions. We sequenced hsp90 genes from three species of the family Stratiomyidae (Diptera) living in thermally different habitats and characterized by extraordinarily high thermotolerance. The sequence variation and structure of the hsp90 family genes were compared with previously described features of hsp70 copies isolated from the same species. Two functional hsp83 genes were found in the species studied, that are arranged in tandem orientation at least in one of them. This organization was not previously described. Stratiomyidae hsp83 genes share a high level of identity with hsp83 of Drosophila, and the deduced protein possesses five conserved amino acid sequence motifs characteristic of the Hsp90 family as well as the C-terminus MEEVD sequence characteristic of the cytosolic isoform. A comparison of the hsp83 promoters of two Stratiomyidae species from thermally contrasting habitats demonstrated that while both species contain canonical heat shock elements in the same position, only one of the species contains functional GAF-binding elements. Our data indicate that in the same species, hsp83 family genes show a higher evolution rate than the hsp70 family.
Collapse
|
18
|
Diversity in the origins of proteostasis networks--a driver for protein function in evolution. Nat Rev Mol Cell Biol 2013; 14:237-48. [PMID: 23463216 DOI: 10.1038/nrm3542] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although the sequence of a protein largely determines its function, proteins can adopt different folding states in response to changes in the environment, some of which may be deleterious to the organism. All organisms--Bacteria, Archaea and Eukarya--have evolved a protein homeostasis, or proteostasis, network comprising chaperones and folding factors, degradation components, signalling pathways and specialized compartmentalized modules that manage protein folding in response to environmental stimuli and variation. Surveying the origins of proteostasis networks reveals that they have co-evolved with the proteome to regulate the physiological state of the cell, reflecting the unique stresses that different cells or organisms experience, and that they have a key role in driving evolution by closely managing the link between the phenotype and the genotype.
Collapse
|
19
|
Bedulina DS, Evgen'ev MB, Timofeyev MA, Protopopova MV, Garbuz DG, Pavlichenko VV, Luckenbach T, Shatilina ZM, Axenov-Gribanov DV, Gurkov AN, Sokolova IM, Zatsepina OG. Expression patterns and organization of thehsp70genes correlate with thermotolerance in two congener endemic amphipod species (Eulimnogammarus cyaneusandE. verrucosus) from Lake Baikal. Mol Ecol 2013; 22:1416-30. [DOI: 10.1111/mec.12136] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 12/14/2022]
Affiliation(s)
- D. S. Bedulina
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Baikal Research Centre; Lenina str. 3 Irkutsk 664003 Russia
| | - M. B. Evgen'ev
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vaviolva str. 32 Moscow 119991 Russia
- Institute of Cell Biophysics; Russian Academy of Sciences; Institutskaya str. 3 Pushchino 142290 Russia
| | - M. A. Timofeyev
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Baikal Research Centre; Lenina str. 3 Irkutsk 664003 Russia
| | - M. V. Protopopova
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Siberian Institute of Plant Physiology and Biochemistry; Siberian Branch Russian Academy of Sciences; Lermontov str. 132 Irkutsk 664033 Russia
| | - D. G. Garbuz
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vaviolva str. 32 Moscow 119991 Russia
| | - V. V. Pavlichenko
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Siberian Institute of Plant Physiology and Biochemistry; Siberian Branch Russian Academy of Sciences; Lermontov str. 132 Irkutsk 664033 Russia
| | - T. Luckenbach
- UFZ Helmholtz Centre for Environmental Research; Department of Bioanalytical Ecotoxicology; Permoserstr.15 Leipzig 04318 Germany
| | - Z. M. Shatilina
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Baikal Research Centre; Lenina str. 3 Irkutsk 664003 Russia
| | - D. V. Axenov-Gribanov
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Baikal Research Centre; Lenina str. 3 Irkutsk 664003 Russia
| | - A. N. Gurkov
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Baikal Research Centre; Lenina str. 3 Irkutsk 664003 Russia
| | - I. M. Sokolova
- Department of Biology; University of North Carolina at Charlotte; 9201 University City Blvd. Charlotte NC 28223 USA
| | - O. G. Zatsepina
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vaviolva str. 32 Moscow 119991 Russia
| |
Collapse
|
20
|
Garbuz DG, Astakhova LN, Zatsepina OG, Arkhipova IR, Nudler E, Evgen'ev MB. Functional organization of hsp70 cluster in camel (Camelus dromedarius) and other mammals. PLoS One 2011; 6:e27205. [PMID: 22096537 PMCID: PMC3212538 DOI: 10.1371/journal.pone.0027205] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/11/2011] [Indexed: 11/28/2022] Open
Abstract
Heat shock protein 70 (Hsp70) is a molecular chaperone providing tolerance to heat and other challenges at the cellular and organismal levels. We sequenced a genomic cluster containing three hsp70 family genes linked with major histocompatibility complex (MHC) class III region from an extremely heat tolerant animal, camel (Camelus dromedarius). Two hsp70 family genes comprising the cluster contain heat shock elements (HSEs), while the third gene lacks HSEs and should not be induced by heat shock. Comparison of the camel hsp70 cluster with the corresponding regions from several mammalian species revealed similar organization of genes forming the cluster. Specifically, the two heat inducible hsp70 genes are arranged in tandem, while the third constitutively expressed hsp70 family member is present in inverted orientation. Comparison of regulatory regions of hsp70 genes from camel and other mammals demonstrates that transcription factor matches with highest significance are located in the highly conserved 250-bp upstream region and correspond to HSEs followed by NF-Y and Sp1 binding sites. The high degree of sequence conservation leaves little room for putative camel-specific regulatory elements. Surprisingly, RT-PCR and 5′/3′-RACE analysis demonstrated that all three hsp70 genes are expressed in camel's muscle and blood cells not only after heat shock, but under normal physiological conditions as well, and may account for tolerance of camel cells to extreme environmental conditions. A high degree of evolutionary conservation observed for the hsp70 cluster always linked with MHC locus in mammals suggests an important role of such organization for coordinated functioning of these vital genes.
Collapse
Affiliation(s)
- David G. Garbuz
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | | | | | - Irina R. Arkhipova
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Eugene Nudler
- Department of Biochemistry, New York University School of Medicine, New York, New York United States of America
| | - Michael B. Evgen'ev
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
- Institute of Cell Biophysics, RAS, Pushchino, Russia
- * E-mail:
| |
Collapse
|