1
|
Liu S, Zhan Z, Zhang X, Chen X, Xu J, Wang Q, Zhang M, Liu Y. Per- and polyfluoroalkyl substance (PFAS) mixtures induce gut microbiota dysbiosis and metabolic disruption in silkworm (Bombyx mori L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169782. [PMID: 38176555 DOI: 10.1016/j.scitotenv.2023.169782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Mixed legacy and emerging per- and polyfluoroalkyl substances (PFASs) are commonly found in soil and dust; however, the potential toxicity of PFAS mixtures (mPFASs) in insects is unknown. Using 16S rRNA gene sequencing and transcriptome sequencing (RNA-Seq), we evaluated the adverse effects of mPFASs on silkworms, a typical lepidopteran insect. After exposure to mPFASs, the silkworm midgut was enriched with high levels of PFASs, which induced histopathological changes. The composition of the midgut microbiota was significantly affected by mPFAS exposure, and functional predictions revealed significant disruption of some metabolic pathways. RNA-seq analysis revealed that mPFASs significantly changed the transcription profiles. Functional enrichment analysis of the differentially expressed genes also revealed that biological processes related to metabolic pathways and the digestive system were significantly affected, similar to the results of the gut microbiota analysis, suggesting that mPFAS exposure had an adverse effect on the metabolic function of silkworms and may further affect their normal growth. Finally, the significant correlation between abundance changes in the gut microbiota and metabolism/digestion-related genes further highlighted the role of the gut microbiota in mPFAS-related processes affecting the metabolic functions of silkworms. To our knowledge, this study is the first to evaluate the toxic effects of mPFASs in insects and provide basic data for further PFAS toxicity investigations in insects and comprehensive ecological risk assessments of mPFASs.
Collapse
Affiliation(s)
- Shuai Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Zhigao Zhan
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Xinghui Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Xi Chen
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China; College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Jiaojiao Xu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Qiyu Wang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Miao Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Yu Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China.
| |
Collapse
|
2
|
Ma YF, Gong LL, Zhang MQ, Liu XZ, Guo H, Hull JJ, Long GJ, Wang H, Dewer Y, Zhang F, He M, He P. Two Antenna-Enriched Carboxylesterases Mediate Olfactory Responses and Degradation of Ester Volatiles in the German Cockroach Blattella germanica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4789-4801. [PMID: 36920281 DOI: 10.1021/acs.jafc.2c08488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Insects have evolved an extremely sensitive olfactory system that is essential for a series of physiological and behavioral activities. Some carboxylesterases (CCEs) comprise a major subfamily of odorant-degrading enzymes (ODEs) playing a crucial role in odorant signal inactivation to maintain the odorant receptor sensitivity. In this study, 93 CCEs were annotated in the genome of the German cockroach Blattella germanica, a serious urban pest. Phylogenetic and digital tissue expression pattern analyses identified two antenna-enriched CCEs, BgerCCE021e3 and BgerCCE021d1, as candidate ODEs. RNA interference (RNAi)-mediated knockdown of BgerCCE021e3 and BgerCCE021d1 resulted in partial anosmia with experimental insects exhibiting reduced attraction to ester volatile resources and slower olfactory responses than controls. Furthermore, enzymatic conversion of geranyl acetate by crude male antennal extracts from BgerCCE021e3 and BgerCCE021d1 RNAi insects was also significantly reduced. Our results provide evidence for CCE function in German cockroach olfaction and provide a basis for further exploring behavioral inhibitors that target olfactory-related CCEs.
Collapse
Affiliation(s)
- Yun-Feng Ma
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Lang-Lang Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Meng-Qi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Xuan-Zheng Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Huan Guo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, Arizona 85138 United States
| | - Gui-Jun Long
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Hong Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki 12618, Giza, Egypt
| | - Fan Zhang
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ming He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Peng He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
3
|
Durand N, Aguilar P, Demondion E, Bourgeois T, Bozzolan F, Debernard S. Neuroligin 1 expression is linked to plasticity of behavioral and neuronal responses to sex pheromone in the male moth Agrotis ipsilon. J Exp Biol 2021; 224:273481. [PMID: 34647597 DOI: 10.1242/jeb.243184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022]
Abstract
In the moth Agrotis ipsilon, the behavioral response of males to the female-emitted sex pheromone increases throughout adult life and following a prior exposure to sex pheromone, whereas it is temporally inhibited after the onset of mating. This behavioral flexibility is paralleled with changes in neuronal sensitivity to pheromone signal within the primary olfactory centers, the antennal lobes. In the present study, we tested the hypothesis that neuroligins, post-synaptic transmembrane proteins known to act as mediators of neuronal remodeling, are involved in the olfactory modulation in A. ipsilon males. We cloned a full-length cDNA encoding neuroligin 1, which is expressed predominantly in brain and especially in antennal lobes. The level of neuroligin 1 expression in antennal lobes gradually raised from day-2 until day-4 of adult life, as well as at 24 h, 48 h and 72 h following pre-exposure to sex pheromone, and the temporal dynamic of these changes correlated with increased sex pheromone responsiveness. By contrast, there was no significant variation in antennal lobe neuroligin 1 expression during the post-mating refractory period. Taken together, these results highlight that age- and odor experience-related increase in sex pheromone responsiveness is linked to the overexpression of neuroligin 1 in antennal lobes, thus suggesting a potential role played by this post-synaptic cell-adhesion molecule in mediating the plasticity of the central olfactory system in A. ipsilon.
Collapse
Affiliation(s)
- Nicolas Durand
- FRE CNRS 3498, Ecologie et Dynamique des Systèmes Anthropisés, Université de Picardie, Jules Verne, 80039 Amiens, France
| | - Paleo Aguilar
- Institute of Biology, Complutense University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Elodie Demondion
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Thomas Bourgeois
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Françoise Bozzolan
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Stéphane Debernard
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| |
Collapse
|
4
|
Li Y, Sun H, Tian Z, Li Y, Ye X, Li R, Li X, Zheng S, Liu J, Zhang Y. Identification of key residues of carboxylesterase PxEst-6 involved in pyrethroid metabolism in Plutella xylostella (L.). JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124612. [PMID: 33338816 DOI: 10.1016/j.jhazmat.2020.124612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The long-term and excessive use of insecticides has led to severe environmental problems and the evolution of insecticide resistance in insects. Carboxylesterases (CarEs) are important detoxification enzymes conferring insecticide resistance on insects. Herein, the detoxification process of Plutella xylostella (L.) carboxylesterase 6 (PxEst-6), one representative P. xylostella carboxylesterase, is investigated with cypermethrin, bifenthrin, cyfluthrin and λ-cyhalothrin. RT-qPCR shows that PxEst-6 is highly expressed in the midgut and cuticles of the third instar larvae. Exposure to pyrethroid insecticides resulted in PxEst-6 up-regulation in a short time. Metabolic assays indicate that PxEst-6 has the capacity to metabolize these pyrethroid insecticides. The combination of molecular docking, binding mode analyses and alanine mutations demonstrated that His451, Lys458 and Gln431 were key residues of PxEst-6 for metabolizing pyrethroids and the acetate groups derived from pyrethroids were key sites for being metabolized by PxEst-6. H451- and K458-derived hydrogen bond (H-bond) interactions with the pyrethroid acetate groups and the polar interactions with the pyrethroid acetate group provided by the Q431 sidechain were crucial to the pyrethroids' metabolism by PxEst-6. Our study contributes to revealing the reasons for pyrethroid resistance in P. xylostella, and provides a fundamental basis for the development of novel pyrethroid insecticides.
Collapse
Affiliation(s)
- Yifan Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Sun
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhen Tian
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, No. 48, Yangzhou, Jiangsu 225009, China
| | - Yue Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuan Ye
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruichi Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyu Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shengli Zheng
- College of Chemistry & Pharmacy, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Jiyuan Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Fan Z, Yuan T, Liu P, Wang LY, Jin JF, Zhang F, Zhang ZS. A chromosome-level genome of the spider Trichonephila antipodiana reveals the genetic basis of its polyphagy and evidence of an ancient whole-genome duplication event. Gigascience 2021; 10:giab016. [PMID: 33739402 PMCID: PMC7976613 DOI: 10.1093/gigascience/giab016] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/25/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The spider Trichonephila antipodiana (Araneidae), commonly known as the batik golden web spider, preys on arthropods with body sizes ranging from ∼2 mm in length to insects larger than itself (>20‒50 mm), indicating its polyphagy and strong dietary detoxification abilities. Although it has been reported that an ancient whole-genome duplication event occurred in spiders, lack of a high-quality genome has limited characterization of this event. RESULTS We present a chromosome-level T. antipodiana genome constructed on the basis of PacBio and Hi-C sequencing. The assembled genome is 2.29 Gb in size with a scaffold N50 of 172.89 Mb. Hi-C scaffolding assigned 98.5% of the bases to 13 pseudo-chromosomes, and BUSCO completeness analysis revealed that the assembly included 94.8% of the complete arthropod universal single-copy orthologs (n = 1,066). Repetitive elements account for 59.21% of the genome. We predicted 19,001 protein-coding genes, of which 96.78% were supported by transcriptome-based evidence and 96.32% matched protein records in the UniProt database. The genome also shows substantial expansions in several detoxification-associated gene families, including cytochrome P450 mono-oxygenases, carboxyl/cholinesterases, glutathione-S-transferases, and ATP-binding cassette transporters, reflecting the possible genomic basis of polyphagy. Further analysis of the T. antipodiana genome architecture reveals an ancient whole-genome duplication event, based on 2 lines of evidence: (i) large-scale duplications from inter-chromosome synteny analysis and (ii) duplicated clusters of Hox genes. CONCLUSIONS The high-quality T. antipodiana genome represents a valuable resource for spider research and provides insights into this species' adaptation to the environment.
Collapse
Affiliation(s)
- Zheng Fan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Tao Yuan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Piao Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Lu-Yu Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Jian-Feng Jin
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, Jiangsu 210095, China
| | - Feng Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, Jiangsu 210095, China
| | - Zhi-Sheng Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing 400715, China
| |
Collapse
|
6
|
Xin S, Zhang W. Construction and analysis of the protein-protein interaction network for the olfactory system of the silkworm Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21737. [PMID: 32926465 DOI: 10.1002/arch.21737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Olfaction plays an essential role in feeding and information exchange in insects. Previous studies on the olfaction of silkworms have provided a wealth of information about genes and proteins, yet, most studies have only focused on a single gene or protein related to the insect's olfaction. The aim of the current study is to determine key proteins in the olfactory system of the silkworm, and further understand protein-protein interactions (PPIs) in the olfactory system of Lepidoptera. To achieve this goal, we integrated Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and network analyses. Furthermore, we selected 585 olfactory-related proteins and constructed a (PPI) network for the olfactory system of the silkworm. Network analysis led to the identification of several key proteins, including GSTz1, LOC733095, BGIBMGA002169-TA, BGIBMGA010939-TA, GSTs2, GSTd2, Or-2, and BGIBMGA013255-TA. A comprehensive evaluation of the proteins showed that glutathione S-transferases (GSTs) had the highest ranking. GSTs also had the highest enrichment levels in GO and KEGG. In conclusion, our analysis showed that key nodes in the biological network had a significant impact on the network, and the key proteins identified via network analysis could serve as new research targets to determine their functions in olfaction.
Collapse
Affiliation(s)
- Shanghong Xin
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenjun Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Pym A, Singh KS, Nordgren Å, Davies TGE, Zimmer CT, Elias J, Slater R, Bass C. Host plant adaptation in the polyphagous whitefly, Trialeurodes vaporariorum, is associated with transcriptional plasticity and altered sensitivity to insecticides. BMC Genomics 2019; 20:996. [PMID: 31856729 PMCID: PMC6923851 DOI: 10.1186/s12864-019-6397-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The glasshouse whitefly, Trialeurodes vaporariorum, is a damaging crop pest and an invasive generalist capable of feeding on a broad range of host plants. As such this species has evolved mechanisms to circumvent the wide spectrum of anti-herbivore allelochemicals produced by its host range. T. vaporariorum has also demonstrated a remarkable ability to evolve resistance to many of the synthetic insecticides used for control. RESULTS To gain insight into the molecular mechanisms that underpin the polyphagy of T. vaporariorum and its resistance to natural and synthetic xenobiotics, we sequenced and assembled a reference genome for this species. Curation of genes putatively involved in the detoxification of natural and synthetic xenobiotics revealed a marked reduction in specific gene families between this species and another generalist whitefly, Bemisia tabaci. Transcriptome profiling of T. vaporariorum upon transfer to a range of different host plants revealed profound differences in the transcriptional response to more or less challenging hosts. Large scale changes in gene expression (> 20% of genes) were observed during adaptation to challenging hosts with a range of genes involved in gene regulation, signalling, and detoxification differentially expressed. Remarkably, these changes in gene expression were associated with significant shifts in the tolerance of host-adapted T. vaporariorum lines to natural and synthetic insecticides. CONCLUSIONS Our findings provide further insights into the ability of polyphagous insects to extensively reprogram gene expression during host adaptation and illustrate the potential implications of this on their sensitivity to synthetic insecticides.
Collapse
Affiliation(s)
- Adam Pym
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Kumar Saurabh Singh
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Åsa Nordgren
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - T G Emyr Davies
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Christoph T Zimmer
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein, Switzerland
| | - Jan Elias
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein, Switzerland
| | - Russell Slater
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein, Switzerland
| | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK.
| |
Collapse
|
8
|
Kawamoto M, Jouraku A, Toyoda A, Yokoi K, Minakuchi Y, Katsuma S, Fujiyama A, Kiuchi T, Yamamoto K, Shimada T. High-quality genome assembly of the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 107:53-62. [PMID: 30802494 DOI: 10.1016/j.ibmb.2019.02.002] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 05/21/2023]
Abstract
In 2008, the genome assembly and gene models for the domestic silkworm, Bombyx mori, were published by a Japanese and Chinese collaboration group. However, the genome assembly contains a non-negligible number of misassembled and gap regions due to the presence of many repetitive sequences within the silkworm genome. The erroneous genome assembly occasionally causes incorrect gene prediction. Here we performed hybrid assembly based on 140 × deep sequencing of long (PacBio) and short (Illumina) reads. The remaining gaps in the initial genome assembly were closed using BAC and Fosmid sequences, giving a new total length of 460.3 Mb, with 30 gap regions and an N50 comprising 16.8 Mb in scaffolds and 12.2 Mb in contigs. More RNA-seq and piRNA-seq reads were mapped on the new genome assembly compared with the previous version, indicating that the new genome assembly covers more transcribed regions, including repetitive elements. We performed gene prediction based on the new genome assembly using available mRNA and protein sequence data. The number of gene models was 16,880 with an N50 of 2154 bp. The new gene models reflected more accurate coding sequences and gene sets than old ones. The proportion of repetitive elements was also reestimated using the new genome assembly, and was calculated to be 46.8% in the silkworm genome. The new genome assembly and gene models are provided in SilkBase (http://silkbase.ab.a.u-tokyo.ac.jp).
Collapse
Affiliation(s)
- Munetaka Kawamoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Akiya Jouraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan; Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Kakeru Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Yohei Minakuchi
- Comparative Genomics Laboratory, Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan; Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Kimiko Yamamoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan.
| | - Toru Shimada
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
9
|
Hopkins DH, Rane RV, Younus F, Coppin CW, Pandey G, Jackson CJ, Oakeshott JG. The molecular basis for the neofunctionalization of the juvenile hormone esterase duplication in Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 106:10-18. [PMID: 30611903 DOI: 10.1016/j.ibmb.2019.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
The Drosophila melanogaster enzymes juvenile hormone esterase (DmJHE) and its duplicate, DmJHEdup, present ideal examples for studying the structural changes involved in the neofunctionalization of enzyme duplicates. DmJHE is a hormone esterase with precise regulation and highly specific activity for its substrate, juvenile hormone. DmJHEdup is an odorant degrading esterase (ODE) responsible for processing various kairomones in antennae. Our phylogenetic analysis shows that the JHE lineage predates the hemi/holometabolan split and that several duplications of JHEs have been templates for the evolution of secreted β-esterases such as ODEs through the course of insect evolution. Our biochemical comparisons further show that DmJHE has sufficient substrate promiscuity and activity against odorant esters for a duplicate to evolve a general ODE function against a range of mid-long chain food esters, as is shown in DmJHEdup. This substrate range complements that of the only other general ODE known in this species, Esterase 6. Homology models of DmJHE and DmJHEdup enabled comparisons between each enzyme and the known structures of a lepidopteran JHE and Esterase 6. Both JHEs showed very similar active sites despite low sequence identity (30%). Both ODEs differed drastically from the JHEs and each other, explaining their complementary substrate ranges. A small number of amino acid changes are identified that may have been involved in the early stages of the neofunctionalization of DmJHEdup. Our results provide key insights into the process of neofunctionalization and the structural changes that can be involved.
Collapse
Affiliation(s)
- Davis H Hopkins
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, 2601, Australia; CSIRO Land and Water, Black Mountain, Canberra, Australian Capital Territory, 2601, Australia.
| | - Rahul V Rane
- CSIRO Land and Water, Black Mountain, Canberra, Australian Capital Territory, 2601, Australia
| | - Faisal Younus
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, 2601, Australia; CSIRO Land and Water, Black Mountain, Canberra, Australian Capital Territory, 2601, Australia
| | - Chris W Coppin
- CSIRO Land and Water, Black Mountain, Canberra, Australian Capital Territory, 2601, Australia
| | - Gunjan Pandey
- CSIRO Land and Water, Black Mountain, Canberra, Australian Capital Territory, 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - John G Oakeshott
- CSIRO Land and Water, Black Mountain, Canberra, Australian Capital Territory, 2601, Australia
| |
Collapse
|
10
|
Sun L, Wang Q, Wang Q, Zhang Y, Tang M, Guo H, Fu J, Xiao Q, Zhang Y, Zhang Y. Identification and Expression Patterns of Putative Diversified Carboxylesterases in the Tea Geometrid Ectropis obliqua Prout. Front Physiol 2017; 8:1085. [PMID: 29326608 PMCID: PMC5741679 DOI: 10.3389/fphys.2017.01085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/08/2017] [Indexed: 12/22/2022] Open
Abstract
Carboxylesterases (CXEs) belong to a family of metabolic enzymes. Some CXEs act as odorant-degrading enzymes (ODEs), which are reportedly highly expressed in insect olfactory organs and participate in the rapid deactivation of ester pheromone components and plant volatiles. The tea geometrid Ectropis obliqua Prout produces sex pheromones consisting of non-ester functional compounds but relies heavily on acetic ester plant volatiles to search for host plants and locate oviposition sites. However, studies characterizing putative candidate ODEs in this important tea plant pest are still relatively scarce. In the present study, we identified 35 candidate EoblCXE genes from E. obliqua chemosensory organs based on previously obtained transcriptomic data. The deduced amino acid sequences possessed the typical characteristics of the insect CXE family, including oxyanion hole residues, the Ser-Glu-His catalytic triad, and the Ser active included in the conserved pentapeptide characteristic of esterases, Gly-X-Ser-X-Gly. Phylogenetic analyses revealed that the EoblCXEs were diverse, belonging to several different insect esterase clades. Tissue- and sex-related expression patterns were studied via reverse-transcription and quantitative real-time polymerase chain reaction analyses (RT- and qRT-PCR). The results showed that 35 EoblCXE genes presented a diversified expression profile; among these, 12 EoblCXEs appeared to be antenna-biased, two EoblCXEs were non-chemosensory organ-biased, 12 EoblCXEs were ubiquitous, and nine EoblCXEs showed heterogeneous expression levels among different tissues. Intriguingly, two EoblCXE genes, EoblCXE7 and EoblCXE13, were not only strongly localized to antennal sensilla tuned to odorants, such as the sensilla trichodea (Str I and II) and sensilla basiconica (Sba), but were also expressed in the putative gustatory sensilla styloconica (Sst), indicating that these two CXEs might play multiple physiological roles in the E. obliqua chemosensory processing system. This study provides the first elucidation of CXEs in the chemosensory system of a geometrid moth species and will enable a more comprehensive understanding of the functions of insect CXEs across lepidopteran species.
Collapse
Affiliation(s)
- Liang Sun
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuxing Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Meijun Tang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Huawei Guo
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jianyu Fu
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qiang Xiao
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yanan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Durand N, Chertemps T, Bozzolan F, Maïbèche M. Expression and modulation of neuroligin and neurexin in the olfactory organ of the cotton leaf worm Spodoptera littoralis. INSECT SCIENCE 2017; 24:210-221. [PMID: 26749290 DOI: 10.1111/1744-7917.12312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/27/2015] [Indexed: 06/05/2023]
Abstract
Carboxylesterases are enzymes widely distributed within living organisms. In insects, they have been mainly involved in dietary metabolism and detoxification function. Interestingly, several members of this family called carboxylesterase-like adhesion molecules (CLAMs) have lost their catalytic properties and are mainly involved in neuro/developmental functions. CLAMs include gliotactins, neurotactins, glutactins, and neuroligins. The latter have for binding partner the neurexin. In insects, the function of these proteins has been mainly studied in Drosophila central nervous system or neuromuscular junction. Some studies suggested a role of neuroligins and neurexin in sensory processing but CLAM expression within sensory systems has not been investigated. Here, we reported the identification of 5 putative CLAMs expressed in the olfactory system of the model pest insect Spodoptera littoralis. One neuroligin, Slnlg4-yll and its putative binding partner neurexin SlnrxI were the most expressed in the antennae and were surprisingly associated with olfactory sensilla. In addition, both transcripts were upregulated in male antennae after mating, known to modulate the sensitivity of the peripheral olfactory system in S. littoralis, suggesting that these molecules could be involved in sensory plasticity.
Collapse
Affiliation(s)
- Nicolas Durand
- Sorbonne Universités UPMC - Univ Paris 06, Institut d'Ecologie et des Sciences de 'Environnement de Paris, INRA, CNRS, IRD, UPEC, Département d'Ecologie Sensorielle, F-75252, Paris, France
| | - Thomas Chertemps
- Sorbonne Universités UPMC - Univ Paris 06, Institut d'Ecologie et des Sciences de 'Environnement de Paris, INRA, CNRS, IRD, UPEC, Département d'Ecologie Sensorielle, F-75252, Paris, France
| | - Françoise Bozzolan
- Sorbonne Universités UPMC - Univ Paris 06, Institut d'Ecologie et des Sciences de 'Environnement de Paris, INRA, CNRS, IRD, UPEC, Département d'Ecologie Sensorielle, F-75252, Paris, France
| | - Martine Maïbèche
- Sorbonne Universités UPMC - Univ Paris 06, Institut d'Ecologie et des Sciences de 'Environnement de Paris, INRA, CNRS, IRD, UPEC, Département d'Ecologie Sensorielle, F-75252, Paris, France
| |
Collapse
|
12
|
He P, Zhang YF, Hong DY, Wang J, Wang XL, Zuo LH, Tang XF, Xu WM, He M. A reference gene set for sex pheromone biosynthesis and degradation genes from the diamondback moth, Plutella xylostella, based on genome and transcriptome digital gene expression analyses. BMC Genomics 2017; 18:219. [PMID: 28249567 PMCID: PMC5333385 DOI: 10.1186/s12864-017-3592-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/14/2017] [Indexed: 11/25/2022] Open
Abstract
Background Female moths synthesize species-specific sex pheromone components and release them to attract male moths, which depend on precise sex pheromone chemosensory system to locate females. Two types of genes involved in the sex pheromone biosynthesis and degradation pathways play essential roles in this important moth behavior. To understand the function of genes in the sex pheromone pathway, this study investigated the genome-wide and digital gene expression of sex pheromone biosynthesis and degradation genes in various adult tissues in the diamondback moth (DBM), Plutella xylostella, which is a notorious vegetable pest worldwide. Results A massive transcriptome data (at least 39.04 Gb) was generated by sequencing 6 adult tissues including male antennae, female antennae, heads, legs, abdomen and female pheromone glands from DBM by using Illumina 4000 next-generation sequencing and mapping to a published DBM genome. Bioinformatics analysis yielded a total of 89,332 unigenes among which 87 transcripts were putatively related to seven gene families in the sex pheromone biosynthesis pathway. Among these, seven [two desaturases (DES), three fatty acyl-CoA reductases (FAR) one acetyltransferase (ACT) and one alcohol dehydrogenase (AD)] were mainly expressed in the pheromone glands with likely function in the three essential sex pheromone biosynthesis steps: desaturation, reduction, and esterification. We also identified 210 odorant-degradation related genes (including sex pheromone-degradation related genes) from seven major enzyme groups. Among these genes, 100 genes are new identified and two aldehyde oxidases (AOXs), one aldehyde dehydrogenase (ALDH), five carboxyl/cholinesterases (CCEs), five UDP-glycosyltransferases (UGTs), eight cytochrome P450 (CYP) and three glutathione S-transferases (GSTs) displayed more robust expression in the antennae, and thus are proposed to participate in the degradation of sex pheromone components and plant volatiles. Conclusions To date, this is the most comprehensive gene data set of sex pheromone biosynthesis and degradation enzyme related genes in DBM created by genome- and transcriptome-wide identification, characterization and expression profiling. Our findings provide a basis to better understand the function of genes with tissue enriched expression. The results also provide information on the genes involved in sex pheromone biosynthesis and degradation, and may be useful to identify potential gene targets for pest control strategies by disrupting the insect-insect communication using pheromone-based behavioral antagonists. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3592-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, People's Republic of China.
| | - Yun-Fei Zhang
- Biogas Institute of Ministry of Agriculture, Chengdu, 610041, People's Republic of China
| | - Duan-Yang Hong
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, Guizhou Medical University, Huaxi university town, Guian new district, 550025, Guizhou, People's Republic of China
| | - Jun Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, People's Republic of China
| | - Xing-Liang Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ling-Hua Zuo
- Agriculture Economic and Rural Development, RENMIN University of China, Beijing, 100872, People's Republic of China
| | - Xian-Fu Tang
- Guizhou Grass Jelly Biotechnology Company Limited, Chishui, Zhunyi, 564700, People's Republic of China
| | - Wei-Ming Xu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, People's Republic of China
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
13
|
Xu Y, Zhao M, Deng Y, Yang Y, Li X, Lu Q, Ge J, Pan J, Xu Z. Molecular cloning, characterization and expression analysis of two juvenile hormone esterase-like carboxylesterase cDNAs in Chinese mitten crab, Eriocheir sinensis. Comp Biochem Physiol B Biochem Mol Biol 2017; 205:46-53. [DOI: 10.1016/j.cbpb.2017.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/22/2016] [Accepted: 01/05/2017] [Indexed: 11/30/2022]
|
14
|
Schama R, Pedrini N, Juárez MP, Nelson DR, Torres AQ, Valle D, Mesquita RD. Rhodnius prolixus supergene families of enzymes potentially associated with insecticide resistance. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 69:91-104. [PMID: 26079630 DOI: 10.1016/j.ibmb.2015.06.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 05/25/2015] [Accepted: 06/04/2015] [Indexed: 06/04/2023]
Abstract
Chagas disease or American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi. Once known as an endemic health problem of poor rural populations in Latin American countries, it has now spread worldwide. The parasite is transmitted by triatomine bugs, of which Rhodnius prolixus (Hemiptera, Reduviidae, Triatominae) is one of the vectors and a model organism. This species occurs mainly in Central and South American countries where the disease is endemic. Disease prevention focuses on vector control programs that, in general, rely intensely on insecticide use. However, the massive use of chemical insecticides can lead to resistance. One of the major mechanisms is known as metabolic resistance that is associated with an increase in the expression or activity of detoxification genes. Three of the enzyme families that are involved in this process - carboxylesterases (CCE), glutathione s-transferases (GST) and cytochrome P450s (CYP) - are analyzed in the R. prolixus genome. A similar set of detoxification genes to those of the Hemipteran Acyrthosiphon pisum but smaller than in most dipteran species was found in R. prolixus genome. All major CCE classes (43 genes found) are present but the pheromone/hormone processing class had fewer genes than usual. One main expansion was detected on the detoxification/dietary class. The phosphotriesterase family, recently associated with insecticide resistance, was also represented with one gene. One microsomal GST gene was found and the cytosolic GST gene count (14 genes) is extremely low when compared to the other hemipteran species with sequenced genomes. However, this is similar to Apis mellifera, a species known for its deficit in detoxification genes. In R. prolixus 88 CYP genes were found, with representatives in the four clans (CYP2, CYP3, CYP4 and mitochondrial) usually found in insects. R. prolixus seems to have smaller species-specific expansions of CYP genes than mosquitoes and beetles, among others. The number of R. prolixus CYP genes is similar to the hemipteran Ac. pisum, although with a bigger expansion in CYP3 and CYP4 clans, along with several gene fragments, mostly in CYP4 clan. Eleven founding members of new families were detected, consisting of ten genes in the CYP3 clan and 1 gene in the CYP4 clan. Members of these clans were proposed to have important detoxification roles in insects. The identification of CCE, GST and CYP genes is of utmost importance for directing detoxification studies on triatomines that can help insecticide management strategies in control programs.
Collapse
Affiliation(s)
- Renata Schama
- Laboratório de Biologia Computacional e de Sistemas, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brazil.
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-CCT La Plata) - Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - M Patricia Juárez
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-CCT La Plata) - Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - André Q Torres
- Laboratório de Biologia Computacional e de Sistemas, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil; Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Brazil
| | - Denise Valle
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brazil
| | - Rafael D Mesquita
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brazil
| |
Collapse
|
15
|
Gonzalez E, Brereton NJB, Marleau J, Guidi Nissim W, Labrecque M, Pitre FE, Joly S. Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil. BMC PLANT BIOLOGY 2015; 15:246. [PMID: 26459343 PMCID: PMC4603587 DOI: 10.1186/s12870-015-0636-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/30/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND High concentrations of petroleum hydrocarbon (PHC) pollution can be hazardous to human health and leave soils incapable of supporting agricultural crops. A cheap solution, which can help restore biodiversity and bring land back to productivity, is cultivation of high biomass yielding willow trees. However, the genetic mechanisms which allow these fast-growing trees to tolerate PHCs are as yet unclear. METHODS Salix purpurea 'Fish Creek' trees were pot-grown in soil from a former petroleum refinery, either lacking or enriched with C10-C50 PHCs. De novo assembled transcriptomes were compared between tree organs and impartially annotated without a priori constraint to any organism. RESULTS Over 45% of differentially expressed genes originated from foreign organisms, the majority from the two-spotted spidermite, Tetranychus urticae. Over 99% of T. urticae transcripts were differentially expressed with greater abundance in non-contaminated trees. Plant transcripts involved in the polypropanoid pathway, including phenylalanine ammonia-lyase (PAL), had greater expression in contaminated trees whereas most resistance genes showed higher expression in non-contaminated trees. CONCLUSIONS The impartial approach to annotation of the de novo transcriptomes, allowing for the possibility for multiple species identification, was essential for interpretation of the crop's response treatment. The meta-transcriptomic pattern of expression suggests a cross-tolerance mechanism whereby abiotic stress resistance systems provide improved biotic resistance. These findings highlight a valuable but complex biotic and abiotic stress response to real-world, multidimensional contamination which could, in part, help explain why crops such as willow can produce uniquely high biomass yields on challenging marginal land.
Collapse
Affiliation(s)
- Emmanuel Gonzalez
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| | - Nicholas J B Brereton
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| | - Julie Marleau
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| | | | - Michel Labrecque
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
- Montreal Botanical Gardens, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| | - Frederic E Pitre
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
- Montreal Botanical Gardens, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| | - Simon Joly
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
- Montreal Botanical Gardens, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| |
Collapse
|
16
|
Lü FG, Fu KY, Li Q, Guo WC, Ahmat T, Li GQ. Identification of carboxylesterase genes and their expression profiles in the Colorado potato beetle Leptinotarsa decemlineata treated with fipronil and cyhalothrin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 122:86-95. [PMID: 26071812 DOI: 10.1016/j.pestbp.2014.12.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/12/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
Based on the Leptinotarsa decemlineata transcriptome dataset and the GenBank sequences, 70 novel carboxylesterases and 2 acetylcholinesterases were found. The 72 members belong to a multifunctional carboxylesterase/cholinesterase superfamily (CCE). A phylogenetic tree including the 72 LdCCEs and the CCEs from Tribolium castaneum, Drosophila melanogaster and Apis mellifera revealed that all CCEs fell into three main phylogenetic groups: dietary/detoxification, hormone/semiochemical processing, and neurodevelopmental classes. Numbers of L. decemlineata CCEs in the three classes were 52, 12 and 8, respectively. The dietary/detoxification class includes two clades: coleopteran xenobiotic metabolizing and α-esterase type CCEs. CCEs in the two clades have independently expanded in L. decemlineata. The hormone/semiochemical processing class has three clades: integument CCEs, β- and pheromone CCEs and juvenile hormone CCEs. Integument CCEs in L. decemlineata have also expanded. The neurodevelopmental CCEs are implicated the most ancient class, containing acetylcholinesterase, neuroligin, neurotactin, glutactin, gliotactin and others. Among the 70 novel CCE genes, KM220566, KM220530, KM220576, KM220527 and KM220541 were fipronil-inducible, and KM220578, KM220566, KM220542, KM220564, KM220561, KM220554, KM220527, KM220538 and KM220541 were cyhalothrin-inducible. They were the candidates involving in insecticide detoxification. Moreover, our results also provided a platform to understand the functions and evolution of L. decemlineata CCE genes.
Collapse
Affiliation(s)
- Feng-Gong Lü
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai-Yun Fu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen-Chao Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Tursun Ahmat
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
17
|
Zhang J, Ge P, Li D, Guo Y, Zhu KY, Ma E, Zhang J. Two homologous carboxylesterase genes from Locusta migratoria with different tissue expression patterns and roles in insecticide detoxification. JOURNAL OF INSECT PHYSIOLOGY 2015; 77:1-8. [PMID: 25840107 DOI: 10.1016/j.jinsphys.2015.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 02/01/2015] [Accepted: 03/25/2015] [Indexed: 06/04/2023]
Abstract
Carboxylesterases (CarEs) play a crucial role in detoxification of xenobiotics and resistance to insecticides in insects. In this study, two cDNAs of CarE genes (LmCesA4 and LmCesA5) were sequenced from the migratory locust, Locusta migratoria. The cDNAs of LmCesA4 and LmCesA5 putatively encoded 538 and 470 amino acid residues, respectively. The deduced amino acid sequences of the two CarE genes showed 45.0% identities, possessed highly conserved catalytic triads (Ser-Glu-His), and clustered in phylogenetic analysis. These results suggest that they are homologous genes. Both CarE genes were expressed throughout the developmental stages. However, LmCesA4 was predominately expressed in the midgut (including the gastric caeca) and fat bodies, whereas LmCesA5 was mainly expressed in the gastric caeca. The in situ hybridization results showed that the transcripts of the two genes were localized in apical and basal regions of the columnar cells in the gastric caeca. Gene silencing followed by insecticide bioassay increased the mortalities of deltamethrin-, malathion-, and carbaryl-treated locusts by 29.5%, 31.0% and 20.4%, respectively, after the locusts were injected with LmCesA4 double-stranded RNA (dsRNA). In contrast, the injection of LmCesA5 dsRNA did not significantly increase the susceptibility of the locusts to any of these insecticides. These results suggest that these genes not only show different tissue expression patterns but also play different roles in insecticide detoxification.
Collapse
Affiliation(s)
- Jianqin Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Pingting Ge
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Daqi Li
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yaping Guo
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Enbo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
18
|
Kaneko Y, Hiruma K. Short neuropeptide F (sNPF) is a stage-specific suppressor for juvenile hormone biosynthesis by corpora allata, and a critical factor for the initiation of insect metamorphosis. Dev Biol 2014; 393:312-319. [DOI: 10.1016/j.ydbio.2014.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/09/2014] [Accepted: 07/18/2014] [Indexed: 10/25/2022]
|
19
|
Molecular and functional characterization of cDNAs putatively encoding carboxylesterases from the migratory locust, Locusta migratoria. PLoS One 2014; 9:e94809. [PMID: 24722667 PMCID: PMC3983256 DOI: 10.1371/journal.pone.0094809] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/20/2014] [Indexed: 11/20/2022] Open
Abstract
Carboxylesterases (CarEs) belong to a superfamily of metabolic enzymes encoded by a number of genes and are widely distributed in microbes, plants and animals including insects. These enzymes play important roles in detoxification of insecticides and other xenobiotics, degradation of pheromones, regulation of neurodevelopment, and control of animal development. In this study, we characterized a total of 39 full-length cDNAs putatively encoding different CarEs from the migratory locust, Locusta migratoria, one of the most severe insect pests in many regions of the world, and evaluated the role of four CarE genes in insecticide detoxification. Our phylogenetic analysis grouped the 39 CarEs into five different clades including 20 CarEs in clade A, 3 in D, 13 in E, 1 in F and 2 in I. Four CarE genes (LmCesA3, LmCesA20, LmCesD1, LmCesE1), representing three different clades (A, D and E), were selected for further analyses. The transcripts of the four genes were detectable in all the developmental stages and tissues examined. LmCesA3 and LmCesE1 were mainly expressed in the fat bodies and Malpighian tubules, whereas LmCesA20 and LmCesD1 were predominately expressed in the muscles and hemolymph, respectively. The injection of double-stranded RNA (dsRNA) synthesized from each of the four CarE genes followed by the bioassay with each of four insecticides (chlorpyrifos, malathion, carbaryl and deltamethrin) increased the nymphal mortalities by 37.2 and 28.4% in response to malathion after LmCesA20 and LmCesE1 were silenced, respectively. Thus, we proposed that both LmCesA20 and LmCesE1 played an important role in detoxification of malathion in the locust. These results are expected to help researchers reveal the characteristics of diverse CarEs and assess the risk of insecticide resistance conferred by CarEs in the locust and other insect species.
Collapse
|
20
|
Zhao GD, Huang MX, Zhang YL, Wang XC, Du J, Li B, Chen YH, Xu YX, Shen WD, Wei ZG. Expression analysis and RNA interference of BmCarE-10 gene from Bombyx mori. Mol Biol Rep 2014; 41:1607-16. [DOI: 10.1007/s11033-013-3007-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
|
21
|
Zhang J, Li D, Ge P, Yang M, Guo Y, Zhu KY, Ma E, Zhang J. RNA interference revealed the roles of two carboxylesterase genes in insecticide detoxification in Locusta migratoria. CHEMOSPHERE 2013; 93:1207-15. [PMID: 23899922 DOI: 10.1016/j.chemosphere.2013.06.081] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 06/23/2013] [Accepted: 06/29/2013] [Indexed: 05/13/2023]
Abstract
Carboxylesterases (CarEs) play key roles in metabolism of specific hormones and detoxification of dietary and environmental xenobiotics in insects. We sequenced and characterized CarE cDNAs putatively derived from two different genes named LmCesA1 and LmCesA2 from the migratory locust, Locusta migratoria, one of the most important agricultural pests in the world. The full-length cDNAs of LmCesA1 (1892 bp) and LmCesA2 (1643 bp) encode 543 and 501 amino acid residues, respectively. The two deduced CarEs share a characteristic α/β-hydrolase structure, including a catalytic triad composed of Ser-Glu (Asp)-His and a consensus sequence GQSAG, which suggests that both CarEs are biologically active. Phylogenetic analysis grouped both LmCesA1 and LmCesA2 into clade A which has been suggested to be involved in dietary detoxification. Both transcripts were highly expressed in all the nymphal and adult stages, but only slightly expressed in eggs. Analyses of tissue-dependent expression and in situ hybridization revealed that both transcripts were primarily expressed in gastric caeca. RNA interference (RNAi) of LmCesA1 and LmCesA2 followed by a topical application of carbaryl or deltamethrin did not lead to a significantly increased mortality with either insecticide. However, RNAi of LmCesA1 and LmCesA2 increased insect mortalities by 20.9% and 14.5%, respectively, when chlorpyrifos was applied. These results suggest that these genes might not play a significant role in detoxification of carbaryl and deltamethrin but are most likely to be involved in detoxification of chlorpyrifos in L. migratoria.
Collapse
Affiliation(s)
- Jianqin Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Oakeshott JG, Farnsworth CA, East PD, Scott C, Han Y, Wu Y, Russell RJ. How many genetic options for evolving insecticide resistance in heliothine and spodopteran pests? PEST MANAGEMENT SCIENCE 2013; 69:889-96. [PMID: 23526801 PMCID: PMC3818700 DOI: 10.1002/ps.3542] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/07/2013] [Accepted: 03/22/2013] [Indexed: 05/26/2023]
Abstract
The widely accepted paradigm for the development of insecticide resistance in field populations of insects is of selection for one or a very few genes of major effect. Limited genetic mapping data for organophosphate and pyrethroid resistance in heliothine and spodopteran pests generally agrees with this paradigm. However, other biochemical and transcriptomic data suggest a more complex set of changes in multiple P450 and esterase gene/enzyme systems in resistant strains of these species. We discuss possible explanations for this paradox, including the likely embedding of these genes in regulatory cascades and emerging evidence for their arrangement in large clusters of closely related genes. We conclude that there could indeed be an unusually large number of genetic options for evolving resistance in these species.
Collapse
|
23
|
Zhang K, Niu JZ, Ding TB, Dou W, Wang JJ. Molecular characterization of two carboxylesterase genes of the citrus red mite, Panonychus citri (Acari: Tetranychidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 82:213-226. [PMID: 23404785 DOI: 10.1002/arch.21087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The citrus red mite, Panonychus citri, is known for its ability to rapidly evolve resistance to insecticides/acaricides and to adapt to hosts that produce toxins. To get better insight into the detoxification mechanism of P. citri, two carboxylesterase (CarE) genes, PCE1 and PCE2, were isolated and characterized. PCE1 and PCE2 contained open reading frames of 1,653 and 1,392 nucleotides, encoding proteins of 550 and 463 amino acid residues, respectively. Phylogenetic analyses showed that PCE1 and PCE2 were most closely related to the CarE genes from other phytophagous mites. The transcriptional profiles of two CarE genes among developmental stages (egg, larva, nymph, adult female, and adult male), after exposing to four acaricides (avermectin, azocyclotin, pyridaben, and spirodiclofen) and acid rain were investigated using real-time quantitative PCR (qPCR). The results showed that during development, PCE1 was highly expressed at the egg stage, whereas PCE2 was abundantly expressed at the adult stage of males. The expression levels of PCE1 were highly induced upon exposure to acaricides and acid rain. On the other hand, the expression levels of PCE2 were increased after treatment with avermectin and pyridaben. These results suggest that PCE1 and PCE2 may have distinct roles in different developmental stages and participate in the detoxification of acaricides.
Collapse
Affiliation(s)
- Kun Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | | | | | | | | |
Collapse
|
24
|
Chertemps T, François A, Durand N, Rosell G, Dekker T, Lucas P, Maïbèche-Coisne M. A carboxylesterase, Esterase-6, modulates sensory physiological and behavioral response dynamics to pheromone in Drosophila. BMC Biol 2012; 10:56. [PMID: 22715942 PMCID: PMC3414785 DOI: 10.1186/1741-7007-10-56] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/21/2012] [Indexed: 12/16/2022] Open
Abstract
Background Insects respond to the spatial and temporal dynamics of a pheromone plume, which implies not only a strong response to 'odor on', but also to 'odor off'. This requires mechanisms geared toward a fast signal termination. Several mechanisms may contribute to signal termination, among which odorant-degrading enzymes. These enzymes putatively play a role in signal dynamics by a rapid inactivation of odorants in the vicinity of the sensory receptors, although direct in vivo experimental evidences are lacking. Here we verified the role of an extracellular carboxylesterase, esterase-6 (Est-6), in the sensory physiological and behavioral dynamics of Drosophila melanogaster response to its pheromone, cis-vaccenyl acetate (cVA). Est-6 was previously linked to post-mating effects in the reproductive system of females. As Est-6 is also known to hydrolyze cVA in vitro and is expressed in the main olfactory organ, the antenna, we tested here its role in olfaction as a putative odorant-degrading enzyme. Results We first confirm that Est-6 is highly expressed in olfactory sensilla, including cVA-sensitive sensilla, and we show that expression is likely associated with non-neuronal cells. Our electrophysiological approaches show that the dynamics of olfactory receptor neuron (ORN) responses is strongly influenced by Est-6, as in Est-6° null mutants (lacking the Est-6 gene) cVA-sensitive ORN showed increased firing rate and prolonged activity in response to cVA. Est-6° mutant males had a lower threshold of behavioral response to cVA, as revealed by the analysis of two cVA-induced behaviors. In particular, mutant males exhibited a strong decrease of male-male courtship, in association with a delay in courtship initiation. Conclusions Our study presents evidence that Est-6 plays a role in the physiological and behavioral dynamics of sex pheromone response in Drosophila males and supports a role of Est-6 as an odorant-degrading enzyme (ODE) in male antennae. Our results also expand the role of Est-6 in Drosophila biology, from reproduction to olfaction, and highlight the role of ODEs in insect olfaction.
Collapse
Affiliation(s)
- Thomas Chertemps
- Université Pierre et Marie Curie, UMR, Physiologie de l'Insecte, Signalisation et Communication, Paris, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Ahn SJ, Vogel H, Heckel DG. Comparative analysis of the UDP-glycosyltransferase multigene family in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:133-147. [PMID: 22155036 DOI: 10.1016/j.ibmb.2011.11.006] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 11/26/2011] [Accepted: 11/28/2011] [Indexed: 05/31/2023]
Abstract
UDP-glycosyltransferases (UGT) catalyze the conjugation of a range of diverse small lipophilic compounds with sugars to produce glycosides, playing an important role in the detoxification of xenobiotics and in the regulation of endobiotics in insects. Recent progress in genome sequencing has enabled an assessment of the extent of the UGT multigene family in insects. Here we report over 310 putative UGT genes identified from genomic databases of eight different insect species together with a transcript database from the lepidopteran Helicoverpa armigera. Phylogenetic analysis of the insect UGTs showed Order-specific gene diversification and inter-species conservation of this multigene family. Only one family (UGT50) is found in all insect species surveyed (except the pea aphid) and may be homologous to mammalian UGT8. Three families (UGT31, UGT32, and UGT305) related to Lepidopteran UGTs are unique to baculoviruses. A lepidopteran sub-tree constructed with 40 H. armigera UGTs and 44 Bombyx mori UGTs revealed that lineage-specific expansions of some families in both species appear to be driven by diversification in the N-terminal substrate binding domain, increasing the range of compounds that could be detoxified or regulated by glycosylation. By comparison of the deduced protein sequences, several important domains were predicted, including the N-terminal signal peptide, UGT signature motif, and C-terminal transmembrane domain. Furthermore, several conserved residues putatively involved in sugar donor binding and catalytic mechanism were also identified by comparison with human UGTs. Many UGTs were expressed in fat body, midgut, and Malpighian tubules, consistent with functions in detoxification, and some were expressed in antennae, suggesting a role in pheromone deactivation. Transcript variants derived from alternative splicing, exon skipping, or intron retention produced additional UGT diversity. These findings from this comparative study of two lepidopteran UGTs as well as other insects reveal a diversity comparable to this gene family in vertebrates, plants and fungi and show the magnitude of the task ahead, to determine biochemical function and physiological relevance of each UGT enzyme.
Collapse
Affiliation(s)
- Seung-Joon Ahn
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | | | | |
Collapse
|
26
|
Durand N, Carot-Sans G, Bozzolan F, Rosell G, Siaussat D, Debernard S, Chertemps T, Maïbèche-Coisne M. Degradation of pheromone and plant volatile components by a same odorant-degrading enzyme in the cotton leafworm, Spodoptera littoralis. PLoS One 2011; 6:e29147. [PMID: 22216190 PMCID: PMC3246455 DOI: 10.1371/journal.pone.0029147] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 11/21/2011] [Indexed: 11/19/2022] Open
Abstract
Background Odorant-Degrading Enzymes (ODEs) are supposed to be involved in the signal inactivation step within the olfactory sensilla of insects by quickly removing odorant molecules from the vicinity of the olfactory receptors. Only three ODEs have been both identified at the molecular level and functionally characterized: two were specialized in the degradation of pheromone compounds and the last one was shown to degrade a plant odorant. Methodology Previous work has shown that the antennae of the cotton leafworm Spodoptera littoralis, a worldwide pest of agricultural crops, express numerous candidate ODEs. We focused on an esterase overexpressed in males antennae, namely SlCXE7. We studied its expression patterns and tested its catalytic properties towards three odorants, i.e. the two female sex pheromone components and a green leaf volatile emitted by host plants. Conclusion SlCXE7 expression was concomitant during development with male responsiveness to odorants and during adult scotophase with the period of male most active sexual behaviour. Furthermore, SlCXE7 transcription could be induced by male exposure to the main pheromone component, suggesting a role of Pheromone-Degrading Enzyme. Interestingly, recombinant SlCXE7 was able to efficiently hydrolyze the pheromone compounds but also the plant volatile, with a higher affinity for the pheromone than for the plant compound. In male antennae, SlCXE7 expression was associated with both long and short sensilla, tuned to sex pheromones or plant odours, respectively. Our results thus suggested that a same ODE could have a dual function depending of it sensillar localisation. Within the pheromone-sensitive sensilla, SlCXE7 may play a role in pheromone signal termination and in reduction of odorant background noise, whereas it could be involved in plant odorant inactivation within the short sensilla.
Collapse
Affiliation(s)
- Nicolas Durand
- UMR-A 1272 Physiologie de l'Insecte, Signalisation et Communication, Université Pierre et Marie Curie - INRA, Paris and Versailles, France
| | - Gerard Carot-Sans
- Department of Biological Chemistry and Molecular Modeling, Institute of Advanced Chemistry of Catalonia, Spanish Council for Scientific Research, Barcelona, Spain
| | - Françoise Bozzolan
- UMR-A 1272 Physiologie de l'Insecte, Signalisation et Communication, Université Pierre et Marie Curie - INRA, Paris and Versailles, France
| | - Gloria Rosell
- Unit of Medicinal Chemistry Associated (Associated with Spanish Council for Scientific Research), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - David Siaussat
- UMR-A 1272 Physiologie de l'Insecte, Signalisation et Communication, Université Pierre et Marie Curie - INRA, Paris and Versailles, France
| | - Stéphane Debernard
- UMR-A 1272 Physiologie de l'Insecte, Signalisation et Communication, Université Pierre et Marie Curie - INRA, Paris and Versailles, France
| | - Thomas Chertemps
- UMR-A 1272 Physiologie de l'Insecte, Signalisation et Communication, Université Pierre et Marie Curie - INRA, Paris and Versailles, France
| | - Martine Maïbèche-Coisne
- UMR-A 1272 Physiologie de l'Insecte, Signalisation et Communication, Université Pierre et Marie Curie - INRA, Paris and Versailles, France
- * E-mail:
| |
Collapse
|
27
|
Bottos A, Rissone A, Bussolino F, Arese M. Neurexins and neuroligins: synapses look out of the nervous system. Cell Mol Life Sci 2011; 68:2655-66. [PMID: 21394644 PMCID: PMC11115133 DOI: 10.1007/s00018-011-0664-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/16/2011] [Accepted: 02/22/2011] [Indexed: 12/18/2022]
Abstract
The scientific interest in the family of the so-called nervous vascular parallels has been growing steadily for the past 15 years, either by addition of new members to the group or, lately, by deepening the analysis of established concepts and mediators. Proteins governing both neurons and vascular cells are known to be involved in events such as cell fate determination and migration/guidance but not in the last and apparently most complex step of nervous system development, the formation and maturation of synapses. Hence, the recent addition to this family of the specific synaptic proteins, Neurexin and Neuroligin, is a double innovation. The two proteins, which were thought to be "simple" adhesive links between the pre- and post-synaptic sides of chemical synapses, are in fact extremely complex and modulate the most subtle synaptic activities. We will discuss the relevant data and the intriguing challenge of transferring synaptic activities to vascular functions.
Collapse
Affiliation(s)
- Alessia Bottos
- Department of Oncological Sciences, University of Torino, IRCC, Institute for Cancer Research and Treatment at Candiolo, Strada prov 142, km 3, 95, 10060 Candiolo (TO), Italy
| | - Alberto Rissone
- Department of Oncological Sciences, University of Torino, IRCC, Institute for Cancer Research and Treatment at Candiolo, Strada prov 142, km 3, 95, 10060 Candiolo (TO), Italy
| | - Federico Bussolino
- Department of Oncological Sciences, University of Torino, IRCC, Institute for Cancer Research and Treatment at Candiolo, Strada prov 142, km 3, 95, 10060 Candiolo (TO), Italy
| | - Marco Arese
- Department of Oncological Sciences, University of Torino, IRCC, Institute for Cancer Research and Treatment at Candiolo, Strada prov 142, km 3, 95, 10060 Candiolo (TO), Italy
| |
Collapse
|
28
|
Ai J, Zhu Y, Duan J, Yu Q, Zhang G, Wan F, Xiang ZH. Genome-wide analysis of cytochrome P450 monooxygenase genes in the silkworm, Bombyx mori. Gene 2011; 480:42-50. [DOI: 10.1016/j.gene.2011.03.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 01/29/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
|
29
|
Durand N, Carot-Sans G, Chertemps T, Bozzolan F, Party V, Renou M, Debernard S, Rosell G, Maïbèche-Coisne M. Characterization of an antennal carboxylesterase from the pest moth Spodoptera littoralis degrading a host plant odorant. PLoS One 2010; 5:e15026. [PMID: 21124773 PMCID: PMC2993938 DOI: 10.1371/journal.pone.0015026] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 10/12/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Carboxyl/cholinesterases (CCEs) are highly diversified in insects. These enzymes have a broad range of proposed functions, in neuro/developmental processes, dietary detoxification, insecticide resistance or hormone/pheromone degradation. As few functional data are available on purified or recombinant CCEs, the physiological role of most of these enzymes is unknown. Concerning their role in olfaction, only two CCEs able to metabolize sex pheromones have been functionally characterized in insects. These enzymes are only expressed in the male antennae, and secreted into the lumen of the pheromone-sensitive sensilla. CCEs able to hydrolyze other odorants than sex pheromones, such as plant volatiles, have not been identified. METHODOLOGY In Spodoptera littoralis, a major crop pest, a diversity of antennal CCEs has been previously identified. We have employed here a combination of molecular biology, biochemistry and electrophysiology approaches to functionally characterize an intracellular CCE, SlCXE10, whose predominant expression in the olfactory sensilla suggested a role in olfaction. A recombinant protein was produced using the baculovirus system and we tested its catabolic properties towards a plant volatile and the sex pheromone components. CONCLUSION We showed that SlCXE10 could efficiently hydrolyze a green leaf volatile and to a lesser extent the sex pheromone components. The transcript level in male antennae was also strongly induced by exposure to this plant odorant. In antennae, SlCXE10 expression was associated with sensilla responding to the sex pheromones and to plant odours. These results suggest that a CCE-based intracellular metabolism of odorants could occur in insect antennae, in addition to the extracellular metabolism occurring within the sensillar lumen. This is the first functional characterization of an Odorant-Degrading Enzyme active towards a host plant volatile.
Collapse
Affiliation(s)
- Nicolas Durand
- UMR-A 1272 UPMC-INRA Physiologie de l'Insecte, Université Pierre et Marie Curie and INRA, Paris and Versailles, France
| | - Gerard Carot-Sans
- Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Thomas Chertemps
- UMR-A 1272 UPMC-INRA Physiologie de l'Insecte, Université Pierre et Marie Curie and INRA, Paris and Versailles, France
| | - Françoise Bozzolan
- UMR-A 1272 UPMC-INRA Physiologie de l'Insecte, Université Pierre et Marie Curie and INRA, Paris and Versailles, France
| | - Virginie Party
- UMR-A 1272 UPMC-INRA Physiologie de l'Insecte, Université Pierre et Marie Curie and INRA, Paris and Versailles, France
| | - Michel Renou
- UMR-A 1272 UPMC-INRA Physiologie de l'Insecte, Université Pierre et Marie Curie and INRA, Paris and Versailles, France
| | - Stéphane Debernard
- UMR-A 1272 UPMC-INRA Physiologie de l'Insecte, Université Pierre et Marie Curie and INRA, Paris and Versailles, France
| | - Gloria Rosell
- Unit of Medicinal Chemistry (associated with CSIC), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Martine Maïbèche-Coisne
- UMR-A 1272 UPMC-INRA Physiologie de l'Insecte, Université Pierre et Marie Curie and INRA, Paris and Versailles, France
| |
Collapse
|