1
|
Baldani JI, Dos Santos Ferreira N, Shwab S, Reis VM, de Barros Soares LH, Simões-Araujo JL, Dos Santos Dourado F, Bach E, Camacho NN, de Oliveira AM, Alves BJR, Silva AL, Rossi CN, de Oliveira Junior AF, Zilli JE. Nitrospirillum viridazoti sp. nov., an Efficient Nitrogen-Fixing Species Isolated from Grasses. Curr Microbiol 2024; 81:144. [PMID: 38630311 DOI: 10.1007/s00284-024-03665-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
A group of Gram-negative plant-associated diazotrophic bacteria belonging to the genus Nitrospirillum was investigated, including both previously characterized and newly isolated strains from diverse regions and biomes, predominantly in Brazil. Phylogenetic analysis of 16S rRNA and recA genes revealed the formation of a distinct clade consisting of thirteen strains, separate from the formally recognized species N. amazonense (the closest species) and N. iridis. Comprehensive taxonomic analyses using the whole genomes of four strains (BR 11140T = AM 18T = Y-2T = DSM 2788T = ATCC 35120T, BR 11142T = AM 14T = Y-1T = DSM 2787T = ATCC 35119T, BR 11145 = CBAmC, and BR 12005) supported the division of these strains into two species: N. amazonense (BR 11142 T and BR 12005) and a newly proposed species (BR 11140 T and BR 11145), distinct from N. iridis. The phylogenomic analysis further confirmed the presence of the new Nitrospirillum species. Additionally, MALDI-TOF MS analysis of whole-cell mass spectra provided further evidence for the differentiation of the proposed Nitrospirillum species, separate from N. amazonense. Analysis of chemotaxonomy markers (i.e., genes involved in fatty acid synthesis, metabolism and elongation, phospholipid synthesis, and quinone synthesis) revealed that the new species highlights high similarity and evolutionary convergence with other Nitrospirillum species. This new species exhibited nitrogen fixation ability in vitro, it has similar NifHDK protein phylogeny position with the closest species, lacked denitrification capability, but possessed the nosZ gene, enabling N2O reduction, distinguishing it from the closest species. Despite being isolated from diverse geographic regions, soil types, and ecological niches, no significant phenotypic or physiological differences were observed between the proposed new species and N. amazonense. Based on these findings, a new species, Nitrospirillum viridazoti sp. nov., was classified, with the strain BR 11140T (DSM 2788T, ATCC 35120T) designated as the type strain.
Collapse
Affiliation(s)
- José Ivo Baldani
- Embrapa Agrobiologia, BR 465 km 07, Bairro Ecologia, Seropedica, RJ, 23891-000, Brazil
| | | | - Stefan Shwab
- Embrapa Agrobiologia, BR 465 km 07, Bairro Ecologia, Seropedica, RJ, 23891-000, Brazil
| | - Veronica Massena Reis
- Embrapa Agrobiologia, BR 465 km 07, Bairro Ecologia, Seropedica, RJ, 23891-000, Brazil
| | | | | | | | - Evelise Bach
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), IB-UFRGS, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | | | - Amanda Maura de Oliveira
- Universidade Federal Rural do Rio de Janeiro (UFRRJ), BR 465 km 07, Seropedica, RJ, 23,890-970, Brazil
| | | | - Andréia Loviane Silva
- Embrapa Agrobiologia, BR 465 km 07, Bairro Ecologia, Seropedica, RJ, 23891-000, Brazil
| | - Carolina Nachi Rossi
- Embrapa Agrobiologia, BR 465 km 07, Bairro Ecologia, Seropedica, RJ, 23891-000, Brazil
| | | | - Jerri Edson Zilli
- Embrapa Agrobiologia, BR 465 km 07, Bairro Ecologia, Seropedica, RJ, 23891-000, Brazil.
| |
Collapse
|
2
|
Shalaby M, Elbagory M, EL-Khateeb N, Mehesen A, EL-Sheshtawy O, Elsakhawy T, Omara AED. Potential Impacts of Certain N 2-Fixing Bacterial Strains and Mineral N Doses for Enhancing the Growth and Productivity of Maize Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3830. [PMID: 38005727 PMCID: PMC10675558 DOI: 10.3390/plants12223830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
The enhancing effect of N2-fixing bacterial strains in the presence of mineral N doses on maize plants in pots and field trials was investigated. The OT-H1 of 10 isolates maintained the total nitrogen, nitrogenase activities, IAA production, and detection of NH3 in their cultures. In addition, they highly promoted the germination of maize grains in plastic bags compared to the remainder. Therefore, OT-H1 was subjected for identification and selected for further tests. Based on their morphological, cultural, and biochemical traits, they belonged to the genera Azotobacter. The genomic sequences of 16S rRNA were, thus, used to confirm the identification of the genera. Accordingly, the indexes of tree and similarity for the related bacterial species indicated that genera were exactly closely linked to Azotoacter salinestris strain OR512393. In pot (35 days) and field (120 days) trials, the efficiencies of both A. salinestris and Azospirillum oryzea SWERI 111 (sole/dual) with 100, 75, 50, and 25% mineral N doses were evaluated with completely randomized experimental design and three repetitions. Results indicated that N2-fixing bacteria in the presence of mineral N treatment showed pronounced effects compared to controls. A high value of maize plants was also noticed through increasing the concentration of mineral N and peaked at a dose of 100%. Differences among N2-fixing bacteria were insignificant and were observed for A. oryzea with different mineral N doses. Thus, the utilization of A. oryzea and A. salinestris in their dual mix in the presence of 75 followed by 50% mineral N was found to be the superior treatments, causing the enhancement of vegetative growth and grain yield parameters of maize plants. Additionally, proline and the enzyme activities of both polyphenol oxidase (PPO) and peroxidase (PO) of maize leaves were induced, and high protein contents of maize grains were accumulated due to the superior treatments. The utilization of such N2-fixing bacteria was, therefore, found to be effective at improving soil fertility and to be an environmentally safe strategy instead, or at least with low doses, of chemical fertilizers.
Collapse
Affiliation(s)
- Moustafa Shalaby
- Agricultural Botany Department, (Agricultural Microbiology), Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt; (M.S.); (N.E.-K.); (O.E.-S.)
| | - Mohssen Elbagory
- Department of Biology, Faculty of Science and Arts, King Khalid University, Mohail 61321, Assir, Saudi Arabia;
| | - Nagwa EL-Khateeb
- Agricultural Botany Department, (Agricultural Microbiology), Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt; (M.S.); (N.E.-K.); (O.E.-S.)
| | - Ahlam Mehesen
- Agriculture Microbiology Department, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt; (A.M.); (T.E.)
| | - Omaima EL-Sheshtawy
- Agricultural Botany Department, (Agricultural Microbiology), Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt; (M.S.); (N.E.-K.); (O.E.-S.)
| | - Tamer Elsakhawy
- Agriculture Microbiology Department, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt; (A.M.); (T.E.)
| | - Alaa El-Dein Omara
- Agriculture Microbiology Department, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt; (A.M.); (T.E.)
| |
Collapse
|
3
|
Mushtaq S, Shafiq M, Tariq MR, Sami A, Nawaz-ul-Rehman MS, Bhatti MHT, Haider MS, Sadiq S, Abbas MT, Hussain M, Shahid MA. Interaction between bacterial endophytes and host plants. FRONTIERS IN PLANT SCIENCE 2023; 13:1092105. [PMID: 36743537 PMCID: PMC9890182 DOI: 10.3389/fpls.2022.1092105] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 05/14/2023]
Abstract
Endophytic bacteria are mainly present in the plant's root systems. Endophytic bacteria improve plant health and are sometimes necessary to fight against adverse conditions. There is an increasing trend for the use of bacterial endophytes as bio-fertilizers. However, new challenges are also arising regarding the management of these newly discovered bacterial endophytes. Plant growth-promoting bacterial endophytes exist in a wide host range as part of their microbiome, and are proven to exhibit positive effects on plant growth. Endophytic bacterial communities within plant hosts are dynamic and affected by abiotic/biotic factors such as soil conditions, geographical distribution, climate, plant species, and plant-microbe interaction at a large scale. Therefore, there is a need to evaluate the mechanism of bacterial endophytes' interaction with plants under field conditions before their application. Bacterial endophytes have both beneficial and harmful impacts on plants but the exact mechanism of interaction is poorly understood. A basic approach to exploit the potential genetic elements involved in an endophytic lifestyle is to compare the genomes of rhizospheric plant growth-promoting bacteria with endophytic bacteria. In this mini-review, we will be focused to characterize the genetic diversity and dynamics of endophyte interaction in different host plants.
Collapse
Affiliation(s)
- Sehrish Mushtaq
- Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Rizwan Tariq
- Department of Food Science, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Adnan Sami
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Shah Nawaz-ul-Rehman
- Virology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad Pakistan, Faisalabad, Pakistan
| | | | | | - Saleha Sadiq
- Institute of Biochemistry, Biotechnology, and Bioinformatics (IBBB), The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Taqqi Abbas
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Mujahid Hussain
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL, United States
| | - Muhammad Adnan Shahid
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL, United States
| |
Collapse
|
4
|
Li M, Liu R, Li Y, Wang C, Ma W, Zheng L, Zhang K, Fu X, Li X, Su Y, Huang G, Zhong Y, Liao H. Functional Investigation of Plant Growth Promoting Rhizobacterial Communities in Sugarcane. Front Microbiol 2022; 12:783925. [PMID: 35058904 PMCID: PMC8763851 DOI: 10.3389/fmicb.2021.783925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
Plant microbiota are of great importance for host nutrition and health. As a C4 plant species with a high carbon fixation capacity, sugarcane also associates with beneficial microbes, though mechanisms underlying sugarcane root-associated community development remain unclear. Here, we identify microbes that are specifically enriched around sugarcane roots and report results of functional testing of potentially beneficial microbes propagating with sugarcane plants. First, we analyzed recruitment of microbes through analysis of 16S rDNA enrichment in greenhouse cultured sugarcane seedlings growing in field soil. Then, plant-associated microbes were isolated and assayed for beneficial activity, first in greenhouse experiments, followed by field trials for selected microbial strains. The promising beneficial microbe SRB-109, which quickly colonized both roots and shoots of sugarcane plants, significantly promoted sugarcane growth in field trials, nitrogen and potassium acquisition increasing by 35.68 and 28.35%, respectively. Taken together, this report demonstrates successful identification and utilization of beneficial plant-associated microbes in sugarcane production. Further development might facilitate incorporation of such growth-promoting microbial applications in large-scale sugarcane production, which may not only increase yields but also reduce fertilizer costs and runoff.
Collapse
Affiliation(s)
- Mingjia Li
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ran Liu
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanjun Li
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cunhu Wang
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenjing Ma
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lei Zheng
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kefei Zhang
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xing Fu
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinxin Li
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yachun Su
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guoqiang Huang
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongjia Zhong
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
Gushgari-Doyle S, Schicklberger M, Li YV, Walker R, Chakraborty R. Plant Growth Promotion Diversity in Switchgrass-Colonizing, Diazotrophic Endophytes. Front Microbiol 2021; 12:730440. [PMID: 34867848 PMCID: PMC8633415 DOI: 10.3389/fmicb.2021.730440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022] Open
Abstract
Endophytic nitrogen-fixing (diazotrophic) bacteria are essential members of the microbiome of switchgrass (Panicum virgatum), considered to be an important commodity crop in bioenergy production. While endophytic diazotrophs are known to provide fixed atmospheric nitrogen to their host plant, there are many other plant growth-promoting (PGP) capabilities of these organisms to be demonstrated. The diversity of PGP traits across different taxa of switchgrass-colonizing endophytes is understudied, yet critical for understanding endophytic function and improving cultivation methods of important commodity crops. Here, we present the isolation and characterization of three diazotrophic endophytes: Azospirillum agricola R1C, Klebsiella variicola F10Cl, and Raoultella terrigena R1Gly. Strains R1C and F10Cl were isolated from switchgrass and strain R1Gly, while isolated from tobacco, is demonstrated herein to colonize switchgrass. Each strain exhibited highly diverse genomic and phenotypic PGP capabilities. Strain F10Cl and R1Gly demonstrated the highest functional similarity, suggesting that, while endophyte community structure may vary widely based on host species, differences in functional diversity are not a clearly delineated. The results of this study advance our understanding of diazotrophic endophyte diversity, which will allow us to design robust strategies to improve cultivation methods of many economically important commodity crops.
Collapse
Affiliation(s)
- Sara Gushgari-Doyle
- Climate and Ecosystem Sciences, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Marcus Schicklberger
- Climate and Ecosystem Sciences, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Yifan V Li
- Climate and Ecosystem Sciences, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Robert Walker
- Climate and Ecosystem Sciences, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Romy Chakraborty
- Climate and Ecosystem Sciences, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
6
|
Bacteria and Metabolic Potential in Karst Caves Revealed by Intensive Bacterial Cultivation and Genome Assembly. Appl Environ Microbiol 2021; 87:AEM.02440-20. [PMID: 33452024 DOI: 10.1128/aem.02440-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/05/2021] [Indexed: 12/26/2022] Open
Abstract
Karst caves are widely distributed subsurface systems, and the microbiomes therein are proposed to be the driving force for cave evolution and biogeochemical cycling. In past years, culture-independent studies on the microbiomes of cave systems have been conducted, yet intensive microbial cultivation is still needed to validate the sequence-derived hypothesis and to disclose the microbial functions in cave ecosystems. In this study, the microbiomes of two karst caves in Guizhou Province in southwest China were examined. A total of 3,562 bacterial strains were cultivated from rock, water, and sediment samples, and 329 species (including 14 newly described species) of 102 genera were found. We created a cave bacterial genome collection of 218 bacterial genomes from a karst cave microbiome through the extraction of 204 database-derived genomes and de novo sequencing of 14 new bacterial genomes. The cultivated genome collection obtained in this study and the metagenome data from previous studies were used to investigate the bacterial metabolism and potential involvement in the carbon, nitrogen, and sulfur biogeochemical cycles in the cave ecosystem. New N2-fixing Azospirillum and alkane-oxidizing Oleomonas species were documented in the karst cave microbiome. Two pcaIJ clusters of the β-ketoadipate pathway that were abundant in both the cultivated microbiomes and the metagenomic data were identified, and their representatives from the cultivated bacterial genomes were functionally demonstrated. This large-scale cultivation of a cave microbiome represents the most intensive collection of cave bacterial resources to date and provides valuable information and diverse microbial resources for future cave biogeochemical research.IMPORTANCE Karst caves are oligotrophic environments that are dark and humid and have a relatively stable annual temperature. The diversity of bacteria and their metabolisms are crucial for understanding the biogeochemical cycling in cave ecosystems. We integrated large-scale bacterial cultivation with metagenomic data mining to explore the compositions and metabolisms of the microbiomes in two karst cave systems. Our results reveal the presence of a highly diversified cave bacterial community, and 14 new bacterial species were described and their genomes sequenced. In this study, we obtained the most intensive collection of cultivated microbial resources from karst caves to date and predicted the various important routes for the biogeochemical cycling of elements in cave ecosystems.
Collapse
|
7
|
Dubey AP, Pandey P, Singh VS, Mishra MN, Singh S, Mishra R, Tripathi AK. An ECF41 family σ factor controls motility and biogenesis of lateral flagella in Azospirillum brasilense Sp245. J Bacteriol 2020; 202:JB.00231-20. [PMID: 32513682 PMCID: PMC8404707 DOI: 10.1128/jb.00231-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
ECF41 is a large family of bacterial extra-cytoplasmic function (ECF) σ factors. Their role in bacterial physiology or behavior, however, is not known. One of the 10 ECF σ factors encoded in the genome of Azospirillum brasilense Sp245, RpoE10, exhibits characteristic features of the typical ECF41-type σ factors. Inactivation of rpoE10 in A. brasilense Sp245 led to an increase in motility that could be complemented by the expression of rpoE10 By comparing the number of lateral flagella, transcriptome and proteome of A. brasilense Sp245 with its rpoE10::km mutant, we show here that this ECF41-type σ factor is involved in the negative regulation of swimming motility and biogenesis of lateral flagella of A. brasilense Sp245. The genome of A. brasilense Sp245 also encodes two OmpR-type regulators (LafR1 and LafR2), and three flagellins including Laf1, the major flagellin of lateral flagella. Elevated levels of laf1 transcripts and Laf1 protein in the rpoE10::km mutant indicated that RpoE10 negatively regulates the expression of Laf1. The elevated level of LafR1 in the rpoE10::km mutant indicated that LafR1 is also negatively regulated by RpoE10. The loss of motility and Laf1 in the lafR1::km mutant, complemented by lafR1 expression, showed that LafR1 is a positive regulator of Laf1 and motility in A. brasilense In addition, upregulation of laf1::lacZ and lafR1::lacZ fusions by RpoE10, and downregulation of the laf1::lacZ fusion by LafR1 suggests that RpoE10 negatively regulates swimming motility and the expression of LafR1 and Laf1. However, LafR1 positively regulates the swimming motility and Laf1 expression.Importance: Among extra-cytoplasmic function (ECF) σ factors, ECF41-type σ factors are unique due to the presence of a large C-terminal extension in place of a cognate anti- σ factor, which regulates their activity. Despite wide distribution and abundance in bacterial genomes, their physiological or behavioural roles are not known. We show here an indirect negative role of an ECF41-type of σ factor in the expression of lateral flagellar genes and motility in A.brasilense This study suggests that the motility of A. brasilense might be controlled by a regulatory cascade involving RpoE10, an unknown repressor, LafR1 and lateral flagellar genes including Laf1.
Collapse
Affiliation(s)
- Ashutosh Prakash Dubey
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Parul Pandey
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Vijay Shankar Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Mukti Nath Mishra
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Sudhir Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Rajeev Mishra
- Department of Bioinformatics, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Anil Kumar Tripathi
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi-221005, India.
| |
Collapse
|
8
|
da Silva PRA, Vidal MS, Soares CDP, Polese V, Tadra-Sfeir MZ, de Souza EM, Simões-Araújo JL, Baldani JI. Sugarcane apoplast fluid modulates the global transcriptional profile of the diazotrophic bacteria Paraburkholderia tropica strain Ppe8. PLoS One 2018; 13:e0207863. [PMID: 30550601 PMCID: PMC6294378 DOI: 10.1371/journal.pone.0207863] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/07/2018] [Indexed: 11/18/2022] Open
Abstract
The stalk apoplast fluid of sugarcane contains different sugars, organic acids and amino acids that may supply the demand for carbohydrates by endophytic bacteria including diazotrophs P. tropica (syn. B. tropica) strain Ppe8, isolated from sugarcane, is part of the bacterial consortium recommended as inoculant to sugarcane. However, little information has been accumulated regarding this plant-bacterium interaction considering that it colonizes internal sugarcane tissues. Here, we made use of the RNA-Seq transcriptomic analysis to study the influence of sugarcane stalk apoplast fluid on Ppe8 gene expression. The bacterium was grown in JMV liquid medium (100 ml), divided equally and then supplemented with 50 ml of fresh JMV medium or 50 ml of apoplast fluid extracted from sugarcane variety RB867515. Total RNA was extracted 2 hours later, the rRNAs were depleted and mRNAs used to construct libraries to sequence the fragments using Ion Torrent technology. The mapping and statistical analysis were carried out with CLC Genomics Workbench software. The RNA-seq data was validated by RT-qPCR using the reference genes fliP1, paaF, and groL. The data analysis showed that 544 genes were repressed and 153 genes were induced in the presence of apoplast fluid. Genes that induce plant defense responses, genes related to chemotaxis and movements were repressed in the presence of apoplast fluid, indicating that strain Ppe8 recognizes the apoplast fluid as a plant component. The expression of genes involved in bacterial metabolism was regulated (up and down), suggesting that the metabolism of strain Ppe8 is modulated by the apoplast fluid. These results suggest that Ppe8 alters its gene expression pattern in the presence of apoplast fluid mainly in order to use compounds present in the fluid as well as to avoid the induction of plant defense mechanisms. This is a pioneer study showing the role played by the sugarcane apoplast fluid on the global modulation of genes in P. tropica strain Ppe8.
Collapse
Affiliation(s)
| | | | | | - Valéria Polese
- Department of Crop Science—UFRRJ, BR 465, Seropédica–RJ–CEP, Brazil
| | - Michelle Zibetti Tadra-Sfeir
- Departament of Biochemistry and Molecular Biology, Centro Politecnico—UFPR, Rua XV de Novembro, Curitiba–PR–CEP, Brazil
| | - Emanuel Maltempi de Souza
- Departament of Biochemistry and Molecular Biology, Centro Politecnico—UFPR, Rua XV de Novembro, Curitiba–PR–CEP, Brazil
| | | | | |
Collapse
|
9
|
Yu Z, Yang G, Liu X, Wang Y, Zhuang L, Zhou S. Complete genome sequence of the nitrogen-fixing bacterium Azospirillum humicireducens type strain SgZ-5 T. Stand Genomic Sci 2018; 13:28. [PMID: 30349619 PMCID: PMC6192227 DOI: 10.1186/s40793-018-0322-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 09/24/2018] [Indexed: 12/04/2022] Open
Abstract
The Azospirillum humicireducens strain SgZ-5T, belonging to the Order Rhodospirillales and the Family Rhodospirillaceae, was isolated from a microbial fuel cell inoculated with paddy soil. A previous work has shown that strain SgZ-5T was able to fix atmospheric nitrogen involved in plant growth promotion. Here we present the complete genome of A. humicireducens SgZ-5T, which consists of a circular chromosome and six plasmids with the total genome size of 6,834,379 bp and the average GC content of 67.55%. Genome annotations predicted 5969 protein coding and 85 RNA genes including 14 rRNA and 67 tRNA genes. By genomic analysis, we identified a complete set of genes that is potentially involved in nitrogen fixation and its regulation. This genome also harbors numerous genes that are likely responsible for phytohormones production. We anticipate that the A. humicireducens SgZ-5T genome will contribute insights into plant growth promoting properties of Azospirillum strains.
Collapse
Affiliation(s)
- Zhen Yu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou, 510650 China
| | - Guiqin Yang
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou, 510650 China
| | - Xiaoming Liu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou, 510650 China
| | - Yueqiang Wang
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou, 510650 China
| | - Li Zhuang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632 China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
10
|
Vigani G, Rolli E, Marasco R, Dell'Orto M, Michoud G, Soussi A, Raddadi N, Borin S, Sorlini C, Zocchi G, Daffonchio D. Root bacterial endophytes confer drought resistance and enhance expression and activity of a vacuolar H + -pumping pyrophosphatase in pepper plants. Environ Microbiol 2018; 21:3212-3228. [PMID: 29786171 DOI: 10.1111/1462-2920.14272] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 11/29/2022]
Abstract
It has been previously shown that the transgenic overexpression of the plant root vacuolar proton pumps H+ -ATPase (V-ATPase) and H+ -PPase (V-PPase) confer tolerance to drought. Since plant-root endophytic bacteria can also promote drought tolerance, we hypothesize that such promotion can be associated to the enhancement of the host vacuolar proton pumps expression and activity. To test this hypothesis, we selected two endophytic bacteria endowed with an array of in vitro plant growth promoting traits. Their genome sequences confirmed the presence of traits previously shown to confer drought resistance to plants, such as the synthesis of nitric oxide and of organic volatile organic compounds. We used the two strains on pepper (Capsicuum annuum L.) because of its high sensitivity to drought. Under drought conditions, both strains stimulated a larger root system and enhanced the leaves' photosynthetic activity. By testing the expression and activity of the vacuolar proton pumps, H+ -ATPase (V-ATPase) and H+ -PPase (V-PPase), we found that bacterial colonization enhanced V-PPase only. We conclude that the enhanced expression and activity of V-PPase can be favoured by the colonization of drought-tolerance-inducing bacterial endophytes.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Department of Life Sciences and Systems Biology, University of Turin, Plant Physiology Unit, 10135, Turin, Italy
| | - Eleonora Rolli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133, Milan, Italy
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Marta Dell'Orto
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy (DISAA), University of Milan, 20133, Milan, Italy
| | - Grégoire Michoud
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Asma Soussi
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Noura Raddadi
- Department of Civil, Alma Mater Studiorum University of Bologna, Chemical, Environmental and Materials Engineering (DICAM), Bologna, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133, Milan, Italy
| | - Claudia Sorlini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133, Milan, Italy
| | - Graziano Zocchi
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy (DISAA), University of Milan, 20133, Milan, Italy
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
11
|
Schwab S, Terra LA, Baldani JI. Genomic characterization of Nitrospirillum amazonense strain CBAmC, a nitrogen-fixing bacterium isolated from surface-sterilized sugarcane stems. Mol Genet Genomics 2018; 293:997-1016. [PMID: 29696375 DOI: 10.1007/s00438-018-1439-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 04/18/2018] [Indexed: 02/07/2023]
Abstract
Nitrospirillum amazonense is a nitrogen-fixing bacterium that shows potential to promote plant growth when inoculated into sugarcane and rice plants. This microorganism has been the subject of biochemical and genetic characterization to elucidate important functions related to host plant interaction and growth promotion, including the determination of draft genome sequences of two strains, Y2 and CBAmC, the second of which is the aim of the present study. CBAmC has been isolated from sugarcane (Saccharum spp.), and is currently used in a sugarcane consortium inoculant with four other nitrogen-fixing bacterial strains. The present paper describes a significant improvement in the genome sequence and assembly for the N. amazonense strain CBAmC, and determination for the first time of a complete genome sequence for this bacterial species, using PacBio technology. The analysis of the genomic data obtained allowed the discovery of genes coding for metabolic pathways and cellular structures that may be determinant for the success of the bacterial establishment and colonization into the host sugarcane plant, besides conferring important characteristics to the inoculant. These include genes for the use of sucrose and N-glycans, biosynthesis of autoinducer molecules, siderophore production and acquisition, auxin and polyamine biosynthesis, flagellum, σ-fimbriae, a variety of secretion systems, and a complete denitrification system. Concerning genes for nitrogenase and auxiliary proteins, it was possible to corroborate literature data that in N. amazonense these probably had originated from horizontal gene transfer, from bacteria of the Rhizobiales order. The complete genomic sequence of the CBAmC strain of N. amazonense revealed that the bacterium harbors four replicons, including three chromosomes and one chromid, a profile that coincides with that of other two strains, according to literature data, suggesting that as a replicon pattern for the species. Finally, results of phylogenomic analyses in this work support the recent reclassification of the species, separating it from the Azospirillum genus. More importantly, results of the present work shall guide subsequent studies on strain CBAmC as well as the development of a sugarcane inoculant.
Collapse
Affiliation(s)
- Stefan Schwab
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, CNPq, Curitiba, Brazil.
- Embrapa Agrobiologia, Rodovia BR 465, km 7, Seropédica, RJ, 23891-000, Brazil.
| | - Leonardo Araujo Terra
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, CNPq, Curitiba, Brazil
- Embrapa Agrobiologia, Rodovia BR 465, km 7, Seropédica, RJ, 23891-000, Brazil
- Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, km 7, Seropédica, RJ, 23890-000, Brazil
| | - José Ivo Baldani
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, CNPq, Curitiba, Brazil
- Embrapa Agrobiologia, Rodovia BR 465, km 7, Seropédica, RJ, 23891-000, Brazil
| |
Collapse
|
12
|
Gullett J, O'Neal L, Mukherjee T, Alexandre G. Azospirillum brasilense: Laboratory Maintenance and Genetic Manipulation. ACTA ACUST UNITED AC 2017; 47:3E.2.1-3E.2.17. [PMID: 29120483 DOI: 10.1002/cpmc.39] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bacteria of the genus Azospirillum, including the most comprehensively studied Azospirillum brasilense, are non-pathogenic soil bacteria that promote the growth of diverse plants, making them an attractive model to understand non-symbiotic, beneficial plant-bacteria associations. Research into the physiology and genetics of these organisms spans decades and a range of molecular tools and protocols have been developed for allelic exchange mutagenesis, in trans expression of genes, and fusions to reporter genes. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Jessica Gullett
- Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee
| | - Lindsey O'Neal
- Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee
| | - Tanmoy Mukherjee
- Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee
| | - Gladys Alexandre
- Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
13
|
A. Morel M, Iriarte A, Jara E, Musto H, Castro-Sowinski S. Revealing the biotechnological potential of Delftia sp. JD2 by a genomic approach. AIMS BIOENGINEERING 2016. [DOI: 10.3934/bioeng.2016.2.156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
First Azospirillum genome from aquatic environments: Whole-genome sequence of Azospirillum thiophilum BV-S(T), a novel diazotroph harboring a capacity of sulfur-chemolithotrophy from a sulfide spring. Mar Genomics 2015; 25:21-24. [PMID: 26545806 DOI: 10.1016/j.margen.2015.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 11/21/2022]
Abstract
Azospirillum thiophilum BV-S(T), isolated from a sulfide spring, is a novel nitrogen-fixing bacterium harboring sulfur-lithotrophy. In order to identify genetic characteristics with habitat- and metabolic features contrasting to those from terrestrial Azospirillum species, we present here the genome sequence of a novel species A. thiophilum BV-S(T), with a significance of first genome report in the aquatic Azospirillum species. The genome of strain BV-S(T) is comprised of 7.6Mb chromosome with a GC content of 68.2%. This information will contribute to expand understandings of sulfur-oxidizer microbes that preserve inherencies as a diazotroph, and further it will provide insights into genome plasticity of the genus Azospirillum for niche specific adaptations.
Collapse
|
15
|
Quantification of Azospirillum brasilense FP2 Bacteria in Wheat Roots by Strain-Specific Quantitative PCR. Appl Environ Microbiol 2015; 81:6700-9. [PMID: 26187960 DOI: 10.1128/aem.01351-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/13/2015] [Indexed: 11/20/2022] Open
Abstract
Azospirillum is a rhizobacterial genus containing plant growth-promoting species associated with different crops worldwide. Azospirillum brasilense strains exhibit a growth-promoting effect by means of phytohormone production and possibly by N2 fixation. However, one of the most important factors for achieving an increase in crop yield by plant growth-promoting rhizobacteria is the survival of the inoculant in the rhizosphere, which is not always achieved. The objective of this study was to develop quantitative PCR protocols for the strain-specific quantification of A. brasilense FP2. A novel approach was applied to identify strain-specific DNA sequences based on a comparison of the genomic sequences within the same species. The draft genome sequences of A. brasilense FP2 and Sp245 were aligned, and FP2-specific regions were filtered and checked for other possible matches in public databases. Strain-specific regions were then selected to design and evaluate strain-specific primer pairs. The primer pairs AzoR2.1, AzoR2.2, AzoR5.1, AzoR5.2, and AzoR5.3 were specific for the A. brasilense FP2 strain. These primer pairs were used to monitor quantitatively the population of A. brasilense in wheat roots under sterile and nonsterile growth conditions. In addition, coinoculations with other plant growth-promoting bacteria in wheat were performed under nonsterile conditions. The results showed that A. brasilense FP2 inoculated into wheat roots is highly competitive and achieves high cell numbers (∼10(7) CFU/g [fresh weight] of root) in the rhizosphere even under nonsterile conditions and when coinoculated with other rhizobacteria, maintaining the population at rather stable levels for at least up to 13 days after inoculation. The strategy used here can be applied to other organisms whose genome sequences are available.
Collapse
|
16
|
The plant growth-promoting bacteria Azospirillum amazonense: genomic versatility and phytohormone pathway. BIOMED RESEARCH INTERNATIONAL 2015; 2015:898592. [PMID: 25866821 PMCID: PMC4383252 DOI: 10.1155/2015/898592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/24/2014] [Accepted: 10/24/2014] [Indexed: 11/17/2022]
Abstract
The rhizosphere bacterium Azospirillum amazonense associates with plant roots to promote plant growth. Variation in replicon numbers and rearrangements is common among Azospirillum strains, and characterization of these naturally occurring differences can improve our understanding of genome evolution. We performed an in silico comparative genomic analysis to understand the genomic plasticity of A. amazonense. The number of A. amazonense-specific coding sequences was similar when compared with the six closely related bacteria regarding belonging or not to the Azospirillum genus. Our results suggest that the versatile gene repertoire found in A. amazonense genome could have been acquired from distantly related bacteria from horizontal transfer. Furthermore, the identification of coding sequence related to phytohormone production, such as flavin-monooxygenase and aldehyde oxidase, is likely to represent the tryptophan-dependent TAM pathway for auxin production in this bacterium. Moreover, the presence of the coding sequence for nitrilase indicates the presence of the alternative route that uses IAN as an intermediate for auxin synthesis, but it remains to be established whether the IAN pathway is the Trp-independent route. Future investigations are necessary to support the hypothesis that its genomic structure has evolved to meet the requirement for adaptation to the rhizosphere and interaction with host plants.
Collapse
|
17
|
Jijón-Moreno S, Marcos-Jiménez C, Pedraza RO, Ramírez-Mata A, de Salamone IG, Fernández-Scavino A, Vásquez-Hernández CA, Soto-Urzúa L, Baca BE. The ipdC, hisC1 and hisC2 genes involved in indole-3-acetic production used as alternative phylogenetic markers in Azospirillum brasilense. Antonie van Leeuwenhoek 2015; 107:1501-17. [DOI: 10.1007/s10482-015-0444-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/29/2015] [Indexed: 12/01/2022]
|
18
|
Sahoo RK, Ansari MW, Pradhan M, Dangar TK, Mohanty S, Tuteja N. Phenotypic and molecular characterization of native Azospirillum strains from rice fields to improve crop productivity. PROTOPLASMA 2014; 251:943-953. [PMID: 24414168 DOI: 10.1007/s00709-013-0607-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/19/2013] [Indexed: 06/03/2023]
Abstract
Beneficial microorganisms have been considered as an important tool for crop improvement. Native isolates of Azospirillum spp. were obtained from the rhizospheres of different rice fields. Phenotypic, biochemical and molecular characterizations of these isolates led to the identification of six efficient strain of Azospirillum. PCR amplification of the nif genes (nifH, nifD and nifK) and protein profile of Azospirillum strains revealed inter-generic and inter-specific diversity among the strains. In vitro nitrogen fixation performance and the plant growth promotion activities, viz. siderophore, HCN, salicylic acid, IAA, GA, zeatin, ABA, NH3, phosphorus metabolism, ACC deaminase and iron tolerance were found to vary among the Azospirillum strains. The effect of Azospirillum formulations on growth of rice var. Khandagiri under field condition was evaluated, which revealed that the native formulation of Azospirillum of CRRI field (As6) was most effective to elevate endogenous nutrient content, and improved growth and better yield are the result. The 16S rRNA sequence revealed novelty of native Azospirillum lipoferum (As6) (JQ796078) in the NCBI database.
Collapse
Affiliation(s)
- Ranjan K Sahoo
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | | | | | | |
Collapse
|
19
|
Zhu W, Huang J, Li M, Li X, Wang G. Genomic analysis of Skermanella stibiiresistens type strain SB22 (T.). Stand Genomic Sci 2014; 9:1211-20. [PMID: 25197493 PMCID: PMC4149033 DOI: 10.4056/sigs.5751047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of genus Skermanella were described as Gram-negative, motile, aerobic, rod-shaped, obligate-heterotrophic bacteria and unable to fix nitrogen. In this study, the genome sequence of Skermanella stibiiresistens SB22(T) is reported. Phylogenetic analysis using core proteins confirmed the phylogenetic assignment based on 16S rRNA gene sequences. Strain SB22(T) has all the proteins for complete glycolysis, tricarboxylic acid cycle and pentose phosphate pathway. The RuBisCO encoding genes cbbL1S1 and nitrogenase delta subunit gene anfG are absent, consistent with its inability to fix carbon and nitrogen, respectively. In addition, the genome possesses a series of flagellar assembly and chemotaxis genes to ensure its motility.
Collapse
Affiliation(s)
- Wentao Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingshun Li
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiangyang Li
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
20
|
Real time PCR detection targeting nifA gene of plant growth promoting bacteria Azospirillum brasilense strain FP2 in maize roots. Symbiosis 2013. [DOI: 10.1007/s13199-013-0262-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Cheng T, Xia W, Wang P, Huang F, Wang J, Sun H. Histidine-rich proteins in prokaryotes: metal homeostasis and environmental habitat-related occurrence. Metallomics 2013; 5:1423-1429. [PMID: 23925314 DOI: 10.1039/c3mt00059a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Increasing amounts of histidine-rich proteins (HRPs) have been found in microorganisms. We systematically analyzed the proteomes of 675 prokaryotes including 52 archaea and 623 bacteria for histidine-rich motifs (HRMs). We show that HRPs are widespread in prokaryotic proteomes, with the majority being involved in metal homeostasis. HRPs are frequently found in the proteomes of certain orders of rhizobia and pathogenic Gram-negative bacteria, but are essentially absent in obligate intracellular pathogenic species. The occurrence of HRPs in the proteomes of prokaryotes is related to their habitats. We further revealed a class of globally histidine-rich bacterial proteins. This approach can readily be used to identify other single amino acid rich motifs (and proteins) in microbial proteomes to facilitate the exploration of their functions.
Collapse
Affiliation(s)
- Tianfan Cheng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China.
| | | | | | | | | | | |
Collapse
|
22
|
Mitter B, Brader G, Afzal M, Compant S, Naveed M, Trognitz F, Sessitsch A. Advances in Elucidating Beneficial Interactions Between Plants, Soil, and Bacteria. ADVANCES IN AGRONOMY 2013:381-445. [PMID: 0 DOI: 10.1016/b978-0-12-407685-3.00007-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
|
23
|
Wisniewski-Dyé F, Lozano L, Acosta-Cruz E, Borland S, Drogue B, Prigent-Combaret C, Rouy Z, Barbe V, Herrera AM, González V, Mavingui P. Genome Sequence of Azospirillum brasilense CBG497 and Comparative Analyses of Azospirillum Core and Accessory Genomes provide Insight into Niche Adaptation. Genes (Basel) 2012; 3:576-602. [PMID: 24705077 PMCID: PMC3899980 DOI: 10.3390/genes3040576] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/24/2012] [Accepted: 09/13/2012] [Indexed: 11/29/2022] Open
Abstract
Bacteria of the genus Azospirillum colonize roots of important cereals and grasses, and promote plant growth by several mechanisms, notably phytohormone synthesis. The genomes of several Azospirillum strains belonging to different species, isolated from various host plants and locations, were recently sequenced and published. In this study, an additional genome of an A. brasilense strain, isolated from maize grown on an alkaline soil in the northeast of Mexico, strain CBG497, was obtained. Comparative genomic analyses were performed on this new genome and three other genomes (A. brasilense Sp245, A. lipoferum 4B and Azospirillum sp. B510). The Azospirillum core genome was established and consists of 2,328 proteins, representing between 30% to 38% of the total encoded proteins within a genome. It is mainly chromosomally-encoded and contains 74% of genes of ancestral origin shared with some aquatic relatives. The non-ancestral part of the core genome is enriched in genes involved in signal transduction, in transport and in metabolism of carbohydrates and amino-acids, and in surface properties features linked to adaptation in fluctuating environments, such as soil and rhizosphere. Many genes involved in colonization of plant roots, plant-growth promotion (such as those involved in phytohormone biosynthesis), and properties involved in rhizosphere adaptation (such as catabolism of phenolic compounds, uptake of iron) are restricted to a particular strain and/or species, strongly suggesting niche-specific adaptation.
Collapse
Affiliation(s)
- Florence Wisniewski-Dyé
- Université de Lyon, UMR 5557 CNRS, USC 1193 INRA, VetAgro Sup Ecologie Microbienne, Villeurbanne 69622, France.
| | - Luis Lozano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos 62210, México.
| | - Erika Acosta-Cruz
- Université de Lyon, UMR 5557 CNRS, USC 1193 INRA, VetAgro Sup Ecologie Microbienne, Villeurbanne 69622, France.
| | - Stéphanie Borland
- Université de Lyon, UMR 5557 CNRS, USC 1193 INRA, VetAgro Sup Ecologie Microbienne, Villeurbanne 69622, France.
| | - Benoît Drogue
- Université de Lyon, UMR 5557 CNRS, USC 1193 INRA, VetAgro Sup Ecologie Microbienne, Villeurbanne 69622, France.
| | - Claire Prigent-Combaret
- Université de Lyon, UMR 5557 CNRS, USC 1193 INRA, VetAgro Sup Ecologie Microbienne, Villeurbanne 69622, France.
| | - Zoé Rouy
- Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme CNRS UMR8030, France.
| | - Valérie Barbe
- Institut de Génomique, CEA, Génoscope, 2 rue Gaston Crémieux, 91057 Evry, France.
| | - Alberto Mendoza Herrera
- Centro de Biotecnología Genómica, Instituto politécnico Nacional, 88710 Reynosa, Tamaulipas, México.
| | - Victor González
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A Cuernavaca, Morelos 62210, México.
| | - Patrick Mavingui
- Université de Lyon, UMR 5557 CNRS, USC 1193 INRA, VetAgro Sup Ecologie Microbienne, Villeurbanne 69622, France.
| |
Collapse
|
24
|
Acosta-Cruz E, Wisniewski-Dyé F, Rouy Z, Barbe V, Valdés M, Mavingui P. Insights into the 1.59-Mbp largest plasmid of Azospirillum brasilense CBG497. Arch Microbiol 2012; 194:725-36. [PMID: 22481309 DOI: 10.1007/s00203-012-0805-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/31/2012] [Accepted: 03/07/2012] [Indexed: 11/25/2022]
Abstract
The plant growth-promoting proteobacterium Azospirillum brasilense enhances growth of many economically important crops, such as wheat, maize, and rice. The sequencing and annotation of the 1.59-Mbp replicon of A. brasilense CBG497, a strain isolated from a maize rhizosphere grown on an alkaline soil in the northeast of Mexico, revealed a GC content of 68.7 % and the presence of 1,430 potential protein-encoding genes, 1,147 of them classified into clusters of orthologous groups categories, and 16 tRNA genes representing 11 tRNA species. The presence of sixty-two genes representatives of the minimal gene set and chromid core genes suggests its importance in bacterial survival. The phaAB → G operon, reported as involved in the bacterial adaptation to alkaline pH in the presence of K(+), was also found on this replicon and detected in several Azospirillum strains. Phylogenetic analysis suggests that it was laterally acquired. We were not able to show its inference on the adaptation to basic pH, giving a hint about the presence of an alternative system for adaptation to alkaline pH.
Collapse
Affiliation(s)
- Erika Acosta-Cruz
- Laboratorio de Microbiología Agrícola, Escuela Nacional de Ciencias Biológicas, IPN, México DF, Mexico
| | | | | | | | | | | |
Collapse
|
25
|
Guieysse B, Wuertz S. Metabolically versatile large-genome prokaryotes. Curr Opin Biotechnol 2012; 23:467-73. [PMID: 22226959 DOI: 10.1016/j.copbio.2011.12.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/19/2011] [Indexed: 11/26/2022]
Abstract
Although versatile microorganisms are critical in industrial applications where the ability to cope with change and carry out complex tasks is needed, very little is in fact known about the evolutionary and ecological meanings of versatility in prokaryotes. Testing the hypothesis that a large genome size is a prerequisite for versatility in prokaryotes, we found that putatively versatile prokaryotes are phylogenetically and ecologically diverse and indeed include many well known and commercially relevant versatile microorganisms. Despite individual differences in metabolic abilities, a common trait of large-genome prokaryotes appears that they have gained their large genomes as an evolutionary response to nutrient-scarce and/or variable environments. This insight seriously questions the ability of traditional microbiology methods to isolate versatile prokaryotes and casts doubt on the ecological relevance of knowledge based on the study of specialists.
Collapse
Affiliation(s)
- Benoit Guieysse
- Centre for Environmental Technology and Engineering, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | | |
Collapse
|