1
|
Pancaldi F, Trindade LM. Marginal Lands to Grow Novel Bio-Based Crops: A Plant Breeding Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:227. [PMID: 32194604 PMCID: PMC7062921 DOI: 10.3389/fpls.2020.00227] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/13/2020] [Indexed: 05/09/2023]
Abstract
The biomass demand to fuel a growing global bio-based economy is expected to tremendously increase over the next decades, and projections indicate that dedicated biomass crops will satisfy a large portion of it. The establishment of dedicated biomass crops raises huge concerns, as they can subtract land that is required for food production, undermining food security. In this context, perennial biomass crops suitable for cultivation on marginal lands (MALs) raise attraction, as they could supply biomass without competing for land with food supply. While these crops withstand marginal conditions well, their biomass yield and quality do not ensure acceptable economic returns to farmers and cost-effective biomass conversion into bio-based products, claiming genetic improvement. However, this is constrained by the lack of genetic resources for most of these crops. Here we first review the advantages of cultivating novel perennial biomass crops on MALs, highlighting management practices to enhance the environmental and economic sustainability of these agro-systems. Subsequently, we discuss the preeminent breeding targets to improve the yield and quality of the biomass obtainable from these crops, as well as the stability of biomass production under MALs conditions. These targets include crop architecture and phenology, efficiency in the use of resources, lignocellulose composition in relation to bio-based applications, and tolerance to abiotic stresses. For each target trait, we outline optimal ideotypes, discuss the available breeding resources in the context of (orphan) biomass crops, and provide meaningful examples of genetic improvement. Finally, we discuss the available tools to breed novel perennial biomass crops. These comprise conventional breeding methods (recurrent selection and hybridization), molecular techniques to dissect the genetics of complex traits, speed up selection, and perform transgenic modification (genetic mapping, QTL and GWAS analysis, marker-assisted selection, genomic selection, transformation protocols), and novel high-throughput phenotyping platforms. Furthermore, novel tools to transfer genetic knowledge from model to orphan crops (i.e., universal markers) are also conceptualized, with the belief that their development will enhance the efficiency of plant breeding in orphan biomass crops, enabling a sustainable use of MALs for biomass provision.
Collapse
Affiliation(s)
| | - Luisa M. Trindade
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
2
|
Muhonja L, Yamanouchi H, Yang CC, Kuwazaki S, Yokoi K, Kameda T, Sezutsu H, Jouraku A. Genome-wide SNP marker discovery and phylogenetic analysis of mulberry varieties using double-digest restriction site-associated DNA sequencing. Gene 2020; 726:144162. [DOI: 10.1016/j.gene.2019.144162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022]
|
3
|
Fraser CI, Velásquez M, Nelson WA, Macaya EC, Hay CH. The Biogeographic Importance of Buoyancy in Macroalgae: A Case Study of the Southern Bull-Kelp Genus Durvillaea (Phaeophyceae), Including Descriptions of Two New Species 1. JOURNAL OF PHYCOLOGY 2020; 56:23-36. [PMID: 31642057 DOI: 10.1111/jpy.12939] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
Long-distance dispersal plays a key role in evolution, facilitating allopatric divergence, range expansions, and species movement in response to environmental change. Even species that seem poorly suited to dispersal can sometimes travel long distances, for example via hitchhiking with other, more intrinsically dispersive species. In marine macroalgae, buoyancy can enable adults-and diverse hitchhikers-to drift long distances, but the evolution and role of this trait are poorly understood. The southern bull-kelp genus Durvillaea includes several non-buoyant and buoyant species, including some that have only recently been recognized. In revising the genus, we not only provide updated identification tools and describe two new species (D. incurvata comb. nov. from Chile and D. fenestrata sp. nov. from the Antipodes Islands), but also carry out biogeographic analyses to determine the evolutionary history of buoyancy in the genus. Although the ancestral state was resolved as non-buoyant, the distribution of species suggests that this trait has been both gained and lost, possibly more than once. We conclude that although buoyancy is a trait that can be useful for dispersal (creating evolutionary pressure for its gain), there is also evolutionary pressure for its loss as it restricts species to narrow environmental ranges (i.e., shallow depths).
Collapse
Affiliation(s)
- Ceridwen I Fraser
- Department of Marine Science, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
- Fenner School of Environment and Society, Australian National University, Acton, ACT, 2601, Australia
| | - Marcel Velásquez
- Institut de Systématique, Évolution, Biodiversité (ISYEB, UMR7205 CNRS, MNHN, UPMC, EPHE), Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005, Paris, France
- Laboratorio de Ecosistemas Marinos Antárticos y Subantárticos (LEMAS), Universidad de Magallanes, Punta Arenas, Chile
- Institute of Ecology and Biodiversity (IEB), Las Palmeras 3425, 8320000, Santiago, Ñuñoa, Chile
| | - Wendy A Nelson
- National Institute of Water and Atmospheric Research Ltd (NIWA), Private Bag 14-901, Wellington, 6241, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Erasmo C Macaya
- Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile
- Centro FONDAP de Investigaciones en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Santiago, Chile
| | - Cameron H Hay
- Claude McCarthy Fellow 2007-2008, Department of Marine Science, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
4
|
A Multi-Level Strategy Based on Metabolic and Molecular Genetic Approaches for the Characterization of Different Coptis Medicines Using HPLC-UV and RAD-seq Techniques. Molecules 2018; 23:molecules23123090. [PMID: 30486378 PMCID: PMC6321400 DOI: 10.3390/molecules23123090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 12/19/2022] Open
Abstract
Coptis plants (Ranunculaceae) to have played an important role in the prevention and treatment human diseases in Chinese history. In this study, a multi-level strategy based on metabolic and molecular genetic methods was performed for the characterization of four Coptis herbs (C. chinensis, C. deltoidea, C. omeiensis and C. teeta) using high performance liquid chromatography-ultraviolet (HPLC-UV) and restriction site-associated DNA sequencing (RAD-seq) techniques. Protoberberine alkaloids including berberine, palmatine, coptisine, epiberberine, columbamine, jatrorrhizine, magnoflorine and groenlandicine in rhizomes were identified and determined based on the HPLC-UV method. Among them, berberine was demonstrated as the most abundant compound in these plants. RAD-seq was applied to discover single nucleotide polymorphisms (SNPs) data. A total of 44,747,016 reads were generated and 2,443,407 SNPs were identified in regarding to four plants. Additionally, with respect to complicated metabolic and SNP data, multivariable statistical methods of principal component analysis (PCA) and hierarchical cluster analysis (HCA) were successively applied to interpret the structure characteristics. The metabolic variation and genetic relationship among different Coptis plants were successfully illustrated based on data visualization. Summarily, this comprehensive strategy has been proven as a reliable and effective approach to characterize Coptis plants, which can provide additional information for their quality assessment.
Collapse
|
5
|
Pavan S, Curci PL, Zuluaga DL, Blanco E, Sonnante G. Genotyping-by-sequencing highlights patterns of genetic structure and domestication in artichoke and cardoon. PLoS One 2018; 13:e0205988. [PMID: 30352087 PMCID: PMC6198968 DOI: 10.1371/journal.pone.0205988] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/04/2018] [Indexed: 01/07/2023] Open
Abstract
Exploiting the biodiversity of crops and their wild relatives is fundamental for maintaining and increasing food security. The species Cynara cardunculus includes three taxa: the globe artichoke, one of the most important Mediterranean vegetables, the leafy cardoon, and the wild cardoon. In this study, genotyping by sequencing (GBS) was successfully applied to reveal thousands of polymorphisms in a C. cardunculus germplasm collection, including 65 globe artichoke, 9 leafy cardoon, and 21 wild cardoon samples. The collection showed a strong population structure at K = 2, separating the globe artichoke from the leafy and wild cardoon. At higher K values, further substructures were observed, in which the wild cardoon was separated from the leafy cardoon, and the latter included the Spanish wild cardoons, while the wild sample from Portugal was admixed. Moreover, subpopulations within the globe artichoke set were highlighted. Structure analysis restricted to the globe artichoke dataset pointed out genetic differentiation between the ˝Catanesi˝ typology and all the other samples (K = 2). At higher values of K, the separation of the ˝Catanesi˝ group still held true, and green headed landraces from Apulia region, Italy (˝Green Apulian˝) formed a distinct subpopulation. ˝Romaneschi˝ artichoke types fell in a variable group with admixed samples, indicating that they should not be considered as a genetically uniform typology. The results of principal component analysis and Neighbor-Joining hierarchical clustering were consistent with structure results, and in addition provided a measure of genetic relationships among individual genotypes. Both analyses attributed the wild material from Spain and Portugal to the cultivated cardoon group, supporting the idea that this might be indeed a feral form of the leafy cardoon. Different reproductive habit and possibly selective pressure led to a slower LD decay in artichoke compared to cardoon. Genotyping by sequencing has proven a reliable methodology to obtain valuable SNPs and assess population genetics in C. cardunculus.
Collapse
Affiliation(s)
- Stefano Pavan
- Department of Soil, Plant and Food Science, University of Bari ˝Aldo Moro˝, Bari, Italy.,Institute of Biomedical Technologies, National Research Council (CNR), Bari, Italy
| | | | | | | | | |
Collapse
|
6
|
Fitzek E, Delcamp A, Guichoux E, Hahn M, Lobdell M, Hipp AL. A nuclear DNA barcode for eastern North American oaks and application to a study of hybridization in an Arboretum setting. Ecol Evol 2018; 8:5837-5851. [PMID: 29938097 PMCID: PMC6010771 DOI: 10.1002/ece3.4122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 11/16/2022] Open
Abstract
DNA barcoding has proved difficult in a number of woody plant genera, including the ecologically important oak genus Quercus. In this study, we utilized restrictionsite-associated DNA sequencing (RAD-seq) to develop an economical single nucleotide polymorphism (SNP) DNA barcoding system that suffices to distinguish eight common, sympatric eastern North American white oak species. Two de novo clustering pipelines, PyRAD and Stacks, were used in combination with postclustering bioinformatic tools to generate a list of 291 potential SNPs, 80 of which were included in a barcoding toolkit that is easily implemented using MassARRAY mass spectrometry technology. As a proof-of-concept, we used the genotyping toolkit to infer potential hybridization between North American white oaks transplanted outside of their native range (Q. michauxii, Q. montana, Q muehlenbergii/Q. prinoides, and Q. stellata) into a horticultural collection surrounded by natural forests of locally native trees (Q. alba and Q. macrocarpa) in the living collection at The Morton Arboretum (Lisle, IL, USA). Phylogenetic and clustering analyses suggested low rates of hybridization between cultivated and native species, with the exception of one Q. michauxii mother tree, the acorns of which exhibited high admixture from either Q. alba or Q. stellata and Q. macrocarpa, and a hybrid between Q. stellata that appears to have backcrossed almost exclusively to Q. alba. Together, RAD-seq and MassARRAY technologies allow for efficient development and implementation of a multispecies barcode for one of the more challenging forest tree genera.
Collapse
Affiliation(s)
- Elisabeth Fitzek
- HerbariumThe Morton ArboretumLisleIllinois
- Present address:
Department of Biological SciencesNorthern Illinois UniversityDeKalbIllinois
| | - Adline Delcamp
- Site de Pierroton, Platforme Genome TranscriptomeINRACESTASFrance
- UMR1202 Biodiversité Gènes and CommunautésUniversity of BordeauxCESTASFrance
| | - Erwan Guichoux
- Site de Pierroton, Platforme Genome TranscriptomeINRACESTASFrance
- UMR1202 Biodiversité Gènes and CommunautésUniversity of BordeauxCESTASFrance
| | | | | | - Andrew L. Hipp
- HerbariumThe Morton ArboretumLisleIllinois
- Department of BotanyThe Field MuseumChicagoIllinois
| |
Collapse
|
7
|
Hou L, Cui Y, Li X, Chen W, Zhang Z, Pang X, Li Y. Genetic Evaluation of Natural Populations of the Endangered Conifer Thuja koraiensis Using Microsatellite Markers by Restriction-Associated DNA Sequencing. Genes (Basel) 2018; 9:E218. [PMID: 29673217 PMCID: PMC5924560 DOI: 10.3390/genes9040218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 11/16/2022] Open
Abstract
Thuja koraiensis Nakai is an endangered conifer of high economic and ecological value in Jilin Province, China. However, studies on its population structure and conservation genetics have been limited by the lack of genomic data. Here, 37,761 microsatellites (simple sequence repeat, SSR) were detected based on 875,792 de novo-assembled contigs using a restriction-associated DNA (RAD) approach. Among these SSRs, 300 were randomly selected to test for polymorphisms and 96 obtained loci were able to amplify a fragment of expected size. Twelve polymorphic SSR markers were developed to analyze the genetic diversity and population structure of three natural populations. High genetic diversity (mean NA = 5.481, HE = 0.548) and moderate population differentiation (pairwise Fst = 0.048–0.078, Nm = 2.940–4.958) were found in this species. Molecular variance analysis suggested that most of the variation (83%) existed within populations. Combining the results of STRUCTURE, principal coordinate, and neighbor-joining analysis, the 232 individuals were divided into three genetic clusters that generally correlated with their geographical distributions. Finally, appropriate conservation strategies were proposed to protect this species. This study provides genetic information for the natural resource conservation and utilization of T. koraiensis and will facilitate further studies of the evolution and phylogeography of the species.
Collapse
Affiliation(s)
- Lu Hou
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Yanhong Cui
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Xiang Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Wu Chen
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Zhiyong Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Xiaoming Pang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Yingyue Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
8
|
Smith HM, Smith BP, Morales NB, Moskwa S, Clingeleffer PR, Thomas MR. SNP markers tightly linked to root knot nematode resistance in grapevine (Vitis cinerea) identified by a genotyping-by-sequencing approach followed by Sequenom MassARRAY validation. PLoS One 2018; 13:e0193121. [PMID: 29462210 PMCID: PMC5819801 DOI: 10.1371/journal.pone.0193121] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/05/2018] [Indexed: 11/17/2022] Open
Abstract
Plant parasitic nematodes, including root knot nematode Meloidogyne species, cause extensive damage to agriculture and horticultural crops. As Vitis vinifera cultivars are susceptible to root knot nematode parasitism, rootstocks resistant to these soil pests provide a sustainable approach to maintain grapevine production. Currently, most of the commercially available root knot nematode resistant rootstocks are highly vigorous and take up excess potassium, which reduces wine quality. As a result, there is a pressing need to breed new root knot nematode resistant rootstocks, which have no impact on wine quality. To develop molecular markers that predict root knot nematode resistance for marker assisted breeding, a genetic approach was employed to identify a root knot nematode resistance locus in grapevine. To this end, a Meloidogyne javanica resistant Vitis cinerea accession was crossed to a susceptible Vitis vinifera cultivar Riesling and results from screening the F1 individuals support a model that root knot nematode resistance, is conferred by a single dominant allele, referred as MELOIDOGYNE JAVANICA RESISTANCE1 (MJR1). Further, MJR1 resistance appears to be mediated by a hypersensitive response that occurs in the root apical meristem. Single nucleotide polymorphisms (SNPs) were identified using genotyping-by-sequencing and results from association and genetic mapping identified the MJR1 locus, which is located on chromosome 18 in the Vitis cinerea accession. Validation of the SNPs linked to the MJR1 locus using a Sequenom MassARRAY platform found that only 50% could be validated. The validated SNPs that flank and co-segregate with the MJR1 locus can be used for marker-assisted selection for Meloidogyne javanica resistance in grapevine.
Collapse
Affiliation(s)
- Harley M. Smith
- CSIRO Agriculture and Food, Glen Osmond, South Australia, Australia
| | - Brady P. Smith
- CSIRO Agriculture and Food, Glen Osmond, South Australia, Australia
| | - Norma B. Morales
- CSIRO Agriculture and Food, Glen Osmond, South Australia, Australia
| | - Sam Moskwa
- CSIRO Information Management & Technology, Clayton South, Victoria, Australia
| | | | - Mark R. Thomas
- CSIRO Agriculture and Food, Glen Osmond, South Australia, Australia
| |
Collapse
|
9
|
Li YL, Xue DX, Zhang BD, Liu JX. An optimized approach for local de novo assembly of overlapping paired-end RAD reads from multiple individuals. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171589. [PMID: 29515871 PMCID: PMC5830760 DOI: 10.1098/rsos.171589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/19/2018] [Indexed: 06/15/2023]
Abstract
Restriction site-associated DNA (RAD) sequencing is revolutionizing studies in ecological, evolutionary and conservation genomics. However, the assembly of paired-end RAD reads with random-sheared ends is still challenging, especially for non-model species with high genetic variance. Here, we present an efficient optimized approach with a pipeline software, RADassembler, which makes full use of paired-end RAD reads with random-sheared ends from multiple individuals to assemble RAD contigs. RADassembler integrates the algorithms for choosing the optimal number of mismatches within and across individuals at the clustering stage, and then uses a two-step assembly approach at the assembly stage. RADassembler also uses data reduction and parallelization strategies to promote efficiency. Compared to other tools, both the assembly results based on simulation and real RAD datasets demonstrated that RADassembler could always assemble the appropriate number of contigs with high qualities, and more read pairs were properly mapped to the assembled contigs. This approach provides an optimal tool for dealing with the complexity in the assembly of paired-end RAD reads with random-sheared ends for non-model species in ecological, evolutionary and conservation studies. RADassembler is available at https://github.com/lyl8086/RADscripts.
Collapse
Affiliation(s)
- Yu-Long Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, Shandong, People's Republic of China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| | - Dong-Xiu Xue
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, Shandong, People's Republic of China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| | - Bai-Dong Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, Shandong, People's Republic of China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| | - Jin-Xian Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, Shandong, People's Republic of China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| |
Collapse
|
10
|
Wang J, Su K, Guo Y, Xing H, Zhao Y, Liu Z, Li K, Guo X. Construction of a high-density genetic map for grape using specific length amplified fragment (SLAF) sequencing. PLoS One 2017; 12:e0181728. [PMID: 28746364 PMCID: PMC5528875 DOI: 10.1371/journal.pone.0181728] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/06/2017] [Indexed: 12/30/2022] Open
Abstract
Genetic maps are important tools in plant genomics and breeding. We report a large-scale discovery of single nucleotide polymorphisms (SNPs) using the specific length amplified fragment sequencing (SLAF-seq) technique for the construction of high-density genetic maps for two elite wine grape cultivars, ‘Chardonnay’ and ‘Beibinghong’, and their 130 F1 plants. A total of 372.53 M paired-end reads were obtained after preprocessing. The average sequencing depth was 33.81 for ‘Chardonnay’ (the female parent), 48.20 for ‘Beibinghong’ (the male parent), and 12.66 for the F1 offspring. We detected 202,349 high-quality SLAFs of which 144,972 were polymorphic; 10,042 SNPs were used to construct a genetic map that spanned 1,969.95 cM, with an average genetic distance of 0.23 cM between adjacent markers. This genetic map contains the largest molecular marker number of the grape maps so far reported. We thus demonstrate that SLAF-seq is a promising strategy for the construction of high-density genetic maps; the map that we report here is a good potential resource for QTL mapping of genes linked to major economic and agronomic traits, map-based cloning, and marker-assisted selection of grape.
Collapse
Affiliation(s)
- Jiahui Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China
| | - Kai Su
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China
- * E-mail: (YSG); (XWG)
| | - Huiyang Xing
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China
| | - Yuhui Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China
| | - Zhendong Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China
| | - Kun Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China
| | - Xiuwu Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, P.R. China
- * E-mail: (YSG); (XWG)
| |
Collapse
|
11
|
Genome reconstruction in Cynara cardunculus taxa gains access to chromosome-scale DNA variation. Sci Rep 2017; 7:5617. [PMID: 28717205 PMCID: PMC5514137 DOI: 10.1038/s41598-017-05085-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 05/24/2017] [Indexed: 11/12/2022] Open
Abstract
The genome sequence of globe artichoke (Cynara cardunculus L. var. scolymus, 2n = 2x = 34) is now available for use. A survey of C. cardunculus genetic resources is essential for understanding the evolution of the species, carrying out genetic studies and for application of breeding strategies. We report on the resequencing analyses (~35×) of four globe artichoke genotypes, representative of the core varietal types, as well as a genotype of the related taxa cultivated cardoon. The genomes were reconstructed at a chromosomal scale and structurally/functionally annotated. Gene prediction indicated a similar number of genes, while distinctive variations in miRNAs and resistance gene analogues (RGAs) were detected. Overall, 23,5 M SNP/indel were discovered (range 6,34 M –14,50 M). The impact of some missense SNPs on the biological functions of genes involved in the biosynthesis of phenylpropanoid and sesquiterpene lactone secondary metabolites was predicted. The identified variants contribute to infer on globe artichoke domestication of the different varietal types, and represent key tools for dissecting the path from sequence variation to phenotype. The new genomic sequences are fully searchable through independent Jbrowse interfaces (www.artichokegenome.unito.it), which allow the analysis of collinearity and the discovery of genomic variants, thus representing a one-stop resource for C. cardunculus genomics.
Collapse
|
12
|
Scheben A, Batley J, Edwards D. Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:149-161. [PMID: 27696619 PMCID: PMC5258866 DOI: 10.1111/pbi.12645] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/24/2016] [Accepted: 09/28/2016] [Indexed: 05/18/2023]
Abstract
In the last decade, the revolution in sequencing technologies has deeply impacted crop genotyping practice. New methods allowing rapid, high-throughput genotyping of entire crop populations have proliferated and opened the door to wider use of molecular tools in plant breeding. These new genotyping-by-sequencing (GBS) methods include over a dozen reduced-representation sequencing (RRS) approaches and at least four whole-genome resequencing (WGR) approaches. The diversity of methods available, each often producing different types of data at different cost, can make selection of the best-suited method seem a daunting task. We review the most common genotyping methods used today and compare their suitability for linkage mapping, genomewide association studies (GWAS), marker-assisted and genomic selection and genome assembly and improvement in crops with various genome sizes and complexity. Furthermore, we give an outline of bioinformatics tools for analysis of genotyping data. WGR is well suited to genotyping biparental cross populations with complex, small- to moderate-sized genomes and provides the lowest cost per marker data point. RRS approaches differ in their suitability for various tasks, but demonstrate similar costs per marker data point. These approaches are generally better suited for de novo applications and more cost-effective when genotyping populations with large genomes or high heterozygosity. We expect that although RRS approaches will remain the most cost-effective for some time, WGR will become more widespread for crop genotyping as sequencing costs continue to decrease.
Collapse
Affiliation(s)
- Armin Scheben
- School of Plant Biology and Institute of AgricultureUniversity of Western AustraliaPerthWAAustralia
| | - Jacqueline Batley
- School of Plant Biology and Institute of AgricultureUniversity of Western AustraliaPerthWAAustralia
| | - David Edwards
- School of Plant Biology and Institute of AgricultureUniversity of Western AustraliaPerthWAAustralia
| |
Collapse
|
13
|
Wyss T, Masclaux FG, Rosikiewicz P, Pagni M, Sanders IR. Population genomics reveals that within-fungus polymorphism is common and maintained in populations of the mycorrhizal fungus Rhizophagus irregularis. THE ISME JOURNAL 2016; 10:2514-26. [PMID: 26953600 PMCID: PMC5030683 DOI: 10.1038/ismej.2016.29] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/15/2022]
Abstract
Arbuscular mycorrhizal (AM) fungi are symbionts of most plants, increasing plant growth and diversity. The model AM fungus Rhizophagus irregularis (isolate DAOM 197198) exhibits low within-fungus polymorphism. In contrast, another study reported high within-fungus variability. Experiments with other R. irregularis isolates suggest that within-fungus genetic variation can affect the fungal phenotype and plant growth, highlighting the biological importance of such variation. We investigated whether there is evidence of differing levels of within-fungus polymorphism in an R. irregularis population. We genotyped 20 isolates using restriction site-associated DNA sequencing and developed novel approaches for characterizing polymorphism among haploid nuclei. All isolates exhibited higher within-isolate poly-allelic single-nucleotide polymorphism (SNP) densities than DAOM 197198 in repeated and non-repeated sites mapped to the reference genome. Poly-allelic SNPs were independently confirmed. Allele frequencies within isolates deviated from diploids or tetraploids, or that expected for a strict dikaryote. Phylogeny based on poly-allelic sites was robust and mirrored the standard phylogeny. This indicates that within-fungus genetic variation is maintained in AM fungal populations. Our results predict a heterokaryotic state in the population, considerable differences in copy number variation among isolates and divergence among the copies, or aneuploidy in some isolates. The variation may be a combination of all of these hypotheses. Within-isolate genetic variation in R. irregularis leads to large differences in plant growth. Therefore, characterizing genomic variation within AM fungal populations is of major ecological importance.
Collapse
Affiliation(s)
- Tania Wyss
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Frédéric G Masclaux
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Vital-IT, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Pawel Rosikiewicz
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Marco Pagni
- Vital-IT, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ian R Sanders
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Fraser CI, McGaughran A, Chuah A, Waters JM. The importance of replicating genomic analyses to verify phylogenetic signal for recently evolved lineages. Mol Ecol 2016; 25:3683-95. [PMID: 27238591 DOI: 10.1111/mec.13708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 04/27/2016] [Accepted: 05/18/2016] [Indexed: 01/03/2023]
Abstract
Genomewide SNP data generated by nontargeted methods such as RAD and GBS are increasingly being used in phylogenetic and phylogeographic analyses. When these methods are used in the absence of a reference genome, however, little is known about the locations and evolution of the SNPs. In using such data to address phylogenetic questions, researchers risk drawing false conclusions, particularly if a representative number of SNPs is not obtained. Here, we empirically test the robustness of phylogenetic inference based on SNP data for closely related lineages. We conducted a genomewide analysis of 75 712 SNPs, generated via GBS, of southern bull-kelp (Durvillaea). Durvillaea chathamensis co-occurs with D. antarctica on Chatham Island, but the two species have previously been found to be so genetically similar that the status of the former has been questioned. Our results show that D. chathamensis, which differs from D. antarctica ecologically as well as morphologically, is indeed a reproductively isolated species. Furthermore, our replicated analyses show that D. chathamensis cannot be reliably distinguished phylogenetically from closely related D. antarctica using subsets (ranging in size from 400 to 10 000 sites) of the 40 912 parsimony-informative SNPs in our data set and that bootstrap values alone can give misleading impressions of the strength of phylogenetic inferences. These results highlight the importance of independently replicating SNP analyses to verify that phylogenetic inferences based on nontargeted SNP data are robust. Our study also demonstrates that modern genomic approaches can be used to identify cases of recent or incipient speciation that traditional approaches (e.g. Sanger sequencing of a few loci) may be unable to detect or resolve.
Collapse
Affiliation(s)
- Ceridwen I Fraser
- Fenner School of Environment and Society, Australian National University, Canberra, Act, 2601, Australia
| | - Angela McGaughran
- CSIRO Land and Water, Black Mountain Laboratories, Clunies Ross Street, Canberra, Act, 2601, Australia
- School of BioSciences, University of Melbourne, 30 Flemington Road, Melbourne, Vic, 3010, Australia
| | - Aaron Chuah
- John Curtin School of Medical Research, Australian National University, Canberra, Act, 2601, Australia
| | - Jonathan M Waters
- Department of Zoology, University of Otago, Dunedin, 9016, New Zealand
| |
Collapse
|
15
|
Zhang Z, Shang H, Shi Y, Huang L, Li J, Ge Q, Gong J, Liu A, Chen T, Wang D, Wang Y, Palanga KK, Muhammad J, Li W, Lu Q, Deng X, Tan Y, Song W, Cai J, Li P, Rashid HO, Gong W, Yuan Y. Construction of a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq) and its application to Quantitative Trait Loci (QTL) analysis for boll weight in upland cotton (Gossypium hirsutum.). BMC PLANT BIOLOGY 2016; 16:79. [PMID: 27067834 PMCID: PMC4827241 DOI: 10.1186/s12870-016-0741-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/17/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Upland Cotton (Gossypium hirsutum) is one of the most important worldwide crops it provides natural high-quality fiber for the industrial production and everyday use. Next-generation sequencing is a powerful method to identify single nucleotide polymorphism markers on a large scale for the construction of a high-density genetic map for quantitative trait loci mapping. RESULTS In this research, a recombinant inbred lines population developed from two upland cotton cultivars 0-153 and sGK9708 was used to construct a high-density genetic map through the specific locus amplified fragment sequencing method. The high-density genetic map harbored 5521 single nucleotide polymorphism markers which covered a total distance of 3259.37 cM with an average marker interval of 0.78 cM without gaps larger than 10 cM. In total 18 quantitative trait loci of boll weight were identified as stable quantitative trait loci and were detected in at least three out of 11 environments and explained 4.15-16.70 % of the observed phenotypic variation. In total, 344 candidate genes were identified within the confidence intervals of these stable quantitative trait loci based on the cotton genome sequence. These genes were categorized based on their function through gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis and eukaryotic orthologous groups analysis. CONCLUSIONS This research reported the first high-density genetic map for Upland Cotton (Gossypium hirsutum) with a recombinant inbred line population using single nucleotide polymorphism markers developed by specific locus amplified fragment sequencing. We also identified quantitative trait loci of boll weight across 11 environments and identified candidate genes within the quantitative trait loci confidence intervals. The results of this research would provide useful information for the next-step work including fine mapping, gene functional analysis, pyramiding breeding of functional genes as well as marker-assisted selection.
Collapse
Affiliation(s)
- Zhen Zhang
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Haihong Shang
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Yuzhen Shi
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Long Huang
- />Biomarker Technologies Corporation, Beijing, 103100 China
| | - Junwen Li
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Qun Ge
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Juwu Gong
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Aiying Liu
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Tingting Chen
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Dan Wang
- />Biomarker Technologies Corporation, Beijing, 103100 China
| | - Yanling Wang
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Koffi Kibalou Palanga
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Jamshed Muhammad
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Weijie Li
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Quanwei Lu
- />Anyang Institute of Technology, Anyang, 455000 Henan China
| | - Xiaoying Deng
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Yunna Tan
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Weiwu Song
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Juan Cai
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Pengtao Li
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Harun or Rashid
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Wankui Gong
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Youlu Yuan
- />State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| |
Collapse
|
16
|
Torres-Martínez L, Emery NC. Genome-wide SNP discovery in the annual herb, Lasthenia fremontii (Asteraceae): genetic resources for the conservation and restoration of a California vernal pool endemic. CONSERV GENET RESOUR 2016. [DOI: 10.1007/s12686-016-0524-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
The genome sequence of the outbreeding globe artichoke constructed de novo incorporating a phase-aware low-pass sequencing strategy of F1 progeny. Sci Rep 2016; 6:19427. [PMID: 26786968 PMCID: PMC4726258 DOI: 10.1038/srep19427] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/11/2015] [Indexed: 12/13/2022] Open
Abstract
Globe artichoke (Cynara cardunculus var. scolymus) is an out-crossing, perennial, multi-use crop species that is grown worldwide and belongs to the Compositae, one of the most successful Angiosperm families. We describe the first genome sequence of globe artichoke. The assembly, comprising of 13,588 scaffolds covering 725 of the 1,084 Mb genome, was generated using ~133-fold Illumina sequencing data and encodes 26,889 predicted genes. Re-sequencing (30×) of globe artichoke and cultivated cardoon (C. cardunculus var. altilis) parental genotypes and low-coverage (0.5 to 1×) genotyping-by-sequencing of 163 F1 individuals resulted in 73% of the assembled genome being anchored in 2,178 genetic bins ordered along 17 chromosomal pseudomolecules. This was achieved using a novel pipeline, SOILoCo (Scaffold Ordering by Imputation with Low Coverage), to detect heterozygous regions and assign parental haplotypes with low sequencing read depth and of unknown phase. SOILoCo provides a powerful tool for de novo genome analysis of outcrossing species. Our data will enable genome-scale analyses of evolutionary processes among crops, weeds, and wild species within and beyond the Compositae, and will facilitate the identification of economically important genes from related species.
Collapse
|
18
|
Herrera S, Reyes-Herrera PH, Shank TM. Predicting RAD-seq Marker Numbers across the Eukaryotic Tree of Life. Genome Biol Evol 2015; 7:3207-25. [PMID: 26537225 PMCID: PMC4700943 DOI: 10.1093/gbe/evv210] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
High-throughput sequencing of reduced representation libraries obtained through digestion with restriction enzymes--generically known as restriction site associated DNA sequencing (RAD-seq)--is a common strategy to generate genome-wide genotypic and sequence data from eukaryotes. A critical design element of any RAD-seq study is knowledge of the approximate number of genetic markers that can be obtained for a taxon using different restriction enzymes, as this number determines the scope of a project, and ultimately defines its success. This number can only be directly determined if a reference genome sequence is available, or it can be estimated if the genome size and restriction recognition sequence probabilities are known. However, both scenarios are uncommon for nonmodel species. Here, we performed systematic in silico surveys of recognition sequences, for diverse and commonly used type II restriction enzymes across the eukaryotic tree of life. Our observations reveal that recognition sequence frequencies for a given restriction enzyme are strikingly variable among broad eukaryotic taxonomic groups, being largely determined by phylogenetic relatedness. We demonstrate that genome sizes can be predicted from cleavage frequency data obtained with restriction enzymes targeting "neutral" elements. Models based on genomic compositions are also effective tools to accurately calculate probabilities of recognition sequences across taxa, and can be applied to species for which reduced representation data are available (including transcriptomes and neutral RAD-seq data sets). The analytical pipeline developed in this study, PredRAD (https://github.com/phrh/PredRAD), and the resulting databases constitute valuable resources that will help guide the design of any study using RAD-seq or related methods.
Collapse
Affiliation(s)
- Santiago Herrera
- Biology Department, Woods Hole Oceanographic Institution Biology Department, Massachusetts Institute of Technology
| | | | | |
Collapse
|
19
|
Hou Y, Nowak MD, Mirré V, Bjorå CS, Brochmann C, Popp M. Thousands of RAD-seq Loci Fully Resolve the Phylogeny of the Highly Disjunct Arctic-Alpine Genus Diapensia (Diapensiaceae). PLoS One 2015; 10:e0140175. [PMID: 26448557 PMCID: PMC4598014 DOI: 10.1371/journal.pone.0140175] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/21/2015] [Indexed: 12/21/2022] Open
Abstract
Restriction-site associated DNA sequencing (RAD-seq) has recently become an important method to generate genome-wide molecular data for species delimitation, phylogeography, and population genetic studies. However, very few empirical studies have so far tested its applicability in phylogenetic reconstruction. The alpine-arctic genus Diapensia was selected to study the origin of the disjunction between the Arctic and the Himalayan-Hengduan Mountains (HHM). However, a previous phylogenetic analysis based on one nuclear and four plastid DNA regions failed to resolve the oldest divergences in Diapensia as well as the relationship between the two HHM species. Here we reconstruct a fully resolved phylogeny of Diapensia and address the conflict between the currently accepted taxonomy and the gene trees in the HHM species using RAD-seq. Based on a data set containing 2,650 loci selected to maximize the number of parsimony informative sites and allowing for a high level of missing data (51%), the phylogeny of Diapensia was fully resolved and each of the four species was reciprocally monophyletic. Whereas the arctic D. lapponica was inferred as sister to the HHM clade in the previous study, the RAD-seq data resolved the two arctic species as sisters to the HHM clade. Similar relationships were inferred from a differently filtered data set with far fewer loci (114) and less missing data (21%), but with lower support and with one of the two HHM species as non-monophyletic. Bayesian concordance analysis and Patterson’s D-statistic tests suggested that admixture has occurred between the two HHM species.
Collapse
Affiliation(s)
- Yan Hou
- Natural History Museum, University of Oslo, Oslo, Norway
- * E-mail:
| | - Michael D. Nowak
- Natural History Museum, University of Oslo, Oslo, Norway
- Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Virginia Mirré
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | | | - Magnus Popp
- Natural History Museum, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Kafkas S, Khodaeiaminjan M, Güney M, Kafkas E. Identification of sex-linked SNP markers using RAD sequencing suggests ZW/ZZ sex determination in Pistacia vera L. BMC Genomics 2015; 16:98. [PMID: 25765114 PMCID: PMC4336685 DOI: 10.1186/s12864-015-1326-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/06/2015] [Indexed: 01/09/2023] Open
Abstract
Background Pistachio (Pistacia vera L.) is a dioecious species that has a long juvenility period. Therefore, development of marker-assisted selection (MAS) techniques would greatly facilitate pistachio cultivar-breeding programs. The sex determination mechanism is presently unknown in pistachio. The generation of sex-linked markers is likely to reduce time, labor, and costs associated with breeding programs, and will help to clarify the sex determination system in pistachio. Results Restriction site-associated DNA (RAD) markers were used to identify sex-linked markers and to elucidate the sex determination system in pistachio. Eight male and eight female F1 progenies from a Pistacia vera L. Siirt × Bağyolu cross, along with the parents, were subjected to RAD sequencing in two lanes of a Hi-Seq 2000 sequencing platform. This generated 449 million reads, comprising approximately 37.7 Gb of sequences. There were 33,757 polymorphic single nucleotide polymorphism (SNP) loci between the parents. Thirty-eight of these, from 28 RAD reads, were detected as putative sex-associated loci in pistachio. Validation was performed by SNaPshot analysis in 42 mature F1 progenies and in 124 cultivars and genotypes in a germplasm collection. Eight loci could distinguish sex with 100% accuracy in pistachio. To ascertain cost-effective application of markers in a breeding program, high-resolution melting (HRM) analysis was performed; four markers were found to perfectly separate sexes in pistachio. Because of the female heterogamety in all candidate SNP loci, we report for the first time that pistachio has a ZZ/ZW sex determination system. As the reported female-to-male segregation ratio is 1:1 in all known segregating populations and there is no previous report of super-female genotypes or female heteromorphic chromosomes in pistachio, it appears that the WW genotype is not viable. Conclusion Sex-linked SNP markers were identified and validated in a large germplasm and proved their suitability for MAS in pistachio. HRM analysis successfully validated the sex-linked markers for MAS. For the first time in dioecious pistachio, a female heterogamety ZW/ZZ sex determination system is suggested.
Collapse
Affiliation(s)
- Salih Kafkas
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana, Turkey.
| | - Mortaza Khodaeiaminjan
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana, Turkey.
| | - Murat Güney
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana, Turkey.
| | - Ebru Kafkas
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana, Turkey.
| |
Collapse
|
21
|
Wang H, Jin X, Zhang B, Shen C, Lin Z. Enrichment of an intraspecific genetic map of upland cotton by developing markers using parental RAD sequencing. DNA Res 2015; 22:147-60. [PMID: 25656006 PMCID: PMC4401325 DOI: 10.1093/dnares/dsu047] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/26/2014] [Indexed: 12/11/2022] Open
Abstract
RAD sequencing was performed using DH962 and Jimian5 as upland cotton mapping parents. Sequencing data for DH962 and Jimian5 were assembled into the genome sequences of ≈55.27 and ≈57.06 Mb, respectively. Analysing genome sequences of the two parents, 1,323 SSR, 3,838 insertion/deletion (InDel), and 9,366 single-nucleotide polymorphism (SNP) primer pairs were developed. All of the SSRs, 121 InDels, 441 SNPs, and other 6,747 primer pairs were screened in the two parents, and a total of 535 new polymorphic loci were identified. A genetic map including 1,013 loci was constructed using these results and 506 loci previously published for this population. Twenty-seven new QTLs for yield and fibre quality were identified, indicating that the efficiency of QTL detection was greatly improved by the increase in map density. Comparative genomics showed there to be considerable homology and collinearity between the AT and A2 genomes and between the DT and D5 genomes, although there were a few exchanges and introgressions among the chromosomes of the A2 genome. Here, the development of markers using parental RAD sequencing was effective, and a high-density intraspecific genetic map was constructed. This map can be used for molecular marker-assisted selection in cotton.
Collapse
Affiliation(s)
- Hantao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xin Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Beibei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Chao Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
22
|
Abstract
Genotyping by sequencing (GBS) is a relatively new method used to determine the differences in the genetic makeup of individuals. Its novelty stems from a combination of two already available methods: genotyping and next-generation sequencing. Depending on the individual study design GBS protocols can take multiple forms, however most share a sequence of core steps that have to be undertaken. These include: sequencing of the DNA from the individuals of interest (usually two parents of a mapping population and their progeny), mapping of the sequencing reads to the reference sequence, SNP calling and filtering, SNP genotyping and imputation, followed by haplotype identification and downstream analysis. GBS has a range of applications from general marker discovery, haplotype identification, and recombination characterization to quantitative trait locus (QTL) analysis, genome-wide association studies (GWAS), and genomic selection (GS). It has already been applied to a range of plant species including: rice, maize, artichoke, and Arabidopsis thaliana. It is a promising approach which is likely to provide new and important insights into plant biology.
Collapse
Affiliation(s)
- Agnieszka A Golicz
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | | | | |
Collapse
|
23
|
Tin MMY, Rheindt FE, Cros E, Mikheyev AS. Degenerate adaptor sequences for detecting PCR duplicates in reduced representation sequencing data improve genotype calling accuracy. Mol Ecol Resour 2014; 15:329-36. [PMID: 25132578 DOI: 10.1111/1755-0998.12314] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 08/06/2014] [Accepted: 08/06/2014] [Indexed: 11/26/2022]
Abstract
RAD-tag is a powerful tool for high-throughput genotyping. It relies on PCR amplification of the starting material, following enzymatic digestion and sequencing adaptor ligation. Amplification introduces duplicate reads into the data, which arise from the same template molecule and are statistically nonindependent, potentially introducing errors into genotype calling. In shotgun sequencing, data duplicates are removed by filtering reads starting at the same position in the alignment. However, restriction enzymes target specific locations within the genome, causing reads to start in the same place, and making it difficult to estimate the extent of PCR duplication. Here, we introduce a slight change to the Illumina sequencing adaptor chemistry, appending a unique four-base tag to the first index read, which allows duplicate discrimination in aligned data. This approach was validated on the Illumina MiSeq platform, using double-digest libraries of ants (Wasmannia auropunctata) and yeast (Saccharomyces cerevisiae) with known genotypes, producing modest though statistically significant gains in the odds of calling a genotype accurately. More importantly, removing duplicates also corrected for strong sample-to-sample variability of genotype calling accuracy seen in the ant samples. For libraries prepared from low-input degraded museum bird samples (Mixornis gularis), which had low complexity, having been generated from relatively few starting molecules, adaptor tags show that virtually all of the genotypes were called with inflated confidence as a result of PCR duplicates. Quantification of library complexity by adaptor tagging does not significantly increase the difficulty of the overall workflow or its cost, but corrects for differences in quality between samples and permits analysis of low-input material.
Collapse
Affiliation(s)
- M M Y Tin
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | | | | | | |
Collapse
|
24
|
Pujolar JM, Jacobsen MW, Als TD, Frydenberg J, Munch K, Jónsson B, Jian JB, Cheng L, Maes GE, Bernatchez L, Hansen MM. Genome-wide single-generation signatures of local selection in the panmictic European eel. Mol Ecol 2014; 23:2514-28. [PMID: 24750353 DOI: 10.1111/mec.12753] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/11/2014] [Accepted: 04/11/2014] [Indexed: 12/15/2022]
Abstract
Next-generation sequencing and the collection of genome-wide data allow identifying adaptive variation and footprints of directional selection. Using a large SNP data set from 259 RAD-sequenced European eel individuals (glass eels) from eight locations between 34 and 64(o) N, we examined the patterns of genome-wide genetic diversity across locations. We tested for local selection by searching for increased population differentiation using F(ST) -based outlier tests and by testing for significant associations between allele frequencies and environmental variables. The overall low genetic differentiation found (F(ST) = 0.0007) indicates that most of the genome is homogenized by gene flow, providing further evidence for genomic panmixia in the European eel. The lack of genetic substructuring was consistent at both nuclear and mitochondrial SNPs. Using an extensive number of diagnostic SNPs, results showed a low occurrence of hybrids between European and American eel, mainly limited to Iceland (5.9%), although individuals with signatures of introgression several generations back in time were found in mainland Europe. Despite panmixia, a small set of SNPs showed high genetic differentiation consistent with single-generation signatures of spatially varying selection acting on glass eels. After screening 50 354 SNPs, a total of 754 potentially locally selected SNPs were identified. Candidate genes for local selection constituted a wide array of functions, including calcium signalling, neuroactive ligand-receptor interaction and circadian rhythm. Remarkably, one of the candidate genes identified is PERIOD, possibly related to differences in local photoperiod associated with the >30° difference in latitude between locations. Genes under selection were spread across the genome, and there were no large regions of increased differentiation as expected when selection occurs within just a single generation due to panmixia. This supports the conclusion that most of the genome is homogenized by gene flow that removes any effects of diversifying selection from each new generation.
Collapse
Affiliation(s)
- J M Pujolar
- Department of Bioscience, Aarhus University, Ny Munkegade 114, Bldg. 1540, DK-8000, Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Eljounaidi K, Cankar K, Comino C, Moglia A, Hehn A, Bourgaud F, Bouwmeester H, Menin B, Lanteri S, Beekwilder J. Cytochrome P450s from Cynara cardunculus L. CYP71AV9 and CYP71BL5, catalyze distinct hydroxylations in the sesquiterpene lactone biosynthetic pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 223:59-68. [PMID: 24767116 DOI: 10.1016/j.plantsci.2014.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/07/2014] [Accepted: 03/06/2014] [Indexed: 05/03/2023]
Abstract
Cynara cardunculus (Asteraceae) is a cross pollinated perennial crop which includes the two cultivated taxa globe artichoke and cultivated cardoon. The leaves of these plants contain high concentrations of sesquiterpene lactones (STLs) among which cynaropicrin is the most represented, and has recently attracted attention because of its therapeutic potential as anti-tumor and anti-photoaging agent. Costunolide is considered the common precursor of the STLs and three enzymes are involved in its biosynthetic pathway: i.e. the germacrene A synthase (GAS), the germacrene A oxidase (GAO) and the costunolide synthase (COS). Here we report on the isolation of two P450 genes, (i.e. CYP71AV9 and CYP71BL5), in a set of ∼19,000 C. cardunculus unigenes, and their functional characterization in yeast and in planta. The metabolite analyses revealed that the co-expression of CYP71AV9 together with GAS resulted in the biosynthesis of germacra-1(10),4,11(13)-trien-12-oic acid in yeast. The co-expression of CYP71BL5 and CYP71AV9 with GAS led to biosynthesis of the free costunolide in yeast and costunolide conjugates in Nicotiana benthamiana, demonstrating their involvement in STL biosynthesis as GAO and COS enzymes. The substrate specificity of CYP71AV9 was investigated by testing its ability to convert amorpha-4,11-diene, (+)-germacrene D and cascarilladiene to their oxidized products when co-expressed in yeast with the corresponding terpene synthases.
Collapse
Affiliation(s)
- Kaouthar Eljounaidi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Via L. da Vinci 44, 10095 Grugliasco, Italy
| | - Katarina Cankar
- Plant Research International, P.O. Box 16, 6700 AA Wageningen, The Netherlands; Laboratory of Plant Physiology, Wageningen University, P.O. Box 658, 6700AR Wageningen, The Netherlands
| | - Cinzia Comino
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Via L. da Vinci 44, 10095 Grugliasco, Italy
| | - Andrea Moglia
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Via L. da Vinci 44, 10095 Grugliasco, Italy
| | - Alain Hehn
- Université de Lorraine, UMR 1121 Agronomie et Environnement, 2 avenue de la Forêt de Haye, TSA 40602, 54518 Vandoeuvre-lès-Nancy, France; INRA, UMR 1121 Agronomie et Environnement, 2 avenue de la Forêt de Haye, TSA 40602, 54518 Vandoeuvre-lès-Nancy, France
| | - Frédéric Bourgaud
- Université de Lorraine, UMR 1121 Agronomie et Environnement, 2 avenue de la Forêt de Haye, TSA 40602, 54518 Vandoeuvre-lès-Nancy, France; INRA, UMR 1121 Agronomie et Environnement, 2 avenue de la Forêt de Haye, TSA 40602, 54518 Vandoeuvre-lès-Nancy, France
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, P.O. Box 658, 6700AR Wageningen, The Netherlands
| | - Barbara Menin
- PTP/Rice Genomics Unit, Via Einstein, 26900 Lodi, Italy
| | - Sergio Lanteri
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Via L. da Vinci 44, 10095 Grugliasco, Italy
| | - Jules Beekwilder
- Plant Research International, P.O. Box 16, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
26
|
Zhang Q, Li L, VanBuren R, Liu Y, Yang M, Xu L, Bowers JE, Zhong C, Han Y, Li S, Ming R. Optimization of linkage mapping strategy and construction of a high-density American lotus linkage map. BMC Genomics 2014; 15:372. [PMID: 24885335 PMCID: PMC4045970 DOI: 10.1186/1471-2164-15-372] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/08/2014] [Indexed: 01/22/2023] Open
Abstract
Background Lotus is a diploid plant with agricultural, medicinal, and ecological significance. Genetic linkage maps are fundamental resources for genome and genetic study, and also provide molecular markers for breeding in agriculturally important species. Genotyping by sequencing revolutionized genetic mapping, the restriction-site associated DNA sequencing (RADseq) allowed rapid discovery of thousands of SNPs markers, and a crucial aspect of the sequence based mapping strategy is the reference sequences used for marker identification. Results We assessed the effectiveness of linkage mapping using three types of references for scoring markers: the unmasked genome, repeat masked genome, and gene models. Overall, the repeat masked genome produced the optimal genetic maps. A high-density genetic map of American lotus was constructed using an F1 population derived from a cross between Nelumbo nucifera ‘China Antique’ and N. lutea ‘AL1’. A total of 4,098 RADseq markers were used to construct the American lotus ‘AL1’ genetic map, and 147 markers were used to construct the Chinese lotus ‘China Antique’ genetic map. The American lotus map has 9 linkage groups, and spans 494.3 cM, with an average distance of 0.7 cM between adjacent markers. The American lotus map was used to anchor scaffold sequences in the N. nucifera ‘China Antique’ draft genome. 3,603 RADseq markers anchored 234 individual scaffold sequences into 9 megascaffolds spanning 67% of the 804 Mb draft genome. Conclusions Among the unmasked genome, repeat masked genome and gene models, the optimal reference sequences to call RADseq markers for map construction is repeat masked genome. This high density genetic map is a valuable resource for genomic research and crop improvement in lotus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Ray Ming
- Key Laborary of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, P,R, China.
| |
Collapse
|
27
|
Gonen S, Lowe NR, Cezard T, Gharbi K, Bishop SC, Houston RD. Linkage maps of the Atlantic salmon (Salmo salar) genome derived from RAD sequencing. BMC Genomics 2014; 15:166. [PMID: 24571138 PMCID: PMC4028894 DOI: 10.1186/1471-2164-15-166] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/18/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Genetic linkage maps are useful tools for mapping quantitative trait loci (QTL) influencing variation in traits of interest in a population. Genotyping-by-sequencing approaches such as Restriction-site Associated DNA sequencing (RAD-Seq) now enable the rapid discovery and genotyping of genome-wide SNP markers suitable for the development of dense SNP linkage maps, including in non-model organisms such as Atlantic salmon (Salmo salar). This paper describes the development and characterisation of a high density SNP linkage map based on SbfI RAD-Seq SNP markers from two Atlantic salmon reference families. RESULTS Approximately 6,000 SNPs were assigned to 29 linkage groups, utilising markers from known genomic locations as anchors. Linkage maps were then constructed for the four mapping parents separately. Overall map lengths were comparable between male and female parents, but the distribution of the SNPs showed sex-specific patterns with a greater degree of clustering of sire-segregating SNPs to single chromosome regions. The maps were integrated with the Atlantic salmon draft reference genome contigs, allowing the unique assignment of ~4,000 contigs to a linkage group. 112 genome contigs mapped to two or more linkage groups, highlighting regions of putative homeology within the salmon genome. A comparative genomics analysis with the stickleback reference genome identified putative genes closely linked to approximately half of the ordered SNPs and demonstrated blocks of orthology between the Atlantic salmon and stickleback genomes. A subset of 47 RAD-Seq SNPs were successfully validated using a high-throughput genotyping assay, with a correspondence of 97% between the two assays. CONCLUSIONS This Atlantic salmon RAD-Seq linkage map is a resource for salmonid genomics research as genotyping-by-sequencing becomes increasingly common. This is aided by the integration of the SbfI RAD-Seq SNPs with existing reference maps and the draft reference genome, as well as the identification of putative genes proximal to the SNPs. Differences in the distribution of recombination events between the sexes is evident, and regions of homeology have been identified which are reflective of the recent salmonid whole genome duplication.
Collapse
Affiliation(s)
- Serap Gonen
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, Scotland, UK
| | - Natalie R Lowe
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, Scotland, UK
| | - Timothé Cezard
- Edinburgh Genomics, Ashworth Laboratories, King’s Buildings, University of Edinburgh, Edinburgh EH9 3JT, Scotland, UK
| | - Karim Gharbi
- Edinburgh Genomics, Ashworth Laboratories, King’s Buildings, University of Edinburgh, Edinburgh EH9 3JT, Scotland, UK
| | - Stephen C Bishop
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, Scotland, UK
| | - Ross D Houston
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, Scotland, UK
| |
Collapse
|
28
|
Xu P, Xu S, Wu X, Tao Y, Wang B, Wang S, Qin D, Lu Z, Li G. Population genomic analyses from low-coverage RAD-Seq data: a case study on the non-model cucurbit bottle gourd. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:430-42. [PMID: 24320550 DOI: 10.1111/tpj.12370] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/20/2013] [Accepted: 10/22/2013] [Indexed: 05/10/2023]
Abstract
Restriction site-associated DNA sequencing (RAD-Seq), a next-generation sequencing-based genome 'complexity reduction' protocol, has been useful in population genomics in species with a reference genome. However, the application of this protocol to natural populations of genomically underinvestigated species, particularly under low-to-medium sequencing depth, has not been well justified. In this study, a Bayesian method was developed for calling genotypes from an F₂ population of bottle gourd [Lagenaria siceraria (Mol.) Standl.] to construct a high-density genetic map. Low-depth genome shotgun sequencing allowed the assembly of scaffolds/contigs comprising approximately 50% of the estimated genome, of which 922 were anchored for identifying syntenic regions between species. RAD-Seq genotyping of a natural population comprising 80 accessions identified 3226 single nuclear polymorphisms (SNPs), based on which two sub-gene pools were suggested for association with fruit shape. The two sub-gene pools were moderately differentiated, as reflected by the Hudson's F(ST) value of 0.14, and they represent regions on LG7 with strikingly elevated F(ST) values. Seven-fold reduction in heterozygosity and two times increase in LD (r²) were observed in the same region for the round-fruited sub-gene pool. Outlier test suggested the locus LX3405 on LG7 to be a candidate site under selection. Comparative genomic analysis revealed that the cucumber genome region syntenic to the high FST island on LG7 harbors an ortholog of the tomato fruit shape gene OVATE. Our results point to a bright future of applying RAD-Seq to population genomic studies for non-model species even under low-to-medium sequencing efforts. The genomic resources provide valuable information for cucurbit genome research.
Collapse
Affiliation(s)
- Pei Xu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Assessing patterns of hybridization between North Atlantic eels using diagnostic single-nucleotide polymorphisms. Heredity (Edinb) 2014; 112:627-37. [PMID: 24424165 DOI: 10.1038/hdy.2013.145] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 11/08/2022] Open
Abstract
The two North Atlantic eel species, the European eel (Anguilla anguilla) and the American eel (Anguilla rostrata), spawn in partial sympatry in the Sargasso Sea, providing ample opportunity to interbreed. In this study, we used a RAD (Restriction site Associated DNA) sequencing approach to identify species-specific diagnostic single-nucleotide polymorphisms (SNPs) and design a low-density array that combined with screening of a diagnostic mitochondrial DNA marker. Eels from Iceland (N=159) and from the neighboring Faroe Islands (N=29) were genotyped, along with 94 larvae (49 European and 45 American eel) collected in the Sargasso Sea. Our SNP survey showed that the majority of Icelandic eels are pure European eels but there is also an important contribution of individuals of admixed ancestry (10.7%). Although most of the hybrids were identified as F1 hybrids from European eel female × American eel male crosses, backcrosses were also detected, including a first-generation backcross (F1 hybrid × pure European eel) and three individuals identified as second-generation backcrosses originating from American eel × F1 hybrid backcrosses interbreeding with pure European eels. In comparison, no hybrids were observed in the Faroe Islands, the closest bodies of land to Iceland. It is possible that hybrids show an intermediate migratory behaviour between the two parental species that ultimately brings hybrid larvae to the shores of Iceland, situated roughly halfway between the Sargasso Sea and Europe. Only two hybrids were observed among Sargasso Sea larvae, both backcrosses, but no F1 hybrids, that points to temporal variation in the occurrence of hybridization.
Collapse
|
30
|
Nybom H, Weising K, Rotter B. DNA fingerprinting in botany: past, present, future. INVESTIGATIVE GENETICS 2014; 5:1. [PMID: 24386986 PMCID: PMC3880010 DOI: 10.1186/2041-2223-5-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/02/2013] [Indexed: 12/20/2022]
Abstract
Almost three decades ago Alec Jeffreys published his seminal Nature papers on the use of minisatellite probes for DNA fingerprinting of humans (Jeffreys and colleagues Nature 1985, 314:67-73 and Nature 1985, 316:76-79). The new technology was soon adopted for many other organisms including plants, and when Hilde Nybom, Kurt Weising and Alec Jeffreys first met at the very First International Conference on DNA Fingerprinting in Berne, Switzerland, in 1990, everybody was enthusiastic about the novel method that allowed us for the first time to discriminate between humans, animals, plants and fungi on the individual level using DNA markers. A newsletter coined "Fingerprint News" was launched, T-shirts were sold, and the proceedings of the Berne conference filled a first book on "DNA fingerprinting: approaches and applications". Four more conferences were about to follow, one on each continent, and Alec Jeffreys of course was invited to all of them. Since these early days, methodologies have undergone a rapid evolution and diversification. A multitude of techniques have been developed, optimized, and eventually abandoned when novel and more efficient and/or more reliable methods appeared. Despite some overlap between the lifetimes of the different technologies, three phases can be defined that coincide with major technological advances. Whereas the first phase of DNA fingerprinting ("the past") was dominated by restriction fragment analysis in conjunction with Southern blot hybridization, the advent of the PCR in the late 1980s gave way to the development of PCR-based single- or multi-locus profiling techniques in the second phase. Given that many routine applications of plant DNA fingerprinting still rely on PCR-based markers, we here refer to these methods as "DNA fingerprinting in the present", and include numerous examples in the present review. The beginning of the third phase actually dates back to 2005, when several novel, highly parallel DNA sequencing strategies were developed that increased the throughput over current Sanger sequencing technology 1000-fold and more. High-speed DNA sequencing was soon also exploited for DNA fingerprinting in plants, either in terms of facilitated marker development, or directly in the sense of "genotyping-by-sequencing". Whereas these novel approaches are applied at an ever increasing rate also in non-model species, they are still far from routine, and we therefore treat them here as "DNA fingerprinting in the future".
Collapse
Affiliation(s)
- Hilde Nybom
- Department of Plant Breeding–Balsgård, Swedish University for Agricultural Sciences, Fjälkestadsvägen 459, Kristianstad 29194, Sweden
| | - Kurt Weising
- Plant Molecular Systematics, Institute of Biology, University of Kassel, Kassel 34109, Germany
| | - Björn Rotter
- GenXPro GmbH, Altenhöferallee 3, Frankfurt 60438, Germany
| |
Collapse
|
31
|
Viricel A, Pante E, Dabin W, Simon-Bouhet B. Applicability of RAD-tag genotyping for interfamilial comparisons: empirical data from two cetaceans. Mol Ecol Resour 2013; 14:597-605. [DOI: 10.1111/1755-0998.12206] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/08/2013] [Accepted: 11/13/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Amélia Viricel
- Littoral, Environnement et Sociétés (LIENSs) UMR 7266 CNRS; Université de La Rochelle; 2 rue Olympe de Gouges La Rochelle 17000 France
| | - Eric Pante
- Littoral, Environnement et Sociétés (LIENSs) UMR 7266 CNRS; Université de La Rochelle; 2 rue Olympe de Gouges La Rochelle 17000 France
| | - Willy Dabin
- Observatoire PELAGIS, UMS 3462 CNRS; Université de La Rochelle; Pôle analytique 5 allées de l'océan La Rochelle 17000 France
| | - Benoit Simon-Bouhet
- Littoral, Environnement et Sociétés (LIENSs) UMR 7266 CNRS; Université de La Rochelle; 2 rue Olympe de Gouges La Rochelle 17000 France
| |
Collapse
|
32
|
Pegadaraju V, Nipper R, Hulke B, Qi L, Schultz Q. De novo sequencing of sunflower genome for SNP discovery using RAD (Restriction site Associated DNA) approach. BMC Genomics 2013; 14:556. [PMID: 23947483 PMCID: PMC3765701 DOI: 10.1186/1471-2164-14-556] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 08/09/2013] [Indexed: 12/31/2022] Open
Abstract
Background Application of Single Nucleotide Polymorphism (SNP) marker technology as a tool in sunflower breeding programs offers enormous potential to improve sunflower genetics, and facilitate faster release of sunflower hybrids to the market place. Through a National Sunflower Association (NSA) funded initiative, we report on the process of SNP discovery through reductive genome sequencing and local assembly of six diverse sunflower inbred lines that represent oil as well as confection types. Results A combination of Restriction site Associated DNA Sequencing (RAD-Seq) protocols and Illumina paired-end sequencing chemistry generated high quality 89.4 M paired end reads from the six lines which represent 5.3 GB of the sequencing data. Raw reads from the sunflower line, RHA 464 were assembled de novo to serve as a framework reference genome. About 15.2 Mb of sunflower genome distributed over 42,267 contigs were obtained upon assembly of RHA 464 sequencing data, the contig lengths ranged from 200 to 950 bp with an N50 length of 393 bp. SNP calling was performed by aligning sequencing data from the six sunflower lines to the assembled reference RHA 464. On average, 1 SNP was located every 143 bp of the sunflower genome sequence. Based on several filtering criteria, a final set of 16,467 putative sequence variants with characteristics favorable for Illumina Infinium Genotyping Technology (IGT) were mined from the sequence data generated across six diverse sunflower lines. Conclusion Here we report the molecular and computational methodology involved in SNP development for a complex genome like sunflower lacking reference assembly, offering an attractive tool for molecular breeding purposes in sunflower.
Collapse
|
33
|
Bradic M, Teotónio H, Borowsky RL. The population genomics of repeated evolution in the blind cavefish Astyanax mexicanus. Mol Biol Evol 2013; 30:2383-400. [PMID: 23927992 PMCID: PMC3808867 DOI: 10.1093/molbev/mst136] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Distinct populations of Astyanax mexicanus cavefish offer striking examples of repeatable convergence or parallelism in their independent evolutions from surface to cave phenotypes. However, the extent to which the repeatability of evolution occurred at the genetic level remains poorly understood. To address this, we first characterized the genetic diversity of 518 single-nucleotide polymorphisms (SNPs), obtained through RAD tag sequencing and distributed throughout the genome, in seven cave and three groups of surface populations. The cave populations represented two distinct lineages (old and new). Thirty-one SNPs were significantly differentiated between surface and old cave populations, two SNPs were differentiated between surface and new cave populations, and 44 SNPs were significantly differentiated in both old and new cave populations. In addition, we determined whether these SNPs map to the same locations of previously described quantitative trait loci (QTL) between surface and cave populations. A total of 25 differentiated SNPs co-map with several QTL, such as one containing a fibroblast growth factor gene (Fgf8) involved in eye development and lens size. Further, the identity of many SNPs that co-mapped with QTL was the same in independently derived cave populations. These conclusions were further confirmed by haplotype analyses of SNPs within QTL regions. Our findings indicate that the repeatability of evolution at the genetic level is substantial, suggesting that ancestral standing genetic variation significantly contributed to the population genetic variability used in adaptation to the cave environment.
Collapse
|
34
|
Wang XQ, Zhao L, Eaton DAR, Li DZ, Guo ZH. Identification of
SNP
markers for inferring phylogeny in temperate bamboos (
P
oaceae:
B
ambusoideae) using
RAD
sequencing. Mol Ecol Resour 2013; 13:938-45. [DOI: 10.1111/1755-0998.12136] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/08/2013] [Accepted: 06/10/2013] [Indexed: 12/29/2022]
Affiliation(s)
- X. Q. Wang
- Plant Germplasm and Genomics Center Germplasm Bank of Wild Species Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
- College of Life Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - L. Zhao
- Plant Germplasm and Genomics Center Germplasm Bank of Wild Species Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - D. A. R. Eaton
- Committee on Evolutionary Biology University of Chicago Chicago IL 60637 USA
| | - D. Z. Li
- Key Laboratory of Biodiversity and Biogeography Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Z. H. Guo
- Plant Germplasm and Genomics Center Germplasm Bank of Wild Species Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| |
Collapse
|
35
|
Abstract
The emergence of new sequencing technologies has provided fast and cost-efficient strategies for high-resolution mapping of complex genomes. Although these approaches hold great promise to accelerate genome analysis, their application in studying genetic variation in wheat has been hindered by the complexity of its polyploid genome. Here, we applied the next-generation sequencing of a wheat doubled-haploid mapping population for high-resolution gene mapping and tested its utility for ordering shotgun sequence contigs of a flow-sorted wheat chromosome. A bioinformatical pipeline was developed for reliable variant analysis of sequence data generated for polyploid wheat mapping populations. The results of variant mapping were consistent with the results obtained using the wheat 9000 SNP iSelect assay. A reference map of the wheat genome integrating 2740 gene-associated single-nucleotide polymorphisms from the wheat iSelect assay, 1351 diversity array technology, 118 simple sequence repeat/sequence-tagged sites, and 416,856 genotyping-by-sequencing markers was developed. By analyzing the sequenced megabase-size regions of the wheat genome we showed that mapped markers are located within 40-100 kb from genes providing a possibility for high-resolution mapping at the level of a single gene. In our population, gene loci controlling a seed color phenotype cosegregated with 2459 markers including one that was located within the red seed color gene. We demonstrate that the high-density reference map presented here is a useful resource for gene mapping and linking physical and genetic maps of the wheat genome.
Collapse
|
36
|
Hegarty M, Yadav R, Lee M, Armstead I, Sanderson R, Scollan N, Powell W, Skøt L. Genotyping by RAD sequencing enables mapping of fatty acid composition traits in perennial ryegrass (Lolium perenne (L.)). PLANT BIOTECHNOLOGY JOURNAL 2013; 11:572-81. [PMID: 23331642 DOI: 10.1111/pbi.12045] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 12/11/2012] [Accepted: 12/12/2012] [Indexed: 05/26/2023]
Abstract
Perennial ryegrass (Lolium perenne L.) is the most important forage crop in temperate livestock agriculture. Its nutritional quality has significant impact on the quality of meat and milk for human consumption. Evidence suggests that higher energy content in forage can assist in reducing greenhouse gas emissions from ruminants. Increasing the fatty acid content (especially α-linolenic acid, an omega-3 fatty acid) may thus contribute to better forage, but little is known about the genetic basis of variation for this trait. To this end, quantitative trait loci (QTLs) were identified associated with major fatty acid content in perennial ryegrass using a population derived from a cross between the heterozygous and outbreeding high-sugar grass variety AberMagic and an older variety, Aurora. A genetic map with 434 restriction-associated DNA (RAD) and SSR markers was generated. Significant QTLs for the content of palmitic (C16:0) on linkage groups (LGs) 2 and 7; stearic (C18:0) on LGs 3, 4 and 7; linoleic (C18:2n-6) on LGs 2 and 5; and α-linolenic acids (C18:3n-3) on LG 1 were identified. Two candidate genes (a lipase and a beta-ketoacyl CoA synthase), both associated with C16:0, and separately with C18:2n-6 and C18:0 contents, were identified. The physical positions of these genes in rice and their genetic positions in perennial ryegrass were consistent with established syntenic relationships between these two species. Validation of these associations is required, but the utility of RAD markers for rapid generation of genetic maps and QTL analysis has been demonstrated for fatty acid composition in a global forage crop.
Collapse
Affiliation(s)
- Matthew Hegarty
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, UK
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. Stacks: an analysis tool set for population genomics. Mol Ecol 2013; 22:3124-40. [PMID: 23701397 DOI: 10.1111/mec.12354] [Citation(s) in RCA: 2281] [Impact Index Per Article: 190.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 04/16/2013] [Accepted: 04/16/2013] [Indexed: 02/06/2023]
Abstract
Massively parallel short-read sequencing technologies, coupled with powerful software platforms, are enabling investigators to analyse tens of thousands of genetic markers. This wealth of data is rapidly expanding and allowing biological questions to be addressed with unprecedented scope and precision. The sizes of the data sets are now posing significant data processing and analysis challenges. Here we describe an extension of the Stacks software package to efficiently use genotype-by-sequencing data for studies of populations of organisms. Stacks now produces core population genomic summary statistics and SNP-by-SNP statistical tests. These statistics can be analysed across a reference genome using a smoothed sliding window. Stacks also now provides several output formats for several commonly used downstream analysis packages. The expanded population genomics functions in Stacks will make it a useful tool to harness the newest generation of massively parallel genotyping data for ecological and evolutionary genetics.
Collapse
Affiliation(s)
- Julian Catchen
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA
| | | | | | | | | |
Collapse
|
38
|
Chen X, Li X, Zhang B, Xu J, Wu Z, Wang B, Li H, Younas M, Huang L, Luo Y, Wu J, Hu S, Liu K. Detection and genotyping of restriction fragment associated polymorphisms in polyploid crops with a pseudo-reference sequence: a case study in allotetraploid Brassica napus. BMC Genomics 2013; 14:346. [PMID: 23706002 PMCID: PMC3665465 DOI: 10.1186/1471-2164-14-346] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/17/2013] [Indexed: 01/30/2023] Open
Abstract
Background The presence of homoeologous sequences and absence of a reference genome sequence make discovery and genotyping of single nucleotide polymorphisms (SNPs) more challenging in polyploid crops. Results To address this challenge, we constructed reduced representation libraries (RRLs) for two Brassica napus inbred lines and their 91 doubled haploid (DH) progenies using a modified ddRADseq technique. A bioinformatics pipeline termed RFAPtools was developed to discover and genotype SNPs and presence/absence variations (PAVs). Using this pipeline, a pseudo-reference sequence (PRF) containing 180,991 sequence tags was constructed. By aligning sequence reads to the pseudo-reference sequence, allelic SNPs as well as PAVs were identified and genotyped with RFAPtools. Two parallel linkage maps, one SNP bin map containing 8,780 SNP loci and one PAV linkage map containing 12,423 dominant loci, were constructed. By aligning marker sequences to B. rapa sequence scaffolds, whose genome is available, we assigned 44 unassembled sequence scaffolds comprising 8.15 Mb onto the B. rapa chromosomes, and also identified 14 instances of misassembly and eight instances of mis-ordering sequence scaffolds. Conclusions These results indicate that the modified ddRADseq approach is a cost-effective and simple method to genotype tens of thousands SNPs and PAV markers in a polyploidy plant species. The results also demonstrated that RFAPtools developed in this study are powerful to mine allelic SNPs from homoeologous sequences in polyploids, therefore they are generally applicable in either diploid or polyploid species with or without a reference genome sequence.
Collapse
|
39
|
Pujolar JM, Jacobsen MW, Frydenberg J, Als TD, Larsen PF, Maes GE, Zane L, Jian JB, Cheng L, Hansen MM. A resource of genome-wide single-nucleotide polymorphisms generated by RAD tag sequencing in the critically endangered European eel. Mol Ecol Resour 2013; 13:706-14. [PMID: 23656721 DOI: 10.1111/1755-0998.12117] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/22/2013] [Accepted: 03/24/2013] [Indexed: 01/25/2023]
Abstract
Reduced representation genome sequencing such as restriction-site-associated DNA (RAD) sequencing is finding increased use to identify and genotype large numbers of single-nucleotide polymorphisms (SNPs) in model and nonmodel species. We generated a unique resource of novel SNP markers for the European eel using the RAD sequencing approach that was simultaneously identified and scored in a genome-wide scan of 30 individuals. Whereas genomic resources are increasingly becoming available for this species, including the recent release of a draft genome, no genome-wide set of SNP markers was available until now. The generated SNPs were widely distributed across the eel genome, aligning to 4779 different contigs and 19,703 different scaffolds. Significant variation was identified, with an average nucleotide diversity of 0.00529 across individuals. Results varied widely across the genome, ranging from 0.00048 to 0.00737 per locus. Based on the average nucleotide diversity across all loci, long-term effective population size was estimated to range between 132,000 and 1,320,000, which is much higher than previous estimates based on microsatellite loci. The generated SNP resource consisting of 82,425 loci and 376,918 associated SNPs provides a valuable tool for future population genetics and genomics studies and allows for targeting specific genes and particularly interesting regions of the eel genome.
Collapse
Affiliation(s)
- J M Pujolar
- Department of Bioscience, Aarhus University, Aarhus C, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Senn H, Ogden R, Cezard T, Gharbi K, Iqbal Z, Johnson E, Kamps-Hughes N, Rosell F, McEwing R. Reference-free SNP discovery for the Eurasian beaver from restriction site-associated DNA paired-end data. Mol Ecol 2013; 22:3141-50. [DOI: 10.1111/mec.12242] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 12/21/2012] [Accepted: 01/05/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Helen Senn
- WildGenes Laboratory; Royal Zoological Society of Scotland; Edinburgh, EH12 6TS UK
| | - Rob Ogden
- WildGenes Laboratory; Royal Zoological Society of Scotland; Edinburgh, EH12 6TS UK
| | - Timothee Cezard
- The GenePool; School of Biological Sciences; The University of Edinburgh; Edinburgh, EH9 3JT UK
| | - Karim Gharbi
- The GenePool; School of Biological Sciences; The University of Edinburgh; Edinburgh, EH9 3JT UK
| | - Zamin Iqbal
- Wellcome Trust Centre for Human Genetics; University of Oxford, OX3 7BN; Oxford UK
| | - Eric Johnson
- The Institute of Molecular Biology; 297 Klamath Hall, 1229 University of Oregon; Eugene OR 97403-1229 USA
| | - Nick Kamps-Hughes
- The Institute of Molecular Biology; 297 Klamath Hall, 1229 University of Oregon; Eugene OR 97403-1229 USA
| | - Frank Rosell
- Department of Environmental and Health Studies; Faculty of Arts and Sciences; Telemark University College; 3800 Bø i Telemark Norway
| | - Ross McEwing
- WildGenes Laboratory; Royal Zoological Society of Scotland; Edinburgh, EH12 6TS UK
| |
Collapse
|
41
|
Ward JA, Bhangoo J, Fernández-Fernández F, Moore P, Swanson JD, Viola R, Velasco R, Bassil N, Weber CA, Sargent DJ. Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation. BMC Genomics 2013. [PMID: 23324311 DOI: 10.1186/1471‐2164‐14‐2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rapid development of highly saturated genetic maps aids molecular breeding, which can accelerate gain per breeding cycle in woody perennial plants such as Rubus idaeus (red raspberry). Recently, robust genotyping methods based on high-throughput sequencing were developed, which provide high marker density, but result in some genotype errors and a large number of missing genotype values. Imputation can reduce the number of missing values and can correct genotyping errors, but current methods of imputation require a reference genome and thus are not an option for most species. RESULTS Genotyping by Sequencing (GBS) was used to produce highly saturated maps for a R. idaeus pseudo-testcross progeny. While low coverage and high variance in sequencing resulted in a large number of missing values for some individuals, a novel method of imputation based on maximum likelihood marker ordering from initial marker segregation overcame the challenge of missing values, and made map construction computationally tractable. The two resulting parental maps contained 4521 and 2391 molecular markers spanning 462.7 and 376.6 cM respectively over seven linkage groups. Detection of precise genomic regions with segregation distortion was possible because of map saturation. Microsatellites (SSRs) linked these results to published maps for cross-validation and map comparison. CONCLUSIONS GBS together with genome-independent imputation provides a rapid method for genetic map construction in any pseudo-testcross progeny. Our method of imputation estimates the correct genotype call of missing values and corrects genotyping errors that lead to inflated map size and reduced precision in marker placement. Comparison of SSRs to published R. idaeus maps showed that the linkage maps constructed with GBS and our method of imputation were robust, and marker positioning reliable. The high marker density allowed identification of genomic regions with segregation distortion in R. idaeus, which may help to identify deleterious alleles that are the basis of inbreeding depression in the species.
Collapse
Affiliation(s)
- Judson A Ward
- Department of Horticulture, Cornell University, New York State Agricultural Experiment Station, Geneva, New York 14456, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ward JA, Bhangoo J, Fernández-Fernández F, Moore P, Swanson JD, Viola R, Velasco R, Bassil N, Weber CA, Sargent DJ. Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation. BMC Genomics 2013; 14:2. [PMID: 23324311 PMCID: PMC3575332 DOI: 10.1186/1471-2164-14-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 12/04/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rapid development of highly saturated genetic maps aids molecular breeding, which can accelerate gain per breeding cycle in woody perennial plants such as Rubus idaeus (red raspberry). Recently, robust genotyping methods based on high-throughput sequencing were developed, which provide high marker density, but result in some genotype errors and a large number of missing genotype values. Imputation can reduce the number of missing values and can correct genotyping errors, but current methods of imputation require a reference genome and thus are not an option for most species. RESULTS Genotyping by Sequencing (GBS) was used to produce highly saturated maps for a R. idaeus pseudo-testcross progeny. While low coverage and high variance in sequencing resulted in a large number of missing values for some individuals, a novel method of imputation based on maximum likelihood marker ordering from initial marker segregation overcame the challenge of missing values, and made map construction computationally tractable. The two resulting parental maps contained 4521 and 2391 molecular markers spanning 462.7 and 376.6 cM respectively over seven linkage groups. Detection of precise genomic regions with segregation distortion was possible because of map saturation. Microsatellites (SSRs) linked these results to published maps for cross-validation and map comparison. CONCLUSIONS GBS together with genome-independent imputation provides a rapid method for genetic map construction in any pseudo-testcross progeny. Our method of imputation estimates the correct genotype call of missing values and corrects genotyping errors that lead to inflated map size and reduced precision in marker placement. Comparison of SSRs to published R. idaeus maps showed that the linkage maps constructed with GBS and our method of imputation were robust, and marker positioning reliable. The high marker density allowed identification of genomic regions with segregation distortion in R. idaeus, which may help to identify deleterious alleles that are the basis of inbreeding depression in the species.
Collapse
Affiliation(s)
- Judson A Ward
- Department of Horticulture, Cornell University, New York State Agricultural Experiment Station, Geneva, New York 14456, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Monteiro F, Romeiras MM, Batista D, Duarte MC. Biodiversity Assessment of Sugar Beet Species and Its Wild Relatives: Linking Ecological Data with New Genetic Approaches. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajps.2013.48a003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Vandepitte K, Honnay O, Mergeay J, Breyne P, Roldán-Ruiz I, De Meyer T. SNP discovery using Paired-End RAD-tag sequencing on pooled genomic DNA of Sisymbrium austriacum (Brassicaceae). Mol Ecol Resour 2012; 13:269-75. [PMID: 23231662 DOI: 10.1111/1755-0998.12039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/22/2012] [Accepted: 10/30/2012] [Indexed: 12/22/2022]
Abstract
Single nucleotide polymorphisms SNPs are rapidly replacing anonymous markers in population genomic studies, but their use in non model organisms is hampered by the scarcity of cost-effective approaches to uncover genome-wide variation in a comprehensive subset of individuals. The screening of one or only a few individuals induces ascertainment bias. To discover SNPs for a population genomic study of the Pyrenean rocket (Sisymbrium austriacum subsp. chrysanthum), we undertook a pooled RAD-PE (Restriction site Associated DNA Paired-End sequencing) approach. RAD tags were generated from the PstI-digested pooled genomic DNA of 12 individuals sampled across the species distribution range and paired-end sequenced using Illumina technology to produce ~24.5 Mb of sequences, covering ~7% of the specie's genome. Sequences were assembled into ~76 000 contigs with a mean length of 323 bp (N(50) = 357 bp, sequencing depth = 24x). In all, >15 000 SNPs were called, of which 47% were annotated in putative genic regions based on homology with the Arabidopsis thaliana genome. Gene ontology (GO) slim categorization demonstrated that the identified SNPs covered extant genic variation well. The validation of 300 SNPs on a larger set of individuals using a KASPar assay underpinned the utility of pooled RAD-PE as an inexpensive genome-wide SNP discovery technique (success rate: 87%). In addition to SNPs, we discovered >600 putative SSR markers.
Collapse
Affiliation(s)
- K Vandepitte
- Plant Conservation and Population Biology, Biology Department, University of Leuven, Kasteelpark Arenberg 31, Heverlee, B-3001, Belgium.
| | | | | | | | | | | |
Collapse
|
45
|
Kumar S, You FM, Cloutier S. Genome wide SNP discovery in flax through next generation sequencing of reduced representation libraries. BMC Genomics 2012; 13:684. [PMID: 23216845 PMCID: PMC3557168 DOI: 10.1186/1471-2164-13-684] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 11/29/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Flax (Linum usitatissimum L.) is a significant fibre and oilseed crop. Current flax molecular markers, including isozymes, RAPDs, AFLPs and SSRs are of limited use in the construction of high density linkage maps and for association mapping applications due to factors such as low reproducibility, intense labour requirements and/or limited numbers. We report here on the use of a reduced representation library strategy combined with next generation Illumina sequencing for rapid and large scale discovery of SNPs in eight flax genotypes. SNP discovery was performed through in silico analysis of the sequencing data against the whole genome shotgun sequence assembly of flax genotype CDC Bethune. Genotyping-by-sequencing of an F6-derived recombinant inbred line population provided validation of the SNPs. RESULTS Reduced representation libraries of eight flax genotypes were sequenced on the Illumina sequencing platform resulting in sequence coverage ranging from 4.33 to 15.64X (genome equivalents). Depending on the relatedness of the genotypes and the number and length of the reads, between 78% and 93% of the reads mapped onto the CDC Bethune whole genome shotgun sequence assembly. A total of 55,465 SNPs were discovered with the largest number of SNPs belonging to the genotypes with the highest mapping coverage percentage. Approximately 84% of the SNPs discovered were identified in a single genotype, 13% were shared between any two genotypes and the remaining 3% in three or more. Nearly a quarter of the SNPs were found in genic regions. A total of 4,706 out of 4,863 SNPs discovered in Macbeth were validated using genotyping-by-sequencing of 96 F6 individuals from a recombinant inbred line population derived from a cross between CDC Bethune and Macbeth, corresponding to a validation rate of 96.8%. CONCLUSIONS Next generation sequencing of reduced representation libraries was successfully implemented for genome-wide SNP discovery from flax. The genotyping-by-sequencing approach proved to be efficient for validation. The SNP resources generated in this work will assist in generating high density maps of flax and facilitate QTL discovery, marker-assisted selection, phylogenetic analyses, association mapping and anchoring of the whole genome shotgun sequence.
Collapse
Affiliation(s)
- Santosh Kumar
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, R3T 2M9, Canada
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Frank M You
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, R3T 2M9, Canada
| | - Sylvie Cloutier
- Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, R3T 2M9, Canada
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
46
|
Yang M, Han Y, VanBuren R, Ming R, Xu L, Han Y, Liu Y. Genetic linkage maps for Asian and American lotus constructed using novel SSR markers derived from the genome of sequenced cultivar. BMC Genomics 2012; 13:653. [PMID: 23170872 PMCID: PMC3564711 DOI: 10.1186/1471-2164-13-653] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 11/07/2012] [Indexed: 01/18/2023] Open
Abstract
Background The genus Nelumbo Adans. comprises two living species, N. nucifera Gaertan. (Asian lotus) and N. lutea Pers. (American lotus). A genetic linkage map is an essential resource for plant genetic studies and crop improvement but has not been generated for Nelumbo. We aimed to develop genomic simple sequence repeat (SSR) markers from the genome sequence and construct two genetic maps for Nelumbo to assist genome assembly and integration of a genetic map with the genome sequence. Results A total of 86,089 SSR motifs were identified from the genome sequences. Di- and tri-nucleotide repeat motifs were the most abundant, and accounted for 60.73% and 31.66% of all SSRs, respectively. AG/GA repeats constituted 51.17% of dinucleotide repeat motifs, followed by AT/TA (44.29%). Of 500 SSR primers tested, 386 (77.20%) produced scorable alleles with an average of 2.59 per primer, and 185 (37.00%) showed polymorphism among two parental genotypes, N. nucifera ‘Chinese Antique’ and N. lutea ‘AL1’, and six progenies of their F1 population. The normally segregating markers, which comprised 268 newly developed SSRs, 37 previously published SSRs and 53 sequence-related amplified polymorphism markers, were used for genetic map construction. The map for Asian lotus was 365.67 cM with 47 markers distributed in seven linkage groups. The map for American lotus was 524.51 cM, and contained 177 markers distributed in 11 genetic linkage groups. The number of markers per linkage group ranged from three to 34 with an average genetic distance of 3.97 cM between adjacent markers. Moreover, 171 SSR markers contained in linkage groups were anchored to 97 genomic DNA sequence contigs of ‘Chinese Antique’. The 97 contigs were merged into 60 scaffolds. Conclusion Genetic mapping of SSR markers derived from sequenced contigs in Nelumbo enabled the associated contigs to be anchored in the linkage map and facilitated assembly of the genome sequences of ‘Chinese Antique’. The present study reports the first construction of genetic linkage maps for Nelumbo, which can serve as reference linkage maps to accelerate characterization germplasm, genetic mapping for traits of economic interest, and molecular breeding with marker-assisted selection.
Collapse
Affiliation(s)
- Mei Yang
- Key Laboratory of Aquatic Plant and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Genome sequence of dwarf birch (Betula nana) and cross-species RAD markers. Mol Ecol 2012; 22:3098-111. [DOI: 10.1111/mec.12131] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 10/12/2012] [Accepted: 10/17/2012] [Indexed: 12/17/2022]
|
48
|
Two different high throughput sequencing approaches identify thousands of de novo genomic markers for the genetically depleted Bornean elephant. PLoS One 2012. [PMID: 23185354 PMCID: PMC3504023 DOI: 10.1371/journal.pone.0049533] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
High throughput sequencing technologies are being applied to an increasing number of model species with a high-quality reference genome. The application and analyses of whole-genome sequence data in non-model species with no prior genomic information are currently under way. Recent sequencing technologies provide new opportunities for gathering genomic data in natural populations, laying the empirical foundation for future research in the field of conservation and population genomics. Here we present the case study of the Bornean elephant, which is the most endangered subspecies of Asian elephant and exhibits very low genetic diversity. We used two different sequencing platforms, the Roche 454 FLX (shotgun) and Illumina, GAIIx (Restriction site associated DNA, RAD) to evaluate the feasibility of the two methodologies for the discovery of de novo markers (single nucleotide polymorphism, SNPs and microsatellites) using low coverage data. Approximately, 6,683 (shotgun) and 14,724 (RAD) SNPs were detected within our elephant sequence dataset. Genotyping of a representative sample of 194 SNPs resulted in a SNP validation rate of ∼ 83 to 94% and 17% of the loci were polymorphic with a low diversity (Ho = 0.057). Different numbers of microsatellites were identified through shotgun (27,226) and RAD (868) techniques. Out of all di-, tri-, and tetra-microsatellite loci, 1,706 loci had sufficient flanking regions (shotgun) while only 7 were found with RAD. All microsatellites were monomorphic in the Bornean but polymorphic in another elephant subspecies. Despite using different sample sizes, and the well known differences in the two platforms used regarding sequence length and throughput, the two approaches showed high validation rate. The approaches used here for marker development in a threatened species demonstrate the utility of high throughput sequencing technologies as a starting point for the development of genomic tools in a non-model species and in particular for a species with low genetic diversity.
Collapse
|
49
|
Davey JW, Cezard T, Fuentes-Utrilla P, Eland C, Gharbi K, Blaxter ML. Special features of RAD Sequencing data: implications for genotyping. Mol Ecol 2012; 22:3151-64. [PMID: 23110438 PMCID: PMC3712469 DOI: 10.1111/mec.12084] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/07/2012] [Accepted: 09/12/2012] [Indexed: 12/17/2022]
Abstract
Restriction site-associated DNA Sequencing (RAD-Seq) is an economical and efficient method for SNP discovery and genotyping. As with other sequencing-by-synthesis methods, RAD-Seq produces stochastic count data and requires sensitive analysis to develop or genotype markers accurately. We show that there are several sources of bias specific to RAD-Seq that are not explicitly addressed by current genotyping tools, namely restriction fragment bias, restriction site heterozygosity and PCR GC content bias. We explore the performance of existing analysis tools given these biases and discuss approaches to limiting or handling biases in RAD-Seq data. While these biases need to be taken seriously, we believe RAD loci affected by them can be excluded or processed with relative ease in most cases and that most RAD loci will be accurately genotyped by existing tools.
Collapse
Affiliation(s)
- John W Davey
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK.
| | | | | | | | | | | |
Collapse
|
50
|
Scaglione D, Lanteri S, Acquadro A, Lai Z, Knapp SJ, Rieseberg L, Portis E. Large-scale transcriptome characterization and mass discovery of SNPs in globe artichoke and its related taxa. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:956-69. [PMID: 22849342 DOI: 10.1111/j.1467-7652.2012.00725.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cynara cardunculus (2n = 2× = 34) is a member of the Asteraceae family that contributes significantly to the agricultural economy of the Mediterranean basin. The species includes two cultivated varieties, globe artichoke and cardoon, which are grown mainly for food. Cynara cardunculus is an orphan crop species whose genome/transcriptome has been relatively unexplored, especially in comparison to other Asteraceae crops. Hence, there is a significant need to improve its genomic resources through the identification of novel genes and sequence-based markers, to design new breeding schemes aimed at increasing quality and crop productivity. We report the outcome of cDNA sequencing and assembly for eleven accessions of C. cardunculus. Sequencing of three mapping parental genotypes using Roche 454-Titanium technology generated 1.7 × 10⁶ reads, which were assembled into 38,726 reference transcripts covering 32 Mbp. Putative enzyme-encoding genes were annotated using the KEGG-database. Transcription factors and candidate resistance genes were surveyed as well. Paired-end sequencing was done for cDNA libraries of eight other representative C. cardunculus accessions on an Illumina Genome Analyzer IIx, generating 46 × 10⁶ reads. Alignment of the IGA and 454 reads to reference transcripts led to the identification of 195,400 SNPs with a Bayesian probability exceeding 95%; a validation rate of 90% was obtained by Sanger-sequencing of a subset of contigs. These results demonstrate that the integration of data from different NGS platforms enables large-scale transcriptome characterization, along with massive SNP discovery. This information will contribute to the dissection of key agricultural traits in C. cardunculus and facilitate the implementation of marker-assisted selection programs.
Collapse
|